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Abstract. Suppose that a set of m tasks are to be shared as equally as possible among a set of n
resources. A game-theoretic mechanism to find a suitable allocation is to associate each task with a
“selfish agent” and require each agent to select a resource, with the cost of a resource being the number
of agents that select it. Agents would then be expected to migrate from overloaded to underloaded
resources, until the allocation becomes balanced. Recent work has studied the question of how this
can take place within a distributed setting in which agents migrate selfishly without any centralized
control. In this paper we discuss a natural protocol for the agents which combines the following
desirable features: It can be implemented in a strongly distributed setting, uses no central control,
and has good convergence properties. For m � n, the system becomes approximately balanced (an
ε-Nash equilibrium) in expected time O(log logm). We show using a martingale technique that the
process converges to a perfectly balanced allocation in expected time O(log logm+n4). We also give
a lower bound of Ω(max{log logm,n}) for the convergence time.

Key words. load balancing, reallocation, equilibrium, convergence

AMS subject classifications. 68Q25, 68W20, 68W15, 91A80

DOI. 10.1137/060660345

1. Introduction. Suppose a consumer learns the price she would be charged by
some domestic power supplier other than the one she is currently using. It is plausible
that if the alternative price is lower than the price she is currently paying, then there
is some possibility that she will switch to the new power supplier. Furthermore, she
is more likely to switch if the ratio of the current price to the new price is large. If
there is only a small savings, then it becomes unattractive to make the switch, since
an influx of new business (hers and that of other consumers) may drive up the price
of the new power supplier and make it no longer competitive.

We study a simple mathematical model of the above natural rule, in the context of
a load balancing (or task allocation) scenario that has received a lot of recent attention.
We assume the presence of many individual users who may assign their tasks to chosen
resources. The users are selfish in the sense that they attempt to optimize their own
situation, i.e., try to assign their tasks to minimally loaded resources, without trying
to optimize the global situation. In general, a Nash equilibrium (NE) among a set
of selfish users is a state in which no user has the incentive to change her current
decision. In our setting, this corresponds to no user having an incentive to reallocate
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1164 BERENBRINK ET AL.

her task to some other resource. An ε-Nash equilibrium (ε-NE) is a standard notion
of an approximate NE, and is a state in which no user can reduce her cost by a
multiplicative factor of less than 1 − ε by changing action. Here we do not focus
on the quality of equilibria but rather on the (perhaps more algorithmic) question of
convergence time to such a state.

We assume a strongly distributed and concurrent setting; i.e., there is no central-
ized control mechanism whatsoever, and all users may choose to reallocate their tasks
at the same time. Thus, we do not (and cannot) use the elementary step system [25]
(discussed in more detail in the next section), where the assumption is that at most
one user may reallocate her task at any given stage.

Throughout we let m denote the number of tasks (in the above discussion, cus-
tomers) and n denote the number of resources (power suppliers). As hinted at in the
above discussion, we assume that typically m � n. In a single time step (or round)
each task does the following: Let i be the resource currently being used by the task.
Select j uniformly at random from {1, . . . , n} and find the load of resource j. Let
Xi and Xj be the loads of resources i and j, respectively. If Xj < Xi, migrate from
i to j with a probability of 1 − Xj/Xi; the transition from round t to round t + 1
is given in Figure 1.1. Notice that if we had unconditional migrations, i.e., without
an additional coin flip (move only with probability 1−Xj(t)/Xi(t)), then this might
lead to an unstable system; consider, for example, the case m = 2 with initially most
tasks assigned to one of the resources. The overload would oscillate between the two
resources, with a load ratio tending towards 2:1. (This observation about the risk of
oscillation has also been made in similar contexts in [12, 11], and we will not elaborate
on it further.)

For each task b do in parallel
Let ib be the current resource of task b
Choose resource jb uniformly at random
Let Xib(t) be the current load of resource i
Let Xjb(t) be the current load of resource j
If Xib(t) > Xjb(t) then

Move task b from resource ib to jb with probability 1 −Xjb(t)/Xib(t)

Fig. 1.1. The protocol with “neutral moves” allowed.

It can easily be seen that if all tasks use the above policy, then the expected load
of every resource at the next step is m/n.

Observation 1.1. Regardless of the load distribution at time step t, the expected
load of every resource at the next step is m/n.

Proof. To see this, assume that the loads Xi(t) are arranged in descending order
so that Xj(t) ≥ Xj+1(t) and note that

E[Xi(t + 1)] = Xi(t) +

i−1∑
�=1

1

n
X�(t)

(
1 − Xi(t)

X�(t)

)
−

n∑
�=i+1

1

n
Xi(t)

(
1 − X�(t)

Xi(t)

)

= Xi(t) +
1

n

i−1∑
�=1

(X�(t) −Xi(t)) −
1

n

n∑
�=i+1

(Xi(t) −X�(t))

= Xi(t) +
1

n

n∑
�=1

(X�(t) −Xi(t)) =
1

n

n∑
�=1

X�(t) =
m

n
.
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This provides a compelling motivation for the policy, which is that as a result,
no task has an incentive to deviate unilaterally from this policy. This implies that
in the terminology of [8] it is a Nash rerouting policy. It is also a simple regret-
minimizing policy in the sense of [2] since the average cost of resources used by an
agent is no higher than the best choice of a single resource to be used repeatedly.
Although the above rule is very natural and has the nice properties described above,
we show that it may take a long time to converge to a perfectly balanced allocation
of tasks to resources. We address this problem as follows. Define a neutral move to
be a task migration from a resource with load � at time t to a resource with load
� − 1 at time t (so, if no other task migrates, then the cost to the migrating task
is unchanged). We consider a modification in which neutral moves are specifically
disallowed (see Figure 2.1). That seemingly minor change ensures fast convergence
from an almost balanced state to a perfectly balanced state. To summarize, here are
the most important features of the modified protocol:

• We do not need any global information whatsoever (apart from the number
of available resources); in particular, a task does not need to know the total
number of tasks in the system. Also, it is strongly distributed and concurrent.
If additional tasks were to enter the system, it would rapidly converge once
again, with no outside intervention.

• A migrating task needs to query the load of only one other resource (thus,
doing a constant amount of work in each round).

• When a task finds a resource with a significantly smaller load (that is, a load
that is smaller by at least two), the migration policy is exactly the same as
that used by the Nash rerouting policy of Figure 1.1, so the incentive is to
use that probability.

• When a task finds a resource with a load that is smaller by exactly one unit,
the migration policy is sufficiently close to the Nash rerouting policy that
the difference in expected load is at most one, and there is little incentive to
deviate.

• The protocol is simple (as well as provably efficient) enough to convince users
to actually stick to it.

1.1. Related work. We are studying a simple kind of congestion game. In their
general form, congestion games specify a set of agents, a set of resources, and, for each
agent, a set of allowed strategies, where a strategy is the selection of a subset of the
resources (in this paper, any singleton subset is allowed). The cost of a resource is
a nondecreasing function of the number of agents using it, and the cost for an agent
is the sum of the costs of resources it uses. A classical result due to Rosenthal [26]
is that pure Nash equilibria (NEs) always exist for congestion games, and this is
shown by exhibiting a potential function; they are a type of potential game [24].
The potential function also establishes that pure NEs can be found via sequences of
“better-response” moves, in which agents repeatedly switch to lower-cost strategies.
The potential function we use later in this paper is that of [26], modulo a linear
rescaling.

These results do not show how to find NEs efficiently, the problem being that in
the worst case, sequences of these self-improving moves may be exponentially long.
The following questions arise: When can NEs be found by any efficient algorithm,
and if so, can they be found via an algorithm that purports to be a realistic model
of agents’ behavior? Regarding the first of these questions, the answer is no in the
general setting (the problem is PLS-complete for general congestion games [9]; see
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also [1, 3]). PLS-completeness (introduced in [17]) is a generally accepted criterion
for intractability of computational problems in which we seek a local optimum of a
given objective function.

However, due to the basic fact of [26, 24] that pure NEs are sure to result from a
sufficiently long better-response sequence, many algorithms for finding them are based
on such sequences. An important subclass is the elementary step system (ESS), pro-
posed in Orda, Rom, and Shimkin [25], which consists of best-response moves (where a
migrating agent switches not to any improved choice but to one that is optimal at the
time of migration). For matroid games (a class of congestion games that includes the
ones we consider here), Ackermann, Röglin, and Vöcking [1] show that best-response
sequences must have length polynomial in the number of players, resources, and max-
imal rank of the matroids. In this paper we consider the special case of singleton
congestion games (where players’ strategies are always single resources, and thus the
ranks of the matroids is 1). For these games, Ieong et al. [16] give polynomial bounds
for best-response and better-response sequences. Chien and Sinclair [3] study a ver-
sion of the ESS in the context of approximate NEs, and show that in some cases
the ε-Nash dynamics may find an ε-NE where finding an exact NE is PLS-complete.
Mirrokni and Vetta [22] study the convergence rate of the ESS to solutions, and the
quality of the approximation after limited iterations.

While best- and better-response dynamics are a plausible model of selfish behav-
ior, the associated algorithms typically require that migrations be done one-by-one,
and another common assumption is that best- (not better-) responses are always se-
lected. This means that to some extent, agents are being assumed to be governed
by a centralized algorithm that finds an NE, raising the question of what sort of dis-
tributed algorithms can do so, especially if agents have limited information about the
state of the system (and so may not be able to find best responses). That issue is of
central importance to us in this paper. Goldberg [14] studied situations where simple
better-response approaches can be realized as weakly distributed algorithms (where
each agent looks for moves independently of the others, but it is assumed that moves
take place consecutively, not simultaneously). In a strongly distributed setting (as we
study here), where moves may occur simultaneously, we need to address the possibility
that a change of strategy may increase an agent’s cost. It may happen that after a best
response has been identified, it is not optimal at the time it is executed. Even-Dar
and Mansour [8] consider concurrent, independent rerouting decisions where tasks
are allowed to migrate from overloaded to underloaded resources. Their rerouting
process terminates in expected O(log logm + log n) rounds when the system reaches
an NE. Note that their convergence rate as a function of the number n of resources
is faster than the one we obtain in this paper. The reason is that it requires agents
to have a certain amount of global knowledge. A task is required to know whether
its resource is overloaded (having above-average load), and tasks on underloaded re-
sources do not migrate at all. Our rerouting policy does not require that agents know
anything other than their current resource load and the load of a randomly chosen
alternative. Even-Dar and Mansour also present a general framework that can be
used to show a logarithmic convergence rate for a wide class of rerouting strategies.
Our protocol does not fall into that class, since we do not require migrations to occur
only from overloaded resources. Note that our lower bound is linear in n (thus, more
than logarithmic).

Distributed algorithms have been studied in the Wardrop setting (the limit of
infinitely many agents), for which recent work has also extensively studied the coor-
dination ratio [28, 27]. Fischer, Räcke, and Vöcking [11] investigate convergence to
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Wardrop equilibria for games where agents select paths through a shared network to
route their traffic. (Singleton games correspond to a network of parallel links.) Their
rerouting strategies are slightly different to ours—they assume that in each round,
an agent queries a path with probability proportional to the traffic on that path.
Here we assume that paths (individual elements of a set of parallel links) are queried
uniformly at random, so that agents can be assumed to have minimal knowledge. As
in this paper, the probability of switching to a better path depends on the latency
difference, and care has to be taken to avoid oscillation. Also in the Wardrop setting,
Blum, Even-Dar, and Ligett [2] show that approximate NE is the outcome of regret-
minimizing rerouting strategies, in which an agent’s cost, averaged over time, should
approximate the cost of the best individual link available to that agent.

Certain generalizations of singleton games have also been considered. These gen-
eralizations are not strictly congestion games according to the standard definition we
gave above, but many ideas carry over. One version introduced by Koutsoupias and
Papadimitriou [18] has been studied extensively in different contexts (for example,
[20, 6, 13, 4, 28]). In this generalization, each task may have a numerical weight
(sometimes called traffic, or demand), and each resource has a speed (or capacity).
The cost of using a resource is the total weight of tasks using it, divided by its speed.
Even-Dar, Kesselman, and Mansour [7] give a generalized version of the potential
function of [26] that applies to these games and which was subsequently used in [14].
For these games, however, it seems harder to find polynomial-length best-response
sequences. Feldman et al. [10] show how a sequence of steps may lead to NEs, under
the weaker condition that the maximal cost experienced by agents must not increase,
but individual steps need not necessarily be “selfish.” They also note that poorly
chosen better-response moves may lead to an exponential convergence rate. Another
generalization of singleton games is player-specific cost functions [21], which allow
different agents to have different cost functions for the same resource. In this setting
there is no potential function, and better-response dynamics may cycle, although it
remains the case that pure NEs always exist.

Our rerouting strategy is also related to reallocation processes for balls-into-bins
games. The goal of a balls-into-bins game is to allocate m balls as evenly as possible
into n bins. It is well known that a fairly even distribution can be achieved if every ball
is allowed to randomly choose d bins and then the ball is allocated to the least loaded
among the chosen bins (see [23] for an overview). Czumaj, Riley, and Scheideler [5]
consider such an allocation where each ball initially chooses two bins. They show
that, in a polynomial number of steps, the reallocation process ends up in a state
with maximum load at most �m/n� + 1. Sanders, Egner, and Korst [29] show that
a maximum load of �m/n� + 1 is optimal if every ball is restricted to two random
choices.

In conclusion, this paper sits at one end of a spectrum in which we study a very
simple load-balancing game, but we seek solutions in a very adverse setting in which
agents have, at any point in time, a minimal amount of information about the state
of their environment and carry out actions simultaneously in a strongly distributed
sense.

1.2. Overview of our results. Section 3 deals with upper bounds on conver-
gence time. The main result, Theorem 3.1, is that the protocol of Figure 2.1 converges
to an NE within expected time O(log logm + n4).

The proof of Theorem 3.1 shows that the system becomes approximately balanced
very rapidly. Specifically, Corollary 3.11 shows that if n ≤ m1/3, then for all ε, either
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version of the distributed protocol (with or without neutral moves allowed) attains an
ε-NE (where all load ratios are within [1− ε, 1+ ε]; we use ε to denote a multiplicative
factor as in [3]) in expected O(log logm) rounds. The rest of section 3 analyzes the
protocol of Figure 2.1. It is shown that within an additional O(n4) rounds the system
becomes optimally balanced.

In section 4, we provide two lower bound results. The first one, Theorem 4.1,
shows that the first protocol (of Figure 1.1, including moves that do not necessarily
yield a strict improvement for an individual task but allow for simply “neutral” moves
as well) results in exponential (in n) expected convergence time. Finally, in Theo-
rem 4.2 we provide a general lower bound (regardless of which of the two protocols
is being used) on the expected convergence time of Ω(log logm). This lower bound
matches the upper bound as a function of m.

2. Notation. There are m tasks and n resources. An assignment of tasks to
resources is represented as a vector (x1, . . . , xn) in which xi denotes the number of
tasks that are assigned to resource i. In the remainder of this paper, [n] denotes
{1, . . . , n}. The assignment is an NE if for all i ∈ [n] and j ∈ [n], |xi − xj | ≤ 1.
We study a distributed process for constructing an NE. The states of the process,
X(0), X(1), . . . , are assignments. The transition from state X(t) = (X1(t), . . . , Xn(t))
to state X(t + 1) is given by the greedy distributed protocol in Figure 2.1.

For each task b do in parallel
Let ib be the current resource of task b
Choose resource jb uniformly at random
Let Xib(t) be the current load of resource i
Let Xjb(t) be the current load of resource j
If Xib(t) > Xjb(t) + 1 then

Move task b from resource ib to jb with probability 1 −Xjb(t)/Xib(t)

Fig. 2.1. The modified protocol, with “neutral moves” disallowed.

Note that if X(t) is an NE, then X(t+1) = X(t) so the assignment stops changing.
Here is a formal description of the transition from a state X(t) = x. Independently, for
every i ∈ [n], let (Yi,1(x), . . . , Yi,n(x)) be a random variable drawn from a multinomial
distribution with the constraint

∑n
j=1 Yi,j(x) = xi. (Yij represents the number of mi-

grations from i to j in a round.) The corresponding probabilities (pi,1(x), . . . , pi,n(x))
are given by

pi,j(x) =

⎧⎪⎨
⎪⎩

1
n

(
1 − xj

xi

)
if xi > xj + 1,

0 if i �= j but xi ≤ xj + 1,
1 −

∑
j �=i pi,j(x) if i = j.

Then Xi(t + 1) =
∑n

�=1 Y�,i(x).
For any assignment x = (x1, . . . , xn), let x = 1

n

∑n
i=1 xi. We define the potential

function Φ(x) =
∑n

i=1 (xi − x)
2
. Note that Φ(x) =

∑n
i=1 x

2
i − nx2 and that a single

selfish move reduces the potential.

3. Upper bound on convergence time. Our main result is the following.
Theorem 3.1. Let T be the number of rounds taken by the protocol of Figure 2.1

to reach an NE for the first time. Then E[T ] = O(log logm + n4).
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The proof of this theorem proceeds as follows. First (Lemma 3.6) we give an upper
bound on E[Φ(X(t))] which implies (Corollary 3.10) that there is a τ = O(log logm)
such that, with high probability, Φ(X(τ)) = O(n). We also show (Observation 3.5
and Corollary 3.14) that Φ(X(t)) is a supermartingale and (Lemma 3.15) that it has
enough variance. Using these facts, we obtain the upper bound on the convergence
time.

Definition. Let Si(x) = {j | xj < xi − 1}. Si(x) is the set of resources that are
significantly smaller than resource i in state x (in the sense that their loads are at least
two tasks smaller than the load of resource i). Similarly, let Li(x) = {j | xj > xi +1}
and let di(x) = 1

n

∑
j:|xi−xj |≤1(xi − xj).

Observation 3.2. E[Xi(t + 1) | X(t) = x] = x + di(x).
Proof.

E[Xi(t + 1) | X(t) = x] =

n∑
�=1

E[Y�,i(x)] =

n∑
�=1

x�p�,i(x)

=
∑

�∈Li(x)

x�
1

n

(
1 − xi

x�

)
+ xi

⎛
⎝1 −

∑
j∈Si(x)

1

n

(
1 − xj

xi

)⎞⎠

= xi +
1

n

⎛
⎝ ∑

�∈Li(x)

(x� − xi) −
∑

j∈Si(x)

(xi − xj)

⎞
⎠

= xi +
1

n

∑
�∈Li(x)∪Si(x)

(x� − xi)

= xi +
1

n

n∑
�=1

(x� − xi) −
1

n

∑
� �∈Li(x)∪Si(x)

(x� − xi)

= x− 1

n

∑
� �∈Li(x)∪Si(x)

(x� − xi)

= x +
1

n

∑
� �∈Li(x)∪Si(x)

(xi − x�).

Observation 3.3.

∑n
i=1(E[Xi(t + 1) | X(t) = x])2 = nx2 +

∑n
i=1 di(x)2.

Proof. Using Observation 3.2,

n∑
i=1

(E[Xi(t + 1) | X(t) = x])2 =

n∑
i=1

(x + di(x))2 = nx2 + 2x

n∑
i=1

di(x) +

n∑
i=1

di(x)2,

and the second term is zero since di(x) = E[Xi(t + 1) | X(t) = x] − x.
Observation 3.4. var[Xi(t+1) | X(t) = x] ≤ 1

n

∑
�∈Li(x) (x�−xi)+

1
n

∑
j∈Si(x) (xi−

xj).
Proof.

var(Xi(t + 1) | X(t) = x) =

n∑
�=1

var(Y�,i(x)) =

n∑
�=1

x�p�,i(x)(1 − p�,i(x))

=
∑

�∈Li(x)

x�
1

n

(
1 − xi

x�

)
(1 − p�,i(x))
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+ xipi,i(x)

⎛
⎝ ∑

j∈Si(x)

1

n

(
1 − xj

xi

)⎞⎠
=

1

n

∑
�∈Li(x)

(x� − xi)(1 − p�,i(x)) + pi,i(x)
1

n

∑
j∈Si(x)

(xi − xj)

≤ 1

n

∑
�∈Li(x)

(x� − xi) +
1

n

∑
j∈Si(x)

(xi − xj).

Definition. For any assignment x, let si(x) = |{j | xj = xi − 1}| and li(x) =
|{j | xj = xi + 1}|. Let u1(x) =

∑n
i=1

∑
j∈[n]:|xi−xj |>1 |xi − xj | and u2(x) =∑n

i=1(si(x) − li(x))2. Let u(x) = u1(x)/n + u2(x)/n2. We will show that u(x) is
an upper bound on the expected potential after one step, starting from state x. The
quantity u1(x) corresponds to the contribution arising from the sum of the variances
of the individual loads, and u2(x) corresponds to the rest.

Observation 3.5. E[Φ(X(t + 1)) | X(t) = x] ≤ u(x).
Proof.

E[Φ(X(t + 1)) | X(t) = x] + nx2 =

n∑
i=1

E[Xi(t + 1)2 | X(t) = x]

=

n∑
i=1

(E[Xi(t + 1) | X(t) = x])
2

+

n∑
i=1

var(Xi(t + 1) | X(t) = x).

Using Observations 3.3 and 3.4, this is at most nx2 +
∑n

i=1 di(x)2 + u1(x)/n. But

di(x) =
1

n

∑
j:|xi−xj |≤1

(xi − xj) =
1

n
(si(x) − �i(x)),

so the result follows.
Lemma 3.6. E[Φ(X(t + 1)) | X(t) = x] ≤ n + 2n1/2Φ(x)1/2.
Proof. In the proof of Observation 3.5, we established that E[Φ(X(t+1)) | X(t) =

x] ≤
∑n

i=1 di(x)2 + u1(x)/n. Upper-bounding u1(x) and using di(x) ≤ 1, we have

E[Φ(X(t + 1)) | X(t) = x] ≤ n +
1

n

n∑
i=1

n∑
j=1

|xi − xj |,

and since |xi − xj | ≤ |xi − x| + |xj − x|, this is at most n + 2
∑n

i=1 |xi − x|. By
Cauchy–Schwarz, (

∑
i |xi − x| · 1)2 ≤

∑
i |xi − x|2

∑
i 1; thus

E[Φ(X(t + 1)) | X(t) = x] ≤ n + 2

(
n

n∑
i=1

|xi − x|2
)1/2

.

Corollary 3.7. E[Φ(X(t + 1))] ≤ n + 2n1/2(E[Φ(X(t))])1/2.
Proof. Using Lemma 3.6, E[Φ(X(t + 1))] ≤ n + 2n1/2

E[f1/2], where f denotes
the random variable Φ(X(t)). By Jensen’s inequality E[f1/2] ≤ (E[f ])1/2 since the
square-root function is concave, so we get E[Φ(X(t+ 1))] ≤ n+ 2n1/2(E[f ])1/2.
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Lemma 3.8. Either there is a t′ < t such that E[Φ(X(t′))] ≤ 18n or E[Φ(X(t))] ≤
91−2−t

n1−2−t

Φ(X(0))2
−t

.
Proof. The proof is by induction on t. The base case is t = 0. For the inductive

step, note that 1 − 2−t =
∑t

k=1 2−k. Suppose that for all t′ < t, E[Φ(X(t′))] > 18n
(otherwise we are finished). Then by Corollary 3.7,

E[Φ(X(t))] = n + 2n1/2(E[Φ(X(t− 1))])
1/2 ≤ 3n1/2(E[Φ(X(t− 1))])

1/2
.

Applying the inductive hypothesis,

E[Φ(X(t))] ≤ 3n1/2(32(1−2−(t−1))n1−2−(t−1)

Φ(X(0))
2−(t−1)

)
1/2

.

Corollary 3.9. There is a τ ≤ �lg lg Φ(X(0))� such that E[Φ(X(τ))] ≤ 18n.
Proof. Take t = �lg lg Φ(X(0))�. Either there is a τ < t with E[Φ(X(τ))] ≤ 18n

or, by the lemma,

E[Φ(X(t))] ≤ 9nΦ(X(0))
2−t

≤ 18n.

Corollary 3.10. There is a τ ≤ �lg lg Φ(X(0))� such that Pr(Φ(X(τ)) >
720n) ≤ 1/40.

Proof. Consider the (nonnegative) random variable Y = Φ(X(τ)), where τ is the
quantity from Corollary 3.9. Markov’s inequality says that for any a > 0, Pr(Y ≥
a) ≤ E[Y ]/a. Now use Corollary 3.9 with a = 720n.

Corollary 3.11. For all ε > 0, provided that n < m1/3, the expected time to
reach an ε-NE is O(log logm).

Proof. Since the bound is asymptotic as a function of m for fixed ε, we can
assume without loss of generality that m > (60/ε)2 and that εm/(2n) is an integer.
We show that for any starting assignment X(0), there exists τ ≤ log log(m2) such that
Pr(X(τ) is ε-Nash) > 39

40 . This implies the statement of the result since the number
of blocks of τ steps needed to reach an ε-NE is at most

1 +

(
1

40

)
+

(
1

40

)2

+ · · · =
40

39
< 2.

Suppose assignment x is not ε-Nash. If X(t) = x, there exist resources i, j with
Xi(t) − Xj(t) > εm/n. We use the following notation. Let Δ = εm/(2n). Let
β = Xi(t)−Xj(t)−2Δ. Note β > 0. If X(t+1) is obtained from X(t) by transferring
Δ tasks from i to j, then

Φ(X(t)) − Φ(X(t + 1))

= Xi(t)
2 + Xj(t)

2 −Xi(t + 1)2 −Xj(t + 1)2

= (2Δ + β + Xj(t))
2 + Xj(t)

2 − (Δ + β + Xj(t))
2 − (Δ + Xj(t))

2

= 2Δ(Δ + β + Xj(t)) + Δ2 −
(
2ΔXj(t) + Δ2

)
= 2Δ(Δ + β) ≥ Δ2 = (εm/2n)2.

It follows that Φ(X(t)) ≥ (εm/2n)2. From Corollary 3.10, Pr(Φ(X(τ)) < 720n) > 39
40 ,

for τ = log log(Φ(0)) = O(log logm).
An assignment X(τ) with Φ(X(τ)) ≤ 720n must be ε-Nash if (εm/2n)2 > 720n.

Note that m > n3 and m > (60/ε)2. Hence, from ε2(60/ε)2n3 > 4.720.n3, we can
deduce ε2m2 > 4.720.n3; hence (εm/2n)2 > 720n.
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Corollary 3.10 tells us that Φ(X(τ)) is likely to be O(n). We want to show that
Φ(X(t)) quickly gets even smaller (all the way to an NE) and to this end, we show that
Φ(X(t)) is a supermartingale. By Observation 3.5, it suffices to show u(x) ≤ Φ(x),
and we proceed with this. In the following, we shall consider the cases |xi − x| < 2.5
for all i ∈ [n] (Lemma 3.12) and ∃i ∈ [n] : |xi − x| ≥ 2.5 (Lemma 3.13) separately.

Lemma 3.12. Suppose that assignment x = (x1, . . . , xn) satisfies |xi − x| < 2.5
for all i ∈ [n]. Then u(x) ≤ Φ(x).

Proof. For all i ∈ [n] and j ∈ [n] we have |xi − xj | ≤ |xi − x| + |xj − x| < 5. Let
z = mini xi so that every xi ∈ {z, . . . , z + 4}. Let ni = |{j | xj = z + i}|. Then

n2Φ(x) = n2
n∑

i=1

x2
i − n

(
n∑

i=1

xi

)2

= n2

⎛
⎝ 4∑

j=0

nj(z + j)
2

⎞
⎠−

⎛
⎝ 4∑

j=0

nj(z + j)

⎞
⎠

2

.

Also, n2u(x) = nu1(x) + u2(x), where

u1(x) = n0(2n2 + 3n3 + 4n4) + n1(2n3 + 3n4)

+ n2(2n0 + 2n4) + n3(3n0 + 2n1) + n4(4n0 + 3n1 + 2n2)

and

u2(x) = n0n
2
1 + n1(n0 − n2)

2 + n2(n1 − n3)
2 + n3(n2 − n4)

2 + n4n
2
3.

Plugging in these expressions and simplifying, we get

n2Φ(x) − n2u(x)

= 4n0n1n2 + 3n2
0n3 + 4n0n1n3 + 4n0n2n3 + 4n1n2n3 + 3n0n

2
3

+ 8n2
0n4 + 12n0n1n4 + 3n2

1n4 + 8n0n2n4 + 4n1n2n4 + 12n0n3n4

+ 4n1n3n4 + 4n2n3n4 + 8n0n
2
4 + 3n1n

2
4,

which is clearly nonnegative since all coefficients are positive.
Lemma 3.13. Suppose that assignment x = (x1, . . . , xn) satisfies |xn − x| ≥ 2.5

and, for all i ∈ [n], |xi − x| ≤ |xn − x|. Let w = (w1, . . . , wn−1) be the assignment
with wi = xi for i ∈ [n − 1]. Then Φ(x) − u(x) ≥ Φ(w) − u(w); that is, the lower
bound on the potential drop for x is at least as big as that for w.

Proof. Let k = |xn − x|. We will show that
(1) Φ(x) − Φ(w) ≥ k2 and
(2) u(x) − u(w) ≤ 2k + 1.

Then

Φ(x) − u(x) − (Φ(w) − u(w)) ≥ k2 − (2k + 1),

which is nonnegative since k ≥ 2.5 ≥ 1 +
√

2.
First, we prove (1). Let f(z) =

∑n−1
i=1 (xi − z)2. Note that the derivative of f(z)

is

f ′(z) = 2(n− 1)z − 2

n−1∑
i=1

xi = 2(n− 1)z − 2(n− 1)w.

Furthermore, the second derivative is f ′′(z) = 2(n− 1) ≥ 0. Thus, f(z) is minimized
at z = w. Now note that

Φ(x) − Φ(w) = k2 +

n−1∑
i=1

(xi − x)
2 −

n−1∑
i=1

(xi − w)
2 ≥ k2.
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Now we finish the proof by proving (2). Assume first that xn = x + k. Then

u1(x) − u1(w) = 2
∑

i∈[n]:|xi−xn|>1

|xi − xn| ≤ 2

n∑
i=1

|xi − xn| = 2

n∑
i=1

(xn − xi) = 2nk.

Let zj = |{� | x� = j}|. Clearly zj = 0 for j > xn. Let ξ = �xn − 2k�. For � ∈ [n] we
have x� ≥ x− k = xn − 2k, so zj = 0 for j < ξ. Now u2(x) =

∑xn

j=ξ zj(zj−1 − zj+1)
2.

The representation of w in terms of zjs is the same as the representation of x except
that zxn is reduced by one. Therefore,

u2(x) − u2(w) = zxn−1

(
(zxn−2 − zxn)

2 − (zxn−2 − zxn + 1)
2
)

+ (zxn−1 − zxn+1)
2

= zxn−1(−2zxn−2 + 2zxn + zxn−1 − 1) ≤ zxn−1(2zxn + zxn−1).

But since zxn ≤ n− zxn−1, the upper bound on the right-hand side is at most

zxn−1(2n− 2zxn−1 + zxn−1) = 2zxn−1(n− zxn−1/2),

which is at most n2 since the right-hand side is maximized at zxn−1 = n. To finish
the proof of (2), use the definition of u to deduce that

u(x) − u(w) ≤ u1(x) − u1(w)

n
+

u2(x) − u2(w)

n2
.

The proof of (2) when xn = x− k is similar.
Corollary 3.14. For any assignment x = (x1, . . . , xn), Φ(x) − u(x) ≥ 0.
Proof. The proof is by induction on n. The base case, n = 1, follows from

Lemma 3.12. Suppose n > 1. Neither Φ(x) nor u(x) depends upon the order of the
components in x, so assume without loss of generality that |xi − x| ≤ |xn − x| for
all i. If |xn − x| < 2.5, then apply Lemma 3.12. Otherwise, use Lemma 3.13 to find
an assignment w = (w1, . . . , wn−1) such that Φ(x) − u(x) ≥ Φ(w) − u(w). By the
inductive hypothesis, Φ(w) − u(w) ≥ 0.

Together, Observation 3.5 and Corollary 3.14 tell us that E[Φ(X(t+ 1)) | X(t) =
x] ≤ Φ(x). The next lemma will be used to give a lower bound on the variance of the
process. Let V = 0.4n−2.

Lemma 3.15. Suppose that X(t) = x and that x is not an NE. Then

Pr(Φ(X(t + 1)) �= Φ(x) | X(t) = x) ≥ V.

Proof. Choose s and � such that for all i ∈ [n], xs ≤ xi ≤ x�. Since x is not an
NE, x� > xs + 1. Assuming X(t) = x, consider the following experiment for choosing
X(t + 1).

The intuition behind the experiment is as follows. We wish to show that the
transition from X(t) to X(t + 1) has some variance in the sense that Φ(X(t + 1)) is
sufficiently likely to differ from Φ(X(t)). To do this, we single out a “least loaded”
resource s and a “most loaded” resource � as above. In the transition from X(t) to
X(t + 1) we make transitions from resources other than resource � in the usual way.
We pay special attention to transitions from resource � (and particular attention to
transitions from resource � which could either go to resource s or stay at resource �).
It helps to be very precise about how the random decisions involving tasks that start
at resource � are made. In particular, for each task b that starts at resource �, we
first make a decision about whether b would accept the transition from resource � to
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resource s if b happened to choose resource s. Then we make the decision about which
resource task b should choose. Of course, we cannot cheat and we have to sample
from the original required distribution. Here are the details.

Independently, for every i �= �, choose (Yi,1(x), . . . , Yi,n(x)) from the multinomial
distribution described in section 2. (In the informal description above, this corre-
sponds to making transitions from resources other than resource � in the usual way.)
Now, for every task b ∈ x�, let zb = 1 with probability 1 − xs/x� and zb = 0 oth-
erwise. (In the informal description above, this corresponds to deciding whether b
would accept the transition to s if resource s were (later) chosen.) Let x+

� be the
number of tasks b with zb = 1 and let x−

� be the number of tasks b with zb = 0.
Choose (Y +

�,1(x), . . . , Y +
�,n(x)) from a multinomial distribution with the constraint∑n

j=1 Y
+
�,j(x) = x+

� and probabilities given by

p+
�,j(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n if j = s,
1
n

(
1 − xj

x�

)
if j �= s and x� > xj + 1,

0 if � �= j but x� ≤ xj + 1,
1 −

∑
j �=� p�,j(x) if � = j.

Similarly, choose (Y −
�,1(x), . . . , Y −

�,n(x)) from a multinomial distribution with the con-

straint
∑n

j=1 Y
−
�,j(x) = x−

� and probabilities given by

p−�,j(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j = s,
1
n

(
1 − xj

x�

)
if j �= s and x� > xj + 1,

0 if � �= j but x� ≤ xj + 1,
1 −

∑
j �=� p�,j(x) if � = j.

For all j, let Y�,j(x) = Y +
�,j(x) + Y −

�,j(x). Informally, the p+
�,j transition probabilities

are set up so that packets which decided that they would accept a transition to s
behave appropriately, and the p−�,j transition probabilities are set up so that packets
which decided that they would not accept a transition to s behave appropriately. By
combining the probabilities, we see that X(t+1) is chosen from the correct distribution
in this way.

Now, consider the transition from x to X(t + 1). Condition on the choice for
(Yi,1(x), . . . , Yi,n(x)) for all i �= �. Suppose x+

� > 2. Condition on the choice for
(Y −

�,1(x), . . . , Y −
�,n(x)). Flip a coin for each of the first x+

b − 2 tasks with zb = 1 to

determine which of Y +
�,1(x), . . . , Y +

�,n(x) the task contributes to. Condition on these
choices. Consider the following options:

(1) Let x1 be the resulting value of X(t + 1) when we add both of the last two
tasks to Y +

�,�(x).
(2) Let x2 be the resulting value of X(t + 1) when we add one of the last two

tasks to Y +
�,�(x) and the other to Y +

�,s(x).
(3) Let x3 be the resulting value of X(t + 1) when we add both of the last two

tasks to Y +
s,s(x).

Note that, given the conditioning, each of these choices occurs with probability at
least n−2. Also, Φ(x1), Φ(x2), and Φ(x3) are not all the same. Thus, Pr(Φ(X(t+1) �=
Φ(x) | X(t) = x, x+

� > 2) ≥ n−2. Also,

Pr(x+
� > 2) = 1 −

(
xs

x�

)x�

− x�

(
1 − xs

x�

)(
xs

x�

)x�−1

.
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Since the derivative with respect to xs is negative, this is minimized by taking xs as
large as possible, namely x� − 2; thus Pr(x+

� > 2) ≥ 1 − 7e−2 ≥ 0.4, and the result
follows.

In order to finish our proof of convergence, we need the following observation
about Φ(x).

Observation 3.16. For any assignment x, Φ(x) ≤ m2. Let r = m mod n. Then
Φ(x) ≥ r(1 − r/n), with equality if and only if x is an NE.

Proof. Suppose that in assignment x there are resources i and j such that xi−xj ≥
2. Let x′ be the assignment constructed from x by transferring a task from resource
i to resource j. Then

Φ(x) − Φ(x′) = x2
i − x′

i
2

+ x2
j − x′

j
2

= x2
i − (x2

i − 2xi + 1) + x2
j − (x2

j + 2xj + 1)

= 2xi − 2xj − 2 = 2(xi − xj) − 2 > 0.

Now suppose that, in some assignment x′, resources i and j satisfy x′
i ≥ x′

j > 0. Let
x be the assignment constructed from x′ by transferring a task from resource j to
resource i. Since (x′

i + 1)− (x′
j − 1) ≥ 2, the above argument gives Φ(x) > Φ(x′). We

conclude that an assignment x with maximum Φ(x) must have all of the tasks in the
same resource, with Φ(x) = m2.

Furthermore, an assignment x with minimum Φ(x) must have |xi − xj | ≤ 1 for
all i, j. In this case there must be r resources with loads of q + 1 and n− r resources
with loads of q, where m = qn + r. So

Φ(x) = r(q + 1 − x̄)2 + (n− r)(q − x̄)2 = r
(
1 − r

n

)2

+ (n− r)
( r

n

)2

= r
(
1 − r

n

)
.

Note that x is a Nash assignment if and only if |xi − xj | ≤ 1 for all i and j.
Combining Observation 3.16 and Corollary 3.10, we find that there is a τ ≤

�lg lgm2� such that Pr(Φ(X(τ)) > 720n) ≤ 1/40. Let B = 7200n +
⌈
m2

n

⌉
− m2

n . Let

t′ = τ + �10B2/V �.
Lemma 3.17. Given any starting state X(0) = x, the probability that X(t′) is an

NE is at least 3/4.
Proof. The proof is based on a standard martingale argument; see [19]. Suppose

that Φ(X(τ)) ≤ 720n. Let Wt = Φ(X(t + τ)) − r(1 − r/n) and let Dt = min(Wt, B).
Note that D0 ≤ 720n. Together, Observation 3.5 and Corollary 3.14 tell us that Wt

is a supermartingale. This implies that Dt is also a supermartingale since

E[Dt+1 | Dt = x < B] ≤ E[Wt+1 | Wt = x < B] ≤ Wt = Dt,

and

E[Dt+1 | Dt = B] ≤ B = Dt.

Together, Lemma 3.15 and Observation 3.16 tell us that if x > 0, Pr(Wt+1 �= Wt |
Wt = x) ≥ V . Thus, if 0 < x < B,

Pr(Dt+1 �= Dt | Dt = x) = Pr(min(Wt+1, B) �= Wt | Wt = x)

≥ Pr(Wt+1 �= Wt ∧B �= Wt | Wt = x)

= Pr(Wt+1 �= Wt | Wt = x) ≥ V.

Since Dt+1 − Dt is an integer, E[(Dt+1 − Dt)
2 | 0 < Dt < B] ≥ V . Let T be the

first time at which either (a) Dt = 0 (i.e., X(t + τ) is an NE), or (b) Dt = B.
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Note that T is a stopping time. Define Zt = (B − Dt)
2 − V t, and observe that

Zt∧T is a submartingale, where t ∧ T denotes the minimum of t and T . Let p be
the probability that (a) occurs. By the optional stopping theorem E[DT ] ≤ D0; thus
(1 − p)B = E[DT ] ≤ D0 and p ≥ 1 − D0/B ≥ 9

10 . Also, by the optional stopping
theorem

pB2 − V E[T ] = E[(B −DT )
2
] − V E[T ] = E[ZT ] ≥ Z0 = (B −D0)

2
> 0,

and thus E[T ] ≤ pB2/V . Conditioning on the occurrence of (a), it follows that
E[T | DT = 0] ≤ B2/V . Hence Pr(T > 10B2/V | DT = 0) ≤ 1

10 . So, if we now
run for 10B2/V steps, then the probability that we do not reach an NE is at most
1
40 + 2 · 1

10 < 1/4.
Now we can give the proof of Theorem 3.1.
Proof. Subdivide time into intervals of t′ steps. The probability that the process

has not reached an NE before the (j + 1)st interval is at most (1/4)−j .

4. Lower bounds. In this section we prove the lower bound results stated in
the introduction. We will use the following Chernoff bound which can be found, for
example, in [15]. Let N ≥ 1 and let pi ∈ [0, 1] for i = 1, . . . , N . Let X1, X2, . . . , XN

be independent Bernoulli random variables with Pr(Xi = 1) = pi for i = 1, . . . , N

and let X = X1 + · · · + XN . Then we have E[X] =
∑N

i=1 pi and for 0 ≤ ε ≤ 1,

(4.1) Pr(X ≤ (1 − ε) · E[X]) ≤ exp

(
−ε2 · E[X]

3

)
.

The following theorem gives an exponential lower bound for the expected conver-
gence time of the process in Figure 1.1.

Theorem 4.1. Let X(t) be the process in Figure 1.1 with m = n. Let X(0) be
the assignment given by X(0) = (n, 0, . . . , 0). Let T be the first time at which X(t) is
an NE. Then E[T ] = exp(Θ(

√
n)).

Proof. For an assignment x, let n0(x) denote the number of resources i with
xi = 0. Thus, n0(X(0)) = n − 1. The (unique) NE x assigns one task to each
resource; thus n0(x) = 0. Let k = �

√
n
. We will show that for any assignment x

with n0(x) ≥ k,

Pr(n0(X(t)) < k | X(t− 1) = x) ≤ exp(−Θ(
√
n)).

This implies the result.
Suppose X(t− 1) = x with n0(x) ≥ k. For convenience, let n0 denote n0(x). Let

x′ denote X(t), and let n′
0 denote n0(x

′). We will show that, with probability at least
1 − exp(−Θ(

√
n)), n′

0 ≥ k. During the course of the proof, we will assume, where
necessary, that n is sufficiently large. This is without loss of generality given the Θ
notation in the statement of the result.

Case 1. n0 > 8k.
Consider the protocol in Figure 1.1. Let U = {b | xjb = 0}. E[|U |] = n0, so by

the Chernoff bound (4.1), Pr(|U | ≤ �n0

2 �+ � 3n0

8 �) ≤ Pr(|U | ≤ 8
9n0) = exp (−Θ(

√
n)).

Thus, |U | ≥ �n0/2� + �3n0/8� with probability at least 1 − exp(−Θ(
√
n)). Suppose

this is the case. Partition U into U1 and U2 with |U1| = �n0/2�. Let W = ∪b∈U1{jb}.
First, suppose |W | ≤ 3

8n0. In that case

|{j | x′
j > 0}| ≤ n− |U1| +

3

8
n0 = n− �n0/2� +

3

8
n0 ≤ n− k,
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so n′
0 ≥ k. Otherwise, let U ′ = {b ∈ U2 | jb ∈ W}. Since

E[|U ′|] = |U2|
|W |
n0

≥ 9

64
n0 >

9

8
k,

by the Chernoff bound (4.1), Pr(|U ′| ≤ k) = Pr(|U ′| ≤ (1− 1
9 )E[|U ′|]) = exp (−Θ(

√
n)),

recalling that k = �
√
n
. Thus |U ′| ≥ k with probability at least 1 − exp(−Θ(

√
n)),

which implies n′
0 ≥ k.

Case 2. k ≤ n0 ≤ 8k.
Consider the protocol in Figure 1.1. Let L be the set of “loners” defined by

L = {i | xi = 1} and let � = |L|. The number of resources i with xi > 1 is n− n0 − �,
and this is at most half as many as the number of tasks assigned to such resources
(which is n − �), so � ≥ n − 2n0. Let U = {b | ib ∈ L and xjb = 0}. E[|U |] =

�n0

n ≥ (n−2n0)n0

n = Θ(
√
n), so by the Chernoff bound (4.1), Pr(|U | ≤ 2� 1

4�
n0

n �) ≤
Pr(|U | ≤ 2

3E[|U |]) ≤ exp (−Θ(
√
n)). Thus, |U | ≥ 2� 1

4�
n0

n � with probability at least
1 − exp(−Θ(

√
n)). Suppose this is the case. Let U1 and U2 be disjoint subsets of

U of size � 1
4�

n0

n �. Order tasks in U arbitrarily and let S = {b ∈ U | for some
b′ ∈ U with b′ < b, jb′ = jb.}. (Note that |S| does not depend on the ordering.) Let
W = ∪b∈U1{jb}.

Note that if |W | ≤ 1
5�

n0

n , then |S| ≥ 1
20�

n0

n > n0

40

(
�
n

)2
. Otherwise, let U ′ = {b ∈

U2 | jb ∈ W}. Since

E[|U ′|] = |U2|
|W |
n0

≥ n0

20

(
�

n

)2

,

by the Chernoff bound (4.1), Pr(|U ′| ≤ 1
2
n0

20

(
�
n

)2
) ≤ exp (−Θ(

√
n)) (recall that

n0

(
�
n

)2 ≥ n0

(
n−2n0

n

)2 ≥ k
(
n−16k

n

)2
= Θ(

√
n)), and thus |U ′| ≥ n0

40

(
�
n

)2
with prob-

ability at least 1 − exp(−Θ(
√
n)); hence |S| ≥ n0

40

(
�
n

)2
.

Suppose then that |S| ≥ n0

40

(
�
n

)2
. Assuming that n is sufficiently large, |S| ≥

k/41. Let B0 = ∪b∈U{jb} and B1 = ∪b∈L−U{ib}. Note that every resource in B0∪B1

is used in x′ for some task b ∈ L. Thus, |B0 ∪ B1| ≤ � − |S|. Let R = {i | xi =
0} ∪ L−B0 −B1. Then |R| ≥ n0 + �− (�− |S|) ≥ n0 + |S| ≥ (1 + 1

41 )k.

Let T = {b | ib �∈ L, jb ∈ R}. E[T ] = (n− �) |R|
n , and

Pr

(
T ≥ |R|

100

)
≤

(
n− �
|R|
100

)(
|R|
n

)|R|/100
≤

(
2n0e100

n

)|R|/100
;

thus with probability at least 1 − exp(−Θ(
√
n)), T < |R|/100. In that case, n′

0 ≥
|R|(1 − 1

100 ) ≥ k.
The following theorem provides a lower bound on the expected convergence time

regardless of which of the two protocols is being used.
Theorem 4.2. Suppose that m is even. Let X(t) be the process in Figure 2.1

with n = 2. Let X(0) be the assignment given by X(0) = (m, 0). Let T be the first
time at which X(t) is an NE. Then E[T ] = Ω(log logm). The same result holds for
the process in Figure 1.1.

Proof. Note that both protocols have the same behavior since m is even, and,
therefore, the situation x1 = x2 + 1 cannot arise. For concreteness, focus on the
protocol in Figure 2.1.
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Let y(x) = maxi xi −m/2 and let yt = y(X(t)); thus y0 = m/2 and, for an NE x,
y(x) = 0. We will show that for any assignment x, Pr(yt+1 > y(x)1/10 | X(t) = x) ≥
1 − y

−1/4
t . (There is nothing very special about the exact value “1/10”—this value

is being used as part of an explicit “lack of concentration” inequality in the proof,
noting that for a lower bound we essentially want to lower-bound the variances of the
load distributions. This seems to require a somewhat ad hoc approach, in contrast
with the usage of concentration inequalities.)

Suppose X(t) = x is an assignment with x1 ≥ x2. As we have seen in section 2,
Y1,2(x) (the number of migrations from resource 1 to resource 2 in the round) is a
binomial random variable

B

(
x1,

1

2

(
1 − x2

x1

))
= B

(
m

2
+ yt,

2yt
m + 2yt

)
.

In general, let Tt be the number of migrations from the most-loaded resource in X(t)
to the least-loaded resource and note that the distribution of Tt is B

(
m
2 + yt,

2yt

m+2yt

)
with mean yt. If Tt = yt + � or Tt = yt − �, then yt+1 = �. Thus Pr(yt+1 > y

1/10
t ) =

Pr(|Tt − E[Tt]| > y
1/10
t ). We continue by showing that this binomial distribution is

sufficiently “spread out” in the region of its mode that we can find an upper bound

on Pr(yt+1 ≤ y
1/10
t ). This will lead to our lower bound on the expected time for (yt)t

to decrease below some constant (we use the constant 16):

Pr(Tt = yt) =

( 1
2m + yt

yt

)(
2yt

m + 2yt

)yt
(

m

m + 2yt

) 1
2m

,

Pr(Tt = yt + j) =

( 1
2m + yt
yt + j

)( 2yt
m + 2yt

)yt+j( m

m + 2yt

) 1
2m−j

.

Suppose j > 0. Then

Pr(Tt = yt + j)

Pr(Tt = yt)
=

( 2yt
m + 2yt

)j( m

m + 2yt

)−j
(

yt!(
1
2m)!

(yt + j)!( 1
2m + yt − (yt + j))!

)

=
(2yt
m

)j
(

j∏
�=1

1
2m + 1 − �

yt + �

)
=

(2yt
m

)j
(

j∏
�=1

m + 2 − 2�

2yt + 2�

)

>
(2yt
m

)j
(

j∏
�=1

m− 2j

2yt + 2j

)
=

[(2yt
m

)( m− 2j

2yt + 2j

)]j
.

Similarly, for j < 0,

Pr(Tt = yt + j)

Pr(Tt = yt)
=

(2yt
m

)j

⎛
⎝ |j|∏

�=1

yt + 1 − �
1
2m + �

⎞
⎠ =

( m

2yt

)|j|
⎛
⎝ |j|∏

�=1

2yt + 2 − 2�

m + 2�

⎞
⎠

>
( m

2yt

)|j|(2yt − 2|j|
m + 2|j|

)|j|
=

[( m

2yt

)(2yt − 2|j|
m + 2|j|

)]|j|
=

[(2yt
m

)( m− 2j

2yt + 2j

)]j
.

Thus for all j,

Pr(Tt = yt + j)

Pr(Tt = yt)
>

[(2yt
m

)( m− 2j

2yt + 2j

)]j
=

[( yt
yt + j

)(m− 2j

m

)]j
.
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Thus for all j with |j| ≤ y
1/4
t , where y

1/4
t is the positive fourth root of yt, this is

at least(
yt

yt + y
1/4
t

)y
1/4
t (m− 2y

1/4
t

m

)y
1/4
t

≥
(

yt

yt + y
1/4
t

)y
1/4
t (2yt − 2y

1/4
t

2yt

)y
1/4
t

=

(
yt − y

1/4
t

yt + y
1/4
t

)y
1/4
t

=

(
yt + y

1/4
t − 2y

1/4
t

yt + y
1/4
t

)y
1/4
t

=

(
1 − 2y

1/4
t

yt + y
1/4
t

)y
1/4
t

≥
(

1 − 2y
1/4
t

yt

)y
1/4
t

=
(
1 − 2y

−3/4
t

)y
1/4
t

≥ 1 − 2y
−3/4
t y

1/4
t = 1 − 2y

−1/2
t ≥ 1

2
,

where the last inequality just requires yt ≥ 16.
Note that the mode of a binomial distribution is one or both of the integers

closest to the expectation, and the distribution is monotonically decreasing as one

moves away from the mode. But, for |j| ≤ y
1/4
t , Pr(Tt = yt + j) ≥ 1

2 Pr(Tt = yt);

hence Pr(Tt = yt) ≤ 2/(1 + 2y
1/4
t ). Since Pr(Tt = yt + j) ≤ Pr(Tt = yt), it follows

that

Pr(Tt ∈ [yt − y
1/10
t , yt + y

1/10
t ]) ≤ (2y

1/10
t + 1) Pr(Tt = yt) < 3y

−3/20
t .

We say that the transition from yt to yt+1 is a “fast round” if yt+1 ≤ y
1/10
t

(equivalently, it is a fast round if Tt ∈ [yt − y
1/10
t , yt + y

1/10
t ]). Otherwise it is a slow

round. Recall that y0 = m/2. Let

r =

⌊
log10

(
log(y0)

log(1220/3)

)⌋
.

If the first j rounds are slow, then yj ≥ y10−j

0 . If j ≤ r, then y10−j

0 ≥ 1220/3; thus
the probability that the transition from yj to yj+1 is the first fast round is at most

3
(
y10−j

0

)−3/20 ≤ 1/4.
Also, if j < r, then these probabilities increase geometrically so that the ratio of

the probability that the transition to yj+1 is the first fast round and the probability
that the transition to yj is the first fast round is

3
(
y10−(j+1)

0

)−3/20

3
(
y10−j

0

)−3/20
=

(
y10−j−10−(j+1)

0

)3/20

≥
(
y10−(j+1)

0

)3/20

≥ 12 ≥ 2;

thus
∑r−1

j=0 Pr(transition from yj to yj+1 is the first fast round) ≤ 2 · 1/4 = 1
2 . There-

fore, with probability at least 1/2, all of the first r rounds are slow. In this case,
arg mint(yt ≤ 16) = Ω(log log(m)), which proves the theorem.

We also have the following observation.
Observation 4.3. Let X(t) be the process in Figure 2.1 with m = n. Let X(0)

be the assignment given by X(0) = (2, 0, 1, . . . , 1). Let T be the first time at which
X(t) is an NE. Then E[T ] = Ω(n).

The observation follows from the fact that the state does not change until one of
the two tasks assigned to the first resource chooses the second resource.
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5. Summary. We have analyzed a very simple, strongly distributed rerouting
protocol for m tasks on n resources. We have proved an upper bound of (log logm+n4)
on the expected convergence time (convergence to an NE), and for m > n3 an upper
bound of O(log logm) on the time to reach an approximate NE. Our lower bound of
Ω(log logm+n) matches the upper bound as a function of m. We have also shown an
exponential lower bound on the convergence time for a related protocol that allows
“neutral moves.”
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[1] H. Ackermann, H. Röglin, and B. Vöcking, On the impact of combinatorial structure on
congestion games, in Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2006, pp. 613–622.

[2] A. Blum, E. Even-Dar, and K. Ligett, Routing without regret: On convergence to Nash
equilibria of regret-minimizing algorithms in routing games, in Proceedings of the 25th
Annual ACM Symposium on Principles of Distributed Computing, 2006, pp. 45–52.

[3] S. Chien and A. Sinclair, Convergence to approximate Nash equilibria in congestion games,
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), New Orleans, LA, 2007, pp. 169–178.
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