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ABSTRACT
We combine type inference and concept analysis in order to gain insight into legacy software systems. Type
inference forCOBOL yields the types for variables and program parameters. These types are used to perform
mathematical concept analysis on legacy systems.

We have developed ConceptRefinery, a tool for interactively manipulating concepts. We show how this tools
facilitates experiments with concept analysis, and lets reengineers employ their knowedge of the legacy system
to refine the results of concept analysis.

1998 ACM Computing Classi�cation System: D.2.2, D.2.3, D.2.7., D.3.4, F.3.1, I.2.2.
Keywords and Phrases: software maintenance, program understanding, program analysis, type inference, concept
analysis.
Note: To appear inProceedings of the 8th International Workshop on Program Comprehension (IWPC 2000),
June 4-11, 2000 in Limerick, Ireland.
Note: Work carried out under projects SEN-1.1,Software Renovationand SEN-1.5,Domain-Specific Lan-
guages.

1. INTRODUCTION

Most legacy systems were developed using programming paradigms and languages that lack adequate means
for modularization. Consequently, there is little explicit structure for a software engineer to hold on to. This
makes effective maintenance or extension of such a system a strenuous task. Furthermore, according to the
Laws of Program Evolution Dynamics, the structure of a system will decrease by maintenance, unless special
care is taken to prevent this [1].

Object orientation is advocated as a way to enhance a system’s correctness, robustness, extendibility, and
reusability, the key factors affecting software quality [18]. Many organizations consider migration to object
oriented platforms in order to tackle maintenance problems. However, such migrations are hindered themselves
by the lack of modularization in the legacy code.

A software engineer’s job can be relieved by tools that support remodularization of legacy systems, for
example by making implicit structure explicitly available. Recovering this information is also a necessary first
step in the migration of legacy systems to object orientation: identification of candidate objects in a given
legacy system.

The use of concept analysis has been proposed as a technique for deriving (and assessing) the modular
structure of legacy software [7, 16, 24]. This is done by deriving a concept lattice from the code based on
data usage by procedures or programs. Thestructureof this lattice reveals a modularization that is (implicitly)
avaliable in the code.

For many legacy applications written inCOBOL, the data stored and processed represent the core of the
system. For that reason, many approaches that support identification of objects in legacy code take the data
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structures (variables and records) as starting point for candidate classes [5, 11, 19]. Unfortunately, legacy data
structures tend to grow over time, and may contain many unrelated fields at the time of migration. Furthermore,
in the case ofCOBOL, there is an additional disadvantage: sinceCOBOL does not allowtype definitions, there
no way to recognize, or treat, groups of variables that fulfill a similar role. We can, however,infer types for
COBOL automatically, based on an analysis of theuseof variables [8]. This results in types for variables,
program parameters, database records, literal values, and so on, which are used during analysis.

In this paper, we use the derived type information about the legacy system as input to the concept analysis.
This way, the analysis is more precise than when we use variables or records as inputs. The concept analysis is
used to find candidate classes in the legacy system. External knowledge of the system can be used to influence
the concepts that are calculated through ConceptRefinery, a tool we have implemented for this purpose.

All example analyses described are performed onMortgage, a relation administration subsystem of a large
mortgage software system currently in production at various banks. It is a 100.000 LOCCOBOL system and
uses VSAM files for storing data. TheMortgage system is described in more detail in [6, 9].

2. TYPE INFERENCE FORCOBOL
COBOL programs consist of aprocedure division, containing the executable statements, and adata division,
containing declarations for all variables used. An example containing typical variable declarations is given in
Figure 1. Line 6 contains a declaration of variableSTREET. Its physical layout is described aspictureX(18) ,
which means “a sequence of 18 characters” (characters are indicated by picture codeX). Line 18 declares the
numerical variableN100 with picture9(3) , which is a sequence of three digits (picture code9).

The variablePERSONin line 3 is a record variable. Its record structure is indicated by level numbers: the full
variable has level01, and the subfieldsINITIALS , NAME, andSTREET, are at level03. Line 12 declares the
arrayA00-POS: it is a single character (pictureX(01) ) occurring 40 times, i.e., an array of length 40.

When we want to reason about types of variables,COBOL variable declarations suffer from a number of
problems. First of all, it is not possible to separatetype definitionsfrom variable declarations. As a result,
whenever two variables have the same record structure, the complete record construction needs to be repeated.1

Such practices do not only increase the chance of inconsistencies, they also make it harder to understand the
program, since a maintainer has to check and compare all record fields in order to decide that two records
indeed have the same structure.

In addition, the absence of type definitions makes it difficult to group variables that are intended to represent
the same kind of entities. On the one hand, all such variables will share the same physical representation. on
the other hand, the converse does not hold: One cannot conclude that whenever two variables share the same
byte representation, they must represent the same kind of entity.

Besides these problems with typedefinitions, COBOL only has limited means to indicate the allowed set
of values for a variable (i.e., there are no ranges or enumeration types). Moreover,COBOL usessectionsor
paragraphsto represent procedures. Neither sections nor paragraphs can have formal parameters, forcing the
programmer to use global variables to simulate parameter passing.

To remedy these problems, we have proposed to infer types forCOBOL automatically, by analyzing their
usein the procedure division. In the remainder of this section, we summarize the essentials ofCOBOL type
inferencing: a more complete presentation is given in [8]. First, we describe theprimitive typesthat are
distinguished. This is followed by a description of thetype relationsthat can be derived from the statements
in a singleCOBOL program, and how this approach can be extended tosystem-level analysisleading to inter-
program dependencies. Finally, we show how the analysis can be extended to include types forliterals, discuss
the notion ofpollution, and conclude with an example.
Primitive Types The following three primitive types are distinguished: (1)elementary typessuch as numeric
values or strings; (2)arrays; and (3)records. Every declared variable gets assigned a unique primitive type.
Since variable names qualified with their complete record name must be unique in aCOBOL program, these
names can be used as labels within a type to ensure uniqueness. We qualify variable names with program

1In principle the COPY mechanism ofCOBOLfor file inclusion can be used to avoid code duplication here, but in practice there are
many cases in which this is not done.
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1 DATA DIVISION.
2 / variables containing business data.
3 01 PERSON.
4 03 INITIALS PIC X(05).
5 03 NAME PIC X(27).
6 03 STREET PIC X(18).
7 ...
8 / variables containing char array of length 40,
9 / as well as several counters.
10 01 TAB000.
11 03 A00-NAME-PART.
12 05 A00-POS PIC X(01) OCCURS 40.
13 03 A00-MAX PIC S9(03) COMP-3 VALUE 40.
14 03 A00-FILLED PIC S9(03) COMP-3 VALUE 0.
15 ...
16 / other counters declared elsewhere.
17 01 N000.
18 03 N100 PIC S9(03) COMP-3 VALUE 0.
19 03 N200 PIC S9(03) COMP-3 VALUE 0.
20
21 PROCEDURE DIVISION.
22 / procedure dealing with initials.
23 R210-INITIAL SECTION.
24 MOVE INITIALS TO A00-NAME-PART.
25 PERFORM R300-COMPOSE-NAME.
26
27 / procedure dealing with last names.
28 R230-NAME SECTION.
29 MOVE NAME TO A00-NAME-PART.
30 PERFORM R300-COMPOSE-NAME.
31
32 / procedure for computing a result based
33 / on the value of the A00-NAME-PART.
34 / Uses A00-FILLED, A00-MAX, and N100
35 / for array indexing.
36 R300-COMPOSE-NAME SECTION.
37 ...
38 PERFORM UNTIL N100 > A00-MAX
39 ...
40 IF A00-FILLED = N100
41 ...

Figure 1: Excerpt from one of theCOBOL programs analyzed (with some explanatory comments added).

or copybook names to obtain uniqueness at the system level. In the remainder we will useTA to denote the
primitive type of variableA.
Type Equivalence From expressionsthat occur in statements, anequivalence relationbetween primitive
types is inferred. We consider three cases: (1)relational expressions:such asv = u or v� u, result in an
equivalence betweenTv andTu; (2) arithmetic expressions:such asv+ u or v� u, result in an equivalence
betweenTv andTu; (3) array accesses:two different accesses to the same array, such asa[v] anda[u], result in
an equivalence betweenTv andTu.

When we speak of atype, we will generally mean anequivalence class of primitive types. For presentation
purposes, we will also give names to types based on the names of the variables part of the type. For example,
the type of a variable with the nameL100-DESCRIPTION will be calledDESCRIPTION-type.
Subtyping Fromassignment statements, a subtype relationbetween primitive types is inferred. Note that
the notion of assignment statements corresponds toCOBOL statements such asMOVE, COMPUTE, MULTIPLY,
etc. From an assignment of the formv := u we infer thatTu is asubtypeof Tv, i.e.,v can hold at least all the
valuesu can hold.
System-Level Analysis In addition to type relations that are inferred within individual programs, we also
infer type relations at the system-wide level: (1) Types of the actual parameters of a program call (listed in
theCOBOL USINGclause) are subtypes of the formal parameters (listed in theCOBOL LINKAGEsection). (2)
Variables read from or written to the same file or table have equivalent types.

To ensure that a variable that is declared in a copybook gets the same type in all programs that include
that copybook, we derive relations that denote the origins of primitive types and the import relation between
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programs and copybooks. These relations are then used to link types via copybooks.2

Literals An extension of our type inference algorithm involves the analysis of literals that occur in aCOBOL
program. When a literal valuel is assigned to a variablev, we infer that the valuel must be a permitted value
for the type ofv. Likewise, whenv andl are compared, valuel is considered to be a permitted value for the type
of v. Literal analysis infers for each type, a list of values that is permitted for that type. Moreover, if additional
analysis indicates that variables in this type are only assigned values from this set of literals, we can infer that
the type in question is anenumeration type.
Aggregate Structure Identification When the types of two records are related to each other, types for the
fields of those records should be propagated as well. In our first proposal [8], we adopted a rule calledsub-
structure completion, which infers such type relations for record fields whenever the two records are identical
(having the same number of fields, each of the same size). Since then, both Eidorffet al. [10] and Ramalingam
et al. [22] have published an algorithm to split aggregate structures in smaller “atoms”, such that types can be
propagated through record fields even if the records do not have the same structure.
Pollution The intuition behind type equivalence is that if the programmer would have used a typed language,
he or she would have chosen to give a single type to two differentCOBOLvariables whose types are inferred to
be equivalent. We speak oftype pollutionif an equivalence is inferred which is in conflict with this intuition.

Typical situations in which pollution occurs include the use of a single variable for different purposes in
disjunct program slices; simulation of a formal parameter using a global variable to which a range of different
variables are assigned; and the use of aPRINT-LINE string variable for collecting output from various variables.

The need to avoid pollution is the reason to introducesubtypingfor assignments, rather than just type equiv-
alences. In [9], we have described a range of experimental data showing the effectiveness of subtyping for
dealing with pollution.
Example Figure 1 contains aCOBOL fragment illustrating various aspects of type inferencing. It starts with
a data division containing the declaration of variables. The second part is a procedure division containing
statements from which type relations are inferred.

In line 40, variableA00-FILLED is compared toN100, which in line 38 is compared toA00-MAX. This
results in an equivalence class between the primitive types of these three variables. Observe that these three
variables are also declared with the same picture (in lines 13, 14, and 18).

In line 29, we infer from the assignment that the type ofNAMEis a subtypeof the type ofNAME-PART.
From line 24, we infer thatINITIALS is a subtype of ofNAME-PARTas well, thus makingNAME-PARTthe
common supertype of the other two. Here the three variables are declared with different pictures, namely
strings of different lengths. In fact,NAME-PARTis a global variable simulating a formal parameter for the
R300-COMPOSE-NAME(COBOL does not support the declaration of parameters for procedures). Subtyping
takes care that the different sorts of actual parameters used still have different types.

3. CONCEPTANALYSIS

Concept analysisis a mathematical technique that provides a way to identify groupings ofitemsthat have
commonfeatures[13]. It starts with acontext: a binary table (relation) indicating thefeaturesof a given set
of items. From that table, the analysis builds up so-calledconceptswhich are maximal sets of items sharing
certain features. The relations betweenall possible concepts in a binary relation can be given using a concise
lattice representation: theconcept lattice.

Recently, the use of concept analysis has been proposed as a technique for analyzing legacy systems [27].
One of the main applications in this context is deriving (and assessing) the modular structure of legacy soft-
ware [7, 16, 24, 29]. This is done by deriving a concept lattice from the code based on data usage by procedures
or programs. Thestructureof this lattice reveals a modularization that is (implicitly) available in the code.
In [7], we used concept analysis to find groups of record fields that are related in the application domain, and
compared it with cluster analysis.

In the remainder of this section we will explain concept analysis in more detail.

2Another (possibly more precise) approach would be to derive a common supertype for all versions that appear in different programs.
Our case studies, however, showed no need for such an approach.
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Itemsn Features P1 P2 P3 P4

NAME �

TITLE �

INITIAL �

PREFIX �

CITY � �

STREET � �

NUMBER �

NUMBER-EXT �

ZIPCD �

Table 1: The list of items and their features

items features
c0 zipcd number-ext number street city prefix initial title name
c1 zipcd number-ext number street city p4
c2 street p4 p3
c3 city p4 p2
c4 prefix initial title name p1
c5 p4 p3 p2 p1

Table 2: All concepts identified for Table 1.

3.1 Basic Notions
We start with a setM of items, a setF of features,3 and abinary relation(table)T � M �F indicating the
features possessed by each item. The three tuple(T;M ;F ) is called thecontextof the concept analysis. In
Table 1 the items are the field names, and the features are usage in a given program. We will use this table as
example context to explain the analysis.

For a set of itemsI �M , we can identify thecommon features, writtenσ(I), via:

σ(I) = f f 2 F j 8i 2 I : (i; f ) 2 Tg

For example,σ(fZIPCD;STREETg) = fP4g.
Likewise, we define forF � F the set ofcommon items, writtenτ(F), as:

τ(F) = fi 2M j 8 f 2 F : (i; f ) 2 Tg

For example,τ(fP3;P4g) = fSTREETg.
A conceptis a pair(I ;F) of items and features such thatF = σ(I) andI = τ(F). In other words, a concept

is a maximal collection of items sharing common features. In our example,

(fPREFIX; INITIAL ;TITLE ;NAMEg;fP1g)

is the concept of those items having featureP1, i.e., the fields used in programP1. All concepts that can be
identified from Table 1 are summarized in Table 2. The items of a concept are called itsextent, and the features
its intent.

The concepts of a given table are partially ordered via:

(I1;F1)� (I2;F2) , (I1 � I2 , F2� F1)

As an example, for the concepts shown in Table 2, we see that?= c5� c3� c1� c0=>.

3The literature generally usesobjectfor item, andattribute for feature. In order to avoid confusion with the objects and attributes from
object orientation we have changed these names into items and features.
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c0
features:
items:

c1
features: P4

items: ZIPCD
NUMBER-EXT

NUMBER

c4
features: P1

items: PREFIX
INITIAL
TITLE
NAME

c2
features: P3

items: STREET

c3
features: P2
items: CITY

c5
features:
items:

Figure 2: Lattice for the concepts of Table 2.

This partial order allows us to organize all concepts in aconcept lattice, with meet̂ andjoin _ defined as

(I1;F1)^ (I2;F2) = (I1\ I2;σ(I1\ I2)
(I1;F1)_ (I2;F2) = (τ(F1\F2);F1\F2)

The visualization of the concept lattice shows all concepts, as well as the relationships between them. For
our example, the lattice is shown in Figure 2.

In such visualizations, the nodes only show the “new” items and features per concept. More formally, a node
is labeled with an itemi if that node is thesmallestconcept withi in its extent, and it is labeled with a feature
f if it is the largestconcept withf in its intent.

For a thorough study of the foundations of concept analysis we refer the reader to [13].
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Figure 3: Types as items, program using type as feature

4. COMBINE TYPES AND CONCEPTS

In [7] concept analysis was used to find structure in a legacy system. The variables of aCOBOL system were
considered items, the programs features, and the “variable used in program” property as a relation. Table 1
is an example of such a relation, and Figure 2 show the corresponding lattice. This lattice can be seen as a
candidate object oriented design of the legacy system. The concepts are individual classes and related concepts
can be seen as subclasses or class associations.

The identification of variables in different programs was performed by comparing variable names, and vari-
able declarations. If two variables shared a particular substring they were considered equal. This works well
for systems that employ a coding standard which forces similar names for similar variables but fails horribly
for systems where variable names are less structured. In this paper this problem is solved by taking thetypes
(as described in Section 2) of these variables, and relating them to programs in various ways.

4.1 Data for Concept Analysis
Before describing the concept experiments performed, first the relations derived from the legacy source will
be explained. The four extracted relations arevarUsage, typeEquiv, transSubtypeOf and formalParam.
varUsage is the relation between a program and the variables that are used in that program.typeEquiv is
the relation between a type name (the name of a type equivalence class) and a variable that is of this type.
transSubtypeOf is the relation between a type and the transitive closure of all its supertypes, i.e. between two
types where the second is in the transitive closure of all the supertypes of the first.formalParam is the relation
between a program and the types of its formal parameters. An overview of these relations is given in Table 3.

In the remainder of this section the set of all programs, variables, and types in a system will be denotedP,
V, andT, respectively.

4.2 Experiments Performed
Type Usage The first experiment performed is exactly the experiment performed in [7], as described earlier.
The type usage per program is taken as the context relation, instead ofvariableusage. This results in a lattice
where the programs that use exactly the same set of types will end up in the same concept, programs that use

Relation name Name of relation element
varUsage program variable
typeEquiv type variable
transSubtypeOf sub super
formalParam program type

Table 3: Derived and inferred relations
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0
1 1.firstnm[] 1.telb-area 1.telb-nr 1.telp-area

1.telp-nr 1.contact-prs2 1.contact-prs1
1.sex 1.plbirth 1.cvlcd 1.openg

31c 31

2 10c
3 10
4 4.city-bank 4.pay 4.acctnr-bank 4.pay-type

4.paysoc-name 4.acctnr 1.city-bank
1.acctnr-bank 1.pay-type 1.paysoc-name
1.acctnr

5 4.mortseqnr 4.mortgnr 09 09c
6 1.variable[] 22
7 1.region[] 1.street[] 1.addr-type[] 1.zipcd[]

1.countrycd[] 1.house-ext[] 1.citycd[]
1.birthdt 1.type 1.count

8
9 1.mod-dat
10 4.relnr 1.p-relnr
11 1.city[] 1.house[] 89c 89
12 1.prefix 1.initl 1.titlcd 36c 36
13 1.fixed 1.name
14 1.startdt[] 12c
15

Figure 4: Concepts involving relevant programs

less types will end up in a concept below, and programs that use more types will end up in a concept above that
concept.

In order to arrive at the type usage concept lattice thevarUsage table is taken as a starting point. For each
variable, its type is selected fromtypeEquiv such that the result is a set of relationsf(p; t) 2 P�Tj(p;v) 2
varUsage;(t;v)2 typeEquivg. Then the types are considered items, and the programs features and the concept
analysis is performed. For the exampleMortgage system, the resulting concept lattice is shown in Figure 3.
The list of items and features is not shown for (obvious) lack of space.
Filtering This picture may not be as insightful as we might hope. A way to decrease the complexity of this
picture is by filtering out data before performing the concept analysis. A selection ofrelevantprograms from
all programs in aCOBOL system can be made as described in [6].COBOL systems typically contain a number
of programs that implement low-level utilities such as file I/O, error handling and memory management. These
programs can in general be left out of the analysis, particularly when we are only interested in the general
structure of the system.

Filtering out insignificant variables is also possible. Typically, certain records in aCOBOL system contain
all data that has to do with customers (and therefor is probably relevant) while other records may only be used
as temporary storage.

Suppose a list of relevant programs is selected and only the data that originated from a certain set of records is
deemed interesting. The first step, filtering out the uninteresting programs, is easy. All tuples fromvarUsage
that have an irrelevant program as their program element are simply ignored. SupposePrel with Prel � P is
the set of relevant programs which is derived in some way. Then all types that are related to the interesting
variables need to be determined. SupposeVrel with Vrel � V is the set of all relevant variables. From the
relationtypeEquiv all types that are related to a relevant variable are selected. IfTrel with Trel � T is the set
of all relevant types:ft 2 Tj(t;v) 2 typeEquiv;v2Vrelg Then the type equivalent variables that are used in the
selected relevant programs are selected:f(v; p) 2Vrel �Prelj(v0

; p) 2 varUsage;(t;v0) 2 typeEquiv; t 2 Trelg
The result of the experiments with filtered data are much more comprehensible than those without filtering,

basically because there are less concepts to try to understand. Figure 4 shows the concept lattice for the same
system as in Figure 3, but with irrelevant programs filtered out according to [6]. The relevant data are the fields
of the two records describing the persistent data in the system.
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The lattice in Figure 4 contains some unexpected combinations. Concept 7 for instance, contains items that
have to do with locations and addresses, but also a birth date. Close inspections reveals that this is not a case
of type pollution, but these variables are really used in both program 31(c) (from concept 1) and program 22
(from concept 6). A possible explanation could be that these programs send birthday cards.

It is important to have some way to validate these lattices externally, to perfect the filter set. For our example
system, one program implements a utility routine through which a lot of variables are passed, causing one type
to contain a remarkable large number of variables. When we filtered out that program, the resulting lattice was
much more intuitive.

Parameter Types Experiments have been performed on another concept analysis context; the context that has
programs as items and the types of their formal parameter as features. When concept analysis is performed on
this data set, all programs that share exactly the same set of parameter-types end up in the same concept. If two
programs share some parameter-types, but not all, the shared parameter types will end up in the same concept.
These will then form an excellent basis for developing an object oriented view on the system, as the shared
types can be seen as the attributes of a class sharing programs as methods.

In its simplest version the items and features for these concepts are computed by just takingformalParam
and ignoring the subtype relationship.

As was described in Section 2, the relation between actual parameter types and formal parameter types is
inferred as a subtype relation. If the subtype relationship is ignored, then variables can only be identified as
having the same type in different programs, when they are “passed” through a copybook. That is, if a variable
is included in two different programs from the same copybook, it is considered type equivalent in the two
programs. Obviously, this is not the intuition we have when looking at formal parameters, where we would
like to know how the types used in the calling program propagate to the called program. Therefor, subtypingis
considered as type equivalence when looking at parameter types.

The context for parameter type usage per program while considering supertypes as equivalent is derived
as follows:f(p;v) 2 P�Vj(p; t) 2 formalParam;(((t 0

; t) 2 transSubtypeOf^ (t 0
;v) 2 typeEquiv)_ (t;v) 2

typeEquiv)g.
As described in the previous section, data may be filtered on either relevant programs or relevant data ele-

ments. In that case the context is arrived at as follows:f(p;v) 2 Prel �Vrelj(p; t1) 2 formalParam, (((t 0
; t) 2

transSubtypeOf ^(t 0
;v) 2 typeEquiv)_ (t;v) 2 typeEquiv)g for some externally determined value ofPrel

andVrel.
An example of a concept lattice showing program as items and the types they use as formal parameters

as features (when supertypes are considered type equivalent) filtered for the same set of relevant variables as
Figure 4 is shown in Figure 5.

In this lattice, concept 3 is remarkable, because it contains by far the most programs. This turns out to be
caused by the fact that these programs all use “record” as input parameter. Inspection of the source reveals that
“record” is a rather large record, and that only some fields of this record are actually used in the programs. It is
subject of future work to look at these types of parameters in more detail.

5. REFINEMENT OFCONCEPTS

When concept analysis is used for analyzing software systems, there will be a point where a user might want
to modify an automatically derived concept lattice. For example, consider the applications of concept analysis
to remodularization of legacy systems. A maintainer that performs such a task is likely to have knowledge of
the system that is being analyzed. Based on that knowledge, he or she might have certain ideas to improve the
modularization indicated by the derived lattice by combining or ignoring certain parts of that lattice.

To facilitate the validation of such ideas, we have developed ConceptRefinery, a tool which allows one to
manipulate parts of a concept lattice while maintaining its consistency. ConceptRefinery defines a set of generic
structure modifying operations on concept lattices, so its use is not only restricted to the application domain
of remodularization or reverse engineering. Figure 6 shows the application of ConceptRefinery on the data of
Table 1.
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Figure 5: Programs as items, parameters as features

5.1 Operations on concept lattices
We allow three kinds of operations on concept lattices. The first is to combine certain items or certain features.
When we consider the context of the concept analysis, these operations amount to combining certain rows or
columns in the table and recomputing the lattice.

The second operation is to ignore certain items or features. When we consider the analysis context, these
operations amount to removing certain rows or columns and recomputing the lattice.

The third operation is combining two concepts. This operation has the following rationale: when we consider
concepts as class candidates for an object-oriented (re-)design of a system, the standard concept lattice gives
us classes where all methods in a class operate on all data in that class. This is a situation that rarely occurs in
a real world OO-design and would result a large number of small classes that have a lot of dependencies with
other classes. The combination of two concepts allows us to escape from this situation.

On the table underlying the lattice the combination of two concepts can be computed by adding all features
of the first concept to the items of the second and vice versa.

5.2 Relation with source
When a concept lattice that was previously derived from a legacy system is manipulated, the relation between
that lattice and the code will be weakened:

� Whenever features, items or concepts are combined, the resulting lattice will represent an abstraction of
the source system.

� Whenever features or items are ignored, the resulting lattice will represent a part of the source system.
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Figure 6: Screendump of ConceptRefinery.

The choice to allow such a weakening of this relation is motivated by the fact that we would rather be able
to understand only part of a system than not being able to understand the complete system at all. However, in
order for ConceptRefinery to be useful in a real-world maintenance situation, we have to take special care to
allow a maintainer to relate the resulting lattice with the one derived directly from the legacy code. This is done
by maintaining a concise log of modifications.

6. IMPLEMENTATION

We have developed a prototype toolset to perform concept analysis experiments. An overview of this toolset
is shown in Figure 7. The toolset separates source code analysis, computation and presentation. Such a three
phase approach makes it easier to adapt to different source languages, to insert specific filters, or to use other
ways of presenting the concepts found [6, 8].

In the first phase, a collection offacts is derived from theCOBOL sources. For that purpose, we use a
parser generated from theCOBOLgrammar discussed in [2]. The parser produces abstract syntax trees that are
processed using a Java package which implements the visitor design pattern. The fact extractor is a refinement
of this visitor which emits facts at every node of interest (for example, assignments, relational expressions,
etc.).

From these facts, we infer types for the variables that are used in theCOBOL system. This step uses the
COBOLtype inferencing tools presented in [9]. The derived and inferred facts are stored in a MySQL relational
database [31].
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Figure 7: Overview of the toolset.

In the next phase, a selection of the derived types and facts is made. Such a selection is an SQL queries
that results in a table describing items and their features. A number of interesting selections were described in
Section 4. The results of these selections are stored in a repository. Currently, this is just a file on disk.

In the final phase, the contents of the repository are fed into a concept analysis tool, yielding a concept
lattice. We make use of the concept analysis tool that was developed by C. Lindig from the University of
Braunschweig.4 The concept lattice can be visualized using a tool that converts it to input for dot [12], a
system for visualizing graphs. The lattices in Figures 2, 5, 3 and 4 were produced this way.

Furthermore, the lattice can be manipulated using ConceptRefinery. This tool allows a user to select items,
features or concepts and perform operations on that selection. These operations result in updates of the reposi-
tory. We distinguish the following manipulations and describe the actions that are carried out on the repository:
(1) combining items or featuresis done by merging corresponding columns or rows in the repository; (2)ig-
noring items or featuresis done by removing corresponding columns or rows in the repository; (3)combining
conceptsis done by adding all features of the first concept to the items of the second and vice versa. The user
interface of ConceptRefinery is shown in Figure 6. On the left hand side a visualization of the concept lattice
is given. The items, features or concepts that need to be modified can be selected in this lattice. The right hand
side shows all available operations. ConceptRefinery is implemented in Tcl/Tk [21] and Tcldot: an extension
for Tcl/Tk that incorporates the directed graph facilities of dot into Tcl/Tk and provides a set of commands to
control those facilities.

7. RELATED WORK

Several methods have been described for modularizing legacy systems. A typical approach is to identify proce-
dures and global variables in the legacy, and to group these together based on attributes such as use of the same
global variable, having the same input parameter types, returning the same output type, etc. [3, 17, 20, 23]. A
unifying framework discussing suchsubsystem classification techniquesis provided by Lakhotia [15].

Many of these approaches rely on features such as scope rules, return types, and parameter passing, available
in languages like Pascal, C, or Fortran. Many data-intensive business programs, however, are written in lan-
guages likeCOBOL that do not have these features. As a consequence, these class extraction approaches have

4The tool “concepts ” is available fromhttp://www.cs.tu-bs.de/softech/people/lindig/ .
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not been applied successfully toCOBOL systems [5]. Other class extraction techniques have been developed
specifically with languages likeCOBOL in mind. They take specific characteristics into account, such as the
structure of data definitions, or the close connection with databases [5, 11, 19]. The interested reader is referred
to [7] for more related work on object identification.

Concept analysishas been proposed as a technique for analyzing legacy systems. Snelting [27, 28] provides
an overview of various applications. Applications in this context include reengineering of software configura-
tions [26], deriving and assessing the modular structure of legacy software [16, 24], object identification [7],
and reengineering class hierarchies [29].

The extract-query-view approach adopted in our implementation is also used by several other program un-
derstanding and architecture extraction tools, such as Ciao [4], Rigi [30], PBS [25], and Dali [14].

New in our work is the addition of the combination of concept analysis and type inferencing to the suite of
analysis techniques used by such tools. Our own work on type inferencing started with [8], where we present
the basic theory forCOBOL type inferencing, and propose the use of subtyping to deal with pollution. In [9],
we covered the implementation using Tarski relational algebra, as well as an assessment of the benefits of
subtyping for dealing with pollution. Type-based analysis ofCOBOL, for the purpose of year 2000 analysis, is
presented by [10, 22]: both provide a type inference algorithm that splits aggregate structures into smaller units
based on assignments between records that cross field boundaries. The interested reader is referred to [8, 9] for
more pointers to related work on type inferencing.

8. CONCLUDING REMARKS

In this paper we have shown that the combination of facts derived from legacy source code, together with types
inferenced from those facts, forms a solid base for performing concept analysis to discover structure in legacy
systems. This extends and combines our previous work on type inferencing for legacy systems and object
identification using concept analysis. We implemented a prototype toolset for performing experiments. From
these experiments, we can conclude that the combination of type inference and concept analysis provides more
precise results than our previous concept analyses which did not involve types.

The combinations discussed in this paper are the following concept analysis contexts:

1. type usage per program

2. types of parameters per program

The latter analysis appears to be particularly suitable as a starting point for an object oriented redesign of a
legacy system.

When performing concept analysis to gain understanding of a legacy system, it proves very helpful if the
reengineer is able to manipulate the calculated concepts to match them with his knowledge of the system, or to
remove parts he know to be irrelevant. We have implemented ConceptRefinery, a tool that allows a software
engineer to consistently perform this kind of modifications while maintaining a relation with both the original
calculated concepts, and the legacy source code.

8.1 Future work
We would like to extend ConceptRefinery to propose a grouping of concepts to the human engineer to consider
when refining the lattice. To this end, we will to experiment with applying cluster analysis algorithms to the
concept lattice.

We have discussed two particular concept analysis contexts in this paper. We would like to see whether we
could use the results of one of these concept analyses to improve the results of the other. I.e. to take the concept
found by looking at the parameter types of programs and somehow use those to mark relevant and irrelevant
concepts from the variable usage analysis.
Acknowledgments The many pleasant discussions we had about this paper with Arie van Deursen are greatly
appreciated. We thank Joost Visser for his comments on earlier drafts of this paper.
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