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Une contribution au conditionnement du

problème de moindres carrés totaux

Résumé : Nous dérivons des formules exactes pour le conditionnement d’une
fonction linéaire de la solution d’un problème de moindres carrés totaux. Etant
donné un système linéaire sur-déterminé Ax = b, nous montrons que ce condi-
tionnement peut être calculé en utilisant les valeurs singulières et les vecteurs
singuliers à droite de [A, b] et A. Nous proposons aussi une borne supérieure
qui nécessite le calcul de la plus grande et de la plus petite valeur singulière
de [A, b] ainsi que de la plus petite valeur singulière de A. Dans des exemples
numériques, nous comparons ces conditionnements et les bornes d’erreur directe
correspondantes avec les erreurs estimatives données dans [17].

Mots-clés : moindres carrés totaux, conditionnement, perturbations norm-
wise, modèle d’erreur dans les variables
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1 Introduction

Given a matrix A ∈ R
m×n (m > n) and an observation vector b ∈ R

m, the
standard over determined linear least squares (LS) problem consists in finding
a vector x ∈ R

n such that Ax is the best approximation of b. Such a problem
can be formulated using what is referred to as the linear statistical model

b = Ax+ ǫ, A ∈ R
m×n, b ∈ R

m, rank(A) = n,

where ǫ is a vector of random errors having expected value E(ǫ) = 0 and
variance-covariance V (ǫ) = σ2I.

In the linear statistical model, random errors affect exclusively the observa-
tion vector b while A is considered as known exactly. However it is often more
realistic to consider that measurement errors might also affect A. This case is
treated by the statistical model referred to as Errors-In-Variables model (see
e.g [17, p. 230] and [5, p. 176]), where we have the relation

(A+ E)x = b + ǫ.

In general it is assumed in this model that the rows of [E, ǫ] are independently
and identically distributed with common zero mean vector and common covari-
ance matrix. The corresponding linear algebra problem, discussed originally
in [12], is called the Total Least Squares (TLS) problem and can be expressed
as:

min
E,ǫ
‖(E, ǫ)‖F , (A+ E)x = b + ǫ, (1)

where ‖·‖F denotes the Frobenius matrix norm. As mentioned in [17, p. 238],
the TLS method enables us to obtain a more accurate solution when entries of
A are perturbed under certain conditions.

In error analysis, condition numbers are considered as fundamental tools
since they measure the effect on the solution of small changes in the data. In
particular the conditioning of the least squares problem was extensively studied
in the numerical linear algebra literature (see e.g [5, 7, 8, 9, 10, 15, 16, 18, 19,
22]). The more general case of the conditioning of a linear function of an LS
solution was studied in [2] and [4] when perturbations on data are measured
respectively normwise and componentwise (note that the componentwise and
normwise condition numbers for LS problems were also treated in [9] but without
the generalization to a linear function of the solution). Moreover we can find
in [3] algorithms using the software libraries LAPACK [1] and ScaLAPACK [6]
as well as physical applications.

The notion of Total Least Squares was initially defined in the seminal pa-
per [12] that was the first to propose a numerically stable algorithm. Then var-
ious aspects of the TLS problem were developed in the comprehensive book [17]
including a large survey of theoretical bases, computational methods and ap-
plications but also sensitivity analysis with for instance upper bounds for the
TLS perturbation. The so-called Scaled Total Least Squares (STLS) prob-
lem (minE,ǫ ‖(E, ǫ)‖F , (A + E)xγ = γb + ǫ, for a given scaling parameter γ)
was formulated in [20] in which were addressed the difficulties coming from non
existence of TLS solution. In a recent paper [23], we can find sharp estimates of
the normwise, mixed and componentwise condition numbers of the Scaled Total
Least Squares (STLS) problem.
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Here we are concerned with the TLS problem, which is a special case of
the STLS problem, and we will consider perturbations on data (A, b) that are
measured normwise using a product norm. Contrary to [23], we will consider
the general case of the conditioning of LTx, linear function of the TLS solution
for which we will derive an exact formula. The common situations correspond
to the special cases where L is the identity matrix (condition number of the
TLS solution) or a canonical vector (condition number of one solution compo-
nent). The conditioning of a nonlinear function of a TLS solution can also be
obtained by replacing, in the condition number expression, the quantity LT by
the Jacobian matrix at the solution.

We notice that the normwise condition number expression proposed in [23]
is based on the evaluation of the norm of a matrix expressed as a Kronecker
product resulting in large matrices which may be, as pointed out by the authors,
impractical to compute, especially for large size problems. We propose here a
computable expression for the resulting condition number (exact formula and
upper bound) using data that could be already available from the TLS solution
process, namely by-products of the SVD decomposition of A and [A, b]. We also
make use of the adjoint operator which enables us to work on a space of lower
dimension and we propose a practical algorithm based on the power method.

2 Definitions and notations

2.1 The total least squares problem

Let A ∈ R
m×n and b ∈ R

m, with m > n. Following [17], we consider the
two singular value decompositions of A, and [A, b] : A = U ′Σ′V

′T and [A, b] =
UΣV T . We also set Σ = diag(σ1, . . . , σn+1), Σ′ = diag(σ′

1, . . . , σ
′
n), where the

singular values are in nonincreasing order, and define λi = σ2
i , and λ′

i = σ
′2
i .

From [5, p. 178], we have the interlacing property

σ1 ≥ σ′
1 ≥ σ2 ≥ · · · ≥ σn ≥ σ′

n ≥ σn+1. (2)

We consider the total least squares problem expressed in Equation (1) and
we assume in this text that the genericity condition σ′

n > σn+1 holds (for
more information about the "nongeneric" problem see e.g [17, 20]). From [17,
Theorems 2.6 and 2.7], it follows that the TLS solution x exists, is unique, and
satisfies

x =
(
ATA− λn+1In

)−1
AT b. (3)

In addition,
[
x
−1

]
is an eigenvector of [A, b]T [A, b] associated with the simple

eigenvalue λn+1, i.e σ′
n > σn+1 guarantees that λn+1 is not a semi-simple eigen-

value of [A, b]T [A, b]. As for linear least squares problems, we define the total
least squares residual r = b−Ax, which enables us to write

λn+1 =
1

1 + xTx

[
xT , −1

] [ATA AT b
bTA bT b

] [
x
−1

]
=

rT r

1 + xTx
. (4)

As mentioned in [17, p. 35], the TLS solution is obtained by scaling the last
right singular vector vn+1 of [A, b] until its last. component is −1 and, if vi,n+1
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denotes the ith component of vn+1, we have

x = − 1

vn+1,n+1
[v1,n+1, . . . , vn,n+1]

T . (5)

The TLS method involves an SVD computation and the computational cost is
higher than that of a classical LS problem (about 2mn2 + 12n3 as mentioned
in [13, p. 598], to be compared with the approximately 2mn2 flops required
for LS solved via Householder QR factorization). However, there exist faster
methods referred to as "partial SVD" (PSVD) that calculate only the last right
singular vector or a basis of the right singular subspace associated with the
smallest singular values of [A, b] (see [17, p. 97]).

2.2 Condition number of the TLS problem

To measure the perturbations on data A and b, we consider the product norm

defined on R
m×n×Rm by ‖(A, b)‖F =

√
‖A‖2F + ‖b‖22 and we take the Euclidean

norm ‖x‖2 for the solution space R
n. In the following, the n×n identity matrix

is denoted by In.
Let L be a given n× k matrix, with k ≤ n. We suppose here that L is not

perturbed numerically and we consider the mapping

g : R
m×n × R

m −→ R
k

(A, b) 7−→ g(A, b) = LTx = LT (ATA− λn+1In)
−1AT b,

Since λn+1 is simple, g is a Fréchet-differentiable function of A and b, and the
genericity assumption ensures that the matrix (ATA−λn+1In)

−1 is also Fréchet-
differentiable in a neighborhood of (A, b). As a result, g is Fréchet-differentiable
in a neighborhood of (A, b).

The approach that we follow here is based on the work by [11, 21] where the
mathematical difficulty of a problem is measured by the norm of the Fréchet
derivative of the problem solution expressed as a function of data. This measure
is an attainable bound at first order, and may therefore be approximate when
large perturbations are considered.

Using the definition given in [11, 21], we can express the condition number
of LTx, linear function of the TLS solution as

K(L,A, b) = max
(∆A,∆b) 6=0

‖g′(A, b).(∆A,∆b)‖2
‖(∆A,∆b)‖F

. (6)

K(L,A, b) is sometimes called the absolute condition number of LTx as op-
posed to the relative condition number of LTx and defined, when LTx is nonzero
by

K(rel)(L,A, b) = K(L,A, b)‖(A, b)‖F/
∥∥LTx

∥∥
2
. (7)

In the remainder, the quantity K(L,A, b) will be simply referred to as the
TLS condition number, even though the proper conditioning of the TLS solution
corresponds to the special case when L is the identity matrix.
In the expression g′(A, b).(∆A,∆b), the "." operator denotes that we apply the
linear function g′(A, b) to the variable (∆A,∆b). We will use this notation
throughout this paper to designate the image of a vector or a matrix by a linear
function.
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Remark 1 The case where g(A, b) = h(x), with h being a differentiable non-
linear function mapping R

n to R
k is also covered because we have

g′(A, b).(∆A,∆b) = h′(x).(x′(A, b).(∆A,∆b)),

and LT would correspond to the Jacobian matrix h′(x). The nonlinear function
h can be for instance the Euclidean norm of part of the solution (e.g in the
computation of Fourier coefficients when we are interested in the quantity of
signal in a given frequency band).

3 Explicit formula for the TLS condition number

3.1 Fréchet derivative

In this section, we compute the Fréchet dérivative of g under the genericity
assumption, which enables us to obtain an explicit formula for the TLS condition
number in Proposition 2.

Proposition 1 Under the genericity assumption, g is Fréchet differentiable in

a neighborhood of (A, b). Setting Bλ = ATA−λn+1In, the Fréchet derivative of

g at (A, b) is expressed by

g′(A, b) : Rm×n × R
m −→ R

k

(∆A,∆b) 7−→ LTB−1
λ

(
AT + 2xrT

1+xT x

)
(∆b−∆Ax) +

LTB−1
λ ∆AT r.

(8)

Proof: The result is obtained from the chain rule. Since λn+1, expressed in Equa-
tion (4), is a simple eigenvalue of [A, b]T [A, b] with corresponding unit eigenvec-
tor 1√

1+xT x

[
xT −1

]T
, λn+1 is differentiable in a neighborhood of (A, b) and

then we have

λ′
n+1(A, b).(∆A,∆b) =

1

1 + xTx

[
xT −1

] [∆ATA+AT∆A ∆AT b+ AT∆b
bT∆A+∆bTA ∆bT b+ bT∆b

] [
x
−1

]

=
2

1 + xTx

(
xT∆ATAx− xT∆AT b− xTAT∆b+ bT∆b

)

=
2

1 + xTx

(
−xT∆AT r + (bT − xTAT )∆b

)

=
2

1 + xTx

(
−rT∆Ax+ rT∆b

)
,

yielding

λ′
n+1(A, b).(∆A,∆b) =

2rT (∆b−∆Ax)

1 + xTx
. (9)

Applying the chain rule to B−1
λ , we obtain

(B−1
λ )′(A, b).(∆A,∆b) = −B−1

λ

(
∆ATA+AT∆A− λ′

n+1(A, b).(∆A,∆b)In
)
B−1

λ

= −B−1
λ

(
∆ATA+AT∆A− 2rT (∆b −∆Ax)

1 + xTx
In

)
B−1

λ .
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The chain rule now applied to g(A, b) leads to

g′(A, b).(∆A,∆b) = −LTB−1
λ

(
∆ATA+AT∆A− λ′

n+1(A, b).(∆A,∆b)In
)
B−1

λ AT b + LTB−1
λ ∆AT b+ LTB−1

λ AT∆b

= −LTB−1
λ

(
∆ATA+AT∆A− λ′

n+1(A, b).(∆A,∆b)In
)
x+ LTB−1

λ

(
∆AT b+AT∆b

)

= LTB−1
λ

(
AT +

2xrT

1 + xTx

)
(∆b−∆Ax) + LTB−1

λ ∆AT r,

which gives the result.

✷

We now introduce the vec operation that stacks all the columns of a matrix
into a long vector: for A = [a1, . . . , an] ∈ R

m×n, vec(A) = [aT1 , . . . , a
T
n ]

T ∈
R

mn×1. Let P ∈ R
mn×mn denote the permutation matrix that represents the

matrix transpose by vec(BT ) = Pvec(B). We remind also that vec(AXB) =
(BT ⊗A)vec(X), where ⊗ denotes the Kronecker product of two matrices [14,
p. 21].

Let us now express the matrix representing g′(A, b), denoted byMg′ . Since
g′(A, b).(∆A,∆b) ∈ R

k, we have g′(A, b).(∆A,∆b) = vec(g′(A, b).(∆A,∆b)) and

setting in addition Dλ = LTB−1
λ

(
AT + 2xrT

1+xT x

)
∈ R

k×m, we obtain from (8)

g′(A, b).(∆A,∆b) = vec
(
Dλ (∆b−∆Ax) + LTB−1

λ ∆AT r
)

=
(
−xT ⊗Dλ

)
vec(∆A) +

(
rT ⊗ (LTB−1

λ )
)
vec(∆AT ) +Dλ∆b

=
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

] [vec(∆A)
∆b

]
.

Then we get

Mg′ =
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

]
∈ R

k×(nm+m).

But we have ‖(∆A,∆b)‖F =

∥∥∥∥
[
vec(∆A)

∆b

]∥∥∥∥
2

and then, from Proposition 1 and

using the definition of K(L,A, b) given in Expression (6), we get the following
proposition that expresses the TLS condition number in terms of the norm of a
matrix.

Proposition 2 The condition number of g(A, b) is given by

K(L,A, b) = ‖Mg′‖2 ,

where

Mg′ =
[
−xT ⊗Dλ +

(
rT ⊗ (LTB−1

λ )
)
P, Dλ

]
∈ R

k×(nm+m).

3.2 Adjoint operator and algorithm

Computing K(L,A, b) reduces to computing the spectral norm of the k× (nm+
m) matrix Mg′ . For large values of n or m, it is not possible to build explic-
itly the generally dense matrix Mg′ . Iterative techniques based on the power
method [16, p. 289] or on the Lanczos method [13] are better suited. These
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algorithms involve however the computation of the product ofMT
g′ by a vector

y ∈ R
k. We describe now how to perform this operation.

Using successively the fact that B−T
λ = B−1

λ , (A ⊗ B)T = AT ⊗ BT ,
vec(AXB) = (BT ⊗A)vec(X) and PT = P−1 we have

MT
g′y =

[
−x⊗DT

λ + PT
(
r ⊗ (B−T

λ L)
)

DT
λ

]
y

=

[
−(x⊗DT

λ )vec(y) + PT
(
r ⊗ (B−1

λ L)
)
vec(y)

DT
λ y

]

=

[
P−1

(
Pvec

(
−DT

λ yx
T
)
+ vec

(
B−1

λ LyrT
))

DT
λ y

]

=

[
P−1

(
vec
(
(−DT

λ yx
T )T

)
+ vec

(
B−1

λ LyrT
))

DT
λ y

]

=

[
P−1vec

(
−xyTDλ +B−1

λ LyrT
)

DT
λ y

]
,

and since for any matrix B we have P−1vec(B) = vec(BT ), we get

MT
g′y =

[
vec
(
−DT

λ yx
T + ryTLTB−1

λ

)

DT
λ y

]
. (10)

This leads us to the following proposition.

Proposition 3 The adjoint operator of g′(A, b) using the scalar products

trace(AT
1 A2) + bT1 b2 and yT1 y2 respectively on R

m×n × R
m and R

k is

g
′∗(A, b) : Rk −→ R

m×n × R
m

y 7−→
(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
) (11)

In addition, if k = 1 we have

K(L,A, b) =

√
‖−DT

λx
T + rLTB−1

λ ‖2F + ‖Dλ‖22 (12)

Proof: Let us denote by < (A1, b1), (A2, b2) > the scalar product trace(AT
1 A2)+

bT1 b2 on R
m×n × R

m. We have for any y ∈ R
k,

yT (g′(A, b).(∆A,∆b)) = yTMg′

[
vec(∆A)

∆b

]

= (MT
g′y)T

[
vec(∆A)

∆b

]

= vec
(
−DT

λ yx
T + ryTLTB−1

λ

)T
vec(∆A) + (DT

λ y)
T∆b.

Using now the fact that, for matrices A1 and A2 of identical sizes,
vec(A1)

T vec(A2) = trace(AT
1 A2), we get

yT (g′(A, b).(∆A,∆b)) = trace
(
(−DT

λ yx
T + ryTLTB−1

λ )T∆A
)
+ (DT

λ y)
T∆b

= <
(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
)
, (∆A,∆b) >

= < g
′∗(A, b).y, (∆A,∆b) >,
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which concludes the first part of the proof.
For the second part, we use

K(L,A, b) = ‖Mg′‖2 =
∥∥MT

g′

∥∥
2
= max

y 6=0

∥∥∥∥
[
vec
(
−DT

λ yx
T + ryTLTB−1

λ

)

DT
λ y

]∥∥∥∥
2

‖y‖2

Since k = 1, we have y ∈ R, and K(L,A, b) =

∥∥∥∥
[
vec
(
−DT

λ x
T + rLTB−1

λ

)

vec(DT
λ ),

]∥∥∥∥
2

and the result follows from the relation vec(A1)
Tvec(A1) = traceAT

1 A1 =
‖A1‖2F .

✷

Remark 2 The special case k = 1 recovers the situation where we compute the
conditioning of the ith solution component. In that case L is the ith canonical
vector of Rn and, in Equation (12), LTB−1

λ is the ith row of B−1
λ and Dλ is the

ith row of B−1
λ

(
AT + 2xrT

1+xT x

)
.

Using (8) and (11), we can now write in Algorithm 1 the iteration of the
power method ( [16, p. 289]) to compute the TLS condition number K(L,A, b).

Algorithm 1 : Condition number of TLS problem

Select initial vector y ∈ R
k

for p=1,2,...

(Ap, bp) =
(
−DT

λ yx
T + ryTLTB−1

λ , DT
λ y
)

ν = ‖(Ap, bp)‖F
(Ap, bp)← ( 1

ν
·Ap,

1
ν
· bp)

y = LTB−1
λ

(
AT + 2xrT

1+xT x

)
(bp −Apx) + LTB−1

λ AT
p r

end

K(L,A, b) =
√
ν

The quantity ν computed by Algorithm 1 is the largest eigenvalue ofMg′MT
g′ .

Since K(L,A, b) = ‖Mg′‖2 then the condition number K(L,A, b) is also the
largest singular value of Mg′ i.e

√
ν. As mentioned in [13, p. 331], the al-

gorithm will converge if the initial y has a component in the direction of the
corresponding dominant eigenvector of Mg′MT

g′ . When there is an estimate
of this dominant eigenvector, the initial y can be set to this estimate but in
many implementations, y is initialized as a random vector. The algorithm is
terminated by a "sufficiently" large number of iterations or by evaluating the
difference between two successive values of ν and comparing it to a tolerance
given by the user.
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3.3 Closed formula

Using the adjoint formulas obtained in Section 3.2, we now get a closed formula
for the total least squares conditioning.

Theorem 1 We consider the total least squares problem and assume that the

genericity assumption holds. Setting Bλ = ATA − λn+1In, then the condition

number of LTx, linear function of the TLS solution, is expressed by

K(L,A, b) = ‖C‖
1

2

2 ,

where C is the k × k symmetric matrix

C = (1 + ‖x‖22)LTB−1
λ

(
ATA+ λn+1(In −

2xxT

1 + ‖x‖22
)

)
B−1

λ L.

Proof: We have K(L,A, b)2 =
∥∥MT

g′

∥∥2
2
= max‖y‖

2
=1

∥∥MT
g′y
∥∥2
2
. If y is a unit

vector in R
k, then using Equation (10) we obtain

∥∥MT
g′y
∥∥2
2

=
∥∥vec

(
−DT

λ yx
T + ryTLTB−1

λ

)∥∥2
2
+
∥∥DT

λ y
∥∥2
2

= ‖−DT
λ yx

T + ryTLTB−1
λ ‖2F +

∥∥DT
λ y
∥∥2
2

= ‖DT
λ yx

T ‖2F + ‖ryTLTB−1
λ ‖2F − 2 trace(xyTDλry

TLTB−1
λ ) +

∥∥DT
λ y
∥∥2
2
.

For all vectors u and v, we have ‖uvT ‖F = ‖u‖2 ‖v‖2. Moreover we have

trace
(
(xyTDλr)(y

TLTB−1
λ )
)
= trace

(
(yTLTB−1

λ )(xyTDλr)
)
= yTLTB−1

λ xrTDT
λ y.

Thus
∥∥MT

g′y
∥∥2
2

= ‖x‖22
∥∥DT

λ y
∥∥2
2
+ ‖r‖22

∥∥B−1
λ Ly

∥∥2
2
− 2 yTLTB−1

λ xrTDT
λ y +

∥∥DT
λ y
∥∥2
2

= (1 + xTx)yTDλD
T
λ y + ‖r‖

2
2 y

TLTB−2
λ Ly − 2 yTLTB−1

λ xrTDT
λ y

= yT
(
(1 + xTx)DλD

T
λ + ‖r‖22 LTB−2

λ L− 2LTB−1
λ xrTDT

λ

)
y,

i.e
∥∥MT

g′

∥∥2
2
= ‖C‖2 with

C = (1 + xTx)DλD
T
λ + ‖r‖22 LTB−2

λ L− 2LTB−1
λ xrTDT

λ . (13)

Replacing Dλ by LTB−1
λ

(
AT + 2xrT

1+xTx

)
, Equation (13) simplifies to

C = LTB−1
λ

(
(1 + xTx)ATA+ ‖r‖22 In + 2AT rxT

)
B−1

λ L. (14)

But AT rxT = AT (b − Ax)xT = AT bxT − ATAxxT and, since from Equa-
tion (3) we have AT b = Bλx, we get AT rxT = Bλxx

T − ATAxxT = (ATA −
λn+1In)xx

T −ATAxxT = −λn+1xx
T . From Equation (4) we also have ‖r‖22 =

λn+1(1 + xTx) and thus Equation (14) becomes

C = LTB−1
λ

(
(1 + xTx)ATA+ λn+1(1 + xTx)In − 2λn+1xx

T
)
B−1

λ L

= (1 + ‖x‖22)LTB−1
λ

(
ATA+ λn+1(In −

2xxT

1 + ‖x‖22
)

)
B−1

λ L.

✷
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4 TLS condition number and SVD

4.1 Closed formula and upper bound

Computing K(L,A, b) using Theorem 1 requires the explicit formation of the
normal equations matrix ATA which is a source of rounding errors and also
generates an extra computational cost of about mn2 flops. In practice the TLS
solution is obtained by Equation (5) and involves an SVD computation. In the
following theorem, we propose a formula for K(L,A, b) that can be computed
with quantities that may be already available from the solution process. In the
following 0n,1 (resp. 01,n) denotes the zero column (resp. row) vector of length
n.

Theorem 2 Let V and V ′ be the matrices whose columns are the right sin-

gular vectors of respectively [A, b] and A associated with the singular values

(σ1, . . . , σn+1) and (σ′
1, . . . , σ

′
n). Then the condition number of LTx, linear func-

tion of the TLS solution is expressed by

K(L,A, b) = (1 + ‖x‖22)
1

2

∥∥∥LTV ′D′
[
V

′T , 0n,1
]
V
[
D, 0n,1

]T∥∥∥
2
, where

D′ = diag
(
(σ

′2
1 − σ2

n+1)
−1, . . . , (σ

′2
n − σ2

n+1)
−1
)

and D = diag
(
(σ2

1 + σ2
n+1)

1

2 , . . . , (σ2
n + σ2

n+1)
1

2

)
.

When L is the identity matrix, then the condition number reduces to

K(L,A, b) = (1 + ‖x‖22)
1

2

∥∥∥D′
[
V

′T , 0n,1
]
V
[
D, 0n,1

]T∥∥∥
2
.

Proof: From [A, b] = UΣV T , we have [A, b]T [A, b] = VΣ2V T =
∑n+1

i=1 σ2
i viv

T
i

and

[A, b]T [A, b] + λn+1In+1 =
n+1∑

i=1

σ2
i viv

T
i + λn+1

n+1∑

i=1

viv
T
i

=
n+1∑

i=1

(σ2
i + λn+1)viv

T
i

=

n∑

i=1

(σ2
i + σ2

n+1)viv
T
i + 2λn+1vn+1v

T
n+1,

leading to

[A, b]T [A, b] + λn+1In+1 − 2λn+1vn+1v
T
n+1 =

n∑

i=1

(σ2
i + σ2

n+1)viv
T
i (15)

From Equation (5), we have vn+1 = −vn+1,n+1

[
x
−1

]
and, since vn+1 is a unit

vector, v2n+1,n+1 = 1
1+‖x‖2

2

. Then Equation (15) can be expressed in matrix
notation as
[
ATA AT b
bTA bT b

]
+λn+1

[
In 0n,1
01,n 1

]
− 2λn+1

1 + ‖x‖22

[
xxT −x
−xT 1

]
=

n∑

i=1

(σ2
i +σ2

n+1)viv
T
i

(16)
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The quantity ATA + λn+1(In − 2xxT

1+‖x‖2
2

) corresponds to the left-hand side of

Equation (16) in which the last row and the last column have been removed.
Thus it can also be written

ATA+ λn+1(In −
2xxT

1 + ‖x‖22
) =

[
In, 0n,1

]
(

n∑

i=1

(σ2
i + σ2

n+1)viv
T
i

)[
In
01,n

]
,

and the matrix C from Theorem 1 can be expressed

C = (1 + ‖x‖22)LT
[
B−1

λ , 0n,1
]
(

n∑

i=1

(σ2
i + σ2

n+1)viv
T
i

)[
B−1

λ

01,n

]
L. (17)

Moreover from A = U ′Σ′V
′T , we have ATA = V ′Σ

′2V
′T =

∑n

i=1 σ
′2
i v′iv

′T
i and

Bλ = ATA− λn+1In

=
n∑

i=1

σ
′2
i v′iv

′T
i − σ2

n+1

n∑

i=1

v′iv
′T
i

=

n∑

i=1

(σ
′2
i − σ2

n+1)v
′
iv

′T
i

= V ′D′−1V
′T .

Hence B−1
λ = V

′−TD′V
′−1 = V ′D′V

′T and
[
B−1

λ , 0n,1
]
= V ′D′

[
V

′T , 0n,1
]
.

We also have
∑n

i=1(σ
2
i + σ2

n+1)viv
T
i = V

[
D
01,n

] [
D, 0n,1

]
V T .

Then, by replacing in Equation (17), we obtain C = (1 + ‖x‖22)Ṽ Ṽ T with

Ṽ = LTV ′D′
[
V

′T , 0n,1
]
V
[
D, 0n,1

]T
. As a result, using Theorem 1,

K(L,A, b)2 = ‖C‖2 = (1 + ‖x‖22)
∥∥∥Ṽ Ṽ T

∥∥∥
2
= (1 + ‖x‖22)

∥∥∥Ṽ
∥∥∥
2

2
.

When L = In, we use the fact that V ′ is an orthogonal matrix and can be

removed from the expression of
∥∥∥Ṽ
∥∥∥
2

2
.

✷

In many applications, an upper bound would be sufficient to give an estimate
of the conditioning of the TLS solution. The following corollary gives an upper
bound for K(L,A, b).

Corollary 1 The condition number of LTx, linear function of the TLS solution

is bounded by

K̄(L,A, b) = (1 + ‖x‖22)
1

2 ‖L‖2
(σ2

1 + σ2
n+1)

1

2

(σ′2
n − σ2

n+1)
.

Proof: This result comes from the inequality ‖AB‖2 ≤ ‖A‖2 ‖B‖2, followed by
‖D′‖2 = maxi(σ

′2
i − σ2

n+1)
−1 = (σ

′2
n −σ2

n+1)
−1 and ‖D‖22 = maxi(σ

2
i + σ2

n+1) =
(σ2

1 + σ2
n+1).

✷
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4.2 Numerical examples

In the following examples we study the condition number of x i.e L is here the
identity matrix In. Then, to simplify the notations, we removed the variable L
from the expressions and the condition number of x will be denoted by K(A, b)
and its upper bound by K̄(A, b). All the experiments were performed with
MATLAB 7.6.0 using a machine precision 2.22 · 10−16.

4.2.1 First example

In the first example we consider the TLS problem Ax ≈ b where [A, b] is defined
by

[A, b] = Y

(
D
0

)
ZT ∈ R

m×(n+1), Y = Im − 2yyT , Z = In+1 − 2zzT ,

where y ∈ R
m and z ∈ R

n+1 are random unit vectors, D = diag(n, n −
1, · · · , 1, 1− ep) for a given parameter ep. The quantity σ′

n−σn+1 measures the
distance of our problem to nongenericity and, due to Equation (2), we have in
exact arithmetic

σ′
n − σn+1 ≤ σn − σn+1 = ep.

Then by varying ep, we can generate different TLS problems and by considering
small values of ep, it is possible to study the behavior of the TLS condition
number in the context of close-to-nongeneric problems. The TLS solution x is
computed using an SVD of [A, b] and Equation (5).

In Table 1, we compare the exact condition number K(A, b) given in The-
orem 2, the upper bound K̄(A, b) given in Corollary 1, and the upper bound
obtained from [17, p. 212] and expressed by

κ(A, b) =
9σ1 ‖x‖2
σn − σn+1

(
1 +

‖b‖2
σ′
n − σn+1

)
1

‖b‖2 − σn+1
.

We also report the condition number computed by Algorithm 1, denoted by
Kp(A, b), and the corresponding number of power iterations (the algorithm ter-
minates when the difference between two successive values is lower than 10−8).
When σ′

n − σn+1 decreases, the TLS problem becomes worse conditioned and
there is a factor O(10) between the exact condition number K(A, b) and its
upper bound K̄(A, b). We also observe that K̄(A, b) is an estimate of better
order of magnitude than κ(A, b) and that, for small values of σ′

n−σn+1, κ(A, b)
is much less reliable. Kp(A, b) is always equal or very close to K(A, b).

4.2.2 Second example

Let us now consider the following example from [17, p. 42] also used in [23]
where

A =




m− 1 −1 · · · −1
−1 m− 1 · · · −1
·
·
·
−1 −1 · · · m− 1
−1 −1 · · · −1
−1 −1 · · · −1




∈ R
m×(m−2), b =




−1
−1
·
·
·
−1

m− 1
−1




∈ R
m.
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Table 1: TLS conditioning for several values of σ′
n − σn+1.

σ′
n − σn+1 K(A, b) K̄(A, b) κ(A, b) Kp(A, b) #iter

9.99976032 · 10−1 1.18 · 100 2.36 · 101 1.29 · 102 1.18 · 100 11
9.99952397 · 10−5 8.36 · 103 1.18 · 105 1.31 · 1010 8.36 · 103 6
9.99952365 · 10−9 8.36 · 107 1.18 · 109 1.31 · 1018 8.36 · 107 4
9.99644811 · 10−13 8.36 · 1011 1.18 · 1013 1.31 · 1026 8.32 · 1011 5

The exact solution of the TLS problem Ax ≈ b can be computed analytically [17,
p. 42] and is equal to x = −(1, · · · , 1)T . We consider a random perturbation
(∆A,∆b) of small norm ‖(∆A,∆b)‖F = 10−10 and we denote by x̃ the computed
solution of the perturbed system (A+∆A)x ≈ b+∆b.

In Table 2, we report for several values of m the relative condition number
as defined in (7) and we compare the computed relative forward error ‖x̃−x‖

2

‖x‖
2

with the forward error bounds that can be expected from the computation of
K(rel)(A, b) and its upper bounds K̄(rel)(A, b) and κ(rel)(A, b). Since the condi-
tion number corresponds to the worst case in error amplification at first order,
these quantities are, as observed in Table 2, always larger than the computed
forward error (there is approximately a factor 102 between those quantities). We
also observe that, in this example, K̄(rel)(A, b) and κ(rel)(A, b) produce forward
error estimates that are of same order of magnitude.

Table 2: Forward error and upper bounds for a perturbed TLS problem.

m K(rel)(A, b)
‖x̃−x‖

2

‖x‖
2

K(rel)(A, b)‖(∆A,∆b)‖F

‖(A,b)‖F

K̄(rel)(A, b)‖(∆A,∆b)‖F

‖(A,b)‖F

κ(rel)(A, b)‖(∆A,∆b)‖F

‖(A,b)‖F

50 5.05 · 101 2.45 · 10−13 2.21 · 10−11 1.55 · 10−10 6.72 · 10−10

100 1.01 · 102 1.08 · 10−13 1.55 · 10−11 1.54 · 10−10 4.26 · 10−10

500 5.01 · 102 8.79 · 10−14 6.85 · 10−12 1.53 · 10−10 1.66 · 10−10

1000 1.00 · 103 4.33 · 10−14 4.84 · 10−12 1.53 · 10−10 1.13 · 10−10

5 Conclusion

We proposed sensitivity analysis tools for the total least squares problem when
the genericity condition is satisfied. We provided closed formulas for the con-
dition number of a linear function of the TLS solution when the perturbations
of data are measured normwise. We also described an algorithm based on an
adjoint formula and we expressed this condition number and an upper bound
of it in terms of the SVDs of [A, b] and A. We illustrated the use for these
quantities in two numerical examples.
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