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AN ORE-TYPE THEOREM FOR PERFECT PACKINGS IN GRAPHS

DANIELA KÜHN, DERYK OSTHUS AND ANDREW TREGLOWN

Abstract. We say that a graph G has a perfect H-packing (also called an H-factor)
if there exists a set of disjoint copies of H in G which together cover all the vertices
of G. Given a graph H , we determine, asymptotically, the Ore-type degree condition
which ensures that a graph G has a perfect H-packing. More precisely, let δOre(H,n)
be the smallest number k such that every graph G whose order n is divisible by |H | and
with d(x)+ d(y) ≥ k for all non-adjacent x 6= y ∈ V (G) contains a perfect H-packing.
We determine limn→∞ δOre(H,n)/n.

1. Introduction

1.1. Perfect packings in graphs of large minimum degree. Given two graphs
H and G, an H-packing in G is a collection of vertex-disjoint copies of H in G. An
H-packing is called perfect if it covers all the vertices of G. In this case one also says
that G contains an H-factor. H-packings are generalisations of graph matchings (which
correspond to the case when H is a single edge).

In the case when H is an edge, Tutte’s theorem characterises those graphs which
have a perfect H-packing. However, for other connected graphs H no characterisation
is known. Furthermore, Hell and Kirkpatrick [4] showed that the decision problem
whether a graph G has a perfect H-packing is NP-complete precisely when H has a
component consisting of at least 3 vertices. It is natural therefore to ask for simple
sufficient conditions which ensure the existence of a perfect H-packing. One such result
is a theorem of Hajnal and Szemerédi [3] which states that a graph G whose order n
is divisible by r has a perfect Kr-packing provided that δ(G) ≥ (1 − 1/r)n. It is easy
to see that the minimum degree condition here is best possible. So for H = Kr, the
parameter which governs the existence of a perfect H-packing in a graph G of large
minimum degree is χ(H) = r.

The first two authors [13, 14] showed that for any graph H either the so-called critical
chromatic number or the chromatic number of H is the relevant parameter. Here the
critical chromatic number χcr(H) of a graph H is defined as

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

where σ(H) denotes the size of the smallest possible colour class in any χ(H)-colouring
of H. Throughout the paper, we only consider graphs H which contain at least one edge
(without mentioning this explicitly), so χcr(H) is well defined. Note that χ(H) − 1 <
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χcr(H) ≤ χ(H) for all graphs H, and χcr(H) = χ(H) precisely when every χ(H)-
colouring of H has colour classes of equal size. The characterisation of when χ(H) or
χcr(H) is the relevant parameter depends on the so-called highest common factor of H,
which is defined as follows.

We say that a colouring of H is optimal if it uses exactly χ(H) =: r colours. Given
an optimal colouring c of H, let x1 ≤ x2 ≤ · · · ≤ xr denote the sizes of the colour classes
of c. We write D(c) := {xi+1−xi | i = 1, . . . , r−1}, and let D(H) denote the union of all
the sets D(c) taken over all optimal colourings c of H. We denote by hcfχ(H) the highest
common factor of all integers in D(H). If D(H) = {0} then we define hcfχ(H) := ∞.
We write hcfc(H) for the highest common factor of all the orders of components of H.
For non-bipartite graphs H we say that hcf(H) = 1 if hcfχ(H) = 1. If χ(H) = 2 then
we say hcf(H) = 1 if hcfc(H) = 1 and hcfχ(H) ≤ 2. (See [14] for some examples.) Put

χ∗(H) :=

{

χcr(H) if hcf(H) = 1;

χ(H) otherwise.

Also let δ(H,n) denote the smallest integer k such that every graph G whose order n is
divisible by |H| and with δ(G) ≥ k contains a perfect H-packing.

Theorem 1. [14] For every graph H there exists a constant C = C(H) such that
(

1−
1

χ∗(H)

)

n− 1 ≤ δ(H,n) ≤

(

1−
1

χ∗(H)

)

n+ C.

Theorem 1 improved previous bounds by Alon and Yuster [1], who showed that
δ(H,n) ≤ (1 − 1/χ(H))n + o(n), and by Komlós, Sárközy and Szemerédi [11], who
replaced the o(n)-term by a constant depending only on H. Further related results are
discussed in the surveys [7, 8, 12, 15, 21].

1.2. Ore-type degree conditions for perfect packings. Of course, one can also
consider other types of degree conditions that ensure a perfect H-packing in a graph G.
One natural such condition is an Ore-type degree condition requiring a lower bound
on the sum of the degrees of non-adjacent vertices of G. (The name comes from Ore’s
theorem [16], which states that a graph G of order n ≥ 3 contains a Hamilton cycle if
d(x) + d(y) ≥ n for all non-adjacent x 6= y ∈ V (G).)

A result of Kierstead and Kostochka [6] on equitable colourings implies that a graph G
whose order n is divisible by r and with d(x)+d(y) ≥ 2(1−1/r)n−1 for all non-adjacent
x 6= y ∈ V (G) contains a perfect Kr-packing. Note that this is a strengthening of the
Hajnal-Szemerédi theorem. Kawarabayashi [5] asked for the Ore-type condition which
guarantees a K−

4 -packing in a graph G covering a given number of vertices of G. (Here
K−

4 denotes the graph obtained from K4 by removing an edge.) Similarly it is natural to
seek an Ore-type analogue of Theorem 1. This will be the main result of this paper (but
with an o(n)-error term). Perhaps surprisingly, the Ore-type condition needed is not
‘twice the minimum degree condition’. For some graphs H it depends on the so-called
colour extension number of H, which we will define now. Roughly speaking, this is a
measure of how many extra colours we need to properly colour H if we try to build this
colouring by extending an (r − 2)-colouring of a neighbourhood of a vertex of H.
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More precisely, suppose that H is a graph with χ(H) =: r which contains a vertex x
for which the subgraphH[N(x)] induced by the neighbourhood of x is (r−2)-colourable.
Given such a vertex x ∈ V (H), let mx denote the smallest integer for which there exists
an (r − 2)-colouring of H[N(x)] that can be extended to an (r + mx)-colouring of H.
The colour extension number CE(H) of H is defined as

CE(H) := min{mx | x ∈ V (H) with χ(H[N(x)]) ≤ r − 2}.

If χ(H[N(x)]) = r − 1 for all x ∈ V (H) we define CE(H) := ∞. So every bipartite
graph H without isolated vertices has CE(H) = ∞. All other bipartite graphs H have
CE(H) = 0. In general, 1 ≤ CE(H) < ∞ if for any optimal colouring of H and any
v ∈ V (H), N(v) lies in exactly r − 1 colour classes of H, but there exists a vertex
x ∈ V (H) such that χ(H[N(x)]) ≤ r − 2. Note that in this case CE(H) ≤ r − 2.
(Indeed, we can colour H −N(x) with r different colours to obtain a (2r− 2)-colouring
of H.)

In order to help the readers to familiarize themselves with the notion of the colour
extension number we now give a number of examples. χ(K−

4 ) = 3 and χ(K−
4 [N(x)]) = 2

for every vertex x of K−
4 . Thus CE(K−

4 ) = ∞. Next consider the graph F ⋄ obtained
from the complete 3-partite graph K2,2,2 by removing an edge xy of K2,2,2 and adding
a new vertex z which is adjacent to x and y only. Then χ(F ⋄) = 3, χ(F ⋄[N(w)]) = 2
for every vertex w 6= z in F ⋄ and χ(F ⋄[N(z)]) = 1. Note that in any 3-colouring of F ⋄,
x and y are coloured differently. So if we 1-colour N(z) = {x, y}, this colouring can be
extended to a 4-colouring of F ⋄ but not a 3-colouring. Thus CE(F ⋄) = 1.

For each k ≥ 1 and r ≥ k + 2 we now give an example of a family of graphs H⋄

with CE(H⋄) = k and χ(H⋄) = r. Consider a complete r-partite graph whose vertex
classes V1, . . . , Vr have size > k. Let H⋄ be obtained from this graph by deleting the
edges of k vertex-disjoint copies K1, . . . ,Kk of Kk+1 which lie in V1 ∪ · · · ∪ Vk+1, and
by adding a new vertex x which is adjacent to the k(k + 1) vertices lying in these
copies of Kk+1 as well as to all the vertices in Vk+2, . . . , Vr−1 (see Figure 1). Note that

PSfrag replacements

x

V1 V2 V3 V4 V5

Figure 1. The graph H⋄ in the case when k = 2, r = 5 and when
each Vi has size 3. The dashed lines indicate the deleted edges.

χ(H⋄) = r. Furthermore, any vertex y ∈ V1 ∪ · · · ∪ Vr lies in a copy of Kr in H⋄. So
χ(H⋄[N(y)]) = r − 1. However, the subgraph D := H⋄[N(x) ∩ V1 ∩ · · · ∩ Vk+1] has a
k-colouring c′x with colour classes V (K1), . . . , V (Kk) and it is easy to check that this is
the only k-colouring of D (and so in particular χ(D) = k). Thus χ(H⋄[N(x)]) = r − 2
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and the only (r − 2)-colouring of H⋄[N(x)] is the one which agrees with c′x on D and
colours each of Vk+2, . . . , Vr−1 with a new colour. Let cx denote this colouring. When
extending cx to a proper colouring of H⋄ we cannot reuse the r − 2 colours used in cx
since every y ∈ V (H⋄) \ N(x) is adjacent to a vertex in each colour class of cx. As
χ(H⋄−N(x)) = r− (r− k− 2) = k+2 this means that we require r+ k colours in total
to extend cx to a proper colouring of H⋄. Thus CE(H⋄) = k.

Let

χOre(H) :=

{

χ(H) if hcf(H) 6= 1 or CE(H) = ∞;

max
{

χcr(H), χ(H) − 2
CE(H)+2

}

otherwise.

Recall that CE(K−
4 ) = ∞ and CE(F ⋄) = 1, where F ⋄ was defined above. So χOre(K

−
4 ) =

χ(K−
4 ) = 3. Any 3-colouring of F ⋄ has one colour class of size 3 and two colour classes of

size 2. So hcf(F ⋄) = 1 and thus χOre(F
⋄) = max{χcr(F

⋄), 3−2/3} = max{14/5, 7/3} =
14/5.

Note that if hcf(H) = 1 and CE(H) = 0 then χOre(H) = χcr(H) (an odd cycle of
length at least 5 provides an example of such a graph H). On the other hand, one can
choose the sizes of the vertex classes Vi in the preceding example H⋄ so that χOre(H

⋄)
lies strictly between χcr(H

⋄) and χ(H⋄). (For instance, take k large, |V1| = k + 1,
|V2| = 2k and |Vi| = 2k + 1 for all i ≥ 3. Then χcr(H

⋄) is close to χ(H⋄) − 1/2,
hcf(H⋄) = 1 and so χOre(H

⋄) = χ(H⋄)− 2/(k + 2).)
Given a graph H, let δOre(H,n) be the smallest integer k such that every graph

G whose order n is divisible by |H| and with d(x) + d(y) ≥ k for all non-adjacent
x 6= y ∈ V (G) contains a perfect H-packing. Roughly speaking, our next result states
that when considering an Ore-type degree condition, for any graph H, χOre(H) is the
relevant parameter which governs the existence of a perfect H-packing. In particular,
it implies that we do not have a ‘dichotomy’ involving only χ(H) and χcr(H) as in
Theorem 1.

Theorem 2. For every graph H and each η > 0 there exists a constant C = C(H) and
an integer n0 = n0(H, η) such that if n ≥ n0 then

2

(

1−
1

χOre(H)

)

n− C ≤ δOre(H,n) ≤ 2

(

1−
1

χOre(H)
+ η

)

n.

So for example, Theorem 2 implies that limn→∞ δOre(K
−
4 , n)/n = 4/3 and

limn→∞ δOre(F
⋄, n)/n = 9/7.

The upper bound in Theorem 2 follows from Lemmas 11 and 12 in Section 3, which
in turn are proved in Sections 3 and 7. The lower bound is proved in Section 2. For
every graph H there are infinitely many values of n for which we can take C = 2 in
Theorem 2. In fact, if hcf(H) 6= 1 or CE(H) = ∞ then C = 2 suffices for all n divisible
by |H|. In general C ≤ 2|H|4 (see Section 2). It would be interesting to know whether
one can replace the error term ηn by a constant depending only on H.

1.3. Almost perfect packings. The critical chromatic number was first introduced
by Komlós [9], who showed that it is the relevant parameter when considering ‘almost’
perfect H-packings.
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Theorem 3. [9] For every graph H and each γ > 0 there exists an integer n0 = n0(γ,H)
such that every graph G of order n ≥ n0 and minimum degree at least (1− 1/χcr(H))n
contains an H-packing which covers all but at most γn vertices of G.

It is easy to see that the bound on the minimum degree in Theorem 3 is best possible.
In the proof of Theorem 2 we will use the following result which provides an Ore-
type analogue of Theorem 3. Again, the critical chromatic number is the relevant
parameter for any graph H. In particular, this means that Theorem 4 is a generalization
of Theorem 3. The proof of Theorem 4 is almost identical to that of Theorem 3. A
sketch of the proof is given in Section 5. Full details can be found in [19].

Theorem 4. For every graph H and each η > 0 there exists an integer n0 = n0(H, η)
such that if G is a graph on n ≥ n0 vertices and

d(x) + d(y) ≥ 2

(

1−
1

χcr(H)

)

n

for all non-adjacent x 6= y ∈ V (G) then G has an H-packing covering all but at most ηn
vertices.

Shokoufandeh and Zhao [17] showed that in Theorem 3 the bound on the number of
uncovered vertices can be reduced to a constant depending only on H. We conjecture
that this should also be the case for Theorem 4.

1.4. Copies of H covering a given vertex. In the proof of Theorem 2 it will be useful
to determine the Ore-type degree condition which guarantees a copy of H covering a
given vertex of G. Let δ′Ore(H,n) denote the smallest integer k such that whenever w is
a vertex of a graph G of order n with d(x)+d(y) ≥ k for all non-adjacent x 6= y ∈ V (G)
then G contains a copy of H covering w. Define

χ′
Ore(H) :=

{

χ(H) if CE(H) = ∞;

χ(H)− 2
CE(H)+2 otherwise.

Theorem 5. For every graph H and every η > 0 there exists an integer n0 = n0(H, η)
and a constant C = C(H) such that if n ≥ n0 then

2

(

1−
1

χ′
Ore(H)

)

n− C ≤ δ′Ore(H,n) ≤ 2

(

1−
1

χ′
Ore(H)

+ η

)

n.

Theorem 5 is proved in Section 3. As in the case of perfect H-packings, the Ore-
type degree condition in Theorem 5 does not quite match the bound needed for the
corresponding minimum degree version. Indeed, let δ′(H,n) denote the smallest integer
k such that whenever w is a vertex of a graph G of order n with δ(G) ≥ k then G
contains a copy of H covering w. Together with the Erdős-Stone theorem the next
result implies that asymptotically δ′(H,n) is the same as the minimum degree needed
to force any copy of H in a graph of order n.

Proposition 6. For every graph H and every η > 0 there exists an integer n0 = n0(H, η)
such that if n ≥ n0 then

(

1−
1

χ(H)− 1

)

n− 1 ≤ δ′(H,n) ≤

(

1−
1

χ(H)− 1
+ η

)

n.
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The lower bound on δ′(H,n) in Proposition 6 follows by considering a complete
(χ(H) − 1)-partite graph G whose vertex classes are as equal as possible. The proof of
the upper bound is similar to Case 1 of the proof of Lemma 13 (see Section 6). Details
can be found in [20].

We will not use Proposition 6 in the proof of Theorem 2, but we have included it
as it helps to explain the difference between Theorems 1 and 2. Indeed, Theorem 3
and Proposition 6 show that the minimum degree which ensures an almost perfect H-
packing is larger than the minimum degree which guarantees a copy of H covering any
given vertex. In contrast, Theorems 4 and 5 imply that for some H this is not true
in the Ore-type case. So it is natural that δOre(H,n) involves this property explicitly
(since the property that every vertex is contained in a copy of H is clearly necessary to
ensure a perfect H-packing). In fact, this is the only real difference to the expression
for δ(H,n) in Theorem 1: note that we have χOre(H) = max{χ∗(H), χ′

Ore(H)} and thus
Theorems 1, 2 and 5 imply that

δOre(H,n) = max
{

2δ(H,n), δ′Ore(H,n)
}

+ o(n).

1.5. Forcing a single copy of H. In view of Theorem 5, one might also wonder what
Ore-type degree condition ensures at least one copy of H (i.e. we do not require every
vertex to lie in a copy of H). It is easy to see that if G is of order n then the condition
is similar to the condition on the minimum degree.

Proposition 7. For every graph H and every η > 0 there exists an integer n0 = n0(H, η)
such that if n ≥ n0 and G is a graph on n vertices which satisfies

d(x) + d(y) ≥ 2

(

1−
1

χ(H)− 1
+ η

)

n

for all non-adjacent x 6= y ∈ V (G), then G contains a copy of H.

Proposition 7 immediately follows from the Erdős-Stone theorem and the following
observation (which we expect to be known, but we were unable to find a reference):

Proposition 8. Let G be a graph with d(x) + d(y) ≥ 2k for all non-adjacent x 6= y ∈
V (G). Then G has average degree at least k.

To prove Proposition 8, let A be the set of vertices in G whose degree is less than k
and let B be the set of remaining vertices. Let G denote the complement of G and let
F denote the bipartite subgraph of G induced by A and B. Hall’s theorem implies that
F has a matching covering all of A (Hall’s condition can be verified by noting that for
all X ⊆ A the number of edges in F between X and the neighbourhood of X is at least
|X|(n−k−1) and at most |N(X)|(n−k−1)). Now apply the Ore-type degree condition
to all pairs of vertices of G which are contained in this matching.

1.6. Other structures. As mentioned earlier, packing and embedding results in graphs
of large minimum degree have also been studied for other structures. It would be
interesting to obtain Ore-type analogues for some of these: e.g. for the Pósa-Seymour
conjecture which states that every graph G on n vertices with δ(G) ≥ r

r+1n contains the

rth power of a Hamilton cycle. [7] contains a discussion of other Ore-type results.
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2. Notation and extremal examples

Throughout this paper we omit floors and ceilings whenever this does not affect the
argument. We write e(G) to denote the number of edges of a graph G, |G| for its order,
δ(G) and ∆(G) for its minimum and maximum degrees respectively and χ(G) for its
chromatic number.

Given disjoint A,B ⊆ V (G), an A-B edge is an edge of G with one endvertex in A
and the other in B. The number of these edges is denoted by eG(A,B) or e(A,B) if this
is unambiguous. We write (A,B)G for the bipartite subgraph of G with vertex classes
A and B whose edges are precisely the A-B edges in G.

Let us now prove the lower bound in Theorem 2. The next proposition deals with
the case when CE(H) = ∞.

Proposition 9. Let H be a graph with CE(H) = ∞. Let n ≥ |H|. Then there exists a
graph G of order n with

d(x) + d(y) ≥ 2

(

1−
1

χ(H)

)

n− 2

for all non-adjacent x 6= y ∈ V (G) containing a vertex that does not belong to a copy
of H. (In particular, G has no perfect H-packing.)

Proof. Let r := χ(H). Consider the complete r-partite graph of order n whose vertex
classes V ′

1 , V
′
2 , V3, . . . , Vr have sizes as equal as possible, where |V

′
1 | ≤ |V ′

2 | ≤ |V3| ≤ · · · ≤
|Vr|. Note that n− |V ′

1 | − |V ′
2 | ≥ n− 2n/r.

Let G be obtained from this graph by moving all but one vertex, w say, from V ′
1 to V ′

2 ,
by making the set V2 ⊇ V ′

2 thus obtained from V ′
2 into a clique and by deleting all the

edges between w and the vertices in V2.
Any vertex y ∈ V3 ∪ · · · ∪ Vr satisfies d(y) ≥ n − ⌈nr ⌉ ≥ (1 − 1/χ(H))n − 1. Thus

d(y1) + d(y2) ≥ 2(1 − 1/χ(H))n − 2 for all non-adjacent y1 6= y2 ∈ V (G)\({w} ∪ V2).
Moreover, d(w) = n− |V ′

1 | − |V ′
2 | ≥ n− 2n/r and for any z ∈ V2 we have d(z) = n − 2.

So d(w) + d(z) ≥ 2(1− 1/χ(H))n− 2. Hence G satisfies our Ore-type degree condition.
The neighbourhood of w in G induces an (r − 2)-partite subgraph of G. Therefore,

since χ(H[N(x)]) = r − 1 for all x ∈ V (H), w cannot play the role of any vertex in H.
So G does not contain a copy of H covering w. �

The following proposition will be used for the case when H is non-bipartite and
CE(H) < ∞.

Proposition 10. Let H be a graph with r := χ(H) ≥ 3 for which m := CE(H) < ∞.
Then there are infinitely many graphs G whose order n is divisible by |H| and such that

d(x) + d(y) ≥ 2

(

1−
1

r − 2
m+2

)

n− 1

for all non-adjacent x 6= y ∈ V (G) containing a vertex that does not belong to a copy
of H. (In particular, G has no perfect H-packing.)

Proof. Let t ∈ N be such that ((m+2)r− 2)(r− 2) divides t. Define s := 2|H|/((m+
2)r−2). Let G′ be the complete (r+m−1)-partite graph with one vertex class V1 of size
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st−1, m vertex classes V2, . . . , Vm+1 of size st and r−2 vertex classes Vm+2, . . . , Vr+m−1

of size |H|t−(m+1)st
r−2 . Let G be obtained from G′ by adding a vertex w to G′ such that w

is adjacent to precisely those vertices in Vm+2 ∪ · · · ∪ Vr+m−1. So |G| = |H|t.
Any y ∈ V1 ∪ · · · ∪ Vm+1 satisfies

d(y) + d(w) ≥ 2|H|t− (m+ 2)st− 1 = 2

(

1−
m+ 2

(m+ 2)r − 2

)

|G| − 1.

Furthermore, given any y1 6= y2 ∈ Vi for some m+ 2 ≤ i ≤ r +m− 1, we have

d(y1) + d(y2) = 2|H|t− 2

(

|H|t− (m+ 1)st

r − 2

)

= 2|G| −
2

r − 2

(

1−
2(m+ 1)

(m+ 2)r − 2

)

|G|

= 2|G| −
2

r − 2

(m+ 2)(r − 2)

(m+ 2)r − 2
|G| = 2

(

1−
m+ 2

(m+ 2)r − 2

)

|G|.

Since d(y) + d(y′) ≥ d(y) + d(w) for any y 6= y′ ∈ Vi with 1 ≤ i ≤ m + 1 this implies
that G satisfies our Ore-type degree condition.

Suppose that w belongs to some copy Hw of H in G. Since χ(G) = m + r − 1, an
optimal colouring of G induces an (m+ r− 1)-colouring of Hw and an (r− 2)-colouring
of G[N(w)]. But then w must be playing the role of a vertex x ∈ V (H) such that
χ(H[N(x)]) ≤ r − 2, contradicting the definition of m = CE(H). �

We will now use Propositions 9 and 10 to prove the lower bound of Theorem 2.

Proof of Theorem 2 (lower bound). In the case when hcf(H) 6= 1 the lower
bound follows from the lower bound in Theorem 1. Proposition 9 settles the case when
CE(H) = ∞. So we may assume that hcf(H) = 1 and CE(H) < ∞. In this case, the
lower bound in Theorem 1 also implies that

(1) δOre(H,n) ≥ 2(1− 1/χcr(H))n − 2

(for any graph H). Suppose first that H is bipartite. Since CE(H) < ∞ this means
that H must have an isolated vertex and so CE(H) = 0. Thus χOre(H) = χcr(H) and
so we are done by (1).

So suppose next that χ(H) ≥ 3. In this case the proof of Proposition 10 implies the
lower bound whenever n is divisible by ((m + 2)r − 2)(r − 2)|H|. To deduce the lower
bound for any n ≥ ((m + 2)r − 2)(r − 2)|H| which is divisible by |H| we proceed as
follows. Let n′ be the largest integer such that n′ ≤ n and n′ is divisible by ((m+2)r−
2)(r − 2)|H|. Construct a graph G of order n′ as in the proof of Proposition 10. Then
add n − n′ < ((m + 2)r − 2)(r − 2)|H| new vertices to V1 so that these vertices have
the same neighbourhoods as the original vertices in V1. Then |G| = n and by the same
argument as in Proposition 10, G does not contain a perfect H-packing. Moreover, it is
easy to check that d(x) + d(y) ≥ 2(1− 1/(r− 2/(m+2)))n− 2|H|4 for all non-adjacent
x 6= y ∈ V (G). �
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3. Some useful results

In Section 2 we proved the lower bound on δOre(H,n) in Theorem 2. The following
two results together imply the upper bound.

Lemma 11. Let H be a graph and let η > 0. There exists an integer n0 = n0(H, η)
such that if G is a graph whose order n ≥ n0 is divisible by |H| and

d(x) + d(y) ≥ 2

(

1−
1

χ(H)
+ η

)

n

for all non-adjacent x 6= y ∈ V (G) then G contains a perfect H-packing.

Lemma 12. Let η > 0 and suppose that H is a graph such that hcf(H) = 1 and
CE(H) < ∞. There exists an integer n0 = n0(H, η) such that if G is a graph whose
order n ≥ n0 is divisible by |H| and

d(x) + d(y) ≥ max

{

2

(

1−
1

χ(H)− 2
CE(H)+2

+ η

)

n, 2

(

1−
1

χcr(H)
+ η

)

n

}

(2)

for all non-adjacent x 6= y ∈ V (G) then G contains a perfect H-packing.

Note that Lemma 11 implies the upper bound on δ(H,n) by Alon and Yuster (which
we mentioned in Section 1). We now deduce Lemma 11 from Lemma 12.

Proof of Lemma 11. Let h := |H| and r := χ(H). Given any k ≥ 2, define H∗ to
be the complete (r + 1)-partite graph with one vertex class of size 1, one vertex class
of size hk − 1 and r − 1 vertex classes of size hk. Let H ′ be obtained from H∗ by
removing an edge between some vertex y in a vertex class of size hk and the vertex in
the singleton vertex class. So χ(H ′) = r + 1, |H ′| = hkr and χ(H ′[N(y)]) = r − 1.
Moreover, CE(H ′) = 0 since N(y) lies in r − 1 vertex classes of H ′. It is easy to see
that H ′ contains a perfect H-packing and that hcf(H ′) = 1. So χOre(H

′) = χcr(H
′) =

(χ(H ′) − 1) |H′|
|H′|−σ(H′) = r |H′|

|H′|−1 . In particular, we can choose k sufficiently large to

guarantee that 1/χcr(H
′) ≥ 1/χ(H)− η/4.

Consider any graph G as in Lemma 11. Choose a ≤ kr such that n − ah is divisible
by |H ′| = hkr. Apply Proposition 7 to obtain a disjoint copies of H in G. Remove these
a copies of H from G to obtain a graph G′ whose order is divisible by |H ′| and which
satisfies

dG′(x1) + dG′(x2) ≥ 2

(

1−
1

χ(H)
+

η

2

)

|G′| ≥ 2

(

1−
1

χcr(H ′)
+

η

4

)

|G′|

for all non-adjacent x1 6= x2 ∈ V (G′). Apply Lemma 12 to find a perfect H ′-packing
in G′. In particular, this induces a perfect H-packing in G′. Thus, together with all
those copies of H in G−G′ we have chosen before, we obtain a perfect H-packing in G.

�
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Thus to prove Theorem 2 it remains to prove Lemma 12, which we will do in Section 7.
In order to deal with the ‘exceptional’ vertices in the proof of Lemma 12 we use the
following result which implies that every vertex w of a graph G as in Lemma 12 is
contained in a copy of H. We prove Lemma 13 in Section 6.

Lemma 13. Let H be a graph such that m := CE(H) < ∞. Let r := χ(H) and η > 0.
There exists an integer n0 = n0(η,H) such that whenever G is a graph on n ≥ n0

vertices with

d(x) + d(y) ≥ 2

(

1−
1

r − 2
m+2

+ η

)

n(3)

for all non-adjacent x 6= y ∈ V (G) then every vertex of G lies in a copy of H in G.

The above results also imply Theorem 5:

Proof of Theorem 5. The lower bound in the case when CE(H) = ∞ follows from
Proposition 9. If CE(H) < ∞ and χ(H) ≥ 3 then Proposition 10 gives the lower bound
for infinitely many values of n and as in the proof of the lower bound in Theorem 2 it
can be used to derive the lower bound for any n. If CE(H) < ∞ and χ(H) = 2 then
CE(H) = 0 and so the lower bound is trivial. The upper bound follows from Lemmas 11
and 13. �

In our proof of Lemma 12 we will also use the following result, Lemma 12 from [14]. It
gives a sufficient condition on the sizes of the vertex classes of a complete χ(H)-partite
graph G which ensures that G has a perfect H-packing. Lemma 14 is the point where
the assumption that hcf(H) = 1 is crucial – it is false for graphs with hcf(H) 6= 1.

Lemma 14. Let H be a graph with hcf(H) = 1. Put r := χ(H) and γ := (r −
1)σ(H)/(|H|−σ(H)). Let 0 < β1 ≪ λ1 ≪ γ, 1−γ, 1/|H| be positive constants. Suppose
that G is a complete r-partite graph with vertex classes U1, . . . , Ur such that |G| ≫ |H|

is divisible by |H|, (1 − λ
1/10
1 )|Ur| ≤ γ|Ui| ≤ (1 − λ1)|Ur| for all i < r and such that

| |Ui| − |Uj| | ≤ β1|G| whenever 1 ≤ i < j < r. Then G contains a perfect H-packing.

Here (and later on) we write 0 < a1 ≪ a2 ≪ a3 ≤ 1 to mean that we can choose
the constants a1, a2, a3 from right to left. More precisely, there are increasing functions
f and g such that, given a3, whenever we choose some a2 ≤ f(a3) and a1 ≤ g(a2), all
calculations needed in the proof of Lemma 14 are valid.

4. The Regularity lemma and the Blow-up lemma

In the proof of Lemma 12 we will use Szemerédi’s Regularity lemma [18] and the Blow-
up lemma of Komlós, Sárközy and Szemerédi [10]. In this section we will introduce all
the information we require about these two results. To do this, we firstly introduce
some more notation. The density of a bipartite graph G with vertex classes A and B is
defined to be

d(A,B) :=
e(A,B)

|A||B|
.

Given any ε > 0, we say that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with
|X| ≥ ε|A| and |Y | ≥ ε|B| we have |d(A,B) − d(X,Y )| < ε. In this case we also say



AN ORE-TYPE THEOREM FOR PERFECT PACKINGS IN GRAPHS 11

that (A,B) is an ε-regular pair. Given d ∈ [0, 1) we say that G is (ε, d)-super-regular if
all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy d(X,Y ) > d and,
furthermore, if dG(a) > d|B| for all a ∈ A and dG(b) > d|A| for all b ∈ B.

We will use the following degree form of Szemerédi’s Regularity lemma which can be
easily derived from the classical version.

Lemma 15 (Regularity lemma). For every ε > 0 and each integer ℓ0 there is an M =
M(ε, ℓ0) such that if G is any graph on at least M vertices and d ∈ [0, 1), then there
exists a partition of V (G) into ℓ+1 classes V0, V1, ..., Vℓ, and a spanning subgraph G′ ⊆ G
with the following properties:

• ℓ0 ≤ ℓ ≤ M, |V0| ≤ ε|G|, |V1| = · · · = |Vℓ| =: L,
• dG′(v) > dG(v)− (d+ ε)|G| for all v ∈ V (G),
• e(G′[Vi]) = 0 for all i ≥ 1,
• for all 1 ≤ i < j ≤ ℓ the graph (Vi, Vj)G′ is ε-regular and has density either 0 or
greater than d.

The sets V1, . . . , Vℓ are called clusters, V0 is called the exceptional set and the vertices
in V0 exceptional vertices. We refer to G′ as the pure graph of G. Clearly, we may assume
that (Vi, Vj)G is not ε-regular or has density at most d whenever (Vi, Vj)G′ contains no
edges (for all 1 ≤ i < j ≤ ℓ). The reduced graph R of G is the graph whose vertices
are V1, . . . , Vℓ and in which Vi is adjacent to Vj whenever (Vi, Vj)G′ is ε-regular and has
density greater than d.

A well-known fact is that the minimum degree of a graph G is almost inherited by
its reduced graph. We now prove an analogue of this for an Ore-type degree condition.

Lemma 16. Given a constant c, let G be a graph such that dG(x)+dG(y) ≥ c|G| for all
non-adjacent x 6= y ∈ V (G). Suppose we have applied Lemma 15 with parameters ε and d
to G. Let R be the corresponding reduced graph. Then dR(Vi)+dR(Vj) > (c−2d−4ε)|R|
for all non-adjacent Vi 6= Vj ∈ V (R).

Proof. Let V1, . . . , Vℓ denote the clusters obtained from Lemma 15. Let L := |V1| =
· · · = |Vℓ|, let V0 denote the exceptional set and let G′ be the pure graph. Set G′′ :=
G′−V0. Consider any pair ViVj of clusters which does not form an edge in R. Pick x ∈ Vi

and y ∈ Vj such that xy 6∈ E(G). So dG(x) + dG(y) ≥ c|G| and thus dG′′(x) + dG′′(y) >
(c− 2d− 4ε)|G|. However, by definition of G′′, each cluster containing a neighbour of x
in G′′ must be a neighbour of Vi in R and the analogue holds for the clusters containing
the neighbours of y. Thus dR(Vi) + dR(Vj) ≥ (dG′′(x) + dG′′(y))/L ≥ (c − 2d − 4ε)|R|,
as required. �

We will also use the following Embedding lemma. The proof is based on a simple
greedy argument, see e.g. Lemma 7.5.2 in [2] or Theorem 2.1 in [12] for details.

Lemma 17 (Embedding lemma). Let H be an r-partite graph with vertex classes
X1, . . . ,Xr and let ε, d, n0 be constants such that 0 < 1/n0 ≪ ε ≪ d, 1/|H|. Let G
be an r-partite graph with vertex classes V1, . . . , Vr of size at least n0 such that (Vi, Vj)G
is ε-regular and has density at least d whenever H contains an edge between Xi and Xj

(for all 1 ≤ i < j ≤ r). Then G contains a copy of H such that Xi ⊆ Vi.
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The Blow-up lemma of Komlós, Sárközy and Szemerédi [10] states that one can even
find a spanning subgraph H in G provided that H has bounded maximum degree and
the bipartite pairs forming G are super-regular.

Lemma 18 (Blow-up lemma). Given a graph R with V (R) = {1, . . . , r} and d,∆ > 0,
there is a constant ε0 = ε0(d,∆, r) > 0 such that the following holds. Given L1, . . . , Lr ∈
N and 0 < ε ≤ ε0, let R

∗ be the graph obtained from R by replacing each vertex i ∈ V (R)
with a set Vi of Li new vertices and joining all vertices in Vi to all vertices in Vj precisely
when ij ∈ E(R). Let G be a spanning subgraph of R∗ such that for every ij ∈ E(R)
the bipartite graph (Vi, Vj)G is (ε, d)-super-regular. Then G contains a copy of every
subgraph H of R∗ with ∆(H) ≤ ∆.

5. Sketch proof of Theorem 4

Let G be a sufficiently large graph on n vertices so that

d(x) + d(y) ≥ 2

(

1−
1

χcr(H)

)

n

for all non-adjacent x 6= y ∈ V (G). Let r := χ(H). Denote by B the complete r-
partite graph with one vertex class of size (r − 1)σ(H) and r − 1 vertex classes of size
|H| − σ(H). Note that χcr(B) = χcr(H) and B has a perfect H-packing. Thus by
considering B instead of H if necessary, it is sufficient to prove the theorem under the
added assumption that H is a complete r-partite graph with one vertex class of size
σ ∈ N and r−1 vertex classes of size ω ∈ N. It suffices to consider the case when σ < ω.
(It is easy to deduce the case σ = ω from this using the same trick as in the proof of
Lemma 11.) Let H ′ denote the complete r-partite graph with one vertex class of size σ
and r − 1 vertex classes of size ω − 1.

The proof of Theorem 4 involves repeated applications of the following claim to re-
duced graphs of G.

Claim 19. Let 0 < τ, 1/ℓ0 ≪ d′ ≪ γ, 1/|H|. Let R′ be a graph on ℓ′ ≥ ℓ0 vertices such
that d(x) + d(y) ≥ 2(1 − 1/χcr(H)− d′)ℓ′ for all non-adjacent x 6= y ∈ V (R′). Suppose
that the maximum number of vertices in R′ covered by an H-packing is N ≤ (1 − γ)ℓ′.
Then R′ contains a collection of vertex-disjoint copies of H, H ′ and Kr which together
cover at least N + τℓ′ vertices.

The proof of Claim 19 is almost identical to that of Lemma 15 from [9]. Full details
can be found in [19]. Here we briefly outline the proof. Let L denote the set of vertices
not covered by the largest H-packing in R′. Since the subgraph of R′ induced by L
must contain a small number of edges (else it will contain a copy of H), most vertices
in L have ‘small’ degree in this subgraph. Furthermore, all but at most |H| − 1 of these
vertices x have degree at least (1− 1/χcr(H)− d′)ℓ′ in R′ (otherwise we have a copy of
K|H| and thus of H in L). Now we proceed exactly as in Lemma 15 from [9]. Indeed,
for many such vertices x we can combine x with a suitable copy of H in the packing and
replace it with a copy of H ′ and a copy of Kr containing x. Thus we obtain our desired
collection of vertex-disjoint copies of H, H ′ and Kr.

Consider a graph F and t ∈ N. Let F (t) denote the graph obtained from F by
replacing every vertex x ∈ V (F ) by a set Ux of t independent vertices, and joining each
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u ∈ Ux to each v ∈ Uy precisely when xy is an edge in F . In other words we replace the
edges of F by copies of Kt,t. We will refer to F (t) as a blown-up copy of F .

Define constants

0 ≪ 1/ℓ0 ≪ ε ≪ ε′ ≪ d ≪ d′ ≪ γ ≪ η.

Apply the Regularity lemma with parameters ε, d and ℓ0 to G to obtain clusters
V1, . . . , Vℓ of size L, an exceptional set V0 and a reduced graph R. By Lemma 16
we have that

dR(Vi) + dR(Vj) ≥ 2

(

1−
1

χcr(H)
− 2d

)

|R|

for all Vi 6= Vj with ViVj 6∈ E(R).
We wish to find an H-packing either in R or in a blown-up copy of R, which covers at

least a (1−γ)-proportion of the clusters. Let N denote the maximum number of clusters
in R covered by an H-packing. If N ≥ (1 − γ)ℓ we are done. If not, then by Claim 19
R contains a collection of vertex-disjoint copies of H, H ′ and Kr which together cover
at least N + τℓ vertices. Let

t := (ω − σ)|H|.

It is not hard to see that H(t), H ′(t) and Kr(t) all have perfect H-packings. Thus
R1 := R(t) contains an H-packing covering at least (N + τℓ)t vertices. Since |R1| = ℓt,
a larger proportion of the vertices in R1 are covered by this H-packing compared to the
H-packing in R. If (N + τℓ)t ≥ (1− γ)ℓt we are done. Otherwise we can continue this
process: By applying Claim 19 to R1 we see that R1(t) = R(t2) contains an H-packing
covering a substantially larger proportion of the vertices than the previous H-packing.
Eventually we obtain a graph R′, where R′ = R(tk) for some constant k = k(H, γ, d′),
such that there is an H-packing H covering at least (1− γ)|R′| clusters in R′.

Suppose that (A,B) is an ε-regular pair of density at least d. By removing at most
tk vertices from A and B, we can partition both A and B into tk equal subclusters
A1, . . . , Atk and B1, . . . , Btk respectively. We can do this in such a way that each (Ai, Bj)
is an ε′-regular pair with density at least d− ε. So since each edge of R corresponds to
an ε-regular pair of density at least d, the edges of R′ can be viewed as corresponding
to ε′-regular pairs with density at least d − ε. (Thus for each Vi ∈ V (R) there are tk

vertices in R′ which correspond to subclusters of Vi.)
Suppose that H∗ is a copy of H in H. Consider the subgraph H∗

G of G whose vertex
set consists of all those vertices lying in the clusters of H∗, and whose edge set consists
of all those edges which lie in an ε′-regular pair corresponding to an edge in H∗. It
is easy to see (for example by repeated use of Lemma 17) that there is an H-packing
covering almost all the vertices in H∗

G. We find such an H-packing for each copy of H in
H. Since H covers at least (1− γ)|R′| of the clusters in R′, and since γ ≪ η, the union
of all these H-packings covers at least (1− η)n vertices of G, as desired.

6. Proof of Lemma 13

Let H be as in the statement of the lemma and let G be a graph of sufficiently large
order n which satisfies (3). Recall that r = χ(H) and m = CE(H). Let x be any
vertex of G. We have to find a copy of H in G which contains x. Suppose first that
r = 2. Then H must have an isolated vertex v (since CE(H) < ∞). So we can apply
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Proposition 7 to find a copy of H− v in G−x and thus a copy of H in G (where x plays
the role of v).

So suppose that r ≥ 3. Choose additional constants ε, d and α such that

0 < ε ≪ d ≪ α ≪ η

and let ℓ0 := 1/ε. Apply the Regularity lemma with parameters ε, d, ℓ0 to G to obtain
clusters V1, . . . , Vℓ of size L, an exceptional set V0, a pure graph G′ and a reduced
graph R. Let

k := (m+ 2)r − 2.

Lemma 16 implies that

(4) dR(Vi) + dR(Vj) ≥ 2

(

1−
1

r − 2
m+2

+
η

2

)

|R| = 2

(

1−
m+ 2

k
+

η

2

)

|R|

for all Vi 6= Vj ∈ V (R) with ViVj 6∈ E(R). By adding the vertices of one cluster to V0

if necessary (and deleting this cluster from R) we may assume that x ∈ V0. (So now
|V0| ≤ 2εn.) We say that x is adjacent to a cluster Vi ∈ V (R) if x is adjacent to at least
αL vertices of Vi in G. We denote by S the set of clusters Vi ∈ V (R) that x is adjacent
to, and define s := |S|/|R|. Also, we write S := V (R) \ S. Note that

(5) dG(x) ≤ |S|L+ |S|αL+ |V0| ≤ (s+ α+ 2ε)n ≤ (s+ 2α)n

and so

(6) s ≥
δ(G)

n
− 2α

(3)
≥

(

1−
2

r − 2
m+2

+ 2η

)

− 2α ≥ 1−
2(m+ 2)

k
+ η.

In particular s > 0 since r ≥ 3. Our aim now is to find either a copy K ′
r of Kr in

R containing r − 1 clusters adjacent to x (i.e. |V (K ′
r) ∩ S| ≥ r − 1), or a copy K ′

r+m

of Kr+m in R containing r− 2 clusters adjacent to x. In both cases we could apply the
Embedding lemma (Lemma 17) to find the desired copy Hx of H in G. Indeed, in the
case where we find K ′

r+m we could use x to play the role of a vertex y ∈ V (H) for which
there exists an (r−2)-colouring of H[N(y)] that can be extended to an (r+m)-colouring
of H. The neighbourhood NH(y) of y would be embedded into the clusters belonging
to V (K ′

r+m) ∩ S and H − NH(y) would be embedded into the clusters belonging to
V (K ′

r+m) (so here we use the fact that CE(H) = m). In the case where we find K ′
r, x

can play the role of any vertex of H. Given some optimal colouring of H, the vertices
of H which have a different colour than x are embedded into the clusters in V (K ′

r) ∩ S
(so we only use that χ(H) = r in this case).

Let C be the set of clusters U ∈ S with dR(U) < (1 − (m+ 2)/k + η/2)|R|. By (4),
C induces a clique. So we may assume that |C| < r, since otherwise we have our copy
K ′

r of Kr. Suppose now that for some 1 ≤ i ≤ r − 1 we have already found i clusters
U1, . . . , Ui ∈ S \ C such that U1, . . . , Ui form a copy K ′

i of Ki in R. Then

(7) |
⋂

1≤j≤i

NR(Uj)| ≥ −(i− 1)|R|+

i
∑

j=1

dR(Uj) ≥

(

1−
i(m+ 2)

k
+ η/2

)

|R|.

Case 1. 1− s ≤ (2m+ 2)/k
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In this case, we will find a copy of Kr which contains at least r−1 vertices in S. Suppose
that i ≤ r−2 and we have found U1, . . . , Ui as above. Then 1− i(m+2)/k ≥ (2m+2)/k
and so (7) implies that the common neighbourhood NR(K

′
i) of K

′
i satisfies |NR(K

′
i)| ≥

(1− s+ η/2) |R|. So we can choose Ui+1 ∈ S \ C to extend K ′
i into a copy of Ki+1 in

R[S \ C] (we can avoid C when choosing Ui+1 since |C| < r ≪ η|R|). If i = r − 1, then

1 − i(m+2)
k = m

k ≥ 0. So |NR(K
′
i)| ≥ η|R|/2 and we can extend K ′

i = K ′
r−1 into the

desired copy of Kr using an arbitrary vertex of R.

Case 2. 1− s ≥ (2m+ 2)/k

In this case, we will either find a copy of Kr which contains at least r−1 vertices in S or
find a copy of Kr+m which contains at least r − 2 vertices in S. Suppose that i ≤ r− 3
and we have found U1, . . . , Ui as described before Case 1 which form a copy K ′

i of Ki in
R[S \ C]. Note that

1−
i(m+ 2)

k
≥

k − (r − 3)(m+ 2)

k
=

3(m+ 2)− 2

k
≥

2(m+ 2)

k

(6)
≥ 1− s.

Thus (7) implies that we can choose a cluster Ui+1 ∈ S \C which forms a Ki+1 together
with K ′

i. This shows that we can find a copy K ′
r−2 of Kr−2 which lies in R[S \C]. Note

that (7) also implies that the common neighbourhood NR(K
′
r−2) of K

′
r−2 satisfies

(8) |NR(K
′
r−2)| ≥

(

1−
(r − 2)(m + 2)

k
+

η

2

)

|R| =

(

2(m+ 1)

k
+

η

2

)

|R|.

Now we aim to extend K ′
r−2 into a copy K ′

r+m of Kr+m. We will aim to find the

additional vertices in S. Suppose for some 0 ≤ i ≤ m + 1 we have found i clusters
W1, . . . ,Wi ∈ S which together with K ′

r−2 form a copy K ′
r−2+i of Kr−2+i in R. We

will need a lower bound on dR(Wj) for all j = 1, . . . , i. To derive this, note that the
definition of S implies that Wj contains a vertex y which is not adjacent to x in G.
So (3) and (5) and the inequality in Case 2 imply that

dG(y) ≥

(

2

(

1−
m+ 2

k
+ η

)

− s− 2α

)

n ≥

(

1−
2

k
+ η

)

n

and so dG′(y) ≥ (1 − 2/k + η/2)n. But each cluster containing a neighbour of y in G′

must be a neighbour of Wj in R. Hence

(9) dR(Wj) ≥
dG′(y)− |V0|

L
≥

(

1−
2

k

)

|R|.

So the common neighbourhood NR(K
′
r−2+i) of K

′
r−2+i satisfies

(10)

|NR(K
′
r−2+i)| ≥ |NR(K

′
r−2)|−i|R|+

i
∑

j=1

dR(Wj)
(8),(9)
≥

(

2(m+ 1)

k
− i

2

k
+

η

2

)

|R| ≥
η|R|

2
.

So we can choose a vertex Wi+1 ∈ V (R) \C that is a common neighbour of the clusters
in K ′

r−2+i. Suppose that Wi+1 ∈ S. Then together with K ′
r−2 this forms a copy K ′

r−1

of Kr−1 in R[S \C]. Now (7) implies that |NR(K
′
r−1)| ≥ (m/k + η/2) |R| and so we can

extend K ′
r−1 to a copy of Kr with at least r − 1 vertices in S. So we may assume that
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Wi+1 ∈ S. Continuing in this way, we obtain a copy of Kr+m having r− 2 clusters in S,
as required.

7. Proof of Lemma 12

7.1. Preliminaries and an outline of the proof. Let H, G and η > 0 be as in
Lemma 12 and let r := χ(H). Choose t ∈ N such that t|H|(r − 1) ≥ 4r/η. Let
z1 := t(r − 1)σ(H) and z := t(|H| − σ(H)). Put γ := z1/z. Note that 0 < γ < 1 since
hcf(H) = 1. Define B∗ to be the complete r-partite graph with one vertex class of size z1
and r − 1 vertex classes of size z. Then B∗ has a perfect H-packing and η|B∗|/4 ≥ r.
Moreover,

χcr(B
∗) = χcr(H) = (r − 1)

|H|

|H| − σ(H)
= r − 1 +

(r − 1)σ(H)

|H| − σ(H)
= r − 1 + γ.(11)

Choose s ∈ N and a new constant λ such that 0 < λ ≪ η, γ, 1 − γ as well as s1 :=
γ(1 + λ)s ∈ N and s1 ≤ s. Let B′ denote the complete r-partite graph with one vertex
class of size s1 and r − 1 vertex classes of size s. Thus,

χcr(B
′) = (r − 1)

|B′|

|B′| − s1
= r − 1 + γ(1 + λ).(12)

Note that the proportion γ(1+λ) of the size of the smallest vertex class of B′ compared to
the size of one of the larger classes is slightly larger than the corresponding proportion γ
associated with B∗. We can therefore choose s and λ in such a way that B′ has a
perfect B∗-packing, and thus a perfect H-packing. (Indeed, the perfect B∗-packing
would consist of ‘most’ but not all of the copies of B∗ having their smallest vertex class
lying in the smallest vertex class of B′.)

We now give an outline for the proof of Lemma 12. We first apply the Regularity
lemma to G to obtain a reduced graph R. Since R almost inherits the Ore-type condition
on G we may apply Theorem 4 to find an almost perfect B′-packing of R. We then
remove all clusters from R that are not covered by this B′-packing and add the vertices
in these clusters to the exceptional set V0.

For each exceptional vertex x ∈ V0, we apply Lemma 13 to find a copy of H in G
containing x, and remove the vertices in this copy from G. Thus some vertices in clusters
in R will be removed from G. The copies of H will be chosen to be disjoint for different
exceptional vertices.

Our aim is to apply the Blow-up lemma to each copy B′
i of B′ in the B′-packing

of R in order to find an H-packing in G which covers all the vertices belonging to (the
modified) clusters in B′

i. Then all these H-packings together with all those copies of H
chosen for the exceptional vertices would form a perfect H-packing in G. However, to do
this, we need that the complete r-partite graph F ∗

i whose jth vertex class is the union
of all the clusters in the jth vertex class of B′

i has a perfect H-packing. Lemma 14 gives
a condition which guarantees this.

To apply Lemma 14 we need that |F ∗
i | is divisible by |H|. We will remove a bounded

number of further copies of H from G to ensure this (see Section 7.4). Furthermore, we
require that F ∗

i has r−1 vertex classes of roughly the same size, u say, and that its other
vertex class is a little larger than γu. But this condition will be satisfied automatically
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by the choice of the sizes of the vertex classes in B′. In fact, this is the reason why we
chose a B′-packing in R rather than a B∗-packing. The above strategy is based on that
in [13]. However, there are additional difficulties.

7.2. Applying the Regularity lemma and modifying the reduced graph. We
define further constants satisfying

0 < ε ≪ d ≪ η1 ≪ β ≪ α ≪ λ ≪ η, γ, 1 − γ.

We also choose η1 so that

η1 ≪
1

|B′|
.

Throughout the proof we assume that the order n of our graph G is sufficiently large
for our calculations to hold. Apply the Regularity lemma with parameters ε, d and
ℓ0 := 1/ε to obtain clusters V1, . . . , Vℓ of size L, an exceptional set V0, a pure graph G′

and a reduced graph R. Let m := CE(H). By Lemma 16 we have that

dR(Vj1) + dR(Vj2) ≥ max

{

2

(

1−
1

r − 2
m+2

+
η

2

)

|R|, 2

(

1−
1

χcr(H)
+

η

2

)

|R|

}

for all Vj1 6= Vj2 ∈ V (R) with Vj1Vj2 6∈ E(R). Together with (11) and (12) this implies
that

dR(Vj1) + dR(Vj2) ≥ 2

(

1−
1

χcr(B′)

)

|R|

for all Vj1 6= Vj2 ∈ V (R) with Vj1Vj2 6∈ E(R). So we can apply Theorem 4 to R to obtain
a B′-packing covering all but at most η1|R| vertices. We denote the copies of B′ in this
packing by B′

1, . . . , B
′
ℓ′ . We delete all the clusters not contained in some B′

i from R and
add all vertices lying in these clusters to V0. So |V0| ≤ εn + η1n ≤ 2η1n. We now refer
to R as this modified reduced graph. We still have that

dR(Vj1) + dR(Vj2) ≥ max

{

2

(

1−
1

r − 2
m+2

+
η

4

)

|R|, 2

(

1−
1

χcr(H)
+

η

4

)

|R|

}

(13)

for all Vj1 6= Vj2 ∈ V (R) with Vj1Vj2 6∈ E(R). Recall that by definition of B′, each B′
i

contains a perfect B∗-packing. Fix such a B∗-packing for each i = 1, . . . , ℓ′. The union
of all these B∗-packings gives us a perfect B∗-packing B∗ in R.

Given any B′
i, it is easy to check that we can replace each cluster Vj ∈ V (B′

i) with
a subcluster of size L′ := (1 − ε|B′|)L such that for each edge Vj1Vj2 of B′

i the chosen
subclusters of Vj1 and Vj2 form a (2ε, d/2)-super-regular pair in G′. We do this for each
i = 1, . . . , ℓ′ and add all the vertices not belonging to our chosen subclusters to V0. We
now refer to these subclusters as the clusters of R. Then for every edge Vj1Vj2 of R the
pair (Vj1 , Vj2)G′ is still 2ε-regular and has density more than d/2. Moreover,

(14) |V0| ≤ 2η1n+ ε|B′|n ≤ 3η1n.

We now partition each cluster Vj into a red part V red
j and a blue part V blue

j where

| |V red
j | − |V blue

j | | ≤ εL′ and | |NG(x) ∩ V red
j | − |NG(x) ∩ V blue

j | | ≤ εL′ for all x ∈ V (G).

(Consider a random partition to see that there are V red
j and V blue

j with these properties.)
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Together all these partitions of the clusters yield a partition of V (G)−V0 into a set V red

of red vertices and a set V blue of blue vertices. In Section 7.3 we will choose certain
copies of H in G to cover the exceptional vertices in V0, but each of these copies will
avoid the red vertices. All the vertices contained in these copies of H will be removed
from the clusters they belong to. However, for every edge Vj1Vj2 of B′

i the modified
bipartite subgraph of G′ whose vertex classes are the remainders of Vj1 and Vj2 will still

be (5ε, d/5)-super-regular since it still contains all vertices in V red
j1

∪V red
j2

. Furthermore,

all edges in R will still correspond to 5ε-regular pairs of density more than d/5. After
Section 7.3 we will only remove a bounded number of further vertices from the clusters,
which will not affect the super-regularity significantly.

7.3. Incorporating the exceptional vertices. In this section we cover all the excep-
tional vertices with vertex-disjoint copies of H. Let Gblue denote the induced subgraph
of G with vertex set V blue∪V0. The definition of V blue, (2) and (14) together imply that

dGblue(x)+dGblue(y) ≥ max

{

2

(

1−
1

r − 2
m+2

+
η

2

)

|Gblue|, 2

(

1−
1

χcr(H)
+

η

2

)

|Gblue|

}

for all non-adjacent x 6= y ∈ V (Gblue). Let v1, . . . , v|V0| be an enumeration of the

exceptional vertices. Lemma 13 gives us a copy Hv1 of H in Gblue covering v1. Delete
the vertices of Hv1 from Gblue and apply the lemma again to find a copy Hv2 of H
covering v2. We would like to continue this way. However, for later purposes it is
convenient to be able to assume that from each cluster we only delete a small proportion
of vertices during this process. So before choosing the copy Hvj for vj (say), we call
B′

i bad if it contains a cluster meeting the copies Hv1 , . . . ,Hvj−1
that we have chosen

before in at least βL′ vertices. So at most |V0||H|/(βL′) ≤ 3η1|H|n/(βL′) ≤ ηℓ′/10 of
the B′

i are bad. We delete all the vertices belonging to clusters in bad B′
i from Gblue.

Since there are at most ηn/10 ≤ η|Gblue|/4 such vertices, we can still apply Lemma 13
to find Hvj . Thus we can cover all the exceptional vertices. We remove all the vertices
lying in the copies Hv1 , . . . ,Hv|V0|

of H from the clusters they belong to (and from G).

7.4. Making the blow-up of each B ∈ B∗ divisible by |H|. Given a subgraph
S ⊆ R we write VG(S) for the set of all those vertices of G that belong to a cluster
in S. Our aim now is to find, for each B′

i in our B′-packing in R, an H-packing in G
covering all the vertices in VG(B

′
i). Thus, taking the union of these H-packings and the

copies of H containing the vertices in V0, we will obtain a perfect H-packing in G. If
we can ensure that the complete r-partite graph whose jth vertex class is the union of
all clusters in the jth vertex class of B′

i has a perfect H-packing, then by the Blow-
up lemma the subgraph of G′ corresponding to B′

i will have a perfect H-packing. By
Lemma 14 the former will turn out to be the case provided that |H| divides |VG(B

′
i)|.

So our next aim is to remove a bounded number of copies of H from G to ensure that
|VG(B

′
i)| is divisible by |H| for all i = 1, . . . , ℓ′. This in turn will be achieved by ensuring

that |H| divides |VG(B)| for all B ∈ B∗.
Consider the auxiliary graph F whose vertices are the elements of B∗ where B1, B2 ∈

B∗ are adjacent in F if R contains a copy of Kr with one vertex in B1 and r− 1 vertices
in B2 or vice versa.
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Suppose first that F is connected. Consider a spanning tree T of F with root B0 ∈ B∗,
say. If B1, B2 ∈ B∗ are adjacent in F then by the Embedding lemma G contains a copy
of H with one vertex in VG(B1) and all the other vertices in VG(B2), or vice versa. (To
see this, let K ′

r be a copy of Kr in R with one vertex V ∈ VR(B1) and all other vertices
in VR(B2). Choose any V ′ ∈ VR(B2) which is adjacent to all of V (K ′

r) \ {V }. Then our
copy of H will have one vertex, v say, in V . All other vertices of H lying in the same
colour class as v will be embedded into V ′ and all the remaining vertices of H will be
embedded into V (K ′

r) \ {V }.) In fact, we can choose |H| − 1 disjoint such copies of H.
So by removing at most |H| − 1 such copies of H we can ensure |VG(B1)| is divisible
by |H|.

We can use this observation to ‘shift the remainders mod |H|’ along T to achieve
that |H| divides |VG(B)| for all B ∈ B∗ as follows. Let jmax be the largest distance of
some B ∈ B∗ from B0 in T . Then for all B ∈ B∗ of distance jmax from B0 we can remove
copies of H as indicated above to ensure that |H| divides |VG(B)|. We can repeat this
for all those B ∈ B∗ of distance jmax − 1 from B0 etc. until |VG(B)| is divisible by |H|
for all B ∈ B∗. (This follows as

∑

B∈B∗ |VG(B)| is divisible by |H| since |G| is divisible
by |H|.)

So we may assume that F is not connected. Let C denote the set of all components
of F . Given C ∈ C, we denote by VR(C) ⊆ V (R) the set of all those clusters which
belong to some B ∈ B∗ with B ∈ C. We write VG(C) ⊆ V (G) for the union of all the
clusters in VR(C). We will show that we can remove a bounded number of copies of H
from G to achieve that |VG(C)| is divisible by |H| for all C ∈ C. As in the case when F
is connected, we can then ‘shift the remainders mod |H|’ along a spanning tree of each
component to make |VG(B)| divisible by |H| for all B ∈ B∗.

In the case when r = 2 this is straightforward. Indeed, in this case H contains an
isolated vertex (since CE(H) < ∞). So given any C ∈ C we can apply the Embedding
lemma to find |H|− 1 vertex-disjoint copies of H in G such that one vertex (playing the
role of the isolated vertex) lies in VG(C) and the other vertices lie in VG(C

′) for some
C ′ ∈ C \ {C}. By removing a suitable number of such copies we can ensure that |H|
divides |VG(C)|. Since in the above argument we can choose any C ′ ∈ C \{C} to contain
the remaining vertices of our copy of H (and since |G| is divisible by |H|) we can apply
this argument repeatedly to make |VG(C

′′)| divisible by |H| for all C ′′ ∈ C.
So now we consider the case when r ≥ 3. We need the following claim.

Claim 20. Let C1, C2 ∈ C and let V ∈ VR(C2). Then

|NR(V ) ∩ VR(C1)| <

(

1−
1

r − 1 + γ

)

|VR(C1)|.

Proof. Suppose not. Then there exists some B ∈ B∗ such that B ∈ C1 and

|NR(V ) ∩B| ≥

(

1−
1

r − 1 + γ

)

|B| = |B| −
(r − 1)z + z1
r − 1 + z1/z

= |B| − z.

Hence V has a neighbour in at least r−1 vertex classes of B. So R contains a copy of Kr

with one vertex, namely V , in a copy B0 ∈ B∗ and r− 1 vertices in B. So B and B0 are
adjacent in F . But they lie in different components of F , a contradiction. �
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We now show that we can remove a bounded number of copies of H from G to
make |VG(C)| divisible by |H| for some C ∈ C. (In particular, if F consists of exactly
two components C and C ′ this also ensures that |VG(C

′)| is divisible by |H|.)

Claim 21. There exists a component C ∈ C with |VR(C)| ≤ |R|/2 for which we can
ensure that |H| divides |VG(C)| by removing at most |H| − 1 copies of H from G.

Proof. To prove the claim we will distinguish two cases.

Case 1. There exists a component C1 ∈ C with |VR(C1)| ≤ |R|/2 and such that there is
a cluster V1 ∈ VR(C1) with dR(V1) ≥ (1− 1/χcr(H) + η/4)|R|.

Recall that K−
r+1 is aKr+1 with one edge removed. We call the two non-adjacent vertices

of K−
r+1 small. We say that a copy K ′ of K−

r+1 in R is good if either (i) V (K ′)∩ VR(C1)
consists of a small vertex of K ′ or (ii) V (K ′) \ VR(C1) consists of a small vertex of K ′.
Once we have found a good K ′, we can use the Embedding lemma to find at most |H|−1
vertex-disjoint copies of H in G such that their removal from G ensures that |VG(C1)|
is divisible by |H|, as desired. (In case (i) precisely one vertex in each of these copies
of H lies in VG(C1) while in case (ii) precisely |H| − 1 vertices in each of these copies
of H lies in VG(C1).) So it suffices to find a good copy of K−

r+1.
Let S denote the set of neighbours of V1 outside VR(C1) in R. Let K be the set of

vertices V ∈ S with dR(V ) < (1 − 1/χcr(H) + η/4)|R|. By (13), K induces a clique in
R. If |K| ≥ r, then we have a found a good copy of K−

r+1 (consisting of V1 and r vertices
of K). So we may assume that |K| < r.

Since r ≥ 3 we have that dR(V1) ≥ (1/2+η/4)|R|. So |S \K| ≥ η|R|/4− r > 0. Thus
we can choose V2 ∈ S \K. By (11) the number of common neighbours of V1 and V2 in R
is at least

(15)

(

1−
2

r − 1 + γ
+

η

4

)

|R|.

We first consider the case when at least (1− 2
r−1+γ +

η
4 )|V (R) \VR(C1)| common neigh-

bours of V1 and V2 lie outside VR(C1). We claim that we can find V3, . . . , Vr ∈ S\K which
form a Kr with V1 and V2. Suppose that we have found V3, . . . , Vi where 2 ≤ i ≤ r − 1.
Note that Claim 20 and the definition of S imply that for j ≥ 2 the number of neigh-
bours of Vj outside VR(C1) is at least (1 − 1/(r − 1 + γ))|V (R) \ VR(C1)|. Together
with (15), this implies that the common neighbourhood of V1, . . . , Vi outside VR(C1) has
size at least

(16)

(

1−
i

r − 1 + γ
+

η

4

)

|V (R) \ VR(C1)| ≥
η

4
|V (R) \ VR(C1)| > r > |K|.

This shows that we can find Vi+1 and more generally V3, . . . , Vr as required. A similar
calculation as in (16), shows that the common neighbourhood of V2, . . . , Vr outside
VR(C1) is non-empty and so contains some vertex Vr+1 say. Together with V1, . . . , Vr,
Vr+1 forms a good copy of K−

r+1.

Now consider the case when at least (1 − 2
r−1+γ + η

4 )|VR(C1)| common neighbours

of V1 and V2 lie inside VR(C1). Since η|VR(C1)|/4 ≥ η|B∗|/4 ≥ r we can argue as in the
previous case. Indeed, this time we choose V3, . . . , Vr inside VR(C1) to obtain a copy
of Kr in R with one vertex, namely V2, outside VR(C1). We also choose a vertex Vr+1
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inside VR(C1) that is adjacent to V1, V3, . . . , Vr. Again, V1, . . . , Vr+1 form a good copy
of K−

r+1.

Case 2. Every component C ∈ C with |VR(C)| ≤ |R|/2 is such that dR(V ) < (1 −
1/χcr(H) + η/4)|R| for all V ∈ VR(C).

Together with (13) this implies that V1V2 ∈ E(R) for all V1 ∈ VR(C1), V2 ∈ VR(C2)
where C1, C2 ∈ C are such that |VR(C1)|, |VR(C2)| ≤ |R|/2. But this means that there
is only one component C ′ ∈ C with |VR(C

′)| ≤ |R|/2. So F consists of precisely two
components C ′ and C ′′ where VR(C

′) forms a clique in R and |VR(C
′′)| > |R|/2.

We first consider the case when r = 3. Note that R contains an edge between VR(C
′)

and VR(C
′′). Indeed, if not then for any V ′ ∈ VR(C

′) and V ′′ ∈ VR(C
′′) by (13) we have

that dR(V
′) + dR(V

′′) ≥ 2(1 − 1/χcr(H) + η/4)|R| > |R| and so there must be an edge
from V ′ to VR(C

′′) or from V ′′ to VR(C
′), a contradiction.

So since |VR(C
′)| ≥ |B∗| ≥ r+m we have a copy K ′

r+m of Kr+m in VR(C
′) such that

there is a cluster V ′′ ∈ VR(C
′′) adjacent to one of the clusters, V ′ say, of K ′

r+m. Using
the definition of m and the Embedding lemma we can find at most |H| − 1 copies of H
in G each containing precisely one vertex in VG(C

′′) such that their removal ensures
that |H| divides |VR(C

′)| and thus also |VR(C
′′)|. (Indeed, by definition of m there

exists a vertex y of H such that χ(H[N(y)]) = r−2 = 1 and such that some 1-colouring
of N(y) can be extended to an (r+m)-colouring of H. So in our copies of H the vertex y
will lie in V ′′, N(y) will lie in V ′ and the remaining vertices of H will lie in V (K ′

r+m).)
Now suppose that r ≥ 4. We claim that there exists V ′′ ∈ VR(C

′′) which sends
at least r edges to VR(C

′) in R. Suppose not. Then no V ∈ VR(C
′′) is joined to

all of VR(C
′). Together with the definition of C ′ and (13) this implies that dR(V ) ≥

(1−1/χcr(H)+η/4)|R|. But then |VR(C
′)| < |R|/χcr(H) since otherwise V is joined to

η|R|/4 ≥ r vertices in VR(C
′). By assumption there are less than r|VR(C

′′)| < r|R| edges
between VR(C

′) and VR(C
′′) in R. Moreover, by (13) and since |VR(C

′)| < |R|/χcr(H)
every cluster in VR(C

′) sends at least (1−3/χcr(H)+η/4)|R| > η|R|/4 edges to VR(C
′′).

So η|R||VR(C
′)|/4 < r|R|. But |VR(C

′)| ≥ |B∗| ≥ 4r/η by definition of B∗ and so
η|R||VR(C

′)|/4 ≥ r|R|, a contradiction. So indeed there exists a vertex V ′′ ∈ VR(C
′′)

sending at least r edges to VR(C
′). As before, we can remove at most |H| − 1 copies

of H from G to ensure that |H| divides both |VR(C
′)| and |VR(C

′′)|. �

Claim 22. We can make |VG(B)| divisible by |H| for all B ∈ B∗ by removing at most
|B∗||H| copies of H from G.

Proof. Our first aim is to take out some copies of H in G to achieve that |VG(C)| is
divisible by |H| for each C ∈ C. We apply Claim 21 to remove at most |H| − 1 copies
of H from G to ensure that |VG(C1)| is divisible by |H| for some component C1 ∈ C with
|VR(C1)| ≤ |R|/2. Next we consider the graphs F1 := F −V (C1) and R1 := R−VR(C1)
instead of F and R. Claim 20 and (13) together imply that

dR1
(Vj1) + dR1

(Vj2) ≥ 2

(

1−
1

r − 1 + γ
+

η

4

)

|R1|

for all Vj1 6= Vj2 ∈ V (R1) with Vj1Vj2 6∈ E(R1). Now suppose that |C| ≥ 3. Then
similarly as in the proof of Claim 21 we can find a component C2 ∈ C with |VR(C2)| ≤
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|R1|/2 and such that by removing at most |H|−1 copies of H from G we ensure that |H|
divides |VG(C2)|. As |G| was divisible by |H| we can continue in this fashion to achieve
that |VG(C)| is divisible by |H| for each C ∈ C.

During this process we have to take out at most (|C| − 1)(|H| − 1) copies of H in G.
Now consider each C ∈ C separately. By proceeding as in the connected case for each C
and taking out at most (|C| − 1)(|H| − 1) further copies of H in each case, we can make
|VG(B)| divisible by |H| for all B ∈ B∗. Hence, in total we have taken out at most
(|C| − 1)(|H| − 1) + (|B∗| − |C|)(|H| − 1) ≤ |B∗||H| copies of H. (Note that |B∗||H| is
also an upper bound on the number of copies of H removed from G in the case when
r = 2.) �

7.5. Applying the Blow-up lemma. We now consider all the copies B′
1, . . . , B

′
ℓ′ of B

′

in the B′-packing of R, where the vertices of R are the modified clusters (i.e. they do
not contain the vertices contained in the copies of H removed in Sections 7.3 and 7.4).
For each i ≤ ℓ′ let G′

i denote the r-partite subgraph of G′ whose jth vertex class is
the union of all the clusters lying in the jth vertex class of B′

i (for j = 1, . . . , r). In
Section 7.4 we made |G′

i| = |VG(B
′
i)| divisible by |H| for each i. Moreover, in Section 7.3

we removed at most βL′ vertices from each cluster. In Section 7.4 we removed only a
bounded number of further vertices. So altogether we removed at most 2βL′ vertices
from each cluster. Since β ≪ λ ≪ γ, 1−γ we may apply Lemma 14 to conclude that the
complete r-partite graph whose vertex classes are the same as the vertex classes of G′

i
has a perfect H-packing.

We observed at the end of Section 7.2 that the choice of those copies of H removed in
Section 7.3 ensures that all the bipartite subgraphs corresponding to edges of B′

i are still
(5ε, d/5)-super-regular. In Section 7.4 we only removed a bounded number of further
vertices from each cluster. So after Section 7.4 the bipartite subgraphs of G′

i are still
(6ε, d/6)-super-regular. Hence, for each i = 1, . . . , ℓ′, we may apply the Blow-up lemma
to find a perfect H-packing in G′

i. All these H-packings together with the copies of H
chosen previously form a perfect H-packing in G, as desired.
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