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Abstract. In this paper we present a new incomplete factorization of a square matrix into
triangular factors in which we get standard LU/LDLT factors (direct factors) and their inverses
(inverse factors) at the same time. Algorithmically, we derive this method from the approach based
on the Sherman-Morrison formula [16]. In contrast to the RIF algorithm [9], the direct and inverse
factors here directly influence each other throughout the computation. Consequently, the algorithm
to compute the approximate factors may mutually balance dropping in the factors and control their
conditioning in this way. Although we describe the theory behind the factorization for general non-
symmetric matrices, in implementation and experiments we restrict for clarity and conciseness only
to the case when the system matrix is symmetric and positive definite. In this case, we call the new
approximate LDLT factorization Balanced Incomplete Factorization (BIF). Our experimental results
confirm that this factorization is very robust and may be useful in solving difficult ill-conditioned
problems by preconditioned iterative methods. Moreover, the internal coupling of computation of
direct and inverse factors results in much shorter setup times (times to compute approximate de-
composition) than RIF, a method of a similar and very high level of robustness.

Key words. preconditioned iterative methods, sparse matrices, incomplete decompositions,
approximate inverses

1. Introduction. We consider the linear system

Ax = b, (1.1)

where A ∈ Rn×n is a large, sparse, regular and generally nonsymmetric matrix. One of
the intensively studied problems in scientific computing is the development of efficient
preconditioners for solving (1.1) by preconditioned iterative methods.

Incomplete factorizations represent a class of algebraic preconditioners which is
important from both theoretical and practical points of view. Their development
started by the work of Buleev at the end of fifties [17], [18]. Throughout the time,
the algorithms have achieved a considerable degree of efficiency and robustness. The
first incomplete factorizations were tightly connected to particular discretizations of
partial differential equations by finite differences and to special matrices [45], [20], see
also [3]. An increasing amount of attention lead to nice theoretical results for simple
model problems [27], [40], [30]. Solving more complicated problems require techniques
which increase robustness of preconditioner computation, and result in faster conver-
gence of the iterative method. The published proposals to achieve this goal have
included methods to increase matrix diagonal dominance, locally or globally, by sys-
tematic or ad hoc modifications of the decomposition [34], [38], [1], procedures to find
a nearby matrix with a breakdown-free incomplete decomposition [2], or symmetric
permutations of the system matrix [26], [5]. The improvements of basic incomplete
decompositions became even more desired when understood that their variants based
on dropping small entries by value are typically better than decompositions based on
dropping by levels, and drop-tolerance based strategies can be really used in practice.
Combining dropping by value with additional enhancements (balancing size with ef-
ficiency by sorting computed factor entries and choosing a part of them) [41] can
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then provide preconditioners which are very powerful in many cases. Moreover, some
other theoretical improvements [44], [33], or practical changes significantly [32], [42]
improved iterative methods preconditioned by incomplete decompositions further on.
An important breakthrough came with applying permutations forcing a strong diago-
nal of the system matrix [4] and with efficient sparse algorithms and implementations
to perform this task [24], [25].

Increasing interest in approximate inverse preconditioners was mainly motivated
by the need to have more efficient vector and parallel processing [23], [31] of iterative
methods. Later it was found that sophisticated incomplete approximate inverses [29],
[35], [6] offer advantages for preconditioned iterative methods also for uniprocessor
and sequential implementations [7]. One of the explanations that the state-of-the-
art implementations of approximate inverse preconditioners can be competitive even
in sequential computational environment is that they may capture long interactions
among matrix entries more successfully than standard incomplete decompositions [15],
[8]. This motivates not only further development of sparse approximate inverses but
also a search for direct incomplete decompositions which are based on approximate
inverses, or which make use of them during their construction or for auxiliary esti-
mates. One step along this line brought up a new robust incomplete decomposition
RIF of symmetric and positive definite matrices [9]. In this case, the triangular fac-
tor is computed directly from a factorized approximate inverse. Computation of this
approximate factorized inverse is breakdown-free for all SPD matrices. Progress in
solving difficult problems [12], [43] also indicates that considering matrix inverse dur-
ing the factorization may be a right way to get better preconditioners. In particular,
the authors in these papers show that computing estimates of factor inverses can
significantly increase robustness of LU factorization.

In this paper we present a new incomplete factorization which computes the
direct and inverse factors at the same time. This factorization is derived from the fac-
torized approximate decomposition AISM (Approximate Inverse Sherman-Morrison)
[16]. There is a subtle relation between the AISM algorithm and the AINV decom-
position [6] on a larger matrix [13], but we will not follow this link here. Instead we
get a new surprising insight into the approximate inverse factors by closely watching
the factors produced by the AISM algorithm. Note that even for SPD matrices, one
of the factors is generally square. Although we present the insight for decomposition
of general nonsymmetric matrices, later we restrict just to SPD matrices. In this
case we obtain via the AISM algorithm, at the same time, the factors L, D and L−1

of the LDLT factorization. Computation of all these factors is interleaved and they
both symbolically and numerically influence each other. Moreover, the order of the
computation can be used to mutually balance their conditioning by dropping, hence
the name Balanced Incomplete Factorization (BIF). In particular, we make use the
dropping rules introduced by M. Bollhöfer and Y. Saad for LU factorizations and
based on the theory developed by them [12], [43].

Section 2 gives the insight into the inverse Sherman-Morrisson (ISM) decompo-
sition and shows structure of the resulting factors. Section 3 deals with some theory
which may be useful for stabilization of the approximate ISM (AISM) decomposition
in general case. Section 4 presents the main outcome of the paper: the way to stabi-
lize the direct triangular factor obtained via the AISM decomposition, by balancing
dropping rules. Then we present results of the numerical experiments showing very
promising behaviour of the new approach, and conclude the paper by some additional
notes.
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2. Structure of the ISM decomposition. This section describes the new
factorization via the exact inverse Sherman-Morrison (ISM) decomposition. Suppose
the general nonsymmetric matrix A can be written as

A = A0 +
n∑

k=1

xkyT
k

where A0 is a nonsingular matrix and {xk}n
k=1 and {yk}n

k=1 are two sets of vectors in
Rn. We recall that the inverse of a matrix when using the Sherman-Morrison formula
(see [16] for details), is given by

A−1
0 −A−1 = A−1

0 UA0
D−1

A0
V T

A0
A−1

0

where UA0 and VA0 have the column vectors uk and vk given by

uk = xk −
k−1∑

i=1

vT
i A−1

0 xk

ri
ui and vk = yk −

k−1∑

i=1

yT
k A−1

0 ui

ri
vi,

respectively, and DA0 = diag(r1, . . . , rn), rk = 1 + yT
k A−1

0 uk = 1 + vT
k A−1

0 xk for
k = 1, 2, . . . , n.

When we choose, for simplicity,

A0 = sIn, s > 0, xk = ek and yk = (ak − ak
0)T ,

where ak stands for the k−th row of the matrix A and ak
0 stands for the k−th row of

the matrix A0, we obtain from above

uk = xk −
k−1∑

i=1

(vi)k

sri
ui and vk = yk −

k−1∑

i=1

yT
k ui

sri
vi, (2.1)

where (vi)k denotes the k−th entry of the vector vi. Then we have

A−1 = s−1I − s−2UsD
−1
s V T

s ,

which expresses the inverse Sherman-Morrison (ISM) decomposition in the matrix
form, where the subscript s denotes the potential dependence of the factors on the
parameter s. The following lemma from [16] introduces an auxiliary unit upper trian-
gular matrix W which helps to provide a better insight into the ISM decomposition.

Lemma 2.1. [16] Let Us, Vs and Ds = diag(rs
1, . . . , r

s
n) be the matrices com-

puted by the exact factorization algorithm ISM for some s > 0. Let U , V and
D = diag(r1

1, . . . , r
1
n) be the matrices computed by the exact factorization algorithm

ISM for s = 1. Then,

Us = U (2.2)

Vs = V − (s− 1)W (2.3)

Ds = s−1D, (2.4)
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where the k−th column of W is

wk = xk −
k−1∑

i=1

yT
k ui

r1
i

wi. (2.5)

From the construction of matrices U and W it follows that both matrices are unit
upper triangular. The following theorem shows the structure of the matrix Vs more
in detail.

Theorem 2.2. Let there exist the exact ISM decomposition

A−1 = s−1I − s−2UsD
−1
s V T

s (2.6)

for some s > 0. Let W be the upper triangular matrix defined above. Then V T
s =

DU−1 − sWT .
Proof. From (2.6) and Lemma 2.1 we get

s−1I −A−1 = s−2UsD
−1
s V T

s = U(s−1D−1
s )(s−1V T

s ) =
= UD−1(s−1V T − (1− s−1)WT ). (2.7)

Taking limit s →∞ we arrive at

A−1 = UD−1WT . (2.8)

From (2.6) and (2.8) we then get

UD−1WT = s−1I − s−1UD−1V T
s .

That is

UD−1V T
s = I − sUD−1WT .

Consequently,

V T
s = DU−1 − sWT . (2.9)

Using the introduced notation for the ISM factors U , V and W computed for
s = 1 we arrive at the following corollary.

Corollary 2.3. Let there exist the exact ISM decomposition (2.6) for some s
and let the LDU decomposition of A be written as A = L̄D̄Ū . Moreover, let W be
defined as in (2.5). Then

L̄ = W−T and D̄Ū = DU−1. (2.10)

Moreover,

D̄ = D, Ū = U−1.

Proof. Note that from (2.8) we have

A = W−T DU−1
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Then, the result easily follows from the uniqueness of the triangular decompositions
of A and the structure of Vs described in Theorem 2.2.

For clarity, the structure of Vs for a given s can be written as follows, using the
introduced notation and the assumption of Theorem 2.2.

Corollary 2.4. We have

Vs = ŪT D̄ − sL̄−T . (2.11)

In particular, for SPD A we have

Vs = L̄D̄ − sL̄−T . (2.12)

Pictorially, we have

Vs =




. . . −sWT ≡ −sL̄−T

. . .

ŪT D̄
. . .




. (2.13)

Hence, we arrived at a surprising result related to the structure of Vs. It stores
both inverse and direct triangular factors of the matrix A. One of them is scaled by
a scalar, the other is scaled by the diagonal matrix D ≡ D̄. This fact and the way
how we get them together inside the ISM algorithm has important consequences for
preconditioning iterative methods. Moreover, for an SPD matrix A we have all the
information from U in V as well.

The following section will briefly discuss the approximate ISM decomposition. In
particular, we will mention the role of the parameter s which provides an additional
degree of freedom which we have in the ISM framework. We are motivated to discuss
this subject here since the AISM procedure is guaranteed to be breakdown-free only
for M -matrices and H-matrices [16], [19]. Such results are parallel to those related
to the existence of ILU, see [40] and [39]. Although the main line of this paper covers
stabilization of a special case of the algorithm by sophisticated dropping rules, we
are interested in further ways which may contribute to the efficiency of the method,
especially in the nonsymmetric case.

3. Approximate ISM decomposition. As mentioned above, this section is
devoted to getting more insight into the role of the parameter s in the exact and
approximate ISM (AISM) decompositions. First, note that a redefinition of s > 0
does not influence breakdown-free property of the exact ISM decomposition. Namely,
we have the following simple proposition which is a corollary of Lemma 2.1.

Proposition 3.1. Let A be a square matrix. The ISM decomposition of A exists
for the positive parameter s if and only if the ISM exists for any other parameter
t > 0.

Proof. Observe from (2.4) that for every two positive values of the ISM parameter

Dt =
s

t
Ds. (3.1)
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Therefore, if the ISM decomposition exists for some s > 0, then it exists for any
positive parameter t. Moreover, the smaller s, the bigger diagonal entries (pivots).

The real hint for the choice of s in the ISM method follows from the structure of
Vs in (2.13). Namely, the parameter s influences mutual scaling of the factors stored
in the lower and upper triangles of Vs, respectively. The rule to equate approximately
norms of the both triangular factors which we will call the scaling rule provides useful
value of s. We intended to point this fact out but we will not follow its implications
here. We prefer to show the potential of the new approach in its most basic form.

When constructing the AISM preconditioner a dropping is used to obtain factors
U , Ds and Vs. Consider now two AISM decompositions with different parameters s
and t and with the same dropping rules. Further, we assume that we do not drop the
diagonal entries of the factors U and V . The following Theorem is easy to be proved.

Theorem 3.2. Let A be a square matrix such that there exist the AISM de-
composition, with the same dropping rules, Ã−1

s = s−1I − s−2ŨsD̃
−1
s Ṽ T

s and Ã−1
t =

t−1I − t−2ŨtD̃
−1
t Ṽ T

t for two parameters s and t, respectively. Then,

Ũs = Ũt, sD̃s = tD̃t and tril (Ṽs) = tril (Ṽt)

where tril means the strict lower triangular part of the corresponding matrix.
Using Theorem 3.2 we can bound the difference between two approximated in-

verses of A induced by the two different parameters s and t for the AISM decomposi-
tion, and observe where the dependence on the parameter takes place. We can write
for the two computed inverses

Ã−1
s = s−1I − s−2ŨsD̃

−1
s Ṽ T

s and Ã−1
t = t−1I − t−2ŨtD̃

−1
t Ṽ T

t

Recall the relations in Theorem 3.2 and note that from equation (2.9) we have

Ṽ T
s = D̃Ũ−1 − Zs and Ṽ T

t = D̃Ũ−1 − Zt, (3.2)

where Zt and Zs represent the lower triangular part of Ṽ T
t and Ṽ T

s , respectively. Here
diag Zt = tI and diag Zs = sI. Then we can write

Ã−1
t − Ã−1

s =
(

1
t
− 1

s

)
I − 1

t
Ũtt

−1D̃−1
t Ṽ T

t +
1
s
Ũss

−1D̃−1
s Ṽ T

s

=
(

1
t
− 1

s

)
I − 1

t
ŨD̃−1Ṽ T

t +
1
s
ŨD̃−1Ṽ T

s

=
(

1
t
− 1

s

)
I − ŨD̃−1

(
1
t
Ṽ T

t − 1
s
Ṽ T

s

)

by equation (3.2)

= ŨD̃−1

(
1
t
Z̃t − 1

s
Z̃s

)
.

Taking norms we arrive at

‖Ã−1
t − Ã−1

s ‖ ≤ ‖Ũ‖‖D̃−1‖
∥∥∥∥

1
t
Z̃t − 1

s
Z̃s

∥∥∥∥ .

It means that the proximity of the approximated inverses for two parameters is
related to the difference betweeen the lower triangular parts of Ṽ T

t and Ṽ T
s (which
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can be expressed via the matrix WT ) divided by the corresponding parameter. As
above, this confirms the scaling role of the parameter s.

As we have seen above, if we face a breakdown, the new choice of s may not be
sufficient to get a successful decomposition even if it influences different dropping.
We typically need to use stronger modifications. Nevertheless, based on the strong
connection between ILU and AISM decompositions, we can proceed similarly as in
[39] for ILU, as stated in the following simple result.

Lemma 3.3. Let A be a square matrix such that the AISM decomposition does
not exist. Then, the matrix A(α) = A + αI has AISM decomposition for some α > 0
large enough.

The result implies that in practice, the decomposition can be based on an iterative
process in which we may increase the parameter α. A contemporary use of this
iterative strategy for the ILU decomposition one can find in [37]. Note this iterative
process enables to apply easily the scaling rule mentioned above if we keep track of
the norms of computed factors. Further potential improvement based on the dynamic
choice of the scaling parameter is out of scope of this paper. In our experiments we
used another way for improving incomplete factors, which is described below.

4. Balancing Incomplete Factorization in the SPD case. In this and the
subsequent section we will restrict ourselves to SPD problems taking into account
that extension to the nonsymmetric problems can be done along the same lines as the
symmetric AINV decomposition was extended to its nonsymmetric counterpart in [6].
Our restriction is motivated by the desire to describe one particular preconditioning
approach more in detail.

Balanced incomplete factorization (BIF) L̄D̄L̄T of an SPD matrix is called the
algorithm to construct incompletely the lower triangular matrix L̄ stored in the matrix
Vs and diagonal matrix D̄ from (2.13) using the formulas (2.1) for k = 1, . . . , n.
Incompleteness is controlled by the dropping rules described below which mutually
balance direct and inverse triangular factors L̄ and L̄−1. Note that the scaled entries
of U are contained in Vs and can be retrieved from there.

Let us describe our balancing dual dropping rules for decomposition which help
us to produce high quality incomplete factors.

Relations between direct factors from LU decomposition and inverse factors from
sparse factorized inverses were studied by M. Bollhöfer and Y. Saad in [14]. Robust
dropping rules based on the resulting analysis were used in [11] and [12]. Suppose
we have an incomplete decomposition A = L̄D̄L̄T , and we intend to apply it as a
preconditioner of a Krylov space method. It is well known, that an important role in
the preconditioned method is played by the transformed matrix which can be written
as L̄−1AL̄−T . Consider dropping by value and denote the drop tolerance by τ . In
[14] it is justified to drop the entries l̄jk of a column k of L̄ if they satisfy

|l̄jk| ‖ eT
k L̄−1 ‖≤ τ. (4.1)

Namely, for dropping in the k−th column of L̄ we need to know an estimate of the
norm of the k−th row of L̄−1. This dropping rule then implies that the entries
of the inverse L̄−1 of the computed incomplete factor L of the incomplete LDLT

factorization are close to the corresponding entries of the directly computed factorized
approximate inverse.

The BIF algorithm of an SPD matrix computes at the same time, in addition to D̄,
the incomplete L̄ and incomplete L̄−1. Theorem 2.2 enables us to apply the dropping
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rule (4.1) directly if we consider the BIF algorithm as a way to get L̄. Consider for a
moment, that our goal is to use also L̄−1. Denote `jk = (L−1)jk. Then (4.1) applied
to direct computation of the inverse factor L̄−1 reads as that we drop entries `jk of
the column of k of L̄−1 if they satisfy

|¯̀jk| ‖ eT
k L̄ ‖≤ τ (4.2)

In order to apply the rules (4.1) and (4.2) we need to consider the implementation
more in detail. Consider the left-looking implementation of formulas (2.1). That is,
the implementation which in each step computes one column of U and one column
of Vs. In particular, in the k−th step we compute one diagonal entry, the k−th row
of L̄−1 and the scaled k−th column of L̄. Moreover, all these items are stored in Vs.
Using Corollary 2.4 we can see that (4.1) for dropping entries in vk:n,k for a fixed
column index k reduces to dropping the entries vjk for j > k such that

|vjk| ‖ eT
k v1:k,k ‖≤ sdkτ.

The rule for dropping entries in the k-th row of L̄−1 then reduces to dropping those
entries vjk with j < k which satisfy

vjk ‖ eT
j vk,1:j diag(d1, . . . , dj)−1 ‖≤ sτ.

Clearly, both rules can be directly applied since they use only information previously
computed, and the algorithm obtained will be referred as BIF.

The coupled computation of direct and inverse factors explains the accumulated
experience with AISM that U and Vs may profit from different dropping tolerance used
for them since they store mathematically rather different quantities. In addition, the
computation also points out that different drop tolerances should be used for different
parts of columns of Vs, at least, if more simple dropping rules would be applied.

If we compare the direct and inverse factors computed by the left-looking imple-
mentation of the BIF algorithm with the factors obtained by RIF [9] we can observe
important differences. RIF provides in one step different quantities than BIF. In RIF,
an approximate row of L̄−1 and an approximate row of L̄ are evaluated in each step.
But the flow of information is only one-directional. Underlying SAINV process is
primary, RIF is a side-product based on multipliers for SAINV updates [9]. In con-
trast, computation of direct and inverse factors in BIF is coupled. Both factors L̄−1

and L̄ use information from each other during the whole computation. Thus, if a
good quality of one of the sparse factors happens, this may positively influence the
decomposition. Might be, this observation lead to further the use of BIF in applica-
tions, where the system matrix sparsity seems to be critical, as in solving least-squares
problems [10].

In the following section we will present a couple of experimental results showing
great potential of the new algorithm.

5. Numerical experiments. This section is devoted to numerical experiments
with the new factorization which is used as a preconditioner of the conjugate gradient
method. In particular, we are interested in solving large and ill-conditioned problems.
The main goal of this section is to show that the new approach is practically robust
for solving these problems, and rather cheap to compute. We will see that in general,
it can be considered as an improvement of the RIF preconditioner.

As a baseline method we report results for Jacobi preconditioning which may give
an idea of difficulty of the test problems. A natural competitor of the new approach
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Table 1
Test problems

Matrix n nnz Application Source

BCSSTK35 30,237 1,450,163 Automobile seat frame U. of Florida [22]
VANBODY 47,072 1,191,985 Van body model The PARASOL project
CT20STIF 52,329 1,375,396 Engine block U. of Florida [22]
CFD1 70,656 949,510 CFD pressure matrix U. of Florida [22]
OILPAN 73,752 1,835,470 Car olipan The PARASOL project
X104 108,384 5,138,004 Beam joint The PARASOL project
CFD2 123,440 1,605,669 CFD pressure matrix U. of Florida [22]
ENGINE 143,571 2,424,822 Engine head R. Kouhia [36]
HOOD 220,542 5,494,489 Car hood The PARASOL project
INLINE 1 503,712 18,660,027 Inline skater The PARASOL project
LDOOR 952,203 23,737,339 Large door The PARASOL project

used in our comparison is the RIF preconditioner, which may be considered as one of
the methods of choice among robust approaches [9]. Moreover, the RIF preconditioner
is also based on factorized approximate inverses, and the comparison may be useful in
order to find similarities and contrasts between both approaches. Note that standard
preconditioners based on drop tolerances failed on most of the problems, or we were
not able to find parameters which would force them to run. Standard level-based
preconditioners including IC(0) also failed or were extremely inefficient, and we do
not report results with them as well. In some sense, our experiments present a focused
extension of that considered in [9].

Our implementation of BIF is left-looking. In this implementation we compute in
each step one column of the matrix Vs. In order to have fully sparse implementation
we need to have access to both columns and rows of Vs. The matrix Vs is formed
and stored by columns in a standard way, but we store, in addition, at most lsize
largest entries for each row of Vs. This additional space is introduced for fast sparse
computation of dot products. Note that then the row and column structure of Vs

do not necessarily need to correspond each other. In all our experiments we chose
lsize = 10. To our surprise, the results were nearly insensitive to the choice of
lsize. Note that this fact is in contrast to the use of dual dropping directly in the
AINV decomposition [6], where we typically get very different sizes of the factor rows.
Uniform bound lsize on their number may spoil the efficiency of AINV. The fact
that the parameter lsize is used only for an auxiliary data structure in BIF seems
to be crucial for the difference in behavior between BIF and AINV. As a further
simplification in our implementation, we always use s = 1, and this conforms to our
note that we did not optimize performance of the preconditioners in the other way
than by balancing. Our matrices used natural ordering and were not initially scaled.

The test matrices are listed in Table 1. Many of them seem to be quite ill-
conditioned. Note that we have considered here some test problems used in [9] and
extended this choice by larger problems. For each matrix we provide the problem
size n, the number nnz of nonzeros in the lower triangular part, the application field
in which the matrix was created, and the source. Note that the matrices from the
Parasol project are currently available from a depository in RAL described in [28].

Each problem was solved by the preconditioned conjugate gradient method for a
relative decrease 10−6 of the system backward error, allowing a maximum of 2,000
iterations. For the experiments we used an artificial right-hand side computed as
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Table 2
JCG preconditioning

Matrix JCG its JCG time
BCSSTK35 464 2.38
VANBODY 605 4.81
CT20STIF 389 3.69

CFD1 814 6.20
OILPAN 736 8.95

X104 1100 33.4
CFD2 854 10.8

ENGINE 686 13.8
HOOD 666 27.7

INLINE 1 764 101.
LDOOR 810 145.

Table 3
Comparison of the RIF and BIF preconditioners

Matrix RIF BIF
size / t p CG its/ t CG size / t p CG its/ t CG

BCSSTK35 262120/ 0.50 60/ 0.47 255292/0.16 45/ 0.38
VANBODY 80576/ 0.75 8/ 0.09 82230/0.08 7/ 0.08
CT20STIF 63716/ 1.00 62/ 0.69 66172/0.06 61/ 0.67

CFD1 700523/11.5 287/ 4.08 734801/0.83 291/ 4.38
OILPAN 139959/ 1.20 134/ 1.92 116282/0.17 141/ 1.97

X104 † † 1225831/0.88 44/ 1.89
CFD2 810560/ 5.40 372/ 8.40 889647/0.62 389/ 8.55

ENGINE 145570/ 1.48 213/ 4.95 148131/0.25 208/ 4.88
HOOD 368729/ 3.36 320/16.1 339062/0.60 319/16.3

INLINE 1 651393/16.4 149/22.4 662897/1.65 156/23.3
LDOOR 1229157/13.9 167/34.9 1277133/2.27 168/36.0

b = Ae, where e is the vector of all ones. The initial guess was the vector of all zeros.
The computations have been performed using one processor Intel Pentium 4 (3GHz,
1GB RAM). The codes written in Fortran 90, have been compiled with Compaq Visual
Fortran 6.6a.

In Table 2 we present results obtained with the Jacobi preconditioner, that is
solving the diagonally-scaled problem. For each problem we provide the number of
iterations of the preconditioned conjugate gradient method as well as the elapsed user
time for the computation obtained with a system function etime.

Table 3 presents the results obtained with RIF and BIF preconditioner. For each
method we report the number of nonzeros in the incomplete L factor (size), the time
for constructing the preconditioner (t p), the number of PCG iterations (CG its) and
the time for the iterative solution phase (t CG).

The parameters to apply the dropping rules for both RIF and BIF were chosen so
as to obtain preconditioners with very similar size. In all cases we considered rather
sparse preconditioners in order to show that a reasonable efficiency can be obtained
even with a small amount of additional information extracted from the matrix. Note
that we did not do any tuning of preconditioners for optimal performance. We can see
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Fig. 5.1. Sizes of RIF and BIF preconditioners (in numbers of their nonzeros) versus time to
construct them (in seconds).

that both preconditioners seem to be similarly robust. Apart from one case when the
computation of RIF failed (for a wide spectrum of parameters) since the underlying
SAINV process needed excessive amount of memory, we consider both approaches
efficient, having similar degree of robustness. As for the timings, the new precondi-
tioner is much cheaper to compute, and if we would consider total timings, the new
BIF approach would be a clear overall winner. Note that we do not consider here the
intermediate memory for the SAINV process hidden inside RIF computation. This
intermediate memory is typically larger than the additional memory needed for the
new approach.

Comparison of preconditioners is always a multivariate problem. The results
represented via a table, even if the corresponding numbers are carefully selected, may
not tell us the whole story. In the following we will pay attention at the results
obtained for a matrix PWTK (stiffness matrix from a pressurized wind tunnel, from
the University of Florida collection [22]). Its dimension is 217,918, and it has 5,926,171
nonzeros in its lower triangular part. To solve the problem, JCG did 1178 iterations
in 44.8 seconds. This matrix was, for example, used to show behavior of the LDLT

direct solver in [21].
Figure 5.1 shows the time to compute the preconditioners of different sizes.

Clearly, the setup time is much smaller for all sizes of preconditioners. While we
were able to choose parameters for RIF to make it even larger (following the increase
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0 1 2 3 4 5 6

x 10
6

0

100

200

300

400

500

600

nu
m

be
r 

of
 it

er
at

io
ns

size of the preconditioner (in the number of nonzeros)

 RIF
 BIF

Fig. 5.2. Sizes of RIF and BIF preconditioners (in numbers of their nonzeros) versus number
of iterations for the conjugate gradient method preconditioned by them.

in the setup time) this was not the case of BIF. Its density is naturally limited by the
size of the row structures of Vs on one side, and by the dropping rules based on the
norms of rows of L̂ and L̂−1 on the other side.

Figure 5.2 shows the dependence of the number of iterations of the conjugate
gradient method on the size of the preconditioner. We can see that there are regions
of sizes of the preconditioners for which the RIF preconditioner is more efficient than
the BIF preconditioner in terms of the number of iterations for the same size. The
other effect visible in Figure 5.2 is the more uniform behavior of the curve for BIF.
The jumps in the curve seem to have more limited amplitudes. We believe that this
may be attributed to the relative dropping used in BIF. In contrast to the results
presented in Table 3, the intervals of preconditioner sizes for which RIF and BIF have
a very small number of PCG iterations are rather different for this matrix.

Finally, Figure 5.3 shows dependence of the total time on the sizes of precon-
ditioners for RIF and BIF. Here, by the total time we denote the sum of the time
to compute the preconditioner and the time for PCG. Due to the very small setup
time, BIF is here better, and sometimes much better, for most of its sizes. What we
consider even more important is that its behavior is more uniform. The main goal
of this section is to point out that the new approach is practically robust for solving
difficult problems for which direct methods take considerable amount of time. BIF
does this, even when not proved to be breakdown-free. We believe that this is due
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Fig. 5.3. Sizes of RIF and BIF preconditioners (in numbers of their nonzeros) versus the total
time (the time to compute the preconditioner plus the time for the conjugate gradient method).

to the robust dropping based on the results of M. Böllhofer and Y. Saad. We can
thus obtain a high-quality preconditioner even in the case when the SAINV process
hidden inside the RIF computation generates very high fill-in as in the case of ma-
trix X104. We believe that the favourable properties of BIF experimentally shown
for solving symmetric and positive definite systems may be very important in future
extensions to nonsymmetric systems, block implementations and iterative solvers of
linear least-squares problems (cf. [10]).

6. Conclusions and future work. We have introduced a new incomplete
LDLT factorization of symmetric and positive definite systems by carefully examining
the AISM preconditioner. The algorithm of this new factorization closely couples com-
putation of both the factors L and L−1 which influence each other during the course
of computation. We have shown that the dropping rules developed by M. Böllhofer
and Y. Saad can be easily applied into the computational algorithm, and therefore the
growth in both L and L−1 can be balanced. This balancing gives the name to the new
approach: balanced incomplete factorization (BIF). Numerical experiments suggest
that the new technique is reliable and can be considered as a complementary method
to the RIF preconditioner, but having much faster setup than RIF. The extensions to
preconditioning nonsymmetric systems and linear least squares are currently under
investigation.



14 R. BRU, J. MARÍN, J. MAS AND M. TŮMA
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[13] M. Bollhöfer. personal communication, 2004.
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