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Abstract—To support complex communication scenarios in
next-generation wireless communications, this paper focuses on
a generalized MIMO (GMIMO) with practical assumptions,
such as massive antennas, practical channel coding, arbitrary
input distributions, and general right-unitarily-invariant channel
matrices (covering Rayleigh fading, certain ill-conditioned and
correlated channel matrices). The orthogonal/vector approximate
message passing (OAMP/VAMP) receiver has been proved to be
information-theoretically optimal in GMIMO, but it is limited to
high-complexity linear minimum mean-square error (LMMSE).
To solve this problem, a low-complexity memory approximate
message passing (MAMP) receiver has recently been shown to
be Bayes optimal but limited to uncoded systems. Therefore, how
to design a low-complexity and information-theoretically optimal
receiver for GMIMO is still an open issue. To address this issue,
this paper proposes an information-theoretically optimal MAMP
receiver and investigates its achievable rate analysis and optimal
coding principle. Specifically, due to the long-memory linear
detection, state evolution (SE) for MAMP is intricately multi-
dimensional and cannot be used directly to analyze its achievable
rate. To avoid this difficulty, a simplified single-input single-
output (SISO) variational SE (VSE) for MAMP is developed
by leveraging the SE fixed-point consistent property of MAMP
and OAMP/VAMP. The achievable rate of MAMP is calculated
using the VSE, and the optimal coding principle is established
to maximize the achievable rate. On this basis, the information-
theoretic optimality of MAMP is proved rigorously. Furthermore,
the simplified SE analysis by fixed-point consistency is general-
ized to any two iterative detection algorithms with the identical
SE fixed point. Numerical results show that the finite-length
performances of MAMP with practical optimized low-density
parity-check (LDPC) codes are 0.5 ∼ 2.7 dB away from the
associated constrained capacities. It is worth noting that MAMP
can achieve the same performances as OAMP/VAMP with 4‰
of the time consumption for large-scale systems.

Index Terms—Memory approximate message passing
(MAMP), generalized MIMO (GMIMO), low complexity,
capacity optimality, coding principle, orthogonal/vector
approximate message passing (OAMP/VAMP).

I. INTRODUCTION

With the rapid development of wireless communications,
6G networks are expected to provide performance superior to
5G and satisfy emerging services and applications [1], [2],
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such as extended reality services [3], multimedia communi-
cations [4], and mobile unmanned aerial vehicle systems [5].
Accordingly, data types in various application scenarios be-
come more diverse, and practical communication scenarios
are more complex. However, most conventional multiple-input
multiple-output (MIMO) technologies are limited to ideal
communication assumptions, i.e., a limited number of anten-
nas, no coding constraint, Gaussian signaling, channel state
information (CSI) available at the transceiver, and independent
identically distributed (IID) channel matrices, which cannot ef-
fectively support the complex 6G scenarios. Therefore, a more
practical generalized MIMO (GMIMO) [6] is considered in
this paper, including: 1) massive antennas, 2) practical channel
coding and decoding, 3) arbitrary input distributions, 4) CSI
only available at the receiver, and 5) general right-unitarily-
invariant channel matrices, covering Rayleigh fading, certain
ill-conditioned and correlated channel matrices. Meanwhile,
these generalized assumptions bring new challenges to the
design of receivers for GMIMO.

A. Conventional Turbo Receivers

The iterative linear minimum mean-square error receiver,
termed Turbo-LMMSE, has been proved to achieve Gaussian
capacity region of multi-user (MU) MIMO with Gaussian
signaling [7], [8]. Limited by the high-complexity LMMSE,
Turbo-LMMSE is difficult to apply effectively to large-scale
systems. To address this issue, a low-complexity Gaussian
message passing algorithm is proposed and guaranteed to
converge to LMMSE performance [9], [10]. However, these
methods [7]–[10] are limited to ideal Gaussian signaling and
strictly suboptimal for practical discrete signaling, such as
quadrature phase-shift keying (QPSK) and quadrature ampli-
tude modulation (QAM).

B. Advanced AMP-Type Receivers

To solve the difficulty in conventional Turbo receivers,
approximate message passing (AMP)-type receivers have been
rapidly developed and widely used in MIMO receivers [11]–
[14]. AMP is a high-efficient signal recovery algorithm with
a low-complexity matched filter (MF) for arbitrary input
distributions [15], [16]. Remarkably, the asymptotic perfor-
mance of AMP can be evaluated using a scalar recursion
called state evolution (SE) [16], based on which AMP is
proved to be Bayes optimal [17], [18]. However, AMP is
only available for IID channel matrices. For more complex
non-IID channel matrices, AMP performs poorly or even
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diverges [19]–[21]. This severely restricts the application of
AMP in more practical systems. To address the limitation of
AMP, orthogonal/vector AMP (OAMP/VAMP) is developed
in [22], [23] for a wide range of right-unitarily-invariant matri-
ces, employing an LMMSE to mitigate linear interference and
orthogonalization to overcome the correlation problem during
iteration. The Bayes optimality of OAMP/VAMP is proved via
the replica methods in [24], [25], and lately rigorously for a
general class of signal priors and arbitrary unitarily-invariant
measurement matrix A under a “high-temperature” condition
that restricts the range of eigenvalues of A𝑇A in [26], [27].

Although the above AMP-type algorithms [15], [22], [23]
are Bayes optimal, they are limited to uncoded systems and
ignore the effects of channel coding and decoding, leaving
no guarantee of error-free signal recovery. In coded systems,
the achievable rate is a key measurement with asymptoti-
cally error-free recovery. Thus, the maximum achievable rate
is commonly used to denote the information-theoretic (i.e.,
constrained-capacity) optimality of a coded system with fixed
input distribution. For GMIMO with IID channel matrices
and arbitrary input signaling, the achievable rate analysis
and constrained-capacity optimality of AMP are presented
in [28] based on the scalar SE. Specifically, the optimal coding
principle is derived via the perfect matching criterion between
the single-input single-output (SISO) SE transfer functions of
linear detector (LD) and nonlinear detector (NLD). Based on
the mutual information-MMSE (I-MMSE) lemma [29], the
maximum achievable rate of AMP is proved to be equal to
the associated constrained capacity [28]. For general right-
unitarily-invariant channel matrices, OAMP/VAMP is shown
to achieve the constrained capacity of point-to-point (P2P)
GMIMO in [30] and the constrained-capacity region of MU-
GMIMO in [6], respectively. Unlike AMP, since the orthog-
onalizations in LD and NLD destroy the minimum mean-
square error (MMSE) property, it is difficult to calculate the
achievable rate of OAMP/VAMP directly based on I-MMSE
lemma. To overcome this difficulty, a variational SE (VSE) of
OAMP/VAMP is developed by incorporating all orthogonal
operations into the LD [30], based on which the achievable
rate analysis and optimal coding principle can be derived using
I-MMSE lemma. However, due to the high complexity of the
LMMSE, OAMP/VAMP cannot be used effectively for large-
scale systems.

C. Challenges

The information-theoretic optimality of Turbo-LMMSE,
AMP, and OAMP/VAMP receivers is restricted to Gaussian
signaling, IID channel matrices, or high complexity, respec-
tively, which are difficult to apply effectively to large-scale
GMIMO. How to design a low-complexity and information-
theoretic optimal receiver for GMIMO is still an open issue.

A promising low-complexity candidate receiver is memory
AMP (MAMP), which is proved to be Bayes optimal for
uncoded linear systems with arbitrary input signaling and
right-unitarily-invariant matrices [31]. Since MAMP employs
a long-memory MF (LM-MF) to replace the LMMSE of
OAMP/VAMP, its complexity is substantially lower than that

of OAMP/VAMP and comparable to that of AMP. Because
of the correlation between the long-memory inputs, the co-
variances between all input estimations need to be calculated
in the SE of MAMP to evaluate the asymptotic performance.
As a result, the SE transfer functions of MAMP are multi-
dimensional, as opposed to the SISO SE transfer functions of
AMP and OAMP/VAMP, which simply track the update of
estimated variances [16], [22], [23].

Due to the intricately multi-dimensional SE of MAMP, the
existing achievable rate analysis and optimal coding principles
derived via SISO transfer functions [6], [28], [30] are infeasi-
ble to directly extend to MAMP. In addition, the Bayes optimal
MAMP directly combined with a well-designed P2P channel
code still brings a large bit-error rate (BER) performance loss,
which has been demonstrated in numerical results in this paper.
As a result, designing a low-complexity and information-
theoretically optimal MAMP receiver is challenging and of
great practical importance.

D. Contributions
To address the above issue, we propose an information-

theoretically optimal MAMP receiver and study its achievable
rate and optimal coding principle. To avoid the complex multi-
dimensional SE analysis of MAMP, a simplified SISO VSE for
MAMP is derived by leveraging the SE fixed-point consistent
lemma of MAMP and OAMP/VAMP. According to this SISO
VSE, the achievable rate of MAMP is obtained using I-
MMSE lemma. Subsequently, the optimal coding principle of
MAMP is derived with the goal of maximizing the achievable
rate, and the maximum achievable rate equals the constrained
capacity of GMIMO. Therefore, the constrained-capacity op-
timality of MAMP is established. Meanwhile, a more general
theoretical-analysis equivalence theorem is provided, indicat-
ing that two arbitrary iterative detection algorithms with the
identical SE fixed point have the same achievable rates and
optimal coding principle. Moreover, taking the ill-conditioned
and correlated channel matrices as examples, we compare
the maximum achievable rates of MAMP and the existing
cascading MAMP (CAS-MAMP, i.e., with separate MLD
and NLD). Furthermore, a kind of capacity-approaching low-
density parity-check (LDPC) code is designed for MAMP in
GMIMO with Rayleigh fading, ill-conditioned, and correlated
channel matrices, respectively. The main contributions of this
paper are summarized as follows.

1) A simplified SISO VSE for MAMP is proposed to ana-
lyze its achievable rate, and the optimal coding principle
is derived with the aim of maximizing the achievable rate.

2) The constrained-capacity optimality of MAMP is proved,
i.e., the maximum achievable rate of MAMP is equal to
the constrained capacity of GMIMO.

3) A general equivalence theorem is provided to validate that
any two iterative detection algorithms with the identical
SE fixed point have the same achievable rates and optimal
coding principle.

4) A kind of practical LDPC code is designed for MAMP,
whose theoretical decoding thresholds are about 0.3 dB
away from the associated constrained capacities. Numer-
ical results show that the finite-length performances of
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MAMP with optimized LDPC codes are significantly
superior to those of MAMP with well-designed P2P
LDPC codes. Furthermore, MAMP only takes 4‰ of the
execution time of the state-of-the-art OAMP/VAMP to
achieve the same performances in large-scale systems.

In summary, this is the first work to provide a low-
complexity and constrained-capacity optimal receiver for
coded GMIMO, which is also the first time to apply MAMP
to GMIMO. For simplicity, this paper considers P2P-GMIMO,
termed GMIMO, which can be directly extended to MU-
GMIMO similarly as [6].

E. Connection to Existing Works

1) Other related low-complexity AMP-type receivers: Re-
cently, a low-complexity convolutional AMP (CAMP) has
been proposed in [32], which replaces the Onsager term of
AMP with a convolution of all preceding messages. In contrast
to MAMP, CAMP converges slowly and even easily diverges
for the channel matrices with high-condition numbers, making
it difficult to apply to complex communication scenarios. In
addition, a sufficient statistic MAMP (SS-MAMP) has been
proposed in [33] to accelerate the convergence of MAMP
in uncoded systems. Therefore, the theoretical results of this
paper can be extended to SS-MAMP as a candidate for a
constrained-capacity optimal receiver with faster convergence.

2) Differences from the Turbo-LMMSE receiver in [7], [8]:
The Turbo-LMMSE receiver has been proved to be capacity-
optimal for MIMO systems with ideal Gaussian signaling.
In contrast, the constrained-capacity optimal MAMP receiver
proposed in this paper are available for GMIMO systems with
arbitrary signaling distribution.

3) Differences from the capacity optimality of AMP and
OAMP/VAMP receivers in [6], [28], [30]: The constrained-
capacity optimality of AMP with low complexity is limited
to IID channel matrices. Although OAMP/VAMP has been
proved to be constrained-capacity optimal for more general
right-unitarily-invariant channel matrices, it is difficult to apply
to large-scale systems due to high-complexity LMMSE. In
contrast to AMP and OAMP/VAMP, the proposed MAMP is
low-complexity and proved to be constrained-capacity optimal
for right-unitarily-invariant channel matrices in this paper.
Furthermore, different from the simple SISO SE of AMP
and OAMP/VAMP, the SE of MAMP is intricately multi-
dimensional, making it infeasible to directly extend the ex-
isting analytical methods to MAMP.

4) Differences from the Bayes optimal MAMP receiver
in [31]: The Bayes optimal MAMP receiver only focuses
on uncoded systems, ignoring the effect of channel coding
and decoding with no guarantee of asymptotically error-free
recovery. Furthermore, since the SE of MAMP is multi-
dimensional, it cannot be utilized directly to analyze the
achievable rate and optimal coding principle of MAMP. To
overcome this difficulty, a simplified SISO VSE for MAMP is
proposed in this paper to derive its achievable rate and opti-
mal coding principle. On this basis, the information-theoretic
optimality of MAMP is proved rigorously. The numerical
results of this paper demonstrate that the proposed MAMP

with practical optimized LDPC codes can achieve capacity-
approaching performance, while the Bayes optimal MAMP
with well-designed P2P LDPC codes still brings a significant
performance loss.

F. Notations

Bold uppercase (lowercase) letters denote matrices (column
vectors). [·]T, [·]H, and [·]−1 denote the transpose, conjugate
transpose, and inverse operations, respectively. I and 0 are
identity matrix and zero matrix or vector. min(S), max(S),
and |S| denote the the minimum value, maximum value, and
cardinality of set S, accordingly. Denote ∥a∥ for the ℓ2-
norm of vector a, tr(A) for the trace of matrix A, (·)𝜏 for
the 𝜏-th power of the value or matrix in the parentheses,
E{·} for the expectation over all random variables included
in the brackets, E{𝑎 |𝑏} for the expectation of 𝑎 conditional
on 𝑏, mmse{a|b} for E{(𝑎 − 𝐸{𝑎 |𝑏})2 |𝑏}, CN(µ,𝚺) for
the circularly-symmetric Gaussian distributions with mean µ
and covariance 𝚺, and ⟨A𝑀×𝑁 | B𝑀×𝑁 ⟩ ≡ 1

𝑁
AH

𝑀×𝑁B𝑀×𝑁 .
𝑋 ∼ 𝑌 represents that 𝑋 follows the distribution 𝑌 . a.s.

= denotes
almost sure equivalence. A matrix is said to be column-wise
independent identically distributed Gaussian (IIDG) and row-
wise joint-Gaussian (CIIDG-RJG) if its each column is IIDG
and its each row is joint Gaussian.

G. Paper Outline

This paper is organized as follows. Section II presents
the system model of GMIMO. Section III proposes an
MAMP receiver in coded GMIMO. The coding principle
and information-theoretic optimality of MAMP are derived in
Section IV. Numerical simulations are provided in Section V
and the conclusion is presented in Section VI.

II. SYSTEM MODEL AND CHALLENGES

In this section, the model and assumptions of GMIMO
systems are provided. Then, the key challenges of GMIMO
receiver design are presented.

A. System Model

Fig. 1 illustrates an uplink GMIMO system with an 𝑁-
antennas transmitter and one receiver equipped with 𝑀 anten-
nas. In the transmitter, message sequence d is encoded by a
forward error control (FEC) encoder. After modulation, length-
𝑁𝐿 modulated sequence x is generated and transformed
into 𝑁 sequences {𝑥𝑙𝑛}𝐿𝑙=1, 𝑛 = 1, ..., 𝑁, by serial-to-parallel
conversion, in which each entry of x is taken from a discrete
constellation set S. At the 𝑙-th time slot, symbol sequence
x𝑙 = [𝑥𝑙1, ..., 𝑥

𝑙
𝑁
]T is transmitted to the channel, satisfying the

power constraint 1
𝑁

E{∥x𝑙 ∥2} = 1.
The receiver obtains signal y𝑙 = [𝑦𝑙1, ..., 𝑦

𝑙
𝑀
]T given by

y𝑙 = Ax𝑙 + n𝑙 , 𝑙 = 1, . . . , 𝐿, (1)

where A ∈ C𝑀×𝑁 is a channel matrix and n𝑙 ∼ CN(0, 𝜎2I)
is an additive white Gaussian noise (AWGN) vector. Without
loss of generality, we assume 1

F tr{AHA} = 1 with F =
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Fig. 1. An uplink GMIMO system: an 𝑁 -antennas transmitter and an 𝑀-antennas iterative receiver consisting of an LD and an NLD. S/P and P/S denote
serial-to-parallel and parallel-to-serial conversion, respectively.

max{𝑀, 𝑁}, and define the signal-to-noise ratio (SNR) as
𝑠𝑛𝑟 = 𝜎−2.

Based on y𝑙 , an iterative receiver is implemented to recover
message sequence d, which consists of an LD and an NLD.
The LD corresponds to the linear constraint (1), and the NLD,
consisting of a demodulator and an a-posteriori probability
(APP) decoder, corresponds to the FEC coding constraint
x ∈ C (C is the set of codewords). To be specific, as shown
in Fig. 1, based on y𝑙 and x𝑙

𝑡 = [𝑥𝑙,1𝑡 , · · · , 𝑥𝑙,𝑁𝑡 ]T, the output
estimation of LD is r𝑙𝑡 = [𝑟 𝑙,1𝑡 , · · · , 𝑟 𝑙,𝑁𝑡 ]T. After parallel-
to-serial conversion, r𝑡 = [r1T

𝑡 , · · · , r𝐿T
𝑡 ]T is input to the

NLD at 𝑡-th iteration and then the updated estimation x𝑡+1 =

[x1T

𝑡+1, · · · ,x
𝐿T

𝑡+1]
T is fed back to the LD. The iterative process

stops when message sequence d̂ is recovered successfully or
the maximum number of iterations is reached.

B. Assumptions and Challenges of GMIMO

1) Assumptions: The GMIMO system satisfies the follow-
ing assumptions.

• There are a large number of transmit antennas and receive
antennas, i.e., 𝑁, 𝑀 → ∞ and channel load 𝛽 = 𝑁/𝑀 is
fixed.

• The entries of signal x are taken from an arbitrary distri-
bution (e.g., QPSK, QAM, Gaussian, Bernoulli-Gaussian,
etc.).

• Channel matrix A is right-unitarily-invariant, covering
various types of channel matrices, e.g., IID random matri-
ces (i.e., Rayleigh fading matrices), certain ill-conditioned
and correlated matrices, which can be utilized to charac-
terize complex practical communication scenarios1 [6],
[11], [34]. Let the SVD of A be A = U𝚲V H, where
U ∈ C𝑀×𝑀 and V ∈ C𝑁×𝑁 are unitary matrices, and
𝚲 ∈ C𝑀×𝑁 is a rectangular diagonal matrix. U𝚲 and
V are independent, and V is Haar-distributed (uniformly
distributed over all unitary matrices) [35].

• Channel matrix A is only available to the receiver but
unknown to the transmitter.

2) Challenges: The above general assumptions bring some
new challenges to the design of GMIMO receiver.

• How to achieve the information-theoretically optimal
performance of GMIMO with low complexity is still

1In practice, MAMP is not limited to right-unitarily-invariant channel
matrices. For a given channel matrix, if the simulated MSE of MAMP can be
accurately predicted by SE, the proposed achievable rate analysis and coding
principle are also applicable to this given channel matrix.

an open issue. Note that the OAMP/VAMP receiver has
been proved to be constrained-capacity optimal for P2P-
GMIMO in [30] and for MU-GMIMO in [6], respectively.
However, in the LD of OAMP/VAMP, a high-complexity
LMMSE detection is utilized, making it difficult to apply
effectively for practical large-scale systems. To address
this issue, MAMP is proposed recently in [31], which
employs an alternative LM-MF in the LD to suppress
linear interference. Meanwhile, MAMP has been shown
to achieve Bayes optimality for uncoded systems with
much lower complexity than OAMP/VAMP, but ignores
the effect of channel coding and decoding.

• The design principle of practical FEC codes for MAMP is
still unclear. Since the memory is involved in local detec-
tors, the SE of MAMP is intricately multi-dimensional.
However, the existing analytical methods are all based
on SISO SE (e.g., the achievable rate analysis and coding
principle of AMP in [28] and OAMP/VAMP in [6], [30]).
Therefore, it is infeasible to extend the existing methods
to analyze MAMP directly. As a result, how to obtain
the coding principle of practical FEC codes for MAMP
is still an open issue.

III. MAMP RECEIVER AND STATE EVOLUTION

In this section, we firstly introduce the construction of
MAMP and then present the MAMP receiver and its state
evolution for GMIMO.

A. MAMP Construction

Since the detection process of (1) in each time slot is the
same, the time index 𝑙 is omitted in the rest of this paper for
simplicity. Then, the received signal in (1) can be rewritten
as:

Linear constraint Γ : y = Ax + n, (2a)
Code constraint ΦC : x ∈ C and 𝑥𝑖 ∼ 𝑃𝑋 (𝑥𝑖),∀𝑖. (2b)

Based on (2), an MAMP can be constructed based on a
general memory iterative process (MIP) [33] below.

Definition 1 (Memory Iterative Process (MIP)): An MIP
involves a memory LD (MLD) and a memory NLD (MNLD)
given by:

MLD : r𝑡 = 𝛾𝑡 (X𝑡 ) = Q𝑡y +∑𝑡
𝑖=1P𝑡 ,𝑖x𝑖 , (3a)

MNLD : x𝑡+1 = 𝜙𝑡 (R𝑡 ), (3b)
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where 𝑡 starts from 1, X𝑡 = [x1, ...,x𝑡 ], R𝑡 = [r1, ..., r𝑡 ],
and Q𝑡A and P𝑡 ,𝑖 are polynomials in AHA. Without loss
of generality, the norms of Q𝑡 and P𝑡 ,𝑖 are assumed as
finite, such that 𝛾𝑡 (·) is Lipschitz-continuous [31]. Moreover,
the conventional non-memory iterative process (e.g., AMP,
OAMP/VAMP) is a special case of MIP, which includes 𝛾𝑡 (x𝑡 )
and 𝜙𝑡 (r𝑡 ).

Let X = x · 1T with an all-ones vector 1 of proper size
and define the estimation errors G𝑡 = [g1, ..., g𝑡 ] and F𝑡 =

[f1, ..., f𝑡 ] as

G𝑡 = R𝑡 −X , F𝑡 = X𝑡 −X , (4)

with zero means and covariance matrices:

V
𝛾
𝑡 ≡ ⟨G𝑡 | G𝑡 ⟩ , V

𝜙
𝑡 ≡ ⟨F𝑡 | F𝑡 ⟩ . (5)

Definition 2 (MAMP): The MIP is referred to as an MAMP
when the following orthogonal constraints are satisfied: for
𝑡 ≥ 1,

⟨g𝑡 | x⟩
a.s.
= 0, ⟨g𝑡 | F𝑡 ⟩

a.s.
= 0, ⟨f𝑡+1 | G𝑡 ⟩

a.s.
= 0. (6)

Different from a non-memory iterative process (e.g.,
OAMP/VAMP), the “full orthogonality” in (6) is necessary for
MAMP to make the current output estimation error orthogonal
to all preceding input estimation errors in each estimation.
Based on the orthogonality, the following lemma is given to
ensure the accuracy of SE for MAMP.

Lemma 1 (Asymptotically IID Gaussianity): Assume that
{𝛾𝑡 (·)} is Lipschitz-continuous and {𝜙𝑡 (·)} is separable-
and-Lipschitz-continuous. With the orthogonality in (6), the
asymptotically IID Gaussianity of MAMP is given as follows:
for 1 ≤ 𝑡′ ≤ 𝑡,

𝑣
𝛾

𝑡,𝑡 ′
a.s.
= ⟨𝛾𝑡 (X +Z

𝜙
𝑡 ) − x | 𝛾𝑡 ′ (X +Z

𝜙

𝑡 ′ ) − x⟩, (7a)

𝑣
𝜙

𝑡+1,𝑡 ′+1
a.s.
= ⟨𝜙𝑡 (X +Z

𝛾
𝑡 ) − x | 𝜙𝑡 ′ (X +Z

𝛾

𝑡 ′ ) − x⟩, (7b)

where {𝑣𝛾
𝑖, 𝑗
} and {𝑣𝜙

𝑖, 𝑗
} are the elements of V

𝛾
𝑡 and V

𝜙
𝑡

respectively, Z
𝛾
𝑡 = [z𝛾

1 , ..., z
𝛾
𝑡 ] and Z

𝜙
𝑡 = [z𝜙

1 , ..., z
𝜙
𝑡 ] are

CIIDG-RJG and independent of x. Moreover, ⟨Z𝛾
𝑡 | Z𝛾

𝑡 ⟩ =

V
𝛾
𝑡 and ⟨Z𝜙

𝑡 | Z
𝜙
𝑡 ⟩ = V

𝜙
𝑡 . In detail, z

𝛾
𝑡 ∼ CN(0, 𝑣𝛾𝑡,𝑡I)

with E{z𝛾
𝑡 (z

𝛾

𝑡 ′ )H} = 𝑣
𝛾

𝑡,𝑡 ′I and z
𝜙
𝑡 ∼ CN(0, 𝑣𝜙𝑡,𝑡I) with

E{z𝜙
𝑡 (z

𝜙

𝑡 ′ )H} = 𝑣
𝜙

𝑡,𝑡 ′I .
Based on Definitions 1 and 2, a construction for MAMP is

presented in the following lemma.
Lemma 2 (MAMP Construction): Given a general 𝛾𝑡 (·)

below
�̂�𝑡 (X𝑡 ) = Q𝑡y +∑𝑡

𝑖=1P𝑡 ,𝑖x𝑖 , (8)

and an arbitrary differentiable, separable and Lipschitz-
continuous 𝜙𝑡 (·), we can construct an MAMP as follows:

MLD : 𝛾𝑡 (X𝑡 ) = 1
𝜀
𝛾
𝑡

(�̂�𝑡 (X𝑡 ) −X𝑡p𝑡 ), (9a)

MNLD : 𝜙𝑡 (R𝑡 ) = 1
𝜀
𝜙
𝑡

(𝜙𝑡 (R𝑡 ) −R𝑡w𝑡 ), (9b)

where

𝜀
𝛾
𝑡 = 1

𝑁
tr{Q𝑡A}, (10a)

p𝑡 = [ 1
𝑁

tr{P𝑡 ,1} · · · 1
𝑁

tr{P𝑡 ,𝑡 }]T, (10b)

w𝑡 = [E{ 𝜕�̂�

𝜕𝑟1
} · · ·E{ 𝜕�̂�

𝜕𝑟𝑡
}]T, (10c)

and 𝜀
𝜙
𝑡 is an arbitrary constant and generally determined by

minimizing the MSE of 𝜙𝑡 (·). Meanwhile, the normalized
parameters {𝜀𝛾𝑡 } and orthogonal parameters {p𝑡 ,w𝑡 } are de-
signed to ensure the orthogonality in (6).

B. MAMP Receiver and State Evolution

For coded GMIMO, 𝜙𝑡 (R𝑡 ) in (9b) corresponds to the
code constraint ΦC . Note that the output of the FEC decoder
depends only on current input estimations r𝑡 at the 𝑡-th
iteration. As a result, 𝜙𝑡 (R𝑡 ) and local 𝜙𝑡 (R𝑡 ) in (9b) are
degraded to the following non-memory form:

𝜙𝑡 (r𝑡 ) ≡ 1
𝜀
𝜙
𝑡

(𝜙𝑡 (r𝑡 ) − 𝑤𝑡r𝑡 ). (11)

Meanwhile, a damping strategy is employed for the output of
𝜙𝑡 (r𝑡 ) to guarantee and improve MAMP convergence while
also preserving orthogonality, as demonstrated in [31]. The
detailed process of MAMP receiver in GMIMO is given as
follows.

1) MAMP Receiver: Based on Lemma 2 and (11), Fig. 2(a)
shows the MAMP receiver for coded GMIMO, i.e., starting
with 𝑡 = 1 and X1 = 0,

MLD : r𝑡 = 𝛾𝑡 (X𝑡 ) = 1
𝜀
𝛾
𝑡

(�̂�𝑡 (X𝑡 ) −X𝑡p𝑡 ), (12a)

NLD : x𝑡+1 = 𝜙𝑡 (r𝑡 ) = [X𝑡 , 𝜙𝑡 (r𝑡 )] · ζ𝑡+1, (12b)

where X𝑡 = [x1, ...,x𝑡 ], and damping vector ζ𝑡+1 =

[𝜁𝑡+1,1, ..., 𝜁𝑡+1,𝑡+1]T with
∑𝑡+1

𝑖=1 𝜁𝑡+1,𝑖 = 1 is utilized to optimize
the linear combination of all the estimations {x𝑡 }.

In (12a), the local LM-MF function of 𝛾𝑡 (X𝑡 ) is

�̂�𝑡 (X𝑡 ) = AH�̃�𝑡 (X𝑡 ), (13)

with
�̃�𝑡 (X𝑡 ) = 𝜃𝑡B�̃�𝑡−1 (X𝑡−1) + 𝜉𝑡 (y −Ax𝑡 ), (14)

where �̃�0 (X0) = 0, B = 𝜆†I−AAH with 𝜆† = (𝜆min+𝜆max)/2,
𝜆min and 𝜆max denote the minimal and maximal eigenvalues 2

of AAH, and 𝜆† is utilized to calculate relaxation parameters
{𝜃𝑡 } to ensure and improve the convergence of the MAMP
receiver [31, Section V-A]. In addition, weights {𝜉𝑡 } can
be optimized to further accelerate the convergence speed
of MAMP [31, Section V-B]. Noting that when 𝑡 → ∞,
�̃�𝑡 (X𝑡 ) = �̃�𝑡−1 (X𝑡−1) = 𝜉𝑡 (I − 𝜃𝑡B)−1 (y − Ax𝑡 ) in (14),
the output of �̂�𝑡 (X𝑡 ) converges to the LMMSE estimation in
the LD of OAMP/VAMP [30], i.e.,

�̂�𝑡 (X𝑡 ) = AH�̃�𝑡 (X𝑡 ) → 𝜉𝑡
𝜃𝑡
AH [( 1

𝜃𝑡
−𝜆†)I+AAH]−1 (y−Ax𝑡 ).

In (12b), the local MMSE-optimal estimation function of
𝜙𝑡 (r𝑡 ) is given by

𝜙𝑡 (r𝑡 ) ≡ E{x|r𝑡 ,ΦC}, (15)

which corresponds to the demodulation and APP channel
decoding [11, Equation(10)]. It is noted that 𝜙𝑡 (·) is assumed
to be Lipschitz-continuous in this paper.

2The detailed discussion on finding 𝜆min and 𝜆max is presented in Subsec-
tion V-F.
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(b) Transfer functions: 𝛾SE and �̄�SE are the MSE transfer functions of 𝛾𝑡 and �̄�𝑡 , respectively.

Fig. 2. Illustration of the MAMP receiver and its state evolution.

2) State Evolution (SE): Since the LM-MF is employed
in MLD, a covariance-matrix SE is required to evaluate the
asymptotic performance. Due to the right-unitarily-invariant
property of A, the IID Gaussianity property in Lemma 1 are
valid, based on which the asymptotic MSE performance of
MAMP can be predicted by the MSE functions 𝛾SE (·) and
𝜙SE (·) in the SE, i.e.,

MLD : V
𝛾
𝑡 = 𝛾SE (V �̄�

𝑡 ), (16a)

NLD : V
�̄�

𝑡+1 = 𝜙SE (V 𝛾
𝑡 ), (16b)

where V
𝛾
𝑡 and V

�̄�
𝑡 are the covariance matrices defined in

(5), and 𝛾SE (·) and 𝜙SE (·) correspond to constraints (12a)
and (12b), respectively. Moreover, Fig. 2(b) gives a graphical
illustration of the SE in (16). Particularly, although the NLD
is non-memory, the covariance matrix V

�̄�

𝑡+1 in (16b) still needs
to be calculated as the input of the MSE function of MLD,
which is obtained by the damping operation of V �̄�

𝑡 and v
𝜙

𝑡+1,
i.e., the (𝑡 + 1)-th row of V �̄�

𝑡+1 is

(v �̄�

𝑡+1)
T = 𝜁H

𝑡+1V𝑡+1 [I(𝑡+1)×𝑡 𝜁𝑡+1] (17)

with the error covariance matrix of {x1, ...,x𝑡 , 𝜙𝑡 (r𝑡 )} defined
as

V𝑡+1 ≡


V

�̄�
𝑡

𝑣
𝜙

1,𝑡+1
...

𝑣
𝜙

𝑡+1,1 · · · 𝑣
𝜙

𝑡+1,𝑡+1

 (𝑡+1)×(𝑡+1)

, (18)

where v
�̄�

𝑡+1 = [𝑣 �̄�
𝑡+1,1, ..., 𝑣

�̄�

𝑡+1,𝑡+1]
T, 𝑣

𝜙

𝑡+1,𝑡 ′
≡ 1

𝑁
E{[𝜙𝑡 (r𝑡 ) −

x]Hf𝑡 ′ }, and the corresponding covariance vector v
𝜙

𝑡+1 =

[𝑣𝜙
𝑡+1,1, ..., 𝑣

𝜙

𝑡+1,𝑡+1]
T can be calculated by the Monte Carlo

method (see details in [31, Appendix C and Appendix H]).
Note: The SE holds for MAMP receiver under the as-

sumptions of Lipschitz-continuous �̂�𝑡 (·) and 𝜙𝑡 (·), which
correspond to linear constraint and code constraint in coded
GMIMO, respectively. Since �̂�𝑡 (·) in (13) and LDPC decoder
have been proved to be Lipschitz-continuous respectively in
[31] and [36, Appendix B], the SE holds for MAMP receiver
with LDPC decoding 𝜙𝑡 (·). Therefore, a kind of LDPC code is
designed for MAMP receiver in simulation results. Although
there is no strict proof for other types of FEC codes, we
conjecture that 𝜙𝑡 (·) is also Lipschitz-continuous for the
majority of FEC codes (e.g., Turbo code, Polar code, Reed-
solomon (RS) code, etc.).

IV. CODING PRINCIPLE AND INFORMATION-THEORETIC
OPTIMALITY OF MAMP

In this section, we present the achievable rate analysis,
optimal coding principle, and information-theoretic optimality
proof of MAMP. The practical LDPC code optimization for
MAMP is also given for ill-conditioned and correlated channel
matrices, respectively.

A. Achievable Rate Analysis and Coding Principle

To circumvent the complex multi-dimensional SE analysis
of MAMP, we first prove the fixed-point consistency of
MAMP and OAMP/VAMP as follows, based on the Bayes
optimality of MAMP in uncoded systems.

Lemma 3 (Fixed-Point Consistency): Let the SE fixed point
of MAMP in (16) be (𝑣𝛾∗ , 𝑣

𝜙
∗ ), where 𝑣

𝛾
∗ = lim

𝑡→∞
𝑣
𝛾
𝑡,𝑡 and 𝑣

𝜙
∗ =

lim
𝑡→∞

𝑣
𝜙
𝑡,𝑡 . MAMP and OAMP/VAMP have the same SE fixed
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Fig. 3. Illustration of the equivalent MAMP receiver and its variational state evolution.

point (𝑣𝛾∗ , 𝑣
𝜙
∗ ) for arbitrary fixed Lipschitz-continuous 𝜙𝑡 (·) in

NLD.
Proof: In uncoded systems, the Bayes optimality of

MAMP is proved in [31, Theorem 2], i.e., MAMP and
OAMP/VAMP can converge to the same SE fixed point
(𝑣𝛾∗ , 𝑣

𝜙
∗ ). Note that there is no restriction on the specific

form of 𝜙𝑡 (·) in the proof of [31, Theorem 2]. Therefore,
for arbitrary fixed Lipschitz-continuous 𝜙𝑡 (·), MAMP and
OAMP/VAMP have the same SE fixed point (𝑣𝛾∗ , 𝑣

𝜙
∗ ).

Based on Lemma 3, the multi-dimensional SE of MAMP
can converge to the same SE fixed point as the SISO SE of
OAMP/VAMP for the same APP decoder 𝜙𝑡 (·). This inspires
us to attempt to analyze the achievable rate of MAMP with
the aid of the SISO SE of OAMP/VAMP.

Specifically, an equivalent transformation of MAMP in
(12) is obtained by incorporating all orthogonal and damping
operations into the MLD, as shown in Fig. 3(a), in which the
equivalent MAMP is given by

MLD : r𝑡 = 𝜂𝑡 (x̂𝑡 ), (19a)

NLD : x̂𝑡+1 = 𝜙𝑡 (r𝑡 ), (19b)

where 𝜂𝑡 (·) is a multi-dimensional MLD involving 𝛾𝑡 (·) in
(12a), damping, and orthogonal operations, and x̂𝑡 denotes the
output a posteriori estimation of APP decoder 𝜙𝑡 (·). It is worth
noting that this equivalent transformation does not change the
SE fixed point (i.e., convergence performance) of MAMP. As
a result, the equivalent MAMP is also referred to as MAMP
for simplicity. Importantly, in contrast to the complexly multi-
dimensional transfer function in (16b), the transfer function of
𝜙𝑡 (·) in NLD is SISO. However, since the memory is required
in 𝜂𝑡 (·), the transfer function of 𝜂𝑡 (·) remains intricately multi-
dimensional. This continues to impede the theoretical analysis
of MAMP.

To overcome the above issue, a SISO variational transfer
function 𝜂SE of MLD 𝜂𝑡 (·) is derived with the aid of Lemma 3
and the SE of OAMP/VAMP. Therefore, as shown in Fig. 3(b),
a SISO variational SE (VSE) of MAMP is presented in the
following lemma, which is adopted to simplify the achievable
rate analysis and optimal code design for MAMP.

Lemma 4 (VSE of MAMP): Let 𝜌
𝛾
𝑡 = 1/𝑣𝛾𝑡,𝑡 and 𝑣

�̂�
𝑡 ≡

1
𝑁

E{∥x̂𝑡 − x∥2} denote the signal-to-interference-plus-noise
ratio (SINR) of r𝑡 and the MSE of x̂𝑡 , respectively. The
VSE transfer functions of MAMP per transmit antenna can
be written as

MLD : 𝜌
𝛾
𝑡 = 𝜂SE (𝑣 �̂�𝑡 ) = (𝑣 �̂�𝑡 )−1 − [�̂�−1

SE (𝑣
�̂�
𝑡 )]−1, (20a)

NLD : 𝑣
�̂�

𝑡+1 = 𝜙C
SE (𝜌

𝛾
𝑡 ) = mmse{x|

√︃
𝜌
𝛾
𝑡 x + z,ΦC}, (20b)

where �̂�SE (𝑣) = 1
𝑁

tr{[𝑠𝑛𝑟AHA + 𝑣−1I]−1} denotes the MSE
function of LMMSE detector, �̂�−1

SE (·) the inverse of �̂�SE (·), and
z ∼ CN(0, I) an AWGN vector independent of x.

Proof: See Appendix A.

Note that the VSE transfer functions in (20) are not equiva-
lent to the SE transfer functions in (16). Although VSE cannot
be utilized to characterize the MSE performance of MAMP in
each iteration, it can be employed to accurately analyze the
achievable rate and coding principle.

Due to the coding gain, the decoding transfer function
𝜙C

SE (·) is upper bounded by the demodulation transfer function
𝜙S

SE (·), i.e.,

𝜙C
SE (𝜌

𝛾
𝑡 ) < 𝜙S

SE (𝜌
𝛾
𝑡 ), for 0 ≤ 𝜌

𝛾
𝑡 ≤ 𝜌max, (21)

where 𝜙S
SE (𝜌

𝛾
𝑡 ) = mmse{x|

√︃
𝜌
𝛾
𝑡 x+z,ΦS} and 𝜌max = J · 𝑠𝑛𝑟
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SE ( ·) with �̂�C
SE (𝜌

C
∗ ) = 0 denote the MMSE

functions of constellation and code constraint in NLD, respectively. (𝜌𝛾∗ , 𝑣
�̂�
∗ )

denotes the VSE fixed point between 𝜂−1
SE ( ·) and �̂�S

SE ( ·) . Moreover, �̂�C∗
SE ( ·)

is the optimal coding function of MAMP.

with 3

J =

{
1, 𝛽 ≥ 1
1/𝛽, 𝛽 < 1

. (22)

As shown in Fig. 4, assume that there is a unique fixed
point (𝜌𝛾∗ , 𝑣

�̂�
∗ ) between 𝜂−1

SE (·) and 𝜙S
SE (·). Since 𝑣

�̂�
∗ > 0, the

converge performance of MAMP is not error-free. Therefore,
to achieve the error-free performance, a kind of proper FEC
code should be well-designed to guarantee an available decod-
ing tunnel between 𝜂−1

SE (·) and 𝜙C
SE (·). That is,

𝜙C
SE (𝜌

𝛾
𝑡 ) < 𝜂−1

SE (𝜌
𝛾
𝑡 ), for 0 ≤ 𝜌

𝛾
𝑡 ≤ 𝜌max. (23)

Therefore, based on (21) and (23), we obtain the error-free
condition of MAMP in the following lemma.

Lemma 5 (Error-Free Decoding): MAMP can achieve error-
free decoding if and only if

𝜙C
SE (𝜌

𝛾
𝑡 ) < min{𝜙S

SE (𝜌
𝛾
𝑡 ), 𝜂−1

SE (𝜌
𝛾
𝑡 )}, for 0 ≤ 𝜌

𝛾
𝑡 ≤ 𝜌max. (24)

Then, based on Lemma 5 and I-MMSE lemma [29], we
give the achievable rate of MAMP as follows.

Lemma 6 (Achievable Rate of MAMP): The achievable rate
of MAMP per transmit antenna with fixed 𝜙C

SE (·) is

𝑅MAMP =

∫ 𝜌C
∗

0
𝜙C

SE (𝜌
𝛾
𝑡 )𝑑𝜌

𝛾
𝑡 ,

s.t. 𝜙C
SE (𝜌

𝛾
𝑡 ) < 𝜙C∗

SE (𝜌
𝛾
𝑡 ), for 0 ≤ 𝜌

𝛾
𝑡 ≤ 𝜌max,

(25)

where 𝜌C
∗ = 𝜙C−1

SE (0) and 𝜙C∗

SE (𝜌
𝛾
𝑡 ) = min{𝜙S

SE (𝜌
𝛾
𝑡 ), 𝜂−1

SE (𝜌
𝛾
𝑡 )}.

Therefore, based on Lemma 6, the optimal code design
principle of MAMP can be obtained in the following lemma.

Lemma 7 (Optimal Code Design): The optimal coding
principle of MAMP is

𝜙C
SE (𝜌

𝛾
𝑡 ) → 𝜙C∗

SE (𝜌
𝛾
𝑡 ), for 0 ≤ 𝜌

𝛾
𝑡 ≤ 𝜌max, (26)

enabling MAMP to achieve error-free performance as well as
the maximum achievable rate.

3For 𝛽 ≥ 1, 1
𝑁

tr{AHA} = 1 and 1
𝑁

E{ ∥y∥2} = 1, such that 𝜌max = 𝑠𝑛𝑟 .
When 𝛽 < 1, 1

𝑀
tr{AHA} = 1 and 1

𝑁
E{ ∥y∥2} = 𝑀

𝑁
, so 𝜌max = 𝑠𝑛𝑟

𝛽
.

Based on Lemma 7, the maximum achievable rate of
MAMP is obtained directly in the following theorem.

Theorem 1 (Maximum Achievable Rate): The maximum
achievable rate of MAMP per transmit antenna is

𝑅max
MAMP →

∫ 𝜌max

0
𝜙C∗

SE (𝜌
𝛾
𝑡 )𝑑𝜌

𝛾
𝑡 , (27)

where 𝜙C∗

SE (𝜌
𝛾
𝑡 ) = min{𝜙S

SE (𝜌
𝛾
𝑡 ), 𝜂−1

SE (𝜌
𝛾
𝑡 )}.

B. Information-Theoretic Optimality of MAMP

Due to the constrained-capacity optimality of
OAMP/VAMP [6], [30], based on Lemma 4, Lemma 7,
and Theorem 1, the information-theoretic (i.e., constrained-
capacity) optimality of MAMP is verified in the following
theorem.

Theorem 2 (Constrained-Capacity Optimality): MAMP can
achieve the same maximum achievable rate as OAMP/VAMP,
which indicates MAMP is constrained-capacity optimal in
GMIMO, i.e.,

𝑅max
MAMP = 𝑅max

OAMP/VAMP →
∫ 𝜌max

0
𝜙C∗

SE (𝜌)𝑑𝜌, (28a)

s.t. 𝜙C
SE (𝜌) → 𝜙C∗

SE (𝜌) = min{𝜙S
SE (𝜌), 𝜂

−1
SE (𝜌)}, (28b)

where 𝑅max
MAMP is equal to the average constrained capacity of

GMIMO per transmit antenna given in [6], [30]. As a result,
the maximum achievable sum rate of MAMP is

𝑅sum
MAMP = 𝑁𝑅max

MAMP, (29)

which is the same as the constrained sum capacity of GMIMO.
Furthermore, and most importantly, we derive a more

general theorem inspired by Lemma 3. This theorem states
that any two iterative detection algorithms with the same SE
fixed point can be analyzed equivalently from the perspective
of theory, even if these two algorithms have different local
detectors and SE transfer functions of different dimensions.
Therefore, Theorem 2 can be viewed as a special case of this
more general theorem.

Theorem 3 (Theoretical-Analysis Equivalence): If two iter-
ative detection algorithms have the same SE fixed point, then
their achievable rate analyses, optimal coding principles, and
maximum achievable rates are all the same.

Proof: We consider arbitrary iterative detection algorithm
1 and algorithm 2 have the same SE fixed point, such that
algorithm 1 and algorithm 2 can achieve the same converged
performances. Assume the optimal coding principle of algo-
rithm 1 as

𝜙C
SE (𝜌) < 𝜙

C∗
1

SE (𝜌), for 0 ≤ 𝜌 ≤ 𝜌max, (30)

where 𝜙
C∗

1
SE (0) = 1 and 𝜙

C∗
1

SE (𝜌max) = 0. Therefore, algorithm 2
can also achieve the error-free performance as algorithm 1
when given 𝜙C

SE (𝜌) < 𝜙
C∗

1
SE (𝜌) for 𝜌 ∈ [0, 𝜌max]. This is

the sufficient condition of error-free decoding for algorithm
2. Next, the converse method is used to show that it is also
the necessary condition of error-free decoding for algorithm 2.

Given ∀𝜌1, 𝜌2 ∈ [0, 𝜌max] with 𝜌1 < 𝜌2. Assume that algo-
rithm 2 can achieve error-free performance when 𝜙C

SE (𝜌) ≥
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Fig. 5. Maximum achievable rate comparison between MAMP and CAS-MAMP for coded GMIMO with Aill and Acor, where QPSK, 8PSK, 16QAM and
Gaussian signaling are considered.

𝜙
C∗

1
SE (𝜌) for 𝜌 ∈ [𝜌1, 𝜌2] and 𝜙C

SE (𝜌) < 𝜙
C∗

1
SE (𝜌) for 𝜌 ∈

[0, 𝜌1] ∪ [𝜌2, 𝜌max]. Then, algorithm 1 can also achieve error-
free performance with the above condition, which contradicts
(30).

As a result, (30) is the necessary and sufficient condition
of error-free decoding for algorithm 2. Based on I-MMSE
lemma [29], achievable rates of algorithms 1 and 2 are the
same, i.e.,

𝑅2 = 𝑅1 =

∫ �̂�C−1
SE (0)

0
𝜙C

SE (𝜌)𝑑𝜌, (31)

where 𝜙C
SE (𝜌) < 𝜙

C∗
1

SE (𝜌) for 0 ≤ 𝜌 ≤ 𝜌max. Therefore, the
optimal coding principle of algorithm 2 is the same as that of
algorithm 1, which enables algorithms 2 and 1 to achieve error-
free performance with the same maximum achievable rate as
follows:

𝑅max
2 = 𝑅max

1 →
∫ 𝜌max

0
𝜙
C∗

1
SE (𝜌)𝑑𝜌, (32)

Therefore, we complete the proof of Theorem 3.

Based on Lemma 3 and Theorem 3, the constrained-
capacity optimality of MAMP can be proved, i.e., MAMP and
OAMP/VAMP have the identical maximum achievable rate,
which is equal to the constrained capacity of GMIMO.

C. Maximum Achievable Rates of MAMP in Ill-Conditioned
and Correlated Channels

The proposed achievable rate analysis of MAMP is available
for general right-unitarily-invariant channel matrices. Here, we
provide the maximum achievable rates of MAMP using the
common ill-conditioned channel matrices Aill and correlated
channel matrices Acor as examples, which are widely used in
practical communication scenario and modelled as follows:

1) Ill-conditioned channel matrix: Let the SVD of Aill be
Aill = U𝚲V H. U and V are generated by unitary matrices
of SVD decomposition of an IID Gaussian matrix. We set the
eigenvalues {𝑒𝑖} in 𝚲 as [19]: 𝑒𝑖/𝑒𝑖+1 = 𝜅1/L , 𝑖 = 1, ...,L − 1,
and

∑L
𝑖=1 𝑒

2
𝑖
= F , where 𝜅 ≥ 1 denotes the condition number

of Aill, L=min{𝑀, 𝑁}, and F = max{𝑀, 𝑁}.
2) Correlated channel matrix: The correlated channel

matrix Acor is constructed using the Kronecker channel
model [37]: Acor = C

1
2
𝑅
ÃC

1
2
𝑇

, where Ã ∈ C𝑀×𝑁 is an
IID Gaussian matrix, and C𝑅 ∈ R𝑀×𝑀 and C𝑇 ∈ R𝑁×𝑁

are the receive and transmit correlation matrices, respectively.
Moreover, the (𝑖, 𝑗)-th element of both C𝑅 and C𝑇 is 𝛼 |𝑖− 𝑗 | ,
where 𝛼 ∈ [0, 1) denotes the correlation coefficient and a
larger 𝛼 correlates to a stronger antenna correlation. It is
worth noting that when 𝛼 = 0, the correlated channel matrix
Acor is degraded to the IID Gaussian matrix Ã, i.e., the
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Fig. 6. The SE curves of desired { �̂�C∗
SE } and designed { �̂�C

SE} for MAMP in GMIMO with Aill and Acor, where 𝑁 = 500, 𝛽 ∈ {0.67, 1.00, 1.50}, 𝜅 = 10,
and 𝛼 ∈ {0.2, 0.6}.

TABLE I
OPTIMIZED LDPC CODES FOR MAMP IN GMIMO WITH ILL-CONDITIONED, RAYLEIGH FADING, AND CORRELATED CHANNEL MATRICES

Channel type Aill ARay Acor

𝛽 0.67 1.00 1.50 1.00

𝜅/𝛼 𝜅 = 10 𝜅 = 50 𝜅 = 10 𝜅 = 50 𝜅 = 10 𝜅 = 50 𝛼 = 0 𝛼 = 0.2 𝛼 = 0.6

𝑁 500

𝑀 750 500 333 500

Codeword length 1 × 105

𝑅LDPC 0.5050 0.5049 0.5094 0.5062 0.5059 0.4983 0.5058 0.5063 0.5061

𝑅sum 505.0 504.9 509.4 506.2 505.9 498.3 505.8 506.3 506.1

𝜇(𝑋) 𝜇7 = 1 𝜇8 = 1 𝜇8 = 0.8
𝜇30 = 0.2 𝜇8 = 1

𝜆(𝑋)

𝜆2 = 0.3649
𝜆3 = 0.2353
𝜆9 = 0.1741
𝜆27 = 0.2257

𝜆2 = 0.5348
𝜆16 = 0.2654
𝜆17 = 0.0532
𝜆100 = 0.1195
𝜆110 = 0.0271

𝜆2 = 0.3143
𝜆3 = 0.2094
𝜆9 = 0.1236
𝜆10 = 0.0700
𝜆30 = 0.0858
𝜆35 = 0.1109
𝜆80 = 0.0860

𝜆2 = 0.4623
𝜆3 = 0.0021
𝜆14 = 0.2510
𝜆15 = 0.0129
𝜆70 = 0.1086
𝜆80 = 0.0685
𝜆900 = 0.0947

𝜆2 = 0.4222
𝜆3 = 0.0690
𝜆15 = 0.0139
𝜆16 = 0.2474
𝜆70 = 0.1355
𝜆200 = 0.1088
𝜆800 = 0.0032

𝜆2 = 0.3840
𝜆16 = 0.1511
𝜆17 = 0.1560
𝜆90 = 0.1592
𝜆800 = 0.1497

𝜆2 = 0.2950
𝜆3 = 0.2235
𝜆8 = 0.0769
𝜆9 = 0.1285
𝜆30 = 0.0790
𝜆35 = 0.1108
𝜆70 = 0.0863

𝜆2 = 0.3040
𝜆3 = 0.2180
𝜆8 = 0.0028
𝜆9 = 0.1917
𝜆30 = 0.0280
𝜆35 = 0.1789
𝜆90 = 0.0766

𝜆2 = 0.4544
𝜆3 = 0.0034
𝜆11 = 0.0835
𝜆12 = 0.1556
𝜆50 = 0.0099
𝜆60 = 0.2342
𝜆800 = 0.0591

(SNR)∗dB -0.12 1.48 1.64 3.20 2.87 5.35 1.33 1.48 3.13

(Capacity)dB -0.19 1.40 1.55 3.15 2.85 5.03 1.30 1.45 3.10

classical and commonly used Rayleigh fading channel matrix
ARay = Ã [38]. For simplicity, the correlation coefficients for
C𝑅 and C𝑇 are set to be the same.

Based on Theorem 2, Fig. 5 illustrates the maximum
achievable rates of MAMP in coded GMIMO with 𝑁 = 500
and different signaling (i.e., QPSK, 8PSK, 16QAM, and
Gaussian signaling). In Fig. 5(a), it is shown that the maximum
achievable rates of MAMP increase with the modulation order
and SNR for Aill with 𝜅 = 10 and 𝛽 = {0.67, 1.00, 1.50}. The
corresponding maximum achievable rates for QPSK, 8PSK,
and 16QAM converge to a constant. As shown in Fig. 5(b),
the maximum achievable rates of MAMP with Acor are similar
to that with Aill, where 𝛽 = 1.0 and 𝛼 = {0.2, 0.4, 0.6}.

To demonstrate the advantages of MAMP, we also present
the maximum achievable rates of the conventional CAS-
MAMP receiver [39], [40], in which the MLD and NLD
are implemented sequentially without iteration over each
other. Based on I-MMSE lemma [29], Fig. 4 shows that the
maximum achievable rate of CAS-MAMP is 𝑅max

CAS−MAMP =∫ 𝜌
𝛾
∗

0 𝜙C∗

SE (𝜌
𝛾
𝑡 )𝑑𝜌

𝛾
𝑡 for given SNR. As a result, compared

with 𝑅max
MAMP, the rate loss of CAS-MAMP is 𝑅loss =

∫ 𝜌max

𝜌
𝛾
∗

𝜙C∗

SE (𝜌
𝛾
𝑡 )𝑑𝜌

𝛾
𝑡 . As shown in Fig. 5, MAMP can obtain

higher achievable rates than CAS-MAMP with Aill and Acor.
Moreover, compared to MAMP, the achievable rate of CAS-
MAMP with high-order modulation (e.g., Gaussian signaling
and 16QAM) is lower than that of low-order modulation (e.g.,
QPSK) in harsh scenarios, where 𝛽 = 1.5 or 𝛼 = 0.6 (similar
phenomena has been discussed in [28]).

D. Practical Code Design for MAMP

Considering that LDPC code is widely used in wireless
communication [41] and LDPC decoder is proved to be
Lipschitz-continuous in [36, Appendix B], we propose a kind
of LDPC code C(𝜆(𝑋), 𝜇(𝑋)) for MAMP, where 𝜆(𝑋) =∑𝑑𝑣,max

𝑑=2 𝜆𝑑𝑋
𝑑−1 and 𝜇(𝑋) =

∑𝑑𝑐,max
𝑑=2 𝜇𝑑𝑋

𝑑−1 are the degree
distributions of variable and check nodes, respectively, and
𝑑𝑣,max and 𝑑𝑐,max are the corresponding maximum degrees of
variable and check nodes. Based on Lemma 7, LDPC codes are
designed for ill-conditioned and correlated channel matrices
with different parameters. The details about the optimization
of LDPC codes can refer to [28, Section IV-A].

With QPSK modulation, the optimized LDPC codes for
MAMP with Aill and Acor are given in Table I, in which



11

0 50 100 150 200 250

Number of iterations

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R
OAMP(3.95dB)

MAMP(back-off damping, 4dB)

MAMP(analytic damping, 3.98dB)

MAMP(no damping, 4dB)

(a) 𝜅 = 10

0 50 100 150 200 250

Number of iterations

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R OAMP(7.6dB)

MAMP(back-off damping, 7.75dB)

MAMP(analytic damping, 7.75dB)

MAMP(no damping, 7.75dB)

(b) 𝜅 = 50

Fig. 7. Convergence comparison of MAMP and OAMP/VAMP with analytical and back-off damping, where target BER = 2 × 10−4, 𝛽 = 1.5, (𝑀, 𝑁 ) =

(333, 500) , and the optimized LDPC codes are given in Table I.

𝑅LDPC denotes the optimized LDPC code rate and the sum
rate is 𝑅sum = 𝑁𝑅LDPC log2 |SQPSK | with |SQPSK | = 4. In coded
GMIMO, the gaps between the theoretical decoding thresholds
(SNR)∗dB of the optimized LDPC codes and the associated
constrained capacities per transmit antenna are within about
0.3 dB. Meanwhile, Fig. 6 shows that for Aill and Acor, the SE
curves of designed {𝜙C

SE} with optimized LDPC codes match
well with those of desired {𝜙C∗

SE} in (26), which also illustrates
the optimality of the optimized LDPC codes for MAMP.

V. NUMERICAL RESULTS

In this section, we present the BER performances and
running time complexity of MAMP with optimized LDPC
codes in GMIMO. Meanwhile, BER performance comparisons
with existing schemes are provided.

A. Simulation Configuration

Note that the optimal coding principle and information-
theoretic optimality of MAMP is available for arbitrary input
distributions. In the following simulations, the practical finite-
length LDPC codes are designed for QPSK. However, for
high-order modulations (e.g., 16QAM), it is difficult to opti-
mize practical LDPC codes by traditional code design methods
such as EXIT analysis directly due to the asymmetry of the
bits in higher-order modulation constellation points [6]. As a
result, the code design for high-order modulations is left as our
future work. In addition, ill-conditioned channel matrix Aill
and correlated channel matrix Acor are set up in Section IV-C.

B. Effect of Damping on MAMP Convergence

To validate the effect of damping on MAMP, we present
the convergence comparison of MAMP with the analytical
damping and back-off damping in Fig. 7, with target BER =

2 × 10−4, ill-conditioned channel matrix Aill, 𝜅 = {10, 50},
𝛽 = 1.5, 𝑁 = 500, and optimized LDPC codes in Table I.
The two types of damping methods for MAMP are defined as
follows.

1) Analytical damping [31, Lemma 8]:

ζI
𝑡+1 =


[
VI

𝑡+1
]−1

1

1T
[
VI

𝑡+1
]−1

1
, if V

I
t+1 is invertible

[0, · · ·, 1, 0]T , otherwise

, (33)

where ζI
𝑡+1 is the optimized damping vector for 𝜙𝑡 (r𝑡 )

and non-trivial memories {x𝑖 , 𝑖 ∈ I𝑡 }, VI
𝑡+1 the corre-

sponding covariance matrix, and I𝑡 the index set of non-
trivial memories for damping. The damping length is set
to 𝐿𝑑 = |I𝑡 | + 1 = 3 in the following simulations.

2) Back-off damping:

ζ𝑡+1 =

{
[0, · · ·, 1, 0]T , 𝑣

𝜙

𝑡+1,𝑡+1 > 𝑣
𝜙
𝑡,𝑡

[0, · · ·, 0, 1]T , 𝑣
𝜙

𝑡+1,𝑡+1 ≤ 𝑣
𝜙
𝑡,𝑡

. (34)

This indicates that when the output variance of 𝜙𝑡 (·)
increases, the estimated output value and variance from
the previous iteration are taken as the current output of
𝜙𝑡 (·), which is utilized to prevent MAMP from diverging
during the iteration.

In Fig. 7, OAMP/VAMP with optimized LDPC codes in
Table I is employed as the optimal bound, and MAMP without
damping is used as the baseline. Note that OAMP/VAMP
converges to the target BER = 2 × 10−4 with minimum
iterations for 𝜅 = 10 and 50, but MAMP without damping
(i.e., no damping in Fig. 7) converges to the BER as high
as 2 × 10−1. As shown in Fig. 7(a), although MAMP with
analytical damping converges to OAMP/VAMP for 𝜅 = 10,
it only achieves BER = 2 × 10−2 for 𝜅 = 50 in Fig. 7(b).
In contrast, whether for 𝜅 = 10 or 50, MAMP with back-
off damping can always converge to OAMP/VAMP. The
main reason is that the decoding tunnel between the transfer
functions of MLD and NLD is extremely narrow for MAMP
with optimized LDPC codes, as illustrated in Fig. 6, which
results in the element values of VI

𝑡 in (33) being quite near,
causing VI

𝑡 to be close to the singular matrix. This leads
to instability and poor performance of MAMP with analytical
damping due to inverse of VI

𝑡 in (33). As a result, the back-off
damping is employed for MAMP in the following simulations.
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Fig. 8. BER performances of MAMP and OAMP/VAMP with optimized LDPC codes and MAMP with P2P LDPC codes for Aill, where 𝜅 = {10, 50},
𝑁 = {500, 5000}, and code length = {1× 105, 2× 105}. Underloading, full-loading, and overloading correspond to 𝛽 = 0.67, 𝛽 = 1, and 𝛽 = 1.5, respectively.
“Opt-LDPC” is the optimized LDPC code in Table I and Table II, “Re-LDPC” the P2P-regular (3,6) LDPC code with 𝑅LDPC = 0.5 [41], “Ire-LDPC” the
P2P-irregular code with 𝑅LDPC = 0.5 [42], “limit” the associated constrained capacity, and “CE stdvar” the standard deviations of channel estimation errors.
Except for specific labeling, 𝑁 is equal to 500.

C. BER Performance of MAMP for Ill-Conditioned Channel
Matrices

1) BER comparison to OAMP/VAMP with optimized LDPC
codes: As shown in Fig. 8, the BER comparisons between
MAMP and OAMP/VAMP with optimized LDPC codes in Ta-
ble I are presented, where 𝜅 = {10, 50}, 𝛽 = {0.67, 1.00, 1.50},
and 𝑁 = {500, 5000}. Note that MAMP can achieve the same
BER performances as OAMP/VAMP for (𝛽 = {0.67, 1.00},
𝜅 = 10) and (𝛽 = 0.67, 𝜅 = 50). As 𝛽 and 𝜅 increase, i.e.,
(𝛽 = 1.5, 𝜅 = {10, 50}) and (𝛽 = 1, 𝜅 = 50), the gaps between
BER curves at 10−5 of MAMP and OAMP/VAMP are still
within 0.1 dB, since the optimality analysis for MAMP is
based on infinite length assumption. Meanwhile, we provide
the BER comparisons between MAMP and OAMP/VAMP for
large-scale systems, i.e., 𝑁 = 5000, in which the corresponding
optimized LDPC codes are given in Table II. It is worth
noting that MAMP can achieve the same BER performances
as OAMP/VAMP in large-scale systems, but with much lower
complexity than OAMP/VAMP.

2) BER comparison with P2P regular and irregular LDPC
codes: To validate the advantages of the optimized LDPC

TABLE II
OPTIMIZED LDPC CODES FOR MAMP IN LARGE-SCALE SYSTEMS

Channel type ill-conditioned channel matrices

𝛽 1.00 1.50

𝜅 50 10 50

𝑁 5000

𝑀 5000 3333

Codeword length 2 × 105

𝑅LDPC 0.5062 0.5059 0.4985

𝑅sum 5062.0 5059.0 4985.0

𝜇(𝑋) 𝜇8 = 1 𝜇8 = 0.8, 𝜇30 = 0.2

𝜆(𝑋)

𝜆2 = 0.4623
𝜆3 = 0.0021
𝜆14 = 0.2511
𝜆15 = 0.0128
𝜆70 = 0.1087
𝜆80 = 0.0685
𝜆900 = 0.0947

𝜆2 = 0.4222
𝜆3 = 0.0687
𝜆15 = 0.1149
𝜆16 = 0.1383
𝜆70 = 0.1680
𝜆350 = 0.0879

𝜆2 = 0.3842
𝜆16 = 0.1589
𝜆17 = 0.1475
𝜆90 = 0.1640
𝜆900 = 0.1454

(SNR)∗dB 3.20 2.87 5.35

(Capacity)dB 3.15 2.85 5.03

codes, we also present the BER performances of MAMP
with P2P regular and well-designed irregular LDPC codes
in Fig. 8. The parameters of the P2P-regular LDPC codes
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are (3, 6) LDPC code with coding rate 𝑅LDPC = 0.5 [41].
The degree distributions of the well-designed P2P-irregular
LDPC code are 𝜆(𝑋) = 0.24426𝑥 + 0.25907𝑥2 + 0.01054𝑥3 +
0.05510𝑥4 + 0.01455𝑥7 + 0.01275𝑥9 + 0.40373𝑥11 and 𝜇(𝑋) =
0.25475𝑥6 + 0.73438𝑥7 + 0.01087𝑥8, whose rate 𝑅LDPC is
0.5 and the decoding threshold is 0.18 dB away from the
P2P-AWGN capacity [42]. As shown in Fig. 8, the gaps
between BER curves at 10−5 of the optimized LDPC codes
and the associated constrained capacities are 0.49 ∼ 2.75 dB,
which verifies the capacity-approaching performances of the
optimized LDPC codes. Moreover, MAMP with the optimized
codes have 0.75 ∼ 5 dB gains over the MAMP with P2P-
regular and well-designed P2P-irregular LDPC codes, where
𝛽 = {0.67, 1, 1.5} and 𝜅 = {10, 50}. This also indicates the
Bayes-optimal MAMP with P2P regular and well-designed
irregular LDPC codes are not optimal anymore with significant
performance losses in GMIMO.

In addition, as shown in Fig. 8, the BER performances
of MAMP with P2P-regular (3,6) LDPC code are superior
to those of MAMP with P2P-irregular LDPC code. This is
determined by the iterative process between the MLD and
NLD of MAMP, which can be accurately predicted by VSE.
Therefore, taking Aill with 𝜅 = 10, 𝛽 = 1.5, and 𝑁 = 500 as an
example, Fig. 9 shows the VSE transfer curves of MAMP with
P2P regular and irregular LDPC codes, where 𝜂−1

SE (·) is the
inverse function of the MLD transfer function 𝜂SE (·), 𝜙Re

SE (·)
and 𝜙Ire

SE (·) denote the NLD transfer functions corresponding to
P2P-regular (3,6) LDPC code and P2P-irregular LDPC code,
respectively. Note that for P2P-regular (3,6) LDPC code, there
is an available decoding tunnel between 𝜂−1

SE (·) and 𝜙Re
SE (·)

to achieve the error-free performance. In contrast, for P2P-
irregular LDPC code, 𝜂−1

SE (·) and 𝜙Ire
SE (·) intersect prematurely.

Therefore, the decoding process of P2P-irregular LDPC code
will be terminated in advance, making it impossible to achieve
the error-free performance.
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Fig. 9. The VSE of MAMP for Aill, where 𝜅 = 10, 𝛽 = 1.5, and
𝑁 = 500. 𝜂−1

SE ( ·) is the inverse function of 𝜂SE ( ·) . �̂�Re
SE ( ·) and �̂�Ire

SE ( ·)
denote the MMSE function of the code constraint corresponding to P2P-
regular (3,6) LDPC code (“Re-LDPC”) [41] and P2P-irregular LDPC code
(“Ire-LDPC”) [42], respectively.

3) BER performance with imperfect channel state informa-
tion: To confirm the robustness of MAMP with optimized

codes, we consider the BER simulations in GMIMO with
imperfect channel estimations, where 𝜅 = 10, 𝑁 = 500, 𝛽 =

{0.67, 1.00, 1.50}, and the standard deviations of estimated
channel errors are 0.002 and 0.004. As shown in Fig. 8(a),
the imperfect channel estimations cause about 0.05 ∼ 0.2 dB
performance losses, in which the gaps between BER curves
at 10−5 of the optimized LDPC codes and the associated
constrained capacities are within 1.4 dB. This verifies that
MAMP with optimized codes are robust to the imperfect
channel estimations.

D. BER Performance of MAMP for Correlated Channel Ma-
trices

Fig. 10 shows the BER performances of MAMP and
OAMP/VAMP in GMIMO with Acor, where 𝑁 = 500, 𝛽 = 1,
𝛼 = {0, 0.2, 0.6}, and the optimized LDPC codes are given in
Table I. Particularly, Acor is degraded to ARay when 𝛼 = 0. As
shown in Fig. 10, MAMP and OAMP/VAMP with optimized
LDPC codes have the same BER performances. Furthermore,
the BER curves at 10−5 of MAMP are 0.5 ∼ 1.1 dB away
form the associated constrained capacities, which confirms the
capacity-approaching performances of the optimized LDPC
codes for ARay and Acor. In addition, MAMP with optimized
codes have 0.8 ∼ 2.2 dB gains over MAMP with P2P-regular
and well-designed P2P-irregular LDPC codes.

E. Time Complexity Comparison Between MAMP
and OAMP/VAMP

The time complexity of MAMP and OAMP/VAMP is deter-
mined by MLD with complexity O(𝑀𝑁T+𝑁T 2+T 3) and LD
with complexity O

(
(𝑀2𝑁 + 𝑀3)T

)
, respectively [31], where

T is the number of iterations. The time complexity of NLD
is identical for MAMP and OAMP/VAMP due to the same
demodulation and LDPC decoder employed in NLD. There-
fore, compared with OAMP/VAMP, MAMP can achieve the
information-theoretic limit of GMIMO with significantly lower
time complexity. To intuitively highlight the low-complexity
advantage of MAMP, Fig. 11 shows the running time com-
parison of MAMP and OAMP/VAMP. The running time is
obtained by Matlab 2021a on a PC with an 11th Gen Intel Core
i7-11700F CPU and 16 GB of RAM. For 𝑁 = 500, Fig. 11(a)
shows that the running time of MAMP is just 20% ∼ 30%
of that of OAMP/VAMP. As illustrated in Fig. 11(b), when
𝑁 increases to 5000, the running time of MAMP increases by
only 145%, i.e., 22.76s ∼ 25.15s increases to 55.36s ∼ 62.74s.
In contrast, the running time of OAMP/VAMP increases
dramatically by 16, 000%, i.e., 75.56s ∼ 109.60s increases
to 12420.79s ∼ 17503.17s. That is, when 𝑁 = 5000, MAMP
can achieve the same performances as OAMP/VAMP with 4‰
of the time consumption. Thus, MAMP is the very promising
candidate for large-scale systems.

F. Effect of Approximate {𝜆min, 𝜆max} on MAMP

The 𝜆min and 𝜆max of AAH are assumed to be available in
the above simulations. If 𝜆min and 𝜆max are unavailable, we
can adopt a low-complexity approximation of 𝜆min and 𝜆max
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provided in [31]. The detailed approximation steps are shown
as follows.

Since 𝜆max is the maximal eigenvalue of AAH, 𝜆𝜏
max is

the maximal eigenvalue of (AAH)𝜏 , such that 𝜆𝜏
max ≤ 𝜆𝜏 =

tr{(AAH)𝜏}. Due to the right-unitarily-invariant property of
A, 𝜆min ≥ 0 and 𝜆𝜏

max ≤ 𝜆𝜏 , hence 𝜆min and 𝜆max can be
replaced respectively by a lower bound 𝜆low

min and an upper
bound 𝜆

up
max as follows:

𝜆low
min = 0, 𝜆

up
max = (𝜆𝜏)1/𝜏 . (35)

The 𝜆
up
max is tighter for larger 𝜏 and 𝜆𝜏 can be approximated

by 𝜆𝜏
a.s.
= lim

𝑁→∞
∥s𝜏 ∥2, where

s𝜏 =

{
A(AHA) 𝜏−1

2 s0, if 𝜏 is odd

(AHA) 𝜏
2 s0, if 𝜏 is even

, (36)

with s0 ∼ CN(0𝑁×1, I𝑁×𝑁 ). Therefore, the complexity of
the above approximation is O(𝑀𝑁𝜏) with 𝜏 ≪ 𝑀 and
𝑁 , especially in large-scale systems. This indicates that the
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approximation method has no effect on the complexity order
of the MLD of MAMP.

As shown in Fig. 12, MAMP with approximate eigenvalues
can achieve the same performances as MAMP with exact
eigenvalues under different system sizes and channel loads
for Aill, where 𝜅 = 50, 𝜏 = {180, 140, 120} correspond to
𝛽 = {0.67, 1.00, 1.50} for 𝑁 = 500, and 𝜏 = {160, 140}
correspond to 𝛽 = {1.00, 1.50} for 𝑁 = 5000, respectively.
This strongly confirms the effectiveness of the low-complexity
approximation for MAMP in coded GMIMO.

VI. CONCLUSION

This paper studies the achievable rate analysis and optimal
coding principle of the low-complexity MAMP in coded
GMIMO, demonstrating the information-theoretic optimality
of MAMP. To overcome the difficulty in multi-dimensional
SE analysis of MAMP, the fixed-point consistency of MAMP
and OAMP/VAMP is proposed to derive the simplified SISO
VSE for MAMP, based on which its achievable rate is
calculated and optimal coding principle is established to
maximize the achievable rate. Subsequently, the information-
theoretic optimality of MAMP is proved. More importantly,
a more general theoretical-analysis equivalence theorem is
derived for two arbitrary iterative detection algorithms with
the same SE fixed point. Moreover, the practical optimized
LDPC codes are provided for MAMP, where the theoretical
decoding thresholds are about 0.3 dB away from the associ-
ated constrained capacities. Numerical results show that the
finite-length performances of MAMP with optimized LDPC
codes are significantly superior to those of MAMP with well-
designed P2P LDPC codes. In addition, MAMP can achieve
the same performances with 4‰ of running time compared to
OAMP/VAMP for large-scale systems.

APPENDIX A
PROOF OF LEMMA 4

In this proof, the SE and VSE of OAMP/VAMP is firstly
reviewed. Then, we prove that MAMP and OAMP/VAMP have
the same VSE fixed point. Finally, the VSE of MAMP is
derived to calculate the achievable rate of MAMP.

Since the orthogonal transfer functions in the SE of
OAMP/VAMP are no longer locally MMSE, the I-MMSE
lemma cannot be employed directly for OAMP/VAMP to cal-
culate the achievable rate. Therefore, a VSE of OAMP/VAMP
is obtained in [30] by incorporating all orthogonal operations
into the LD transfer function, such that the NLD transfer
function will be local MMSE. Due to the fixed-point equation
equivalence of SE and VSE, the VSE is used to analyze the
achievable rate of OAMP/VAMP based on I-MMSE lemma.
Thus, the VSE of OAMP/VAMP is given as follows.

VSE of OAMP/VAMP [30]: Let 𝑣O
𝑡 and 𝜌O

𝑡 be the input vari-
ance and signal to interference plus noise ratio (SINR) of the
LD and NLD transfer functions in the VSE of OAMP/VAMP,
respectively. Given 𝑠𝑛𝑟 and 𝛽, the VSE of OAMP/VAMP is
obtained by [30, Equnation (51)]

LD : 𝜌O
𝑡 = 𝜂OAMP

SE (𝑣O
𝑡 ) = (𝑣O

𝑡 )−1 − [�̂�−1
SE (𝑣

O
𝑡 )]−1, (37a)

NLD : 𝑣O
𝑡+1 = 𝜙C

SE (𝜌
O
𝑡 ), (37b)

 = !"#$

1

0

%&'(
)

%&'(
-.,

 !

"#$
%&'()*

 

!

"
#

$%&
'()

$%&
*()

Fig. 13. Graphical illustration of VSE for OAMP/VAMP and MAMP, where
𝜂OAMP−1

SE ( ·) is the inverse of 𝜂OAMP
SE ( ·) and �̂�S

SE ( ·) is the MMSE function of
demodulation. MAMP and OAMP/VAMP have the same VSE fixed point A.
𝜂1−1

SE ( ·) and 𝜂2−1
SE ( ·) are two candidate inverse functions of VSE transfer

functions of MAMP’s MLD. Given an MMSE function �̂�
C,1
SE ( ·) of decoder,

its intersections with 𝜂1−1
SE ( ·) , 𝜂2−1

SE ( ·) , and 𝜂OAMP−1
SE ( ·) are point B, C, and

D, respectively.

where 0 ≤ 𝜌O
𝑡 ≤ 𝜌max with 𝜌max defined in (21), �̂�SE (𝑣) =

1
𝑁

tr{[𝑠𝑛𝑟AHA + 𝑣−1I]−1} denotes the MSE function of
LMMSE detector, and �̂�−1

SE (·) denotes the inverse of �̂�SE (·).
Assume the VSE fixed point of OAMP/VAMP is (𝜌O

∗ , 𝑣
O
∗ ).

Based on the fixed-point equation equivalence of SE and VSE
of OAMP/VAMP [30], we can derive that 𝜌O

∗ = 1/𝑣𝛾,O∗ and
𝑣O
∗ = [(𝑣𝛾,O∗ )−1 + (𝑣𝜙,O∗ )−1]−1, where (𝑣𝛾,O∗ , 𝑣

𝜙,O
∗ ) is the SE

fixed point of OAMP/VAMP. For MAMP in Fig. 3(a), assume
the VSE fixed point is (𝜌𝛾∗ , 𝑣

�̂�
∗ ), where 𝜌

𝛾
∗ = 1/𝑣𝛾∗ . Due to

the orthogonalization, we have 𝑣
𝜙
∗ = [(𝑣 �̂�∗ )−1− (𝑣𝛾∗ )−1]−1, i.e.,

𝑣
�̂�
∗ = [(𝑣𝛾∗ )−1 + (𝑣𝜙∗ )−1]−1. Meanwhile, based on Lemma 3,

for fixed 𝜙C
SE (·), MAMP and OAMP/VAMP converge to the

same SE fixed point, i.e., (𝑣𝛾∗ , 𝑣
𝜙
∗ ) = (𝑣𝛾,O∗ , 𝑣

𝜙,O
∗ ). Therefore,

MAMP and OAMP/VAMP have the same VSE fixed point,
i.e.,

(𝜌𝛾∗ , 𝑣
�̂�
∗ ) = (𝜌O

∗ , 𝑣
O
∗ ). (38)

As shown in Fig. 13, assume that there is a unique VSE
fixed point A = (𝜌O

∗ , 𝑣
O
∗ ) between 𝜂OAMP−1

SE (·) and 𝜙S
SE (·) in

uncoded GMIMO, where 𝜙S
SE (·) is the MMSE function of

demodulation. Based on (38), the VSE fixed point between
𝜂−1

SE (·) and 𝜙S
SE (·) for MAMP is also point A = (𝜌𝛾∗ , 𝑣

�̂�
∗ ). When

0 ≤ 𝜌𝛾 < 𝜌
𝛾
∗ , MAMP can iterate with 𝜙S

SE (𝜌
𝛾) < 𝜂−1

SE (𝜌
𝛾).

Furthermore, 𝜙C
SE (𝜌

𝛾) < 𝜙S
SE (𝜌

𝛾) is obtained because of the
coding gain [30]. Therefore, 𝜙C

SE (𝜌
𝛾) < 𝜙S

SE (𝜌
𝛾) < 𝜂−1

SE (𝜌
𝛾),

i.e., 𝜙C
SE (𝜌

𝛾) is limited to 𝜙S
SE (𝜌

𝛾), and it is reasonable
to ignore the impact of the specific expression of 𝜂−1

SE (𝜌
𝛾)

on 𝜙C
SE (𝜌

𝛾). Therefore, we only focus on the expression of
𝜂−1

SE (𝜌
𝛾) for 𝜌𝛾 ≥ 𝜌

𝛾
∗ .

Given ∀𝜌1, 𝜌2 ∈ [𝜌𝛾∗ , 𝜌max] with 𝜌1 < 𝜌2, assume
𝜂−1

SE (𝜌
𝛾) > 𝜂OAMP−1

SE (𝜌𝛾) for 𝜌𝛾 ∈ [𝜌1, 𝜌2]. Given an MMSE
function 𝜙

C,1
SE (·) of decoder, due to the coding gain [30],

𝜙
C,1
SE (·) < 𝜙S

SE (·) is obtained. Since MMSE function is
monotone decreasing, 𝜙C,1

SE (𝜌𝛾) has two different VSE fixed
point with 𝜂−1

SE (𝜌
𝛾) and 𝜂OAMP−1

SE (𝜌𝛾), which contradicts (38).
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Similarly, assume 𝜂−1
SE (𝜌

𝛾) < 𝜂OAMP−1

SE (𝜌𝛾) for 𝜌𝛾 ∈ [𝜌1, 𝜌2].
There are still two different VSE fixed point with 𝜂−1

SE (𝜌
𝛾)

and 𝜂OAMP−1

SE (𝜌𝛾), which contradicts (38). As a result, due
to the arbitrariness of 𝜌1 and 𝜌2, 𝜂−1

SE (𝜌
𝛾) = 𝜂OAMP−1

SE (𝜌𝛾)
(i.e., 𝜂SE (𝜌𝛾) = 𝜂OAMP

SE (𝜌𝛾)) for 𝜌𝛾 ∈ [𝜌𝛾∗ , 𝜌max] is proved.
Since the specific expression of 𝜂SE (𝜌𝛾) for 𝜌𝛾 ∈ [0, 𝜌𝛾∗ ) is
negligible, we let 𝜂SE (𝜌𝛾) = 𝜂OAMP

SE (𝜌𝛾) with 𝜌𝛾 ∈ [0, 𝜌max]
for simplicity. Therefore, the VSE of MAMP is derived, which
is presented in Lemma 4.

To illustrate this proof intuitively, letting 𝜌1 = 𝜌
𝛾
∗ and 𝜌2 =

𝜌max, two candidate functions 𝜂1−1

SE (·) and 𝜂2−1

SE (·) of 𝜂−1
SE (·) are

obtained in Fig. 13. The intersections of 𝜙
C,1
SE (·) with 𝜂1−1

SE (·),
𝜂2−1

SE (·), and 𝜂OAMP−1

SE (·) are point B, C, and D, respectively,
which contradicts (38). Therefore, we can derive that 𝜂SE (·) =
𝜂OAMP

SE (·).
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