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Abstract—Misbehavior detection is a challenging problem that
needs to be addressed in vehicular communications. Misbe-
havior detection consists of monitoring the semantic of the
exchanged messages to identify potential misbehaving entities.
This is achieved by performing plausibility and consistency
checks on exchanged beacon and warning messages. However,
existing misbehavior detection solutions ignore the mandatory
information on data inaccuracy, being gathered by the vehic-
ular sensors. In this paper, we propose CaTch, an embedded
misbehavior detection solution that integrates data inaccuracy
when performing plausibility and consistency checks. Through
extensive simulations, we show that CaTch is able to attribute
an accurate uncertainty factor to misbehaving nodes and that it
performs better than the state-of-the-art solutions.

Index Terms—C-ITS, misbehavior detection, tolerant checks

I. INTRODUCTION

Vehicular communications have a great potential in improv-
ing road safety and enabling autonomous driving. Vehicles
exchange messages with critical information (speed, position,
steering, etc.) to establish cooperative awareness. At the stan-
dardization level, many efforts have been carried out. For in-
stance, the European Telecommunications Standards Institute
(ETSI) and the Institute of Electrical and Electronics Engineers
(IEEE) both published a set of standards that defines vehicular
communication protocols and safety messages format [1].

The exchange of vehicular messages brings to light a num-
ber of challenges. The research community is now focusing on
open problems such as network performances [2], privacy [3]
and misbehavior detection [4]. The latter is the focus of this
paper. Misbehavior detection systems in Cooperative Intelli-
gent Transport Systems (C–ITS) monitors the semantic of the
exchanged data to identify internal misbehaving nodes. The
system then issues the correct reaction in order to prevent the
vehicular network from deviating from its expected function-
ality.

A current misbehavior detection system contains a local
component embedded in each vehicle and a global Misbe-
havior Authority (MA) located in the cloud. The embedded
system’s role is to check for implausibilities in the received
data then send a report to the global entity. The MA would
collect and analyze the reports then issue the correct reaction
to protect the system.

In this paper we focus on the embedded component. We
differentiate the process of checking data plausibility and

the local decision making process. In this model the local
misbehavior detection application decides whether or not to
report the detected node, based on the output of the plausibility
checks.

The standard ETSI Cooperative Awareness Message (CAM)
[5] and IEEE Basic Safety Message (BSM) [6] messages
integrate a field called confidence range for each mobility
parameter. This field is included based on the fact that sensor
measurements could be inaccurate due to physical limitations
or environmental characteristics. However, to the best of our
knowledge, so far this information is not taken into consider-
ation during the misbehavior detection checks computation.

In this paper, we present CaTch (Confidence range Toler-
ant misbehavior detection approach), a misbehavior detection
library which takes into consideration the confidence range.
Then we show through extensive simulations, that taking into
consideration sensors inaccuracy during the checks computa-
tion increases the detection quality of the system.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. In section III, we detail our
approach in assessing the uncertainty factor while performing
the misbehavior basic checks. Section V details the perfor-
mance evaluation results. Finally, section VI concludes the
paper and gives some future insights.

II. RELATED WORK

Several works in the literature rely on plausibility and
consistency verification of mobility data to detect misbehaving
vehicles. Plausibility tests consist of verifying if the received
data are consistent with a predefined rule or model. Whereas
consistency tests are based on comparing actual received data
with previously received ones.

[7] is a recent work which provides data set used to
evaluate the performance of several data-centric misbehavior
detection mechanisms. These detection mechanisms check the
plausibility and consistency of several parameters such as the
transmitter radio range, the traveled distance between two
transmitted beacons, its potential position conflict with the
geographical map and its sudden appearance within the radio
range of the vehicle. Based on their results, they recommend
to combine these checks to increase the effectiveness of the
misbehavior detection.



The author of [8], propose VEBAS, a misbehavior detection
framework which combines the already cited verification using
a weighting value. The framework analyses then the neighbor
behavior locally and establish a specific reputation rate of its
neighbors.

[9] proposes a cooperative misbehavior approach which
suggests the use of an enhanced Acceptance Range Threshold
where the acceptance range is similar to a Gaussian curve
instead of a fixed threshold. Moreover, it uses the proactive
exchange of neighbor tables which relies on broadcasting
the neighbor list in the beacons in addition to the vehicles’
positions. The vehicle then use subjective logic to check the
consistency of the neighbor’s with the position reported by
other neighbors.

In this work, we were mainly inspired by local data-centric
checks that we explored in our previous work [4]. These local
plausibility checks are also considered as necessary checks
on all incoming messages by the National Highway Traffic
Safety Administration (NHTSA) and thus been included in the
Federal Motor Vehicle Safety Standards for V2V Communica-
tions [10]. In addition to the misbehavior detection checks, we
propose the use of additional relevant verification based on the
mobility information received from the beacons. However, the
above mentioned misbehavior checks ignore the mandatory
included sensor data errors, focusing only on the absolute
value of the transmitted information. For instance, according
to the experiments of [11], GPS positioning error is estimated
to 5 meters when used in communications between vehicles
and road users. Integrating the positioning error information
in the beacon messages is required to increase the accuracy
of the ITS safety applications. In this work, we tackle misbe-
havior due to the transmission of false mobility information
in the beacons. Existing misbehavior detection mechanisms
would not distinguish between intentional and non-intentional
transmission of erroneous mobility information. We believe
that utilizing the mandatory transmitted uncertainty informa-
tion in the plausibility calculation would have a significant
impact on the output results of existing misbehavior detection
mechanisms.

III. IMPACT OF MOBILITY DATA UNCERTAINTY ON
MISBEHAVIOR DETECTION

A. The local misbehavior detectors

In this work, we consider plausibility and consistency ver-
ification of the content of the received beacon message. Note
that a plausibility check requires only one received message
whereas a consistency check requires two successive messages
coming from the same source.

For instance, when performing a plausibility check on the
radio transmission range, a vehicle would judge that a neighbor
which sends a position that is not in its communication range
is suspicious. A typical example of consistency checks is when
a vehicle receives two beacons from its neighbor at different
times indicating speed information which are conflicting with
the travelled distance information.

A complete set of plausibility detectors for CAM is detailed
in [12]. However in this paper we only consider the following
checks:

• Range plausibility: Check if the position of the sending
Intelligent Transport Systems (ITS) Station (ITS–S) is
outside of the ego ITS–S maximum range (predefined
value mapped on the ego ITS–S maximum radio cover-
age).

• Position plausibility: Check if the position of the sending
ITS–S is in a coherent place (e.g. it is on a road, it does
not overlaps physical obstacles, etc.).

• Speed plausibility: Check if the speed advertised by the
sending ITS–S is less than a predefined threshold.

• Position consistency: Check if two consecutive Beacons
coming from a same ITS–S have plausible separating
distance.

• Speed consistency: Check if two consecutive Beacons
coming from a same ITS–S have plausible acceleration
or deceleration.

• Position speed consistency: Check if two consecutive
Beacons coming from a same ITS–S have consistent
speed and separating distance.

• Position heading consistency: Check if the positions in
two consecutives Beacons coming from a same ITS–S
corresponds to the travel heading advertised by that ITS–
S.

• Intersection check: Check if two Beacons coming from
two different ITS–S have overlapping locations (i.e. both
ITS–S overlap each others).

• Sudden appearance: Check if an ITS–S suddenly ap-
peared within a certain range. Note that we do not
consider such ITS–S as misbehaving when this check is
the only one that failed.

B. Misbehavior Detection Uncertainty Assessment

In this work, we propose a novel solution, CaTch, which
takes into consideration the mobility information uncertainty
while performing the basic misbehavior checks. In the follow-
ing sections, we detail how we integrate the confidence range
of the beacon message contents in the basic checks calculation.

For each plausibility and consistency test, we compare
our calculation (CaTch version) with the state-of-the-art one
(legacy version). We calculate the uncertainty factor f for each
of the misbehavior checks. The uncertainty factor f is a real
number between 0 and 1, with 0 being certainly malicious and
1 having no signs of misbehavior. We assign a value of f to
the nodes that are partially implausible.

Notice that the confidence range is illustrated by green for
the plausible section and red for the implausible one. We use
the following common notations as depicted in Table I.

1) Range Plausibility Check: We assume that the commu-
nication range is based on a disk model. The initial method
to detect an out of transmission range node is done by simply
checking if the distance between the sender and the receiver
is less than the maximum plausible range as illustrated in
figure 1a. In our approach, we take into consideration the



TABLE I: Common Notations

Rx , Position confidence range in beacon x
Vx , Claimed speed in beacon x
Cx , Speed confidence range in beacon x
Dx , Claimed heading in beacon x
∆tij , Time separating beacons i and j
dij , Distance separating beacons i and j
Ax = πR2

x

(a) Legacy Version (b) CaTCh Version

Fig. 1: Range Plausibility Check

confidence range of the sender’s position broadcasted in the
beacon Rs and the confidence range assessed internally by the
receiver Rr. We calculate first the position confidence range
area of the sender and the receiver, respectively As and Ar. We
consider Tmax as the maximum diameter in which the sender
and the receiver could communicate. Tmax coincides with the
transmission range of the sender and the receiver. Accordingly,
ATmax , is the area of the circle formed by Tmax. Notice that
any node which is within ATmax could communicate with
both the sender and the receiver. Second, we calculate the
intersection area as and ar for the sender and the receiver
respectively with ATmax

(the green shaded zone as illustrated
in figure 1b). Finally, we compute the uncertainty factor of
this check as follows:

Tmax , Communication Diameter

ATmax =
πT2

max
4

ar = ATmax ∩Ar
as = ATmax ∩As

f = (ar + as)/(Ar +As) (1)

(a) Legacy Version (b) CaTch Version

Fig. 2: Position Plausibility Check

2) Position Plausibility Check: The position plausibility is
determined using a straightforward check between the claimed

position and the geographic map of the environment. For
instance, in figure 2a, Carb broadcasts a position that is
overlapping with a building. This makes its position definitely
non-plausible. In CaTch , the position plausibility is calculated
for multiple points that are within the position confidence
ranges, Ra and Rb of Cara and Carb respectively, as depicted
in figure 2b. Every segment is separated by an angle α and
every point is separated by a distance x. These points are
plotted on multiple segments along the radius of the confidence
range. The green points in the figure are the possible plausible
positions for both Cara and Carb and the red points are the
non plausible ones. Let n be the number of green points in the
figure and let N be the total number of the considered points.

The uncertainty factor of this check is computed as follows:

n , Plausible Tested Points
N , All Tested Points

f = n/N (2)

Note that if a vehicle is positioned outside of a road and
its advertised velocity is zero, the check does not fail (i,e., we
consider the car as parked). However, if the advertised velocity
is different from zero, the test fails.

(a) Legacy Version (b) CaTCh Version

Fig. 3: Speed Plausibility Check

3) Speed Plausibility Check: The speed plausibility is ob-
tained by comparing the claimed speed V0 with the maximum
predefined speed Vmax as shown in figure 3a. To integrate the
speed confidence range C0 into the calculation, the CaTch ver-
sion checks for the plausible partition of the claimed speed
confidence range compared to the maximum speed (fig 3b).
The uncertainty factor f of this check is computed as follows:

Vmax , Max Plausible Speed

f =
(Vmax − V0 + C0)

2C0
(3)

4) Position Consistency Check: The position consistency
is computed by comparing the distance between two consec-
utive broadcasted positions d01 with the maximum plausible
Euclidean distance dmax calculated taking into account the
time of the reception of the 1st beacon and the time of the
reception of the 2nd beacon on the road as illustrated in figure
4a. The maximum plausible distance is computed based on
the position, speed and heading information received in the
beacon0 message. CaTch integrates the position confidence
range of two successive received beacons, respectively R0 and
R1 by calculating the position consistency similarly to the



(a) Legacy Version (b) CaTch Version

Fig. 4: Position Consistency Check

range plausibility check. CaTch uses the intersection between
the area Admax

whose diameter is the maximum possible
distance dmax (figure 4b) and the areas A0 and A1 which
are respectively the areas of the of the position confidence
of the 1st received beacon and the 2st received beacon. The
uncertainty factor f of this check is computed as follows:

dmax , Maximum plausible distance
Admax , Area of the maximum plausible distance
an = dmax ∩Rn

f = (a0 + a1)/(A0 +A1) (4)

(a) Legacy Version (b) CaTch Version

Fig. 5: Speed Consistency Check

5) Speed Consistency Check: The speed consistency is
obtained by checking if the speeds V0 and V1 from two
consecutive beacons are consistent with the maximum pos-
sible acceleration or deceleration, as illustrated in figure 5a.
Instead of a direct comparison, CaTch takes into account the
confidence range C0 and C1 of the speeds of the consecutive
beacons as illustrated in figure 5b. The uncertainty factor f
is calculated as the overlap of the maximum speed Vmax and
the minimum speed Vmin with the broadcasted speeds ranges.
The uncertainty factor if thus calculated as follows:

Vmin , Minimum plausible speed when the vehicle decelerates
Vmax , Maximum plausible speed when the vehicle accelerates

fmax = Vmax−V1+C0

4C0
+ Vmax−V1+C1

4C1

fmin = V1−Vmin+C0

4C0
+ V1−Vmin+C1

4C1

f =

{
fmin, when V1 ≤ V0
fmax, when V1 > V0

}
(5)

(a) Legacy Version (b) CaTch Version

Fig. 6: Position Speed Consistency Check

6) Position Speed Consistency Check: The time and dis-
tance separating two beacons result in a theoretical speed
Vth (computed by considering the Euclidean distance). The
claimed speed is consistent with the distance separating two
beacons if it falls within a range denoted here as Tr+ and Tr−
around this theoretical speed as depicted in figure 6a. This
check becomes tricky if we consider the confidence ranges on
both the position and the speed. To this end, we calculate a new
theoretical range Gx formed with a combination of the speed
and the position confidence. Next we find the maximum and
minimum between the speed of the first and the second beacon.
We then check the plausibility of the claimed speed and the
tolerance range with respect of this theoretical confidence
range (fig 6b). The calculation of the uncertainty factor is as
follows:

Vth , Theoretical speed based on separating distance
Vmin , Minimum advertised speed between 1st & 2nd beacon
Vmax , Maximum advertised speed between 1st & 2nd beacon
Tr+ , Tolerance range on excess speed
Tr− , Tolerance range on dearth speed
∆t , Time separating first & second beacon
Gmin0 = Cmin +R0/∆t
Gmin1 = Cmin +R1/∆t
Gmax0 = Cmax +R0/∆t
Gmax1 = Cmax +R1/∆t
lbmin = Vth/2− Vmin/2− Tt−
lbmax = −Vth/2 + Vmax/2− Tt+

fmin =
2
∫ Gmin0
lbmin

√
G2

min0−x2dx+2
∫ −lbmin
−Gmin1

√
G2

min1−x2dx

A0+A1

fmax =
2
∫ Gmax1
lbmax

√
G2

max1−x2dx+2
∫ −lbmax
−Gmax0

√
G2

max0−x2dx

A0+A1

f =

{
fmin, when fmin > fmax
fmax, when fmin ≤ fmax

}
(6)

7) Position Heading Consistency Check: To check the
consistency of the heading, we calculate the angle between the
advertised heading vector ~D0 and the real heading in the next
position. This angle should be less than a predefined threshold.
We set this threshold to π/2 assuming that this is a universal
limit, non-dependent on vehicle specific characteristics (figure
7a). R0 and R1 are respectively the position confidence range
of the 1st and 2nd beacon. The confidence range however
could heavily affect this angle. CaTch calculates the plausible



(a) Legacy Version (b) CaTch Version

Fig. 7: Position Heading Consistency Check

portions of the confidence range on both the 1st and 2nd

beacon (the shaded green area in figure 7b). A position of
a beacon is considered plausible if it forms an angle less than
π/2 with the center of the other beacon. Thus, the calculation
of the uncertainty factor goes as follows:

~D01 , Vector formed by the centers of the 1st & 2nd beacons
α , Angle between ~D0 & ~D01

f =
2
∫ R0

d01 cosα

√
R2

0 − x2dx+ 2
∫ −d01 cosα

−R1

√
R2

1 − x2dx
A0 +A1

(7)

(a) Legacy Version (b) CaTch Version

Fig. 8: Intersection Check

8) Intersection Check: The usual intersection check, mod-
els each vehicle as a rectangle. It uses the broadcasted length
and width of the vehicle in the beacons as illustrated in
figure 8a. CaTch models each vehicle as an ellipse with an
increased width and length according to the confidence range
of the position (fig 8b). To calculate the uncertainty factor, first
the intersection area between the two ellipses is calculated
(fig 8b). However this factor alone is not enough since the
severity of the intersection depends greatly on the location it
occurred and the rotation of the affected vehicles. For example,
an intersection on the peripherals is less important than an
intersection on the center even for the same intersection area
factor. This phenomenon is numerically added to the equation
using an importance factor as calculated below:

fa = Aeab/(Aea +Aeb −Aeab)

fi = olab/(Ia + Ib − olab)

f = fafi (8)

Ln , Carn length
Wn , Carn width
Aen = π(Rn + Ln)(Rn +Wn)

En , x2

(Rn+Ln)2
+ y2

(Rn+Wn)2
= 0

Aeab = Ea ∩ Eb
dab , Distance between the centers of Cara & Carb
~Dab , Vector formed by the centers of Cara & Carb
αa , Angle between ~Dab & ~Da
αb , Angle between ~Dab & ~Db
Ia = (Ra + La) sinαa + (Ra +Wa) cosαa
Ib = (Rb + Lb) sinαb + (Rb +Wb) cosαb
olab = max(0,min(Ia/2, Iab + Ib/2)−max(Ia, Iab − Ib/2))

(a) Legacy Version (b) CaTch Version

Fig. 9: Sudden Appearance Check

9) Sudden Appearance Check: The sudden appearance flag
is triggered when a vehicle appears inside a minimum range
Tmin. Accordingly, ATmin

, is the area of the circle formed by
Tmin. The idea is that a new vehicle detected in this range
Tmin is not entering the edge of our reception range and
is thus suddenly appearing. In order to integrate the error
range, CaTch uses the inverse of the method used for the
range plausibility (see III-B1). The system finds the impossible
positions by calculating the intersection of ATmin

with the
confidence range of each vehicle. Therefore, the plausibility
factor is calculated as follows:

Tmin , Minimum acceptable range for sudden appearance

ATmin
=

πT2
min
4

ar = ATmin
∩Rr

as = ATmin
∩Rs

f = (Rr +Rs − ar − as)/(Rr +Rs) (9)

IV. MISBEHAVIOR DETECTION APPLICATIONS

CaTch generates results that are contentious instead of
binary, thus contains more information. Providing more infor-
mation should translate into at least similar or better detection
results, depending on the detection application.

1) Detection Applications: In order to evaluate the impact
of CaTch results, we run two local misbehavior detection
applications:

• Simple App This application consists of a simple thresh-
old. Using this application, all messages with uncertainty
factor f less than 0.5 for any detector are reported. This
application does not take advantage of the additional
information provided by CaTch and theoretically both
versions of the detectors should perform similarly.



• Advanced App This application is based on Machine
Learning (ML). Using data from the simulation output,
we trained a neural network based on Multilayer Per-
ceptrons (MLPs). The output values of the detectors are
placed in an array and used as the MLPs features. The
training is done for both versions of the detectors (i.e.,
with and without CaTch ), then tested using new simu-
lation data. Theoretically this application should perform
better as it uses the additional information provided by
CaTch.

Fig. 10: Example illustrating an advantage of using CaTch

To illustrate how CaTch impacts misbehavior detection, we
present the simple example depicted in figure 10.

A beacon message is received. Both detectors check the
beacon data (in this example, an arbitrary value of 6 checks is
used). The legacy detector outputs binary values only. Here,
all 6 checks output the value ’1’. CaTch detector outputs real
values between 0 and 1 (uncertainty factor f ). For checks 1,
3 and 5, CaTch outputs the value ’1’ like the legacy detector.
However for the remaining checks, CaTch does not attribute
categorical values (i,e., 0 or 1) as the legacy one and rather,
provides floating values.

The detection applications then use these results to decide
whether or not a misbehavior report has to be sent. In this
example, as the legacy detector generate only ’1’ values for
each check, none of the detection applications trigger the
emission of a misbehavior report (remember that the value
’1’ means the check passed whereas the value ’0’ means
the check failed). However, using the CaTch results, the
advanced application triggers a misbehavior report whereas the
simple application does not as no CaTch checks are below the
threshold value of 0.5.

V. EVALUATION

In this section, we show the impact of the measurements
uncertainty on the detection results. We evaluate the perfor-

mance of the legacy basic checks and we compare them with
CaTch using multiple detection applications.

A. Experimental Setup

The detectors in the legacy and CaTch versions are imple-
mented as a VEINS extension. VEINS [13] is an open source
framework for vehicular network simulations. VEINS is based
on OMNeT++ and SUMO, a network simulator and road traf-
fic simulator respectively. As the network, we used a 2.68km2

area of Paris-Saclay. A network that combines a suburban-
like grid and some organic network properties. The vehicles
input flow has been carefully controlled to have 21vehicles
at any moment which would result in an approximate density
of 7.83V ehicle/km2. The vehicles send and receive beacon
messages with all previously treated information. Every time a
vehicle receives a beacon message, all the plausibility detectors
are computed and the results are passed to the detection
application. For further technical details, the source code of the
our VEINS extension along with all the configuration details
of the simulated scenario are published on github [14].

1) Considered Attacks: To induce misbehavior, we tested
two types of behaviors:

• The Constant Offset: in which the misbehaving node
emits its sensor location with a fixed offset of 50m on
the X and Y axis.

• The Sybil Attack in which a attacker generates and
transmits a virtual grid of vehicles using the plausible
data of an existing vehicle in the network. The attacker
generates an identity and manages a correct transmission
frequency for each ghost vehicle.

The Constant Offset is a type of misbehavior often used in this
field [7] [9], it is more a simulation of a faulty device than
an attack. As for the Sybil Attack it is a more complicated
type of misbehavior that could cause more disruption to the
system. The attacker density was set to 0.1 . The attacks
implementation is open source and could be found on github
[14].

Furthermore, given the nature of the simulator we did not
have measurements errors out of the box. In order to simulate
measurements uncertainty, we shifted the simulated location
by a random value. The the Global Positioning System (GPS)
error and is extracted from normal distribution probability
density function with a mean µ = 0 and variance σ = 1,
which is a plausible assumption for location errors [15].

All the vehicles introduced in the simulation are running
all of the detectors in both the legacy and the CaTch version.
Every time a vehicle received a message it is checked for
implausibilities. The results of the plausibility checks are
then analyzed by a local misbehavior detection application to
determine whether or not to report the subject node.

2) Evaluation metrics: The detection application decide
whether or not to report a received message. The output of
the detection is arranged according to the classic partition
described in Table II.

Using this partition we can calculate, similarly to other
studies [7] [16], the following performance metrics:



TABLE II: TP, TN, FP and FN definition

Genuine Misbehaving
Reported FP TP

Not Reported TN FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + FP + TN + FN

F1Score = 2×
Recall × Precision
Recall + Precision

BM =
TP

TP + FN
+

TN

TN + FP
− 1

MCC =
TP + FP√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Intuitively, the Recall characterizes the system ability to
flag all the misbehaving messages, Whereas the Precision
characterizes the system ability to not consider misbehaving
as genuine messages. The F1score is the harmonic mean
of Recall and Precision. It could be used as a single
measure to evaluate the system’s performance, given that the
same importance is applied to both factors, the Recall and
the Precision. However, more often than not, both factors
are not given the same weight, especially with detection
mechanisms where Recall is weighed more than Precision.
The Accuracy is the ratio of the true classified messages over
all the classified messages. Unlike the F1score, the Accuracy
takes into account the FNs. The Bookmaker Informedness
(BM) characterizes the probability of an informed decision. Its
score represents how much the system is better than a random
guess. The Matthews Correlation Coefficient (MCC) is
also a measure of the quality of a binary classification system,
however it is especially useful when the measured classes are
of very different sizes which is true in our case. This makes
it arguably the most suitable metric for our evaluation.

B. Results

Table III shows the results of the previously described
simulated scenarios. The scenarios consist of detecting both
the Position Offset faulty behavior and the Sybil attack using
the simple threshold app and the more advanced Machine
Learning app. We run both versions of the detectors simul-
taneously within each scenario to avoid distorting the results
due to randomness. We kept the simulations running until the
point of heuristic equilibrium, where the cumulative evaluation
metrics stabilized.

The first observation we make is that the detection results
depend greatly on the type of misbehavior. The detection
results of the Constant Offset scenario are better than that
of the Sybil Attack. Therefore in our scenarios, Sybil Attack
is much harder to detect than the Constant Offset. This is an

TABLE III: Simulation Results

Scenario Evaluation MetricsApp Detectors

T
hr

es
ho

ld

Recall Precision Accuracy
Legacy 0.7621 0.9233 0.9691
CaTch 0.7625 0.9207 0.9689

∆0.1% ∆-0.3% ∆0.0%
F1Score BM MCC

Legacy 0.8350 0.7548 0.8227
CaTch 0.8342 0.7550 0.8216

∆-0.1% ∆0.0% ∆-0.1%

M
ac

hi
ne

L
ea

rn
in

g Recall Precision Accuracy
Legacy 0.7642 0.9375 0.9706
CaTch 0.7498 0.9721 0.9721

∆-1.9% ∆3.7% ∆0.2%
F1Score BM MCC

Legacy 0.8420 0.7584 0.8312
CaTch 0.8466 0.7473 0.8400

∆0.5% ∆-1.5% ∆1.1%
(a) Constant Offset Scenario

Scenario Evaluation MetricsApp Detectors

T
hr

es
ho

ld

Recall Precision Accuracy
Legacy 0.3976 0.9504 0.7468
CaTch 0.4203 0.9457 0.7546

∆5.7% ∆-0.5% ∆1.1%
F1Score BM MCC

Legacy 0.5607 0.3834 0.5013
CaTch 0.5819 0.4038 0.5155

∆3.8% ∆5.3% ∆2.8%

M
ac

hi
ne

L
ea

rn
in

g Recall Precision Accuracy
Legacy 0.3928 0.9498 0.7446
CaTch 0.7961 0.9102 0.8852

∆102.7% ∆-4.2% ∆19.8%
F1Score BM MCC

Legacy 0.5556 0.3783 0.4967
CaTch 0.8494 0.7424 0.7618

∆52.9% ∆96.2% ∆53.4%
(b) Sybil Attack Scenario

expected result since that the former have much more plausible
features than the latter.

This leads us to our next point: because the claimed po-
sitions are so far from being plausible, the ML app did not
find any use for CaTch’s uncertainty factor for the detection
of faulty nodes. Instead the ML model used CaTch here to
better characterize a genuine node. Consequently, the amount
of False Positives decreases which lead to a higher Precision
(+3.7%). However, this comes at the cost of some of the True
Positives and consequently a lower Recall (-1.9%). We notice
that all the other evaluation metrics fluctuate accordingly. This
constitutes a trade-off between Recall and Precision and we
don’t find using CaTch in this scenario definitely beneficial.
For the case of faulty nodes detection, the Legacy detectors
could be sufficient. However, this is not the case for the Sybil
Attack scenario. Since the messages are more plausible, and
the implausibilities are more elusive, the ML app finds a major
advantage by using CaTch’s additional information. The extra



edge given by CaTch’s uncertainty factor enables the ML app
to double the Recall (+102.7%) with a small loss in terms of
precision (-4.2%). Accordingly, The F1Score, the BM and the
MCC all increase by more than 50%. Therefore, we find that
using CaTch in this scenario definitely increases the quality of
the detection. Given these points we conclude that the main
benefit of CaTch is to detect attacks that are more subtle
where the attacker is intelligent and tries to remain within the
plausible range. In fact, using CaTch we can train a system
to extract a kind of a ”fingerprint” of an attack, which is not
possible to elaborate when using the binary detectors.

C. Discussion

It is worth noting that the model we chose for the ML App
is by far not optimal. It was implemented this way to give
a more comprehensive and fairer comparison and to remain
consistent with the illustrative example. However, by adding
only a notion of node history to the ML model, using only the
last few messages of a node instead of only one, we were able
to significantly increase the detection quality. In particular, the
false positives ceases being much of an issue. Additionally,
we found that the fingerprinting of attacks with CaTch over
multiple sequential messages could be much more elaborated
and complex.

Furthermore, even though CaTch can be give a considerable
advantage for detecting subtle misbehavior, it also requires
more computational power. And although the simple tests we
did on our local unit are optimistic, more research needs to
be conducted to evaluate how much computational power is
available and needed and if the benefits outweigh the cost.

Additionally, one could assume that an attacker could ma-
nipulate the CaTch uncertainty factor to avoid detection. This
is in fact possible and is a scenario that should be taken
into account when designing the detection application. For
example, an application should consider a plausible maximum
value for the confidence range depending on the environment.
However, CaTch is supposed to be replacing the legacy
detectors. Additionally, it is worth noting that it is much easier
for an attacker to just manipulate the sensor value to remain
within the legacy detectors limits than to manipulate the value
and the confidence range to do the same for CaTch.

VI. CONCLUSION

In this paper we focused on embedded misbehavior de-
tection mechanisms in C–ITS. More precisely, we evaluate
the impact of physical measure uncertainty on the plausibility
detectors performance. We notice that such uncertainty in-
formation should be included in the standard Vehicle–to–X
communication (V2X) messages. We theorize that utilizing it
may lead to improving the misbehavior detection process.

To benefit from this available information, we propose
CaTch, an enhanced version of plausibility detectors that takes
into account the physical measure uncertainty. We showed that
CaTch provides for each plausibility detector an uncertainty
factor that indicates the levels of implausibility. We showed
through extensive simulations that CaTch performs better or

in the worst case similar than current misbehavior detectors.
In particular, the uncertainty information can be used by
intelligent misbehavior detection applications to improve the
detection quality in the decision making process.

Future works consist of defining a smart misbehavior detec-
tion application that takes advantage of the uncertainty factor
to decide whether or not reporting an ITS–S. Finally, the
definition of decision algorithms at the centralized back-end
server is also considered as a next step of this work.
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