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Abstract—In this paper, we propose a transmission mechanism
for fluid antennas (FAs) enabled multiple-input multiple-output
(MIMO) communication systems based on index modulation
(IM), named FA-IM, which incorporates the principle of IM into
FAs-assisted MIMO system to improve the spectral efficiency
(SE) without increasing the hardware complexity. In FA-IM, the
information bits are mapped not only to the modulation symbols,
but also the index of FA position patterns. Additionally, the
FA position pattern codebook is carefully designed to further
enhance the system performance by maximizing the effective
channel gains. Then, a low-complexity detector, referred to
efficient sparse Bayesian detector, is proposed by exploiting the
inherent sparsity of the transmitted FA-IM signal vectors. Finally,
a closed-form expression for the upper bound on the average bit
error probability (ABEP) is derived under the finite-path and
infinite-path channel condition. Simulation results show that the
proposed scheme is capable of improving the SE performance
compared to the existing FAs-assisted MIMO and the fixed
position antennas (FPAs)-assisted MIMO systems while obviating
any additional hardware costs. It has also been shown that
the proposed scheme outperforms the conventional FA-assisted
MIMO scheme in terms of error performance under the same
transmission rate.

Index Terms—Fluid antenna, movable antenna, index modu-
lation, average bit error probability.

I. INTRODUCTION

THE rapid progress in multiple-input multiple-output
(MIMO) technologies has ushered in a tranformative era

for wireless communication systems, significantly amplifying
their capacity by harnessing the untapped degrees of freedom
(DoFs) in the spatial domain [1]–[3]. By leveraging the
principles of MIMO, communication systems can now deploy
multiple antennas both at the transmitter and receiver, thereby
creating multiple spatial streams for data transmissions. This
spatial diversity, facilitated by the varying propagation paths
between antennas, offers a wealth of independent DoFs, funda-
mentally altering the traditional constraints on communication
capacity. However, in conventional MIMO systems, it is cus-
tomary to employ fixed position antennas (FPAs) with inter-
antenna spacing typically no smaller than half a wavelength
at the transceivers. As a result, the FPAs-assisted MIMO
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imposes limitation on the exploitation of diversity and spatial
multiplexing since it cannot explore the full spatial variation
of wireless channels within a given spatial filed.

To solve this problem, fluid antenna system (FAS) was
proposed in [4], where the fluid antenna has the capability
to move to any of the potential positions within a set linear
range in order to capture the most robust signal. Subsequently,
the authors of [5] extended FAS to multiuser scenarios,
namely fluid antenna multiple access (FAMA) system, which
can concurrently support transceivers operating under distinct
channel conditions. In FAMA systems, interference in deep
fading regions can be effectively mitigated by optimizing the
positions of users’ fluid antennas, thereby providing favorable
channel conditions for desired signals. The two-dimensional
(2D) or three-dimensional (3D) design of FAS was introduced
in [6], [7]. As another 2D/3D implementation of FAS, mov-
able antennas (MAs) system was proposed in [8], where the
conventional solid antenna can be freely moved in the 2D/3D
space by employing mechanical drives.

MAs can be equipped in MIMO systems to exploit the
full spatial diversity by varying the antenna position in a
given finite region at the transceiver, which can be regarded
as a promising technology in future wireless communica-
tions, especially in machine-type communications (MTC) [9],
[10]. It is worth noting that the MAs based on mechanical
movement is impractical in high-mobility scenarios, due to
the significant time required for antenna shifting. The de-
layed response hinders its adaptation to the dynamic channel
conditions, posing a primary challenge for MAs in high-
mobility communications. In MTC, the Internet of Things
(IoT) devices are deployed in limited areas at fixed positions,
where the surrounding environment may change over time,
leading to slowly-varying wireless channels. In such low-
mobility scenarios, narrow-band MTC possess limited time
and frequency diversity to enhance transmission reliability.
Therefore, compared to conventional FPAs, MA becomes a
viable technique for achieving higher spatial diversity gains
for slowly varying channels. In [8], a channel model based on
field response was introduced for the single-MA system. This
model analyzed the signal-to-noise ratio (SNR) improvement
over its FPA counterpart, considering both deterministic and
stochastic channel scenarios. The authors of [11] applied MA
into MIMO systems, where the maximum channel capacity is
achieved by jointly optimizing the positions of transmitter and
receiver MAs. It was also verified that the MA-assisted MIMO
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system outperforms the conventional FPA-assisted MIMO in
terms of channel capacity. In [12], the architecture, channel
characterization of MA were introduced, followed by the
major performance gain analysis and typical applications and
technique challenges discussions. Channel estimation of MA-
assisted MIMO was considered in [13], where compressed
sensing (CS) based method is employed to efficiently solve
the channel estimation problem by exploiting the sparse rep-
resentation of the filed-response based channel model. The
above mentioned MA systems [8], [11]–[13] assume that the
positions of MA elements can be freely adjusted within a given
continuous region to attain full spatial diversity, requiring
the use of electromechanical devices with infinite resolution.
Another approach to MA implementation has been presented
in [14]–[16], where the motion of MAs is discrete. In this case,
the transmitter area is quantified in a pace [15], resulting in
finite spatial resolution, albeit at the cost of spatial diversity
loss. Furthermore, the MA-assisted MIMO system offers low
spectral efficiency (SE) performance when equipped with
small-scale antennas, otherwise they still face high hardware
cost problem.

Index modulation (IM) represents a promising solution to
reduce the hardware cost by reducing the number of RF
chains and at the same time, enhance SE by exploiting the
indices of antennas, subcarriers, time slots, channel states
to convey additional information [17]–[21]. IM-aided sys-
tems offer distinctive benefits, such as high energy efficiency
(EE), low hardware complexity and flexible system structures,
by introducing extra dimensions in contrast to conventional
modulation systems. The concept of IM has been integrated
with conventional FPA-assited MIMO systems. Specifically,
spatial modulation (SM) aided MIMOs was proposed in [22],
where the active antenna index is exploited as an additional
dimension to transmit information. To further enhance the SE
and error performance, a set of SM-variants were investigated,
such as generalized SM (GSM) [23], quadrature SM (QSM)
[24], enhanced SM (ESM) [25], precoding SM (PSM) [26] and
so on. More recently, IM has also been widely applied in high-
frequency scenarios. In [27], generalized beamspace modu-
lation (GBM) was proposed in millimeter wave (mmWave)
massive MIMO systems, which utilizes the distinctive char-
acteristics of mmWave massive MIMO. Spatial scattering
modulation (SSM) was proposed in [28] by indexing a set
of orthogonal paths in the mmWave environment.

The above IM schemes were employed in FPAs-assisted
MIMO systems, termed as FPA-IM, which require large-scale
antennas to exploit full spatial diversity, thus incurring high
hardware cost. To the best of our knowledge, the integration
of IM and FA-assisted MIMO has not been addressed in the
literature. In this paper, we propose a transmission mechanism
for FA-assisted MIMO system based on IM, named FA-IM,
with the primary objective of enhancing SE while concurrently
reducing hardware costs. In comparison to the classic FA-
assisted MIMO system [8], the proposed scheme achieves SE
enhancement through the integration of IM techniques. Addi-
tionally, it matches the SE performance of the FPA-IM system,
but requires substantially fewer antenna elements. It is worth
noting that although the proposed scheme is mathematically

similar to the antenna selection assisted FPA (AS-FPA) scheme
[29], there are two key distinctions: 1) the AS-FPA requires a
large number of antennas for high diversity, while the proposed
FA-IM can acquire the same spatial diversity with much fewer
antennas moving in the same region. 2) the AS-FPA aims
to reduce the cost and complexity brought by numerous RF
chains, without conveying extra information bits. By contrast,
the FA-IM enhances SE by introducing index bits without any
extra hardware costs.

The main contributions of this paper are summarized as
follows.

• We design a novel transmission scheme, called FA-IM,
by creating a synergy between the IM technique and
the FAs-assisted MIMO system, providing significant SE
performance enhancement. The information bits of the
proposed scheme are mapped not only to the M -ary
quadrature amplitude modulation (QAM) constellations,
but also the index of FA position patterns. Moreover, the
FA position pattern codebook is carefully designed by
maximizing the effective channel gains.

• We propose a low-complexity detector, namely efficient
sparse Bayesian detector, which inherently advances the
original sparse Bayesian algorithm by restructuring the
iteration process. To be specific, we simplify the iteration
process by pruning the initial FA position candidate, thus
achieving significant computational complexity reduction.

• We analyze the SE performance of the proposed FA-IM,
which demonstrates its superiority over its counterparts
in FPAs assisted MIMO system and FAs-assisted MIMO
without IM. Meanwhile, the closed-form expression for
the upper bound on the average bit error probability
(ABEP) is derived to validate the benefits of the proposed
scheme.

• Simulation results show that 1) the theoretical analysis of
ABEP is accurate; 2) the bit error rate (BER) performance
of the proposed FA-IM with FA position pattern codebook
design outperforms the scheme with random FA position
pattern codebook; 3) the proposed scheme offers better
BER performance and robustness compared to the bench-
mark systems under the same SE conditions, and 4) the
proposed low-complexity efficient sparse Bayesian detec-
tor saves 99.9% and 25% computational cost compared
to the optimal maximum likelihood (ML) and the original
sparse Bayesian detectors, respectively.

The rest of this paper is organized as follows. In Section
II, the channel and signal models of the proposed FA-IM
system are introduced. Section III presents an efficient sparse
Bayesian detector. Then, the ABEP performance analysis is
presented in Section IV. This is followed by simulation results
in Section V. Finally, Section VI concludes this paper.

Notations: Scalar variables are denoted by normal-face
letters, while boldface capital and lowercase symbols represent
matrices and column vectors, respectively. |·|,

(
n
k

)
and ⌊·⌋ refer

to the absolute value, the binomial coefficient and the floor
operation, respectively. (·)H , (·)−1 and (·)† denote Hermitian
transpose, inverse and pseudo inverse, respectively. diag (·)
and E (·) stand for the diagonal and expectation operation,
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Fig. 1. Block diagram of the proposed FA-IM system

respectively. ℜ{·} represents the real part of a complex
variable. ∥A∥ and det(A) denote the Frobenius norm and
determinant of A, respectively. CM×N represents the space
of M×N complex matrices. IN stands for an N -dimensional
identity matrix. 1L refers to an L-dimensional vector with all
elements equal to 1.

II. PROPOSED FLUID ANTENNA-ASSISTED INDEX
MODULATION

The proposed FA-IM system model is depicted in Fig.
1. In this 2D configuration, Nt transmit FAs are linked to
the RF chains using flexible connectors like coaxial cables1.
Specifically, the whole transmit FA region is divided into
P = P1 × P2 grids, where P1 and P2 denote the number
of grids along horizontal and vertical directions, respectively.
According to the property of FA, the positions of the FAs
can be altered mechanically using drive components, such as
stepper motors. In addition to motor-based FAs, an alternative
and efficient approach to implementing FAs is through the
microelectromechanical systems (MEMS)-integrated antenna
[30]. It has compact components and thus can be easily
integrated in small devices. In this work, we assume that the
Nt FAs can move freely in these P parts. The receiver (Rx)
is equipped with a fixed uniform planar array (UPA) of size
Nr = N1 × N2, where N1 and N2 represent the number of
antennas along horizontal and vertical directions, respectively.

A. Channel model

Firstly, we establish the Cartesian coordinate systems,
xt − Ot − yt and xr − Or − yr, to describe the positions
of the transmit FAs and receive UPA, respectively. The co-
ordinate set of the all the possible transmit FA positions
are denoted as T = [t1,1, t1,2, ..., tm,n, ..., tP1,P2

], where
tm,n = [xt,m, yt,n], m = 1, ..., P1, n = 1, ..., P2. The
coordinate set of the receive UPA elements are denoted as
R = [r1,1, r1,2, ..., rp,q, ..., rN1,N2

] with rp,q = [xr,p, yr,q],
p = 1, ..., N1, q = 1, ..., N2.

For the considered FA-IM system, the channel response is
contingent upon the positions of the antennas. Consequently,
the channel coefficient can be expressed as a function of the
positions of both the transmitting and receiving antennas, i.e.,
h(tm,n, rp,q). In this paper, we make the assumption that the
area available for antenna movement is significantly smaller
than the propagation distance between the Tx and Rx, ensuring

13D FAs provide additional degrees of freedom for IM, which can further
enhance the SE. The system design and performance analysis of 3D FA-IM
will be left for our future work.

zt

xt

yt
Path direction

t tcos sin 

t

t

cos
cos




tsin

t

ttO

Transmit 

Region

rO

r

r

r

r

cos
cos







r rcos sin 

Receive 

Region

xr

yr

zr

Path direction

Fig. 2. Illustration of the coordinates and spatial angles for the transmit and
receive regions

that the far-field condition is met at both the Tx and Rx
sides [8]. Hence, the plane-wave model can be employed to
characterize the field response between the transmitting and
receiving areas. In simpler terms, the angles of departure
(AoDs), angles of arrival (AoAs), and amplitudes of the
complex coefficients for the multiple channel paths remain
constant regardless of the positions of the FAs. The only
variations occur in the phases of the multipath channels within
the transmit/receive region.

At the Tx side, we use the notation Lt to represent the
number of transmit paths. As depicted in Fig. 2, the elevation
and azimuth AoDs of the jth transmit path are denoted as
θt,j ∈ [−π

2 ,
π
2 ] and ϕt,j ∈ [−π

2 ,
π
2 ], 1 ≤ j ≤ Lt, respectively.

At the Rx side, we use the notation Lr to represent the number
of receive paths. The elevation and azimuth AoAs of the ith
receive path are respectively denoted as θr,i ∈ [−π

2 ,
π
2 ] and

ϕr,i ∈ [−π
2 ,

π
2 ], 1 ≤ i ≤ Lr. Furthermore, we establish a

path-response matrix (PRM) denoted as Ξ ∈ CLr×Lt , which
characterizes the response from the transmit reference position
t0 = [0, 0] to the receive reference position r0 = [0, 0]. Pre-
cisely, the entry in the ith row and jth column of Ξ, denoted
as αi,j , is the response coefficient between the jth transmit
path and the ith receive path, where αi,j ∼ CN (0, c/L),
where c = c0d

−ϖ is the expected channel gain, c0 is the
unit distance path loss, d is the distance between the transmit
region and the receive region, and ϖ is the path loss exponent.
Consequently, the channel linking two antennas situated at t0

and r0 is expressed as

h(t0, r0) = 1H
Lr

Ξ1Lt
, (1)

which represents the linear combination of all the components
within the PRM.

Based on the fundamental principles of geometry depicted
in Fig. 2, the phase difference between position rp,q =
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[xr,p, yr,q] and the reference point r0 is given by

ρr,i(rp,q) = ej
2π
λ (xr,p cos θr,i sinϕr,i+yr,q sin θr,i)

= ejrp,qkr(θr,i,ϕr,i)
, (2)

where kr(θr,i, ϕr,i) = 2π
λ [cos θr,i sinϕr,i, sin θr,i]

T , 1 ≤ i ≤
Lr and λ is the wavelength. Then, we define the field-response
vector (FRV) in the receive region as

f(rp,q) = [ρr,1(rp,q), ..., ρr,i(rp,q), ..., ρr,Lr
(rp,q)]

T . (3)

Similarly, for any position tm,n = [xt,m, yt,n] in the
transmit region, the FRV is expressed as

g(tm,n) = [ρt,j(tm,n), ..., ρt,j(tm,n), ..., ρt,Lt
(tm,n)]

T , (4)

where ρt,j(tm,n) = ejkt(θt,j ,ϕt,j)tm,n , 1 ≤ j ≤ Lt. Therefore,
the channel vector h(tm,n) ∈ CNr×1 between the FA antenna
located at position tm,n = [xt,m, yt,n] and the fixed receive
UPA can be obtained as

h(tm,n) = FHΞg(tm,n), (5)

where F = [f(r1,1), f(r1,2), ..., f(rN1,N2)] ∈ CLr×Nr is the
filed-response matrix (FRM) at the Rx side, which is a constant
matrix since the receiver is equipped with a fixed UPA.

By combining channel vectors from all the P FA positions
to the fixed receive UPA, we can obtain the equivalent FA-IM
channel matrix as

H = [h(t1,1), ...,h(tm,n), ...,h(tP1,P2
)] ∈ CNr×P . (6)

B. Signal model

In the proposed scheme, the concept of IM is employed
on the Tx side, where FA region grids are indexed instead
of indexing FAs, i.e., Nt out of P grids are occupied by
the Nt transmit FAs to transmit signals. Note that all the
Nt FAs are activated simultaneously to achieve the maximum
transmission rate for the given parameters (P,Nt). As shown
in Fig. 1, the incoming bit stream is split into two sub-vectors
of Ntlog2M and ⌊log2

(
P
Nt

)
⌋ bits, denoted by b1 and b2,

respectively. The modulated symbol bits in b1 are modulated
to Nt M -QAM symbols as s = [s1, ..., sk, ..., sNt ]

T , while
the index bits in b2 are used to select a unique FA position
pattern I = {I1, ..., Ik, ..., INt

} ∈ I, Ik = {1, 2, ..., P},
k = {1, 2, ..., Nt} and I is the FA position pattern codebook,
which will be carefully designed in Section II-C. Thus, the
equivalent transmit signal vector x ∈ CP×1 is generated as

x = [0, ..., 0︸ ︷︷ ︸
I1−1

, s1, 0, ..., 0︸ ︷︷ ︸
Ik−I1−1

, sk, 0, ..., 0︸ ︷︷ ︸
INt−Ik−1

, sNt
, 0, ..., 0︸ ︷︷ ︸
P−INt

]T . (7)

It is worth noting that a selected FA position pattern
I = {I1, ..., Ik, ..., INt

} corresponds to a unique FA position
coordinate codebook BI = {ΩI1 , ...,ΩIk , ...,ΩINt

}. The FA
position pattern to position coordinate mapping process can
be expressed as

f : Ik → ΩIk = (m,n), i.e., Ik = (m− 1)P2 + n, (8)

where (m,n) is the Cartesian coordinate index of the position
Ik with m = 1, ..., P1 and n = 1, ..., P2.

TABLE I
AN EXAMPLE LOOK-UP TABLE FOR P = 4, P1 = 2, P2 = 2 AND Nt = 2.

Bits in b2
FA position pattern

I = {I1, I2}
FA position coordinate
BI = {ΩI1 ,ΩI2}

00 {1, 2} {(1, 1), (1, 2)}

01 {1, 3} {(1, 1), (2, 1)}

10 {2, 4} {(1, 2), (2, 2)}

11 {3, 4} {(2, 1), (2, 2)}

unused {1, 4} {(1, 1), (2, 2)}

unused {2, 3} {(1, 2), (2, 1)}

To illustrate the mapping relationship more intuitively, a
look-up table where P = 4, P1 = P2 = 2, and Nt = 2
is described in Table I, which provides the corresponding
FA position pattern I and FA position coordinate BI for the
incoming index bits in b2. For example, when the incoming
bits is 01, the corresponding FA position pattern is {1, 3},
which means grid positions 1 and 3 are occupied by the
Nt = 2 transmit FAs. According to the mapping rule shown
in (8), the corresponding position coordinate can be obtained
as {(1, 1), (2, 1)}. Note that this look-up table is random FA
position pattern codebook, rather than optimal FA position
pattern codebook.

After obtaining the corresponding FA position coordinate
codebook BI , the effective channel HBI

eff ∈ CNr×Nt can be
represented as

HBI
eff = [h(tΩI1

), ...,h(tΩIk
), ...,h(tΩINt

)]. (9)

Thus, the received signal y ∈ CNr×1 can be written as

y = Hx+ n =

Nt∑
k=1

h(tΩIk
)sk + n, (10)

where n ∈ CNr×1 ∼ CN (0, N0INr
) is the additive white

Gaussian noise. In this paper, we assume that the perfect
channel state information (CSI) is available at receiver, and
the effect of imperfect CSI will be discussed in Section V2.

C. FA position pattern codebook design

According to the index bits mapping rule, it is obvious
that there are totally A =

(
P
Nt

)
possible FA position patterns

available. However, the number of FA position patterns we
need to use here is K = 2⌊log2 A⌋ due to the fact that
the indices of FA position patterns are mapped to binary-bit
blocks, thus these FA position patterns can transmit ⌊log2A⌋
bits per channel use (bpcu). For example, we can see from
Table I that there are A =

(
4
2

)
= 6 possible FA position

patterns, but only K = 2⌊log2 6⌋ = 4 can be used. Thus, it
is necessary to select K out of A FA position patterns for
indexing to further improve system performance.

2Channel estimation for the FA-assisted MIMO systems is discussed in
[13], where compressed sensing based method is employed to reconstruct the
channel by exploiting the sparse representation of the field-response based
channel model.
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Let’s define the FA position pattern set as
L = {I1, ..., Ii, ..., IA}, i = {1, 2, ..., A}, where the
effective channel of the ith FA position pattern is given as

HIi

eff = H
BIi

eff = [h(tΩIi,1
), ...,h(tΩIi,k

), ...,h(tΩIi,Nt
)].
(11)

For the given effective channel realization and SNR, the
capacity of the proposed FA-IM system is bounded as [31]

β ≤ CFA−IM ≤ β + log2(Nt), (12)

where β = 1
Nt

log2(1+
∥HI

eff∥2

N0
). It is clear that β is maximized

by choosing Nt positions corresponding to the largest channel
norms out of the P positions3. Hence, the FA position pattern
codebook can be designed as

I = {I1, I2, ..., IK}, (13)

which satisfies that∥∥∥HI1

eff

∥∥∥2 > ∥∥∥HI2

eff

∥∥∥2 > ... >
∥∥∥HIK

eff

∥∥∥2 > ... >
∥∥∥HIA

eff

∥∥∥2.
(14)

III. PROPOSED LOW-COMPLEXITY DETECTOR

The optimal ML detector is adopted to jointly detect the FA
position pattern as well as the modulated symbols by exhaus-
tively searching all the possible transmitted signal vectors. The
output of the ML detector is given by

[Î, ŝ] = argmin
I,s

∥∥∥∥∥y −
Nt∑
k=1

h(tΩIk
)sk

∥∥∥∥∥
2

. (15)

Note that the ML detector needs to evaluate all the FA position
patterns together with the symbols, i.e., the complexity order
of the ML detector is O(KMNt), leading to high computa-
tional complexity as the value of P , Nt and M increase.

A. Proposed efficient sparse Bayesian detector

In this subsection, we propose a low-complexity compress
sensing based detector, called efficient sparse Bayesian de-
tector, which advances the original sparse Bayesian algorithm
[32] by simplifying the iteration process via taking the inherent
sparsity of the proposed FA-IM scheme into consideration.

The objective of the proposed efficient sparse Bayesian
detector is to identify the selected FA position pattern, i.e.,
the non-zero locations of the transmit signal vector x. We
embark upon our discourse by introducing a prior concerning
the vector x, the probabilistic characterization of which is
governed by an array of hyperparameters denoted by the vector
γ = [γ1, ..., γP ]

T . This discernibly implies that the Gaussian
prior γi is specifically assigned to the ith element of x, where
the Gaussian prior is p(x |γ ) = CN (0,Γ) with Γ = diag(γ)
[33]. Then, the estimated γ̂ can be obtained by solving the
following maximum a posterior (MAP) problem

γ̂ = argmin
γ
p(γ |y ). (16)

3Maximizing the Euclidean distance among indexed FA position patterns
can help the system to further boost performance, but this algorithm suffers
from high computational complexity.

According to the Bayesian rule, (16) can be further rewritten
as

γ̂ = argmin
γ
p(y |γ )p(γ), (17)

where p(y |γ ) is the likelihood function of y given γ.
It is calculated that p(y |γ ) satisfies Gaussian distributions
CN (0,Σy), where Σy = N0INr + HΓHH . By combining
the likelihood function and the prior, the posterior density of
x can be written as p(x |y ,γ) = N (µ,Σ) with mean and
covariance given by

µ = ΓHHΣyy (18)

and
Σ = Γ− ΓHHΣ−1

y HΓ, (19)

respectively. Once the hyperparameter vector is determined,
the transmit signal vector x can be estimated by

x̂ = argmax
x

p(x |y ,γ). (20)

To facilitate the computation of µ and Σ, the determination
of the hyperparameter γ is imperative as shown in (18) and
(19). As the estimation of γ also depends on µ and Σ, an
iterative approach is needed. The estimation of γ is a typical
type-II ML problem and we employ the update rule in [34],
given by

γ
(new)
i = ∥µi∥2 +Σi,i, i = 1, ..., P, (21)

where γi is the ith entry of γ, µi and Σi,i refer to the ith entry
of µ and the ith diagonal entry of Σ, respectively. The update
of (18), (19) and (21) is repeated until the convergence, and
then an estimate of γ is obtained.

In original sparse Bayesian algorithm, the elements in γ
undergo a process of sequential updates at each iteration.
However, since the hyperparameter vector γ shares the same
spare profile as x, i.e., the majority of elements in γ are zeros,
the updating process of those zero positions can be safely
left out. Under this circumstance, we modify the iteration
process to reduce the computational complexity by pruning
the hyperparameter vector γ, which will be detailed in the
sequel.

As mentioned above, the ith element in hyperparameter
vector γ indicates the probabilistic characterization of the
corresponding ith element in x. That is to say, the high
value of γi means that the ith position is more likely to be
occupied by the FA, termed as active position. As a result, in
the modified iteration process, ψt positions characterized by
lower probabilities are designated as inactive positions. These
inactive positions are decisively discarded from the current
FA position candidate set Ĩ. Therefore, the corresponding
hyperparameter vector and channel matrix can be pruned
as γ = [γ]:,Ĩ and H = [H]:,Ĩ , respectively. Additionally,
the scale of new hyperparameter vector is thus updated by
P ∗ = P ∗ − ψt. It is pertinent to emphasize that after Tb
iteration, the final FA position candidate set remains invariant,
comprising only P ∗ elements, which can be calculated by

P ∗ = P −
Tb∑
t=1

ψt. (22)
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Algorithm 1 Proposed efficient sparse Bayesian detector for
the FA-IM system
Input:

The received signal: y;
Equivalent channel matrix: H;
Number of FA and positions: Nt and P ;
The maximum number of iterations: Tmax;
The parameters for pruning the hyperparameter vector:
Ψ = {ψ1, ..., ψt, ..., ψTb

}.
Output: Î, ŝ
1: (Iteration initialization): The iterative index t = 1, the

initial hyperparameter vector γ = 1P , the initial FA
position candidate Ĩ = {1, 2, .., P}, the initial scale of
hyperparameter vector P ∗ = P .

2: for t = 1, 2, ..., Tmax, do
3: Update µ according to (18);
4: Update Γ according to (19);
5: Update γ according to (21);
6: while t ≤ Tb, do
7: P ∗ = P ∗ − ψt;
8: Ĩ = max(|γ|, P ∗);
9: H = [H]:,Ĩ , γ = [γ]:,Ĩ ;

10: end while
11: end for
12: L = sortdescent(Ĩ);
13: Î = L(1 : Nt); ŝ = (H:,Î)

†y.

TABLE II
COMPLEXITY OF COMMON OPERATIONS IN TERMS OF FLOPS

Operations Real-valued flops

AB 2mp(4n− 1)

C−1 1
2
n3 + 3

2
n

∥c∥2 2n

c± d 4n− 1

To avoid the exclusion of non-zero candidates, we set P ∗ >
P −Nt, considering the inherent sparsity of the proposed FA-
IM system.

The procedure of the proposed efficient sparse Bayesian
detector is summarized in Algorithm 1. After Tmax itera-
tions, we can obtain the estimated FA position pattern by
Î = L(1 : Nt), where L = sortdescent(Ĩ) and sortdescent(a)
is to sort the elements of a in a descending order and returns
the positions. Finally, the bit information is detected by FA-IM
demodulation.

B. Complexity analysis

In this subsection, the computational complexity is quan-
tified in terms of the real-valued flops, encompassing real-
valued multiplications and additions. For the specific matrices
A ∈ Cm×n, B ∈ Cn×p, C ∈ Cn×n, c ∈ Cn×1 and
d ∈ Cn×1, Table II presents the flops required for the
operations involved in the detection algorithm.

Accordingly, the detection complexity of the optimal ML

TABLE III
THE COMPUTATIONAL COMPLEXITY COMPARISON OF DIFFERENT

DETECTORS FOR THE FA-IM SCHEME

Detectors
(Nt, Nr, P,M)

(4,20,20,4) (8,32,32,4)

Optimal ML 1.1× 109 1.7× 1015

Original sparse Bayesian [34] 2.6× 106 1.6× 107

Proposed efficient sparse Bayesian 1.9× 106 1.2× 107

detector (i.e., (15)) is expressed as

CML = KMNt(12NrNt + 2Nr), (23)

where KMNt is the total search space of the proposed FA-IM
scheme, and 12NrNt + 2Nr is the complexity of calculating

∥y −
Nt∑
k=1

h(tΩIk
)sk∥2 in (15).

The complexity of the proposed efficient sparse Bayesian
detector is calculated by

CProposed = Tmax[16N
2
rP

∗ + 12NrP
∗ − 2P ∗︸ ︷︷ ︸

Update µ

+ 2P ∗︸︷︷︸
Update γ

+ 8N2
rP

∗ + 4(P ∗)
2
(2Nr − 1) +

1

2
N3

r +
3

2
Nr︸ ︷︷ ︸

Update Γ

]

= Tmax[24N
2
rP

∗ + 4(P ∗)
2
(2Nr − 1) + 12NrP

∗

+
1

2
N3

r +
3

2
Nr],

(24)
where P ∗ is the scale of hyperparameter vector γ, which will
be updated according to (22).

Table III presents the computational complexity of the
proposed detector under different parameter settings. It is
apparent that all the sparse Bayesian detector achieve sig-
nificant complexity reduction (i.e., 99.9%) compared to the
optimal ML detector. Furthermore, the proposed efficient
sparse Bayesian algorithm saves nearly 26% and 25% when
the parameter settings (Nt, Nr, P,M) are (4, 20, 20, 4) and
(8, 32, 32, 4) compared to the original sparse Bayesian algo-
rithm [34], respectively. This complexity reduction benefits
from the proposed detector simplifying the iteration process by
pruning the hyperparameter vector. More importantly, thanks
to the candidate pruning mechanism, many inactive elements
can obtain their own optimal solutions (i.e., 0) in advance,
eliminating the need to run the iterative algorithm until con-
vergence. It contributes to the enhanced detection performance
by reducing the interference, as will be evidenced by our
simulation results4.

IV. PERFORMANCE ANALYSIS

A. Spectral efficiency analysis

This subsection analyzes the bits per channel use (bpcu)
throughput of the proposed FA-IM, where the VBLAST based

4The computational complexity of the proposed detector can be further
reduced by replacing the matrix inversion operations in (19) during the
iteration process. For example, the Neumann series method can be employed
to approximate the large-scale matrix inversion [35], and it will be left for
our future work.



7

1 2 3 4 5 6 7 8 9 10
Nt

0

10

20

30

40

50

60

70

S
p

ec
tr

al
 e

ff
ic

ie
n
cy

 (
b
p

cu
)

Proposed FA-IM, P=16

SM-MIMO

FA-VBLAST

Proposed FA-IM, P=36

Fig. 3. Spectral efficiency comparisons between the proposed FA-IM with
the conventional FA-VBLAST and SM-MIMO systems.

FAs-assisted MIMO without IM (namely FA-VBLAST) and
the classic FPAs-assisted MIMO with IM (namely SM-MIMO)
serve as its benchmarks to demonstrate the superiority of the
proposed scheme.

The SE of the classic SM-MIMO and the FA-VBLAST are
given by

RFA−VBLAST = Ntlog2M (25)

and
RSM−MIMO = log2M + log2Nt, (26)

respectively.
Based on the signal model described in Section II-B, the

SE of the proposed FA-IM is calculated by

RFA−IM = Ntlog2M + ⌊log2
(
P
Nt

)
⌋. (27)

To illustrate the SE performance more intuitively, Fig. 3 plots
the SE of the proposed FA-IM and its benchmarks for various
number of transmit antennas. The results clearly show that
the proposed scheme achieves higher SE compared to its
benchmark systems when equipped with the same number of
transmit antennas. More precise, the extent of SE improvement
is contingent upon the number of the positions P . In other
words, as the value of P increases, the FA position patterns
conveys more information bits, thus offering a significant SE
enhancement without increasing any hardware cost.

B. ABER performance analysis

In this subsection, we derive a closed-form expression for
the upper bound on ABEP to validate the proposed system.
According to the well-known union bounding technique [36],
the ABEP of the proposed FA-IM system is bounded as

ABEP ≤ 1

R2R

∑
I,s

∑
Î ,̂s

d{(I, s) → (Î, ŝ)}P{(I, s) → (Î, ŝ)},

(28)
where R is the date rate given in (27), d{(I, s) → (Î, ŝ)} is
the total number of erroneous bits and P{(I, s) → (Î, ŝ)} is
the unconditional pairwise error probability (UPEP).

To obtain the upper bound, we first compute the conditional
PEP (CPEP) as

P{(I, s) → (Î, ŝ) |α1,1, ..., αLr,Lt
}

= P


∥∥∥∥∥y −

Nt∑
k=1

h(tΩIk
)sk

∥∥∥∥∥
2

>

∥∥∥∥∥y −
Nt∑
k=1

h(tΩÎk
)ŝk

∥∥∥∥∥
2


= P {ζ < 0} ,
(29)

where

ζ =

∥∥∥∥∥
Nt∑
k=1

(
h(tΩIk

)sk − h(tΩÎk
)ŝk

)∥∥∥∥∥
2

+

2ℜ

{
nH

(
Nt∑
k=1

(
h(tΩIk

)sk − h(tΩÎk
)ŝk

))}
.

(30)

Let ∆ =
Nt∑
k=1

(
h(tΩIk

)sk − h(tΩÎk
)ŝk

)
for ease of notation,

thus ζ can be rewritten as ζ = ∥∆∥2 + 2ℜ{nH∆}, which is
a Gaussian random variable with mean µζ and variance σ2

ζ ,
i.e., ζ ∼ N (µζ , σ

2
ζ ). The mean µζ can be computed directly as

µζ = E(∥∆∥2+2ℜ{nH∆}) = ∥∆∥2 due to E(2ℜ{nH∆}) =
0. On the other hand, the variance can be manipulated as

σ2
ζ = E[(ζ − µζ)

2]

= E[(2ℜ{nH∆})2]
= E(4ℜ{(nH)2})E(ℜ{∥∆∥2})
= 2N0∥∆∥2.

(31)

Therefore, the CPEP can be further calculated as

P{(I, s) → (Î, ŝ) |α1,1, ..., αLr,Lt }

= Q

√∥∆∥2
2N0

 = Q

(√
Z

2N0

)
(32)

where Z = ∥∆∥2 and Q(x) is the Gaussian Q-function.
By approximating the Q-function as Q(x) ≈

1
12 exp(−x

2/2) + 1
4 exp(−2x2/3) [37], the CPEP can

be approximated as

P{(I, s) → (Î, ŝ) |α1,1, ..., αLr,Lt }

≈ 1

12
exp

(
− Z

4N0

)
+

1

4
exp

(
− Z

3N0

)
.

(33)

Furthermore, the UPEP can be obtained as

P{(I, s) → (Î, ŝ)}

≈ EZ

[
1

12
exp

(
− Z

4N0

)]
+ EZ

[
1

4
exp

(
− Z

3N0

)]
=

1

12
MZ

(
− 1

4N0

)
+

1

4
MZ

(
− 1

3N0

)
,

(34)
where MZ(ε) = EZ [exp(εZ)] is the moment-generating
function (MGF) of Z.

Without loss of generality, we employ geometry channel
model in this work, where the number of transmit and receive
paths are the same, i.e., Lt = Lr = L. Next, we derive
the UPEP expression in two cases, i.e., finite-path case and
infinite-path case.
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1) Finite-path channel case: In the finite-path channel case,
it is difficult to derive the explicit expression of UPEP, we can
obtain the approximate UPEP by the Monte Carlo method.

Lemma 1. In this case of finite-path channel, the analytical
expression for UPEP can be expressed as

P{(I, s) → (Î, ŝ)}

≈ E

{
1

12

(
1 +

L

2N0B

)−L

+
1

4

(
1 +

2L

3N0B

)−L
}
,

(35)

where

B =


|sk − ŝk|2

∣∣∣∣ Nt∑
k=1

FHg(tΩIk
)

∣∣∣∣2, I = Î∣∣∣∣FH
Nt∑
k=1

(
(g(tΩIk

)sk − g(tΩÎk
)ŝk)

)∣∣∣∣ , I ≠ Î
.

(36)
Proof: See Appendix A.

2) Infinite-path channel case, i.e., L → ∞: In the case of
infinite-path, the channel model in (5) is equal to correlated
Rayleigh fading channel [8].

Lemma 2. In this case of infinite-path channel, the analyt-
ical expression for UPEP can be expressed as

P{(I, s) → (Î, ŝ)} ≈ 1

12

[
det

(
INr

+
L

2N0R|sk − ŝk|2

)]−Nt

+
1

4

[
det

(
INr +

2L

3N0R|sk − ŝk|2

)]−Nt

,

(37)
where R is the spatial correlation matrix of channel H.

Proof: See Appendix B.
Remark 1 (Diversity gain of the system): We first rewrite

(37) as

P{(I, s) → (Î, ŝ)} ≈ 1

12
[det (INr

+ ρ1B)]
−Nt

+
1

4
[det (INr + ρ2B)]

−Nt ,
(38)

where ρ1 = 1
2N0

, ρ2 = 2
3N0

and B = L
R|sk−ŝk|2

. Define
Ai = INr

+ ρiB for i = 1, 2, we have

det(Ai) =

Υ∏
η=1

κη(Ai) =

r∏
τ=1

(1 + ρiκτ (B)), (39)

where r is the rank of B and κτ (B) is the τ th non-zero
eigenvalue of B. For high SNR values, i.e., ρi ≫ 1, (38)
can be further simplified as

P{(I, s) → (Î, ŝ)}

≈ 1

12

(
ρr1

r∏
τ=1

κτ (B)

)−Nt

+
1

4

(
ρr2

r∏
τ=1

κτ (B)

)−Nt

=

(
1

12
ρ−rNt
1 +

1

4
ρ−rNt
2

)( r∏
τ=1

κτ (B)

)−Nt

.

(40)
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Fig. 4. Simulation and theoretical results of the proposed FA-IM system
using the optimal ML detector under various parameter setting with L = 15
and 4QAM modulation.
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Fig. 5. Simulation and theoretical results of the proposed FA-IM system
using the optimal ML detector under various parameter setting with L = 100
and 4QAM modulation.

In infinite-path channel case, the diversity gain D of the
proposed FA-IM scheme is calculated as

D = lim
ρ→∞

−
log2

(
P{(I, s) → (Î, ŝ)}

)
log2ρ

= lim
ρ→∞

−
log2

((
1
12ρ

−rNt
1 + 1

4ρ
−rNt
2

)( r∏
τ=1

κτ (B)

)−Nt
)

log2ρ

= lim
ρ→∞

rNtlog2ρ+Ntlog2

(
r∏

τ=1
κτ (B)

)
log2ρ

= rNt,

(41)
where ρ = 1

N0
.

V. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the proposed FA-IM scheme and validate
our derived analytical upper bound for ABEP. Here, we
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consider the geometry channel model, where the number of
the transmit and receive paths are the same, i.e., Lt = Lr = L.
The elements of the PRM follow the CSCG distribution, i.e.,
Ξ = diag(α1, ..., αl, ..., αL) ∈ CL×L, with αl ∼ CN (0, c/L),
where c = c0d

−ϖ is the expected channel gain, c0 = −30 dB
is the unit distance path loss, d = 25 m is the distance between
the transmit region and the receive region, and ϖ = 2.3 is the
path loss exponent. In addition, the carrier frequency f is 28
GHz, i.e., the wavelength λ is 0.01 m, and the transmitter area
is a square area of size 10λ× 10λ.

Figs. 4 and 5 evaluate the analytical and simulated BER per-
formance of the proposed FA-IM over the finite-path channel
and infinite-path channel, respectively, for different parameter
settings using the optimal ML detector. To be specific, the
theoretical curves in Figs. 4 and 5 are respectively plotted
based on (35) and (37). It can be observed that the gap
between the upper bound and the simulated results becomes
more pronounced as the SE increases. This phenomenon stems
from the inherent nature of the upper bound, which serves
as an approximation, inherently subject to limitations as SE
escalates. Nonetheless, the theoretical upper bound exhibits a
propensity to approach the simulation result more closely as
the SNR increases, thus the upper bound can be served as an
effective theoretical tool to evaluate the system performance.

Fig. 6 characterizes the BER performance of the proposed
FA-IM system with the designed FA position pattern code-
book under various parameter settings. As shown in Fig.
6, the designed FA position pattern codebook aided FA-IM
system yield a enhancement in BER performance compared
to its counterpart employing random codebook. Furthermore,
the magnitude of this performance improvement gradually
increases with an increase of A, where A is the number of
possible FA position patterns, as evidenced by the results.
Specifically, in the case of Nt = 2, P = 4 and L = 30
(i.e., A = 6), the designed codebook aided scheme provides
0.6 dB SNR gain compared to the random codebook aided
FA-IM scheme at BER = 10−5. In contrast, it offers 1 dB
SNR gain under the condition of Nt = 2, P = 16 and L = 30
(i.e., A = 120).

Fig. 7 compares the BER performance of the FA-IM and
FA-VBLAST schemes under the same transmission rate5. Both
schemes use optimal ML detector. In the case of 8 bpcu, we
set the simulation parameter as Nt = 3, P = 8, Nr = 4 and
BPSK for the proposed FA-IM scheme, and Nt = 4, Nr = 4
and 4QAM for the FA-VBLAST scheme. Compared to the FA-
VBLAST scheme, the proposed FA-IM scheme exhibits worse
error performance in the low SNR region, this is attributes to
the inaccurate estimation of the FA position pattern. However,
the proposed FA-IM scheme shows better error performance
than FA-VBLAST at SNR > 8 dB. Specifically, it can provide
nearly 3 dB SNR gain at BER = 10−4. This is due to less
estimation errors by employing the BPSK modulation.

5The existing literature on FA-assisted MIMO systems mainly focuses on
optimizing FA positions to achieve higher capacity or beamforming gains.
However, no existing works have considered the BER performance, which
reveals the practicality of the schemes. To bridge this gap, we compare the
BER performance of the proposed FA-IM and the conventional FA-VBLAST
schemes, where the simulation setup strictly follows the work in [8], [11],
[12].
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Fig. 6. BER performance comparison of the proposed FA-IM scheme with
designed FA position codebook and random FA position pattern codebook:
(a). P = 4, Nt = 2, Nr = 4, 4QAM; (b). P = 16, Nt = 2, Nr = 16,
8QAM.
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Fig. 7. BER performance comparisons between the proposed FA-IM and
FA-VBLAST schemes under the same transmission rate (i.e., 6 and 8 bpcu).

Fig. 8 examines the effect of channel estimation errors
on the BER performance of the FA-IM and FA-VBLAST
schemes. To obtain the same transmission rate of 6 bpcu, we
set Nt = 2, P = Nr = 4 and 4QAM for the proposed
FA-IM, and Nt = 3, Nr = 4 and 4QAM for the FA-
VBLAST scheme. Here, the imperfect channel can be modeled
as Ĥ =

√
1− ξ2H + ξ∆H, where ∆H obeys the same

distribution as H, and ξ is the error coefficient. Note that the
performance of the perfect CSI scenario (i.e., ξ = 0) is also
included for the purpose of facilitating comparative analysis.
As seen from Fig. 8, the proposed FA-IM exhibits resilience
against channel estimation errors for values of ξ ≤ 0.1.
Compared to the FA-VBLAST scheme, the proposed FA-IM
scheme exhibits better robustness. More specifically, at a BER
value of 10−3, the SNR deterioration of the proposed FA-IM
scheme is 1.2 dB for ξ = 0.1 compared to the ideal CSI
case. Notably, for the FA-VBLAST scheme, the degradation
increases to 2.5 dB, a disparity that is markedly higher than
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Fig. 9. BER performance of the proposed FA-IM scheme with the proposed
low-complexity detector under different SE configurations.

that observed with FA-IM. Consequently, we can conclude
that the proposed FA-IM scheme is more robust to channel
estimation errors compared to the FA-VBLAST scheme.

Fig. 9 compares the detection performance between the
proposed efficient sparse Bayesian and the original sparse
Bayesian detectors. For these two detectors, we set the max-
imum number of iterations as Tmax = 10. In addition,
the parameter ψt for pruning in the proposed detector is
set to ψ1 = ... = ψt = ... = ψTb

= 2 and Tb = 5. Other
parameters are set as (Nt, P,Nr,M) = (4, 20, 20, 4) and
(Nt, P,Nr,M) = (6, 20, 20, 4) to achieve 20 bpcu and 27
bpcu date rate, respectively. As shown in Fig. 9, the proposed
detector exhibits worse BER performance in the low SNR
region compared to the original sparse Bayesian detector.
Precisely, during the pruning process, the influence of noise
may lead to the discard of elements in the hyperparameter
vector that correspond to active FA positions. As the SNR
increases, the pruning process becomes increasingly accurate,
thus offering considerable SNR gains over that of the original

one. Specifically, the proposed detector provides 1.8 dB SNR
gain compared to the original sparse Bayesian detector at
BER = 10−5 when date rate is equal to 20 bpcu. The error
performance enhancement comes from the accurate pruning
process. To be specific, zeros are the optimal solutions for
the inactive FA positions, it means that the accurate pruning
process makes the elements in the hyperparameter vector
associated with inactive FA positions arrive at the optimal
solution in advance. Consequently, we can conclude that
the proposed detector not only facilitates the computational
complexity reduction, but also contributes to an enhancement
in BER performance as the SNR increases.

VI. CONCLUSION

In this paper, we proposed a novel transmission scheme for
FAs-assisted MIMO system, namely FA-IM, to achieve SE
performance enhancement by exploiting the benefits of the IM
technique. Subsequently, a FA position pattern codebook de-
sign strategy was presented to enhance the error performance
by fully utilizing the effective channel gains. Then, a low-
complexity efficient sparse Bayesian detector was proposed,
which is amenable to the high SE FA-IM system. Then,
the SE performance and the upper bound for ABEP were
analyzed. Simulation results demonstrated the superiority of
the proposed FA-IM scheme over FA-VBLAST scheme.

APPENDIX A
PROOF OF LEMMA 1

According to the estimation of FA position pattern, the
variable Z can be divided into two categories

Z =


∥∥∥∥ Nt∑
k=1

h(tΩIk
)(sk − ŝk)

∥∥∥∥2, I = Î∥∥∥∥ Nt∑
k=1

(
h(tΩIk

)sk − h(tΩÎk
)ŝk

)∥∥∥∥2, I ≠ Î
. (42)

In the case of I = Î, Z can be simplified as

Z = |sk − ŝk|2
∥∥∥∥∑Nt

k=1
h(tΩIk

)

∥∥∥∥2
= |sk − ŝk|2

∥∥∥∥∥
Nt∑
k=1

FHΞg(tΩIk
)

∥∥∥∥∥
2

= |sk − ŝk|2
∣∣∣∣∣
Nt∑
k=1

FHg(tΩIk
)

∣∣∣∣∣
2

∥Ξ∥2.

(43)

In the case of I ≠ Î, Z can be represented as

Z =

∥∥∥∥∥
Nt∑
k=1

(
h(tΩIk

)sk − h(tΩÎk
)ŝk

)∥∥∥∥∥
2

=

∥∥∥∥∥
Nt∑
k=1

(
FHΞg(tΩIk

)sk − FHΞg(tΩÎk
)ŝk

)∥∥∥∥∥
2

=

∣∣∣∣∣FH
Nt∑
k=1

(
(g(tΩIk

)sk − g(tΩÎk
)ŝk)

)∣∣∣∣∣
2

∥Ξ∥2.

(44)
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Since Ξ is the PRM, whose elements follow the CSCG
distribution, i.e., Ξ = diag(α1, ..., αl, ..., αL) ∈ CL×L, with
αl ∼ CN (0, 1/L), Z follows the generalized central Chi-
square distribution with 2L degree of freedom. The MGF of
Z is given by

MZ(ε) =

(
1− 2Lε

B

)−L

, (45)

where

B =


|sk − ŝk|2

∣∣∣∣ Nt∑
k=1

FHg(tΩIk
)

∣∣∣∣2, I = Î∣∣∣∣FH
Nt∑
k=1

(
(g(tΩIk

)sk − g(tΩÎk
)ŝk)

)∣∣∣∣ , I ≠ Î
.

(46)
By substituting (45) to (34), we have

P{(I, s) → (Î, ŝ)}

≈ 1

12

(
1 +

L

2N0B

)−L

+
1

4

(
1 +

2L

3N0B

)−L

.
(47)

By taking expectation over enough number of channel real-
izations, the UPEP expression can be obtained as in (35).

APPENDIX B
PROOF OF LEMMA 2

The channel in (5) can be rewritten as

h(tΩIk
) = FHΞg(tΩIk

) =

L∑
l=1

αlgla(θr,l, ϕr,l), (48)

where gl = e
j 2π

λ ρt,l(tΩIk
) and a(θr,l, ϕr,l) is the lth row of the

FRM F, denoted as

a(θr,l, ϕr,l) = [ρr,l(r1,1), ρr,l(r1,2), ..., ρr,l(rN1,N2)]
T

= [ejkr(θr,l,ϕr,l)r1,1 , ejkr(θr,l,ϕr,l)r1,2 , ..., ejkr(θr,l,ϕr,l)rN1,N2 ]T .
(49)

As L→ ∞, it follows the central limit theorem (CLT) that

h(tΩIk
) ∼ N (0,

1

L
R), (50)

where the normalized spatial correlation matrix R ∈ CNr×Nr

is calculated as

R = LE{h(tΩIk
)h(tΩIk

)H} = E{a(θr,l, ϕr,l)a(θr,l, ϕr,l)H}.
(51)

The (i, j)th element in R is given by

[R]i,j = E{a(θr,l, ϕr,l)(i)a(θr,l, ϕr,l)(j)H}
= E{ejkr(θr,l,ϕr,l)(rm,n−rp,q)}
= E{ej 2π

λ ((xr,m−xr,p) cos θr,l sinϕr,l+(yr,n−yr,n) sin θr,l)}
,

(52)
where i, j ∈ {1, 2, ..., Nr} and satisfies the relation with the
pairs (m,n) and (p, q) as i = (m − 1)N1 + n and j = (p −
1)N1 + q, m, p ∈ {1, 2, ..., N1} and n, q ∈ {1, 2, ..., N2}.

In isotropic scattering environments, the multi-path com-
ponents is uniformly distributed over the half-space in front
of the UPA, which yields the AoAs following the probability
density function (PDF)

f(θr,l, ϕr,l) =
cos θr,l
2π

, θr,l ∈ [−π
2
,
π

2
], ϕr,l ∈ [−π

2
,
π

2
]. (53)

Therefore, the expression in (52) can be further calculated
as

[R]i,j =

π/2∫
−π/2

π/2∫
−π/2

ej
2π
λ ∥rm,n−rp,q∥ sin θr,lf(θr,l, ϕr,l)dθr,ldϕr,l

=

π/2∫
−π/2

ej
2π
λ ∥rm,n−rp,q∥ sin θr,l

cos θr,l
2π

dθr,l

=
sin( 2πλ ∥rm,n − rp,q∥)

2π
λ ∥rm,n − rp,q∥

.

(54)
The variable Z follows the generalized central Chi-square

distribution with 2Nt degree of freedom. The MGF of Z is

MZ(ε) =

[
det

(
INr

− 2Lε

R|sk − ŝk|2

)]−Nt

. (55)

The UPEP expression can be obtained as in (37) by substitut-
ing (55) to (34).
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