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Abstract—The notion of age-of-information (AoI) is investi-
gated in the context of large-scale wireless networks, in which
transmitters need to send a sequence of information packets,
which are generated as independent Bernoulli processes, to their
intended receivers over a shared spectrum. Due to interference,
the rate of packet depletion at any given node is entangled with
both the spatial configurations, which determine the path loss,
and temporal dynamics, which influence the active states, of
the other transmitters, resulting in the queues to interact with
each other in both space and time over the entire network.
To that end, variants in the packet update frequency affect
not just the inter-arrival time but also the departure process,
and the impact of such phenomena on the AoI is not well
understood. In this paper, we establish a theoretical framework to
characterize the AoI performance in the aforementioned setting.
Particularly, tractable expressions are derived for both the peak
and average AoI under two different transmission protocols,
namely the first-come-first-serve (FCFS) and the last-come-first-
serve with preemption (LCFS-PR). Additionally, our analysis
also accounts for the effects of channel access controls such as
ALOHA on the AoI. The accuracy of the analysis is verified
via simulations, and based on the theoretical outcomes, we find
that: i) networks operating under LCFS-PR are able to attain
smaller values of peak and average AoI than that under FCFS,
whereas the gain is more pronounced when the infrastructure is
densely deployed, ii) in sparsely deployed networks, ALOHA
with a universally designed channel access probability is not
instrumental in reducing the AoI, thus calling for more advanced
channel access approaches, and iii) when the infrastructure is
densely rolled out, there exists a non-trivial ALOHA channel
access probability that minimizes the peak and average AoI under
both FCFS and LCFS-PR.

Index Terms—Poisson bipolar network, age of information,
transmission protocol, spatially interacting queues, stochastic
geometry.

I. INTRODUCTION

Fueled by the eagerness for fresh data in many real-time

applications, the age-of-information (AoI) has been introduced

as a metric that measures the “freshness” of information

delivered over a period of time [1]. Armed with such a

H. H. Yang is with the Zhejiang University/University of Illinois at Urbana-
Champaign Institute, Zhejiang University, Haining 314400, China (e-mail:
haoyang@intl.zju.edu.cn).

T. Q. S. Quek is with the Information System Technology and Design Pillar,
Singapore University of Technology and Design, Singapore 487372 (e-mail:
tonyquek@sutd.edu.sg).

C. Xu is with the School of Information Engineering, Northwest A & F
University, Yangling, Shaanxi, China (e-mail: cxu@nwafu.edu.cn).

X. Wang is with the School of Electronics and Communication En-
gineering, Sun Yat-sen University, Guangzhou, China (e-mail: wangxi-
jun@mail.sysu.edu.cn).

D. Feng is with the College of Information Engineering, Shenzhen Univer-
sity, Shenzhen 518060, China (e-mail: fdquan@szu.edu.cn).

metric, a host of new schemes have been developed to achieve

timely updating by minimizing AoI, and thus ensuring fresh

data for various applications [2]. Nonetheless, most of the

existing studies were conducted in the point-to-point setting

and leaving the AoI performance in the context of wireless

networks not well understood. The central thrust of this article

is to fill this research gap with special emphasis on the

stochastic analysis of AoI over a large-scale wireless network.

A. Background and Motivation

Compared with the conventionally transmitter-centric met-

rics such as delay or throughput, the AoI puts the focus on

the receiver side and measures the time elapsed since the

latest packet has been delivered, thus being able to gauge

the “freshness” associated with the information packets. As

a result, since the genesis of the AoI [1], this concept has

received spiralling attention in the literature, especially for ap-

plications that have a stringent requirement for timely informa-

tion updating, for instance the positioning, command/control,

or monitoring sensors, because fresh data can be attained via

updating approaches that minimize AoI. The AoI minimization

problem has been broadly investigated in the field of queueing

theory, under different queueing models [1], [3], [4] and trans-

mission protocols, including the first-come-first-serve (FCFS)

[1], [5], last-come-first-serve (LCFS) [4], [6], with [7] or

without preemption [4], together with different buffer sizes [4].

In the presence of wireless communication links, AoI-aware

scheduling policies have been proposed to ensure timely infor-

mation delivery [8]–[14]. Specifically, because the qualities of

radio channels vary across time, a number of approaches have

been proposed that exploit such property to strike a balance

between the performance of link throughput and information

freshness [8]–[11]. Moreover, recognizing transmissions over

the wireless medium can be unreliable, [12] carried out a study

to investigate several stop-feedback coding schemes, e.g., the

automatic repetition request (ARQ) or hybrid ARQ (HARQ)

on the purpose of enhancing AoI. Besides, due to the shared

nature of the spectrum, concurrent transmissions on the same

channel can deteriorate the performance of others’ via the

interference they caused. In that respect, scheduling policies

have been proposed to construct the set of simultaneously

active links while pertaining to an acceptable interference level

[13], [14]. In the particular context of internet-of-things (IoT),

AoI minimizing schemes that prioritize the transmission orders

by accounting for transmission and computing [15] or reducing

energy consumption [16] have also been explored.

http://arxiv.org/abs/2012.12472v1
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However, these results are devised based on abstract models

that assume a certain distribution to the packet departure

process and do not precisely capture the impact of phys-

ical transmission environments. In fact, wireless communi-

cations are generally subject to (a) the spatial configuration

of transceivers because that affects the path loss, and (b)
the active states of co-channel transmitters which influence

the interference. Moreover, owing to the broadcast nature

of the wireless medium, the transmitters sharing a common

spectrum in space will interact with each other through the

interference they cause. As a result, the queueing dynamics

at any transmitter is entangled with those of its neighboring

nodes. The phenomena of such space-time interactions are

commonly known as the spatially interacting queues. To

understand the impact of this phenomenon on the performance

of communication links, a line of recent studies [17]–[25] have

been carried out, which combined the stochastic geometry

with queueing theory to produce closed-form expressions for

various network statistics, including the throughput [17], [18],

delay [19]–[21], coverage probability [22]–[24], and even AoI

[25]. Nevertheless, these analysis are derived either based on

the favorable/dominant system argument [19], [25], which of-

ten resulted in upper/lower bounds that are too loose to unveil

useful information, or rely on the mean-field approximation

[20]–[24] that assumes the queues evolve independently from

each other and ignores the intrinsic interaction amongst the

queues. In wireless networks that are densely deployed, which

is the modern trend of “scaling up the architecture” [16],

transmitters in proximity inevitably interact with each other

and hence have correlated queues. To this end, the mean-

field approximation is no longer a valid assumption and a

more sophisticated analysis that accounts for all these effects

is of necessity toward a thorough understanding of the AoI

performance in large-scale networks so as to facilitate any

further designs.

B. Approach and Summary of Results

In this paper, we leverage the Poisson bipolar network to

model the spatial deployment of transmitters and receivers.

The dynamics of status updating at each transmitter is modeled

as a discrete-time queueing system, in which the information

packets are generated according to independent Bernoulli

processes and are stored in an infinite-capacity buffer. The

transmitters initiate channel access attempts for packet trans-

missions at each time slot if their buffers are non-empty. And

the transmissions are successful only if the received signal-

to-interference-plus-noise ratio (SINR) exceeds a decoding

threshold, upon which the packet can be removed from the

buffer. In this network, we consider two different protocols,

namely the first-come-first-serve (FCFS) and last-come-first-

serve with preemption (LCFS-PR), to schedule the packet

transmission order. Additionally, we adopt ALOHA to control

the interference level by approving channel access attempts

from each node with a fixed probability. By jointly using tools

from stochastic geometry and queueing theory, we derive ac-

curate and tractable expressions for both the peak and average

AoI. The analytical results enable us to explore the effect from

various network parameters on the AoI performance and hence

devise useful insights for further design options. Our main

contributions are summarized below.

• We develop a theoretical template for the understanding

of AoI in large-scale wireless networks. The proposed

framework is general and encompasses all the key fea-

tures of a wireless system, including not just the channel

gain and interference, but more importantly, the interplay

between the geographic locations of information sources

and the dynamics of their status updating.

• We derive an accurate expression for the transmission

success probability, which facilitates the quantitative as-

sessment of conditions for the queues to remain stable

in large-scale wireless networks as well as the AoI under

both FCFS and LCFS-PR protocols. Different from [20]–

[24], our analysis does not rely on the mean-field approx-

imation in space and directly tackles the crux of spatially

interacting queues by extracting a non-homogeneous PPP

from the homogeneous setup to model the locations of

interferers.

• Our analysis reveals that: i) networks operating under

LCFS-PR is able to attain smaller values of peak and av-

erage AoI than that under FCFS, whereas the gain is more

pronounced when the infrastructure is densely deployed,

ii) in sparsely deployed networks, simple channel access

control such as ALOHA is not instrumental to reduce

the AoI, thus calling for more advanced approaches, and

iii) when the infrastructure is densely rolled out, there

exists a non-trivial ALOHA channel access probability

that minimizes the peak and average AoI under both

FCFS and LCFS-PR.

The remainder of the paper is organized as follows. We

introduce the system model in Section II. In Section III, we

detail the analysis of transmission success probability as well

as the derivation of the average and peak AoI. We show the

simulation and numerical results in Section IV, that confirm

the accuracy of our analysis and provide insights about the AoI

performance of a large-scale wireless network. We conclude

the paper in Section V.

II. SYSTEM MODEL

In this section, we detail the configuration of our network

model, as well as the concepts of average and peak AoI

in a large-scale wireless system. The main notations used

throughout the paper are summarized in Table I.

A. Network Structure

As illustrated in Figure 1, we setup the spatial config-

uration of the network using the Poisson bipolar model1,

which consists of a set of transmitters and their corresponding

receivers, all located in the Euclidean plane. The transmitting

nodes are scattered according to a homogeneous Poisson point

process (PPP) Φ̃ of spatial density λ. Each transmitter located

at Xi ∈ Φ̃ has a dedicated receiver, whose location yi

1This type of point process is the epitome of spatial models for infrastruc-
tureless networks, e.g., the ad-hoc, D2D, or IoT network [26].
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TABLE I
NOTATION SUMMARY

Notation Definition

Φ̃; λ PPP modeling the locations of transmitters;
transmitter spatial deployment density

Φ̄; λ PPP modeling the locations of receivers; receiver
spatial deployment density

Φ Superposition of the PPPs Φ̃ and Φ̂, i.e., Φ =
Φ̃ ∪ Φ̂

Ptx; α Transmit power; path loss exponent

ξ; θ Packet update frequency; SINR decoding thresh-
old

r; p Distance between a pair of transmitter-receiver
nodes; channel access probability for each trans-
mitter with non-empty buffer

µΦ
0,t Transmission success probability of link 0 at

time slot t, conditioned on the point process Φ

aΦj Queue non-empty probability at transmitter node
j, conditioned on the point process Φ

Aave; Ap Network average AoI; network peak AoI

is at distance r in a random orientation. According to the

displacement theorem [26], the location set Φ̄ = {yi}
∞
i=0 also

forms a homogeneous PPP with spatial density λ.

We segment the time into equal-length slots with each

being the duration to transmit a single packet. At the begin-

ning of each time slot, every transmitter has the information

packets updated according to an independent and identically

distributed (i.i.d.) Bernoulli process with parameter ξ.2 All the

incoming packets are stored in a single-server queue with

infinite capacity.3 In this network, we adopt the ALOHA

protocol at the transmitters to control the radio channel access.

Simply put, during each time slot, the transmitters that have

non-empty buffers will send out one packet with probability p.

The transmission succeeds if the SINR at the corresponding

receiver exceeds a predefined threshold, denoted as θ, upon

which the receiver will feedback an ACK and the packet can

be removed from the buffer. Otherwise, the receiver sends a

NACK message and the packet is retransmitted in the next

available time slot. We assume the ACK/NACK transmission

is instantaneous and error-free, as commonly done in the

literature [10]. Note that in this system the delivery of packets

incurs a delay of one time slot, namely, packets are transmitted

at the beginning of time slots and, if the transmission is

successful, they are delivered by the end of the same time

slot. Furthermore, we consider two approaches to schedule

the packet transmissions:

• FCFS: The packets are sent out in the order of their

arrivals. Once a packet occupies the transmitter, it keeps

running until finish.

• LCFS-PR: A newly arrived packet will stop a currently

2While the focus of this paper is on the buffered sources with random
packet arrivals, following similar steps in [14], [27], the analytical framework
can be extended to study the AoI statistics of wireless sensor networks in
which packets arrive in periodic patterns.

3Although in this paper we adopt infinite-size buffers to ensure all the
packets can be ultimately received at the destination, the developed analysis
can be extended to explore the AoI performance in networks where the
transmitters have finite-size buffers and can discard certain packets [28] and
further devise optimal packet management schemes for AoI minimization.

X0

ACK/NACK

y0

p

Fig. 1. An example of the employed network structure, the black squares
and dots denote the transmitters and receivers, respectively. Each transmitter
has an infinite-size buffer to store all the incoming packets, and switch on
with probability p if the buffer is non-empty.

transmitting but failed one at the end of the time slot,

take over the priority and begin its transmission. And

only when that finished will the transmitter return to the

original task.4

In order to investigate the time-domain evolution, we limit the

mobility of transceivers by considering a static network, i.e.,

the locations of transmitters and receivers remain unchanged

in all the time slots [22].

We assume that each transmitter uses unit transmission

power Ptx.5 The channel is subjected to both Rayleigh fading,

which varies independently across time slots, and path-loss

that follows power law attenuation. Moreover, the receiver is

also subjected to white Gaussian thermal noise with variance

σ2. By applying Slivnyak’s theorem [26], it is sufficient to

focus on a typical receiver located at the origin, with its tagged

transmitter at X0. Thus, when the tagged transmitter sends out

a packet during slot t, the corresponding SINR received at the

typical node takes the following form:

γ0,t =
PtxH00r

−α

∑

j 6=0 PtxHj0ζj,tνj,t‖Xj‖−α + σ2
(1)

where α denotes the path loss exponent, Hji ∼ exp(1) is the

channel fading from transmitter j to receiver i, ζj,t ∈ {0, 1}
is an indicator showing whether the buffer of node j is empty

(ζj,t = 0) or not (ζj,t = 1), and νj,t ∈ {0, 1} represents the

channel access decision of node j, where it is set to 1 upon

assuming transmission approval and 0 otherwise.

Remark 1: The employed system model is particularly rel-

evant to infrastructureless applications like Device-to-Device

4Note that under the LCFS-PR protocol, packets with the latest timestamps
in the queues will be sent out with probability p at the beginning of each
time slot, whereas the preempted ones are not discarded but postponed to
be transmitted at later time slots (until the packets with the more recent
timestamps are successfully received). As pointed out in [29], such a protocol
is optimal in minimizing AoI because it always transmits the latest update
available.

5We unify the transmit power to keep the analysis tractable, it shall be
noted that the results from this paper can be extended to account for power
control via similar approach as in [20].
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(D2D) networking, mobile crowd sourcing, and Machine-

to-Machine (M2M) communications, that do not require a

centralized controller, e.g., bases stations or access points,

to coordinate the communications. In fact, such a network

is a large-scale analog to the classical model of Random

Networks [30], in which the distance between any transmitter-

receiver pair is fixed to represent the average value. Note that

building upon the results from [20] and [22], the analysis de-

veloped in this paper can be extended to investigate networks

with centralized infrastructures and multiple access/broadcast

channels where transmitters are located at random distances

to their receivers.

B. Age of Information

Without loss of generality, we denote a randomly selected

wireless link j as the generic link and typify the commu-

nication link between the transmitter-receiver pair located at

(X0, y0). An example of AoI evolution over the typical link

under the LCFS-PR discipline is given in Figure 2. From this

figure, we can see that the AoI over the typical link grows

linearly in the absence of new packet delivery, and, when the

most up-to-date packet is received, reduces to the time elapsed

since the generation of the delivered packet. It is noteworthy

that upon successful transmission of a preempted packet, e.g.,

the one delivered between time slots t1 and t2, the AoI will

not be reset because a fresher packet has been delivered at the

receiver. To be more formal, the evolution of A0(t) can be

expressed as follows:

A0(t+ 1) =







A0(t) + 1, if transmission fails

or no transmission,
min{t−G0(t), A0(t)} + 1, otherwise

where G0(t) is the generation time of the packet delivered

over the typical link at time t.
Due to the randomness from arrival and departure alike,

the AoI evolves as a stochastic process. In that respect, we

leverage two deterministic quantities, namely the average and

peak AoI, as our metric to evaluate the freshness of informa-

tion across a wireless network. Specifically, the average AoI

at a generic link j is given by

Aave
j = lim sup

T→∞

1

T

T
∑

t=1

Aj(t), (2)

and the peak AoI at link j is defined as

Ap
j = lim sup

N→∞

∑N
n=1Aj(Tj(n))

N
, (3)

where Tj(n) is the time slot at which the n-th packet from

link j is successfully delivered. By extending this concept to

a large scale, we define the network average and peak AoI

respectively as follows:

Aave = lim sup
R→∞

∑

Xj∈Φ̃∩B(0,R)A
ave
j

∑

Xj∈Φ̃ 1{Xj∈B(0, R)}

(a)
= E

0
[

lim sup
T→∞

1

T

T
∑

t=1

A0(t)
]

(4)

time

Timestamp of packet arrivals

Timestamp of packet departures

Fig. 2. AoI evolution example at a typical link under the LCFS-PR
discipline. The time instances G0(ti) and ti respectively denote the moment
when the i-th packet is generated and delivered, and the age is reset to
min{t −G0(t), A0(t)} + 1. Here, ti = T0(i) with T0(i) defined in (3).

and

Ap = lim sup
R→∞

∑

Xj∈Φ̃∩B(0,R)A
p
j

∑

Xj∈Φ̃ 1{Xj∈B(0, R)}

= E
0
[

lim sup
N→∞

1

N

N
∑

n=1

A0(T0(n))
]

, (5)

where B(0, R) denotes a disk centered at the origin with

radius R, 1{·} is the indicator function, and (a) follows

from the Campbell’s theorem [26]. The notion E
0[·] indicates

the expectation is taken with respect to the Palm distribution

P
0 of the stationary point process – the condition will be

given in Section III – where under P
0 almost surely there

is a node located at the origin [26]. In what follows, we

append the metrics Aave and Ap with F and L to denote the

packets are sent out following FCFS and LCFS-PR disciplines,

respectively.

C. Spatially Interacting Queues

Because the radio channel is a broadcast medium, trans-

mitters located in proximity can affect each others’ queueing

states through the interference they cause. As such, the active

state ζj,t of any given link j is dependent on both space and

time, since the former determines the path loss and further the

aggregated interference, while the latter affects the queueing

process at each node.

To better illustrate this concept, Fig. 3 gives a simple

example showing the spatiotemporal interactions among the

queues of three wireless transmitter-receiver pairs. From a

spatial perspective, we can see that transmitters X1 and X2 are

located in geographic proximity and hence their transmissions

incur severe crosstalk, which slows down the rate of packet

depletion and eventually prolong their queue lengths. In stark

contrast, transmitter X3 locates at a relatively long distance to

its geographic neighbors. Such advantage abbreviates trans-

mitter X3 from suffering strong interference and hence its

buffer length is much shorter compared to transmitters X1

and X2. From a temporal perspective, the traffic load also

plays a crucial role in the rate of service and queue length.
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X1

X2

X3X

Transmission

Interference

Fig. 3. Illustration of the spatially queueing interactions. Note that while all
the transmitter-receiver pairs are configured with the same distance and update
frequencies, their buffer lengths vary due to different levels of interference.

Particularly, if all the transmitters have packets to send, the

mutual interference will curtail the service rate and prolong

the active duration of each transmitter individually. On the

other hand, when any of the transmitters silence the packet

delivery, the others can benefit from the reduced cross-talk

and speed up their individual queue flushing process, hence

also decreases the active period. Extending this concept to a

large-scale network, we find that as the realization of PPP

is irregular, there are always some links experiencing poor

transmission environment, e.g., those with transmitters located

in a crowded area of space, and some others having good

communication conditions, e.g., the ones with transmitters

that are far away from their neighbors. Therefore, even the

packet update frequencies, or equivalently the arrival rates,

are the same for all the transmitters, the queueing status

and active state can vary largely from link to link. To that

end, a small variation in the packet update frequency affects

not just the inter-arrival rate but also the packet departure

process. This phenomenon is commonly known as the spatially

interacting queues and the characterization of its behavior is

very challenging.

III. ANALYSIS

This section constitutes the main technical part of this paper,

in which we derive analytical expressions to characterize the

AoI. Specifically, we analyze the distribution of the conditional

transmission success probability, which directly determines the

service process. And based on that we calculate the average

and peak AoI in large-scale networks. Unless otherwise stated,

the analytical expressions provided in this section are tight

approximations of the transmission success probabilities as

well as the AoIs. For better readability, most proofs and

mathematical derivations have been relegated to the Appendix.

A. Preliminaries

Seen from the temporal perspective, transmissions on any

given link can be abstracted as a Geo/G/1 queue where the

departure rate is dependent on the communication condition

– which is essentially determined by the geographic structure

of the network. In order to characterize the departure rate, we

condition on the realization of point process Φ , Φ̃∪ Φ̄6 and

define the conditional transmission success probability at the

typical link in a generic time slot t as follows [22]

µΦ
0,t = P

(

γ0,t > θ|Φ
)

. (6)

Note that µΦ
0,t is a random variable and its distribution is equiv-

alent to the distribution of service rate. Another observation

of (6) is that the quantity µΦ
0,t is indexed by the time slot

t, which implies that the collection of service rates forms a

stochastic process over time. And that may introduce temporal

correlations into the queueing process which complicate the

subsequent analysis [32], [33]. It thus necessitates the intro-

duction of the following approximation.

Assumption 1: In this network, each queue observes the

time-averages of the activity indicators of other queues but

evolves independently of their current state.

The above assumption makes the dynamics of packet trans-

missions at each node conditionally independent, given the

positions of all transmitters and receivers in the network. Note

that this is a mean-field approximation in only the temporal

domain, which differs from the mean-field approximation in

both space and time, as made in [20]–[24]. In consequence, we

can regard the transmissions of packets over the typical link as

i.i.d. over time with a success probability µΦ
0 = limt→∞ µΦ

0 .

As such, the packet dynamics at the typical transmitter can

be abstracted as a Geo/Geo/1 queue, and by leveraging tools

from queueing theory, we arrive at a conditional form of the

AoI under FCFS.

Lemma 1: Given ξ < pµΦ
0,F, when conditioned on the point

process Φ, the average and peak AoI under FCFS discipline

are given respectively as follows:

E
0
[

Aave
F |Φ

]

=
1

ξ
+

1− ξ

pµΦ
0,F − ξ

+
ξ

pµΦ
0,F

−
ξ

(pµΦ
0,F)

2
− 1, (7)

E
0
[

Ap
F|Φ

]

=
1

ξ
+

1− ξ

pµΦ
0,F − ξ

(8)

where µΦ
0,F denotes the transmission success probability under

the considered scenario.

Proof: When conditioned on the point process Φ, the

transmission process at a typical link can be regarded as a

Geo/Geo/1 queue with the rate of arrival and departure being

ξ and pµΦ
0,F, respectively, and hence (7) and (8) follow from

leveraging results in [14].

Similarly, when the packet transmissions are regulated un-

der the LCFS-PR discipline, expressions for the conditional

average and peak AoI can be attained accordingly.

Lemma 2: Given ξ < pµΦ
0,L, when conditioned on the

point process Φ, the average and peak AoI under LCFS-PR

discipline are given respectively as follows:

E
0
[

Aave
L |Φ

]

=
1

ξ
+

1

pµΦ
0,L

− 1, (9)

E
0
[

Ap
L|Φ

]

=
1

ξ
+

1

pµΦ
0,L

+
1

1− (1−ξ)(1−pµΦ
0,L)

− 2 (10)

6Instead of using the notation Φ = φ for the realization, we directly write
it as Φ, which is a bit amiss, for the notational simplicity [31]. Throughout
the paper, we sometimes refer to Φ as a point process, which in fact means
the particular realization of the point process Φ.
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Fθ(u) =
1

2
−

∫ ∞

0

Im

{

u−jω exp
(

−
jωθrα

ρ
− 2λπr2

∞
∑

k=1

(

jω

k

)

(−1)k+1

∫ ∞

0

∫ 2π

0

[

1−
ξ

pHθ(v, ψ, p)

]k dψ

2π

×

∫ 2π

0

[

Fθ
(

Hθ(v, ϕ, p)
)

+

∫ 1

Hθ(v,ϕ,p)

Hk
θ(v, ϕ, p)

tk
Fθ(dt)

]dϕ

2π
vdv

)

}

dω

πω
(15)

where µΦ
0,L denotes the transmission success probability under

the considered scenario.

Proof: Please see Appendix A.

From Lemma 1 and Lemma 2, we can see that the distribu-

tion of service rates µΦ
0,F and µΦ

0,L plays a role of paramount

importance in characterizing the stochastic behavior of AoI.

In that respect, we present a step-by-step derivation of these

service rate distributions in the following.

B. Distribution of Service Rate

According to (1), the SINR received at a typical UE

comprises a series of random quantities, including the fading,

active states and locations of transmitters, which daunts the

task of analysis. To launch an initial step, we first average out

the randomness from fading and derive a conditional form of

the transmission success probability:

Lemma 3: Conditioned on the spatial realization Φ, the

transmission success probability at the typical link is given by

µΦ
0,z = e−

θrα

ρ

∏

j 6=0

(

1−
p aΦj,z

1 +Dj0

)

, z ∈ {F,L} (11)

where ρ = Ptx/σ
2, Dij = ‖Xi − yj‖

α/θrα, and aΦj,z =
limt→∞ P(ζj,t = 1|Φ, z) is the active probability of transmit-

ter j at the steady state.

Proof: By conditioning on the spatial realization Φ of all

the transceiver locations, the transmission success probability

can be derived as follows:

P (γ0>θ|Φ)=P

(

H00 >
∑

j 6=0

Hj0νjζjθr
α

‖Xj−y0‖α
+
θrα

ρ

∣

∣

∣
Φ, z

)

= E

[

e−
θrα

ρ

∏

j 6=0

exp
(

− θrα
νjζjHj0

‖Xj−y0‖α

)
∣

∣

∣
Φ, z

]

(a)
= e−

θrα

ρ

∏

j 6=0

(

1− p aΦj,z +
p aΦj,z

1 + 1/Dj0

)

, (12)

where (a) follows by Assumption 1, with which the active state

at every transmitter can be treated as independent from each

other, and further noticing that Hj0 ∼ exp(1). The resultant

expression per (11) can then be obtained by further simplifying

the product factors.

The result from Lemma 3 explicitly reveals that the ran-

domness associated with the transmission success probability

is mainly assorted to i) the random location of the interfering

transmitters, and ii) their corresponding active states. As such,

by leveraging the queueing theory, a conditional expression for

the active state at each transmitter can be obtained as follows.

Lemma 4: Given the service rate µΦ
j , the queue-nonempty

probability at a generic transmitter j is given as

aΦj =

{

1, if p µΦ
j ≤ ξ,

ξ
pµΦ

j
, if p µΦ

j > ξ.
(13)

Proof: For a Geo/G/1 queue, the probability of being

active in the steady state follows from the Little’s law [34].

Notably, the result in Lemma 4 applies to any transmitter

of the depicted network regardless of the specific scheduling

method it employed. The immediate aftermath of this obser-

vation is the following:

µΦ
0,F

d
= µΦ

0,L, (14)

namely the conditional transmission success probabilities un-

der LCFS-PR and FCFS policies are equivalent in distribution.

On this account, we drop the index of scheduling policy and

simply write µΦ
0 in lieu of µΦ

0,z . By substituting (13) into

(11), we also note that all the service rates are intertwined

with each other. In fact, an increase of any one of the µΦ
j

can also boost up the value of others and vice versa. To

capture these interactions, we decompose the derivation of

the distribution into two major steps: i) conditioned on the

distance between the typical receiver and a generic receiver,

calculate the probability of each node being in the active

state, and then ii) compute the distribution of the conditional

transmission success probability. That brings us to the first

technical result.

Theorem 1: The cumulative distribution function (CDF)

of the conditional transmission success probability is given by

the fixed-point equation (15) at the top of this page, in which

Im{·} denotes the imaginary part of a complex quantity and

the auxiliary function Hθ(x, y, z) is given by

Hθ(x, y, z) =
ξ

z
+

ξ

1− z + (1 + x2 − 2x cos y)
α
2 /θ

. (16)

Furthermore, (15) can be solved via recursive calculations as

follows:

Fθ(u) = lim
n→∞

Fθ,n(u) (17)

where Fθ,n(u) is given by

Fθ,n(u) =
1

2
−

∫ ∞

0

Im

{

u−jω exp
(

−
jωθrα

ρ

−
λr2

2π

∞
∑

k=1

(

jω

k

)

(−1)k+1η̃
(k)
n−1

)

}

dω

πω
, (18)
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in which η̃
(k)
n−1 takes the following form:

η̃
(k)
n−1 =

∫ ∞

0

∫ 2π

0

[

1−
ξ

pHθ(v, ψ, p)

]k
dψ

∫ 2π

0

[

Fθ,n−1

(

Hθ(v, ϕ, p)
)

+

∫ 1

Hθ(v,ϕ,p)

Hk
θ (v, ϕ, p)

tk
Fθ,n−1(dt)

]

dϕvdv. (19)

In particular, when n = 1, we have η̃
(k)
0 given as

η̃
(k)
0 =

(

δ − 1

k − 1

)

2π2δθδξkpk

sin(πδ)
. (20)

Proof: Please see Appendix B.

A marked distinction between the CDF given in (15) and

those obtained via the mean-field approximation [20]–[24]

is that the former represents the distribution of conditional

transmission success probability, a.k.a. SINR meta distribution

[31], of a non-homogeneous PPP. As already illustrated in

Section II-C, the spatial queueing interactions amongst the

transmitters lead to a location-dependent active pattern at

each node. Therefore, seen from the perspective of a typical

transmitter, the interferers, i.e., the nodes that are activated

at the same time, are by nature non-homogeneous in their

spatial distributions and it is important to account for this

phenomenon in the analysis.

However, directly computing Fθ(u) requires all moments of

µΦ
0 , which is time-consuming. One way to get around this is

via approximation.

Corollary 1: The probability density function (pdf) of Fθ(u)
in Theorem 1 can be tightly approximated via the following

fX(u) = lim
n→∞

fXn(u)

= lim
n→∞

u
κn(βn+1)−1

1−κn (1 − u)βn−1

B(κnβn/(1− κn), βn)
(21)

where B(a, b) denotes the Beta function [35], κn and βn are

respectively given as

κn = c(1)n , (22)

βn =
(1 − κn)

[

κn − c
(2)
n

]

c
(1)
n − κ2n

(23)

where c
(m)
n can be written as

c(m)
n =exp

(

−
mθrα

ρ
−λr2

m
∑

k=1

(

m

k

)

(−1)k+1 η̂(k)n

)

, (24)

and η̂
(k)
n is given by

η̂
(k)
n−1 =

∫ ∞

0

∫ 2π

0

[

1−
ξ

pHθ(v, ψ, p)

]k
dψ

∫ 2π

0

[

∫ Hθ(v,ϕ,p)

0

fXn−1(t)dt

+

∫ 1

Hθ(v,ϕ,p)

Hk
θ (v, ϕ, p)

tk
fXn−1(t)dt

]dϕ

2π
vdv. (25)

Particularly, when n = 1, we have η̂
(k)
0 given by the following

η̂
(k)
0 =

(

δ − 1

k − 1

)

2π2θδξkpk

α sin(πδ)
. (26)

Proof: It can be observed from (15) that the approximated

function Fθ,n(u) in each iteration step is supported on [0, 1].

We are thus motivated to approximate the distribution via

a Beta distribution. First, by assigning s as integers as per

(56), we can derive the moments in (24). Next, by respec-

tively matching the mean and variance to a Beta distribution

B(an, bn), it yields

an
an + bn

= c(1)n , (27)

anbn
(an + bn)2(an + bn + 1)

= c(2)n −
[

c(1)n
]2

(28)

and the result follows from solving the above system equa-

tions.

Note that compared to (15), calculation of (21) involves

only the first two moments of µΦ
0 and hence can be efficiently

executed. When conducting the computation, we generally set

a sufficiently small threshold ǫ and stop the iteration when

|η̂
(k)
n − η̂

(k)
n−1| < ǫ, ∀k where η̂

(k)
n is given in (25). It has been

shown that such a iteration can converge in very few, e.g., less

than 10, steps [36]. The accuracy of the above derivations will

be verified in Fig. 4 in Section IV.

Armed with these results, we are now in a position to give

a complete characterization of the AoI.

C. Stable Region and AoI

Before delving into the calculation of AoI, we would like

to pause and present the condition under which the queueing

network is stable, i.e., a typical transmitter does not explode

its buffer [37]. This task can be accomplished by controlling

the update frequency at each communication link:

Theorem 2: The sufficient and necessary conditions for the

queueing network to remain stable can be tightly approximated

as follows:

ξ ≤ ξc = sup{ξ|ξ ≤ p · ps} (29)

where ξc is the critical update frequency, and ps is the

probability of success transmission at the typical node, given

as follows

ps = exp
(

−
θrα

ρ
−λr2

∫ ∞

0

∫ 2π

0

Zθ(v, ps, p, ξ)vdϕdv

1+(1+v2−2v cosϕ)
α
2/θ

)

(30)

≈ exp
(

−
θrα

ρ
− λr2θ

2
α

∫ ∞

0

min
{

ξ
ps
(1+u−

α
2 ), p

}

1 + u
α
2

du
)

(31)

where Zθ(v, ps, p, ξ) is given by

Zθ(v, ps, p, ξ)=

∫ 2π

0

min
{ ξ

ps

[

1+
θ

(1−2v cosψ+v2)
α
2

]

, p
}dψ

2π
.

(32)

Proof: Please see Appendix C.

In the sequel, we restrict the value of network parameters to

be set within the stable region such that the resultant statistics

are well defined.

At this stage, we are ready to finally derive expressions for

the AoI.
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Theorem 3: Under the FCFS discipline, the average and

peak AoI are given as follows:

Aave
F =

1

ξ
+

∫ 1

ξ/p

( 1− ξ

pt− ξ
+

ξ

pt
−

ξ

p2t2

)

Fθ(dt)− 1

≈
1

ξ
+

∫ 1

ξ/p

( 1− ξ

pt− ξ
+

ξ

pt
−

ξ

p2t2

)

fX(t)dt− 1, (33)

Ap
F =

1

ξ
+

∫ 1

ξ/p

( 1− ξ

pt− ξ

)

Fθ(dt)

≈
1

ξ
+

∫ 1

ξ/p

( 1− ξ

pt− ξ

)

fX(t)dt (34)

where Fθ(·) and fX(·) are given in (15) and (21), respectively.

Proof: The above expressions are attained by decondi-

tioning the random variable µΦ
0 in (7) and (8) with respect to

its distribution functions given per (15) and (21), respectively.

Theorem 4: Under the LCFS-PR discipline, the average

and peak AoI are given as follows:

Aave
L =

1

ξ
− 1 +

∫ 1

ξ/p

Fθ(dt)

pt

≈
1

ξ
− 1 +

∫ 1

ξ/p

fX(t)dt

pt
, (35)

Ap
F =

1

ξ
− 2 +

∫ 1

ξ/p

[ 1

pt
+

1

1− (1− ξ)(1− ξt)

]

Fθ(dt)

≈
1

ξ
− 2 +

∫ 1

ξ/p

[ fX(t)

pt
+

fX(t)

1− (1− ξ)(1 − ξt)

]

dt (36)

where Fθ(·) and fX(·) are given by (15) and (21), respectively.

Proof: This result can be obtained via similar approaches

in Theorem 3 and hence is omitted here.

To this end, (15) quantifies not only the key features of a

wireless network, including the deployment density, interfer-

ence, and traffic dynamics, but also the impact of spatially

interacting queues, via a fixed-point functional equation.

To further release the burden on computing (33) to (36), the

following corollaries provide low-complexity approximations.

Corollary 2: Under the FCFS discipline, the average and

peak AoI can be respectively approximated as follows:

Aave
F ≈

1

ξ
+

1− ξ

p · ps − ξ
+

ξ

p · ps
−

ξ

p2 · p2s
− 1, (37)

Ap
F ≈

1

ξ
+

1− ξ

p · ps − ξ
(38)

where ps is given by (30).

Proof: By deconditioning µΦ
0,F in (7), we have

Aave
F =

1

ξ
+E

0
[ 1− ξ

pµΦ
0,F − ξ

+
ξ

pµΦ
0,F

−
ξ

(pµΦ
0,F)

2

]

≈
1

ξ
+

1− ξ

pE0
[

µΦ
0,F

]

− ξ
+

ξ

pE0
[

µΦ
0,F

] −
ξ

(pE0
[

µΦ
0,F

]

)2
, (39)

and then (37) follows. Analogously, we can obtain (38) via

the same argument.

Corollary 3: Under the LCFS-PR discipline, the average

and peak AoI can be respectively approximated as follows:

Aave
L ≈

1

ξ
+

1

p · ps
− 1, (40)

Ap
L ≈

1

ξ
+

1

p · ps
+

1

1− (1− ξ)(1 − p · ps)
− 2 (41)

where ps is given by (30).

Proof: This result can be obtained via similar approaches

in Corollary 2 and hence is omitted here.

Note that according to the Jensen’s inequality, the results

in (38), (40), and (41), as well as the second and third terms

of (37), are in fact lower bounds of the original expressions.

And such a lower bound has been adopted in many stochastic

geometry related network analysis as a tight approximation

[38], [39].

D. Special Case Study

In light of the developed analysis, we explore in this section

the AoI statistic under several special cases to gain further

insights. Specifically, we investigate three scenarios, in which

the network is operating at an interference level that is above,

below, and equal to, the original system, respectively.

1) Dominant System Scenario: In a dominant system, every

transmitter except the typical one is backlogged, i.e., only the

typical link has packet dynamics over it while the interferers

are alway having packets to be sent out. Consequently, the

typical transmitter experiences a higher level of interference

than that in the original system. We denote the conditional

transmission success probability of the typical link in such a

system as µ̂Φ
0 , and the average throughput of the typical link

can then be calculated as follows:

p · E
[

µ̂Φ
0

] (a)
= p · E

[

e−
θrα

ρ

∏

j 6=0

(

1−
p

1 +Dj0

)

]

(b)
= p · exp

(

−
θrα

ρ
− λπr2θδ

∫ ∞

0

p dv

1 + vα/2

)

(42)

where (a) follows from assigning aΦj = 1, ∀j 6= 0 in (11) and

(b) by leveraging the PGFL of PPP to carry out the calculation.

Then, by taking a derivative of the throughput in (42) with

respect to p, and setting it to be zero, i.e.,
∂(p·E[µ̂Φ

0 ])
∂p = 0,

we can solve for the optimal channel access probability as the

following:

p∗ = min
{ 1

λπr2θδ
∫∞

0
dv

1+vα/2

, 1
}

. (43)

Following (43), it is clear that under the dominant system,

there may exist a channel access probability p∗ ∈ (0, 1) that

optimizes the throughput, which, according to Corollaries 2

and 3, then in turn minimizes the average and peak AoI under

FCFS and LCFS-PR.

2) Sparsely Deployed Networks: If the network is sparsely

deployed, namely, λ → 0, the transmitting nodes recede

into the distance and the interference becomes negligible.

Therefore, according to (30), we have ps ≈ e−
θrα

ρ . As such,

following the Corollaries 2 and 3, we can approximate the
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average and peak AoI under FCFS and LCFS-PR protocols

respectively as follows:

Aave
F ≈

1

ξ
+

1− ξ

p · e−
θrα

ρ − ξ
+
ξe

θrα

ρ

p
−
ξe

2θrα

ρ

p2
− 1, (44)

Ap
F ≈

1

ξ
+

1− ξ

pe−
θrα

ρ − ξ
, (45)

Aave
L ≈

1

ξ
+
e

θrα

ρ

p
− 1, (46)

Ap
L ≈

1

ξ
+
e

θrα

ρ

p
+

1

1− (1− ξ)(1 − pe−
θrα

ρ )
− 2. (47)

From the above results, we can see that the AoI decreases

monotonically with respect to the channel access probability

p. Moreover, if we set p = 1, and keep reducing the decoding

threshold, i.e., θ → 0, there is Aave
F → Aave

L , namely the packet

transmission protocols have a mild effect on the performance

of AoI when the wireless links have very high throughput.

3) Spatially Interacting Queues: In the presence of spa-

tially queueing interactions as the depicted network, we can

take a derivative of the average throughput, p·ps, of the typical

link with respect to p and have the following

∂(p · ps)

∂p
=

(

1− pλr2
∫ ∞

0

∫ 2π

0

∂Zθ(v,ps,p,ξ)
∂p vdϕdv

1+(1+v2−2v cosϕ)
α
2/θ

)

×ps

(48)

≥

(

1− pλr2
∫ ∞

0

∫ 2π

0

vdϕdv

1+(1+v2−2v cosϕ)
α
2/θ

)

×ps.

(49)

From (49), we note that for sparse network deployment, i.e.,

λ is relatively small, there is
∂(p·ps)
∂p ≥ 0 and hence the link

throughput keeps increasing with channel access probability

p which implies the AoI always decreases with p. On the

other hand, when the network is densely deployed, namely λ
is relatively large, (48) may be negative for a large p value.

In that context, there may exist an optimal channel access

probability p ∈ (0, 1) that maximizes the link throughput

and so as the AoI. Additionally, by comparing (42) and (48),

one shall note that the optimal p in networks with spatially

interacting queues are always greater than that of a dominant

system.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we verify the accuracy of our analysis

through simulations and then evaluate the performance of AoI

under different sets of network parameters. Particularly, during

each simulation run, we realize the locations of the transmitters

and receivers over a 5 km2 area via independent PPPs. The

packets of each node are updated according to independent

Bernoulli processes. We average over 10,000 realizations and

collect the statistic from each communication link to finally

calculate the corresponding metrics. Unless differently spec-

ified, we use the following parameters: α = 3.8, ξ = 0.3,

θ = 0 dB, Ptx = 17 dBm, σ2 = −90 dBm, p = 0.6, r = 15
m and λ = 10−4m−2.

0 0.2 0.4 0.6 0.8 1

Conditional transmission success probability, µΦ

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n,

 F
θ
(u

) Simulations
Analysis: Theorem 1
Approximation: Corollary 1

ξ = 0.5

ξ = 0.1

Fig. 4. Simulation versus analysis: CDF of the conditional transmission
success probability, in which we set r = 25 m, and vary the packet update
frequencies as ξ = 0.1, 0.3, 0.5.

In Fig. 4, we compare the simulated CDF of the conditional

transmission success probability to the analysis developed in

Theorem 1 and the approximations in Corollary 1, for various

values of packet update frequency ξ. The figure shows a close

match between the analytical results and simulations, thus

confirms the accuracy of the theorem. Besides, the differences

between the analysis in (15) and approximation per (21) are

almost indistinguishable, which verifies the tightness of the

approximation. We also observe that the conditional trans-

mission success probability monotonically decreases with the

increase of packet update frequency, because more and more

wireless links are activated and that rise up the interference

level across the network. Moreover, the increase in the update

frequency defects the probability of transmission success in

a non-linear manner, whereas the degradation of transmission

success probability is more severe as the updating frequency

goes from light (ξ = 0.10) to medium (ξ = 0.30), and

the decreasing trend slows down as the network load further

increases to heavy traffic regime (ξ = 0.50). The reason

comes from the composite effect of the updating rate. In the

light traffic condition, as the packet arrival rate goes up, the

increased traffic load not only wakes up more transmitters

but also brings in more accumulated packets at the buffer.

Together with the reduced service rate, the active duration

of transmitters is extended, which in turns defect the SINR

across the network. In the heavy traffic regime, as most of the

queues are already saturated, the additional active links cannot

largely change the interference, and thus the SINR coverage

probability descent is leveled off.

Fig. 5 provides the conditions under which the queueing

network can remain stable. In this figure, the critical update

frequency is depicted as a function of the distance between a

generic transmitter and its intended receiver. We can see that

the maximally allowable update frequency declines dramati-

cally as the transceiver distance increases since that reduces

the transmission success probability. Moreover, we can see

that after r = 50 – the midpoint of the average inter-site

distance – the order of the critical update frequency reverses,
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Fig. 6. Comparing the impact of transmission protocols on the performance
of AoI.

because in this regime interference dominates the transmission

and suppressing that can benefit the transmitters.

Fig. 6 shows the simulation and analytical results of both

(a) the peak and (b) the average AoI for a varying value

of the packet update frequency. We immediately notice that

the simulations and analyses match well with each other,

which validates the accuracy of Theorem 3 and Theorem 4.

Moreover, we observe that under the FCFS discipline, there

exists an optimal update frequency that minimizes both the

average and peak AoI, due to the tradeoff between the aggres-

siveness of updating and the overall interference level that

affects the transmission success probability. In stark contrast,

we can see that networks operating under LCFS-PR are able

to attain smaller AoI than those under FCFS, and both the

peak and average AoI decline monotonically with respect to

the update frequency. These observations also coincide with

those drawn from the abstract models [4], [6], thus confirm the

effectiveness of LCFS-PR over FCFS in reducing AoI from of

perspective of an SINR model.

Fig. 7 plots the AoI as a function of the channel access prob-

ability, under various values of packet update frequencies and

spatial deployment densities. In this figure, the AoI statistics

under different network parameters are depicted only within

their feasible, namely, the queue stable, regions. Particularly,

Fig. 7 (a) shows the AoI statistics of a sparsely deployed

network, and from this figure several messages are due: (i) at

p = 0.7, the peak and average AoI under the FCFS protocol

first decreases and then increases as ξ grows while the same

statistic keeps declining with the packet update frequency,

which coincides with the observations drawn in Fig. 6; (ii) the

peak and average AoI under LCFS-PR protocol are converging

at p = 1, because under the employed set of parameters

the typical link attains a relatively high transmission success

probability, i.e., ps ≈ 1, at p = 1, which implies such a

convergence according to Corollary 3; and (iii) under both

FCFS and LCFS-PR disciplines, the peak and average AoI

statistics decrease monotonically with respect to the channel

access probability p, and at p = 1, the AoI can be further

reduced by increasing the packet update frequency. The last

observation is in line with the conclusion drawn from the

special case study in Section III-D-2). And it mainly ascribes

to the fact that when p decreases, while each transmitter

reduces its channel access frequency and hence collectively

brings down the overall interference level, which leads to a

higher transmission success probability per node, that also

results in a reduced frequency of channel access, which in fact

deteriorate the link throughput and give rise to a higher AoI. In

this respect, simply adopting ALOHA with a universally fixed

channel access probability in sparse networks does not benefit

the AoI. Therefore, one shall opt for more advanced channel

access controls, e.g., the ALOHA with locally adaptive chan-

nel access probability [40], to boost up the AoI performance

in large-scale networks.7 On the other hand, Fig. 7 (b) depicts

the change of AoI performance when the infrastructure is

densely deployed. From this figure, we can clearly see an

optimal channel access probability that minimizes the peak

and average AoI under both FCFS and LCFS-PR protocols.

Because when there is an abundant number of wireless links

in the network, the excessive interference can devastate the

throughput of each link. In this context, it is worthwhile to

reduce the channel access probability so as to strike a balance

between the radio channel utilization per node and the overall

interference level, which, as illustrated in the special case

studies of Section III-D, attains the minimum AoI by achieving

a maximum throughput.

In Fig. 8, we put the spotlight on the AoI achieved by

a typical UE under the presence of an increase of network

deployment density. From this figure, we find that LCFS-

PR always outperforms FCFS in delivering fresh information

when the network grows in size. Additionally, Fig. 8 also

conveys another fundamental message: LCFS-PR is much

more suitable than FCFS in densely deployed networks. In

7A thorough discussion about the design of locally adaptive ALOHA
scheme and the performance of peak AoI under FCFS can be seen in [41]. It is
worthwhile to note that using the same design mechanism, and by leveraging
the AoI expressions given in Lemma 1 and Lemma 2 of this paper, one
can show that the locally adaptive channel access probability given in [41]
is effective in minimizing the peak and average AoI under both FCFS and
LCFS-PR.
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Fig. 7. The impact of channel access probability on the peak and average AoI. In Fig. (a), the network has a spatial density as λ = 10−4 m−2 and the
packet update frequency varies as ξ = 0.1, 0.3, 0.6 dB. In Fig. (b), the network has a spatial density as λ = 2× 10−3 m−2 and the packet update frequency
is maintained at ξ = 0.30.
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Fig. 8. The impact of deployment density on the peak and average AoI.

fact, as the deployment density of transceiver pairs goes up

from 10−5/m2 to 10−3/m2, the average AoI under LCFS-

PR increases by only 50% while that under the FCFS more

than double, which firmly demonstrates the effectiveness of

LCFS-PR.

V. CONCLUSION

In this work, we undertook an analytical study for the

understanding of AoI performance in large-scale wireless

networks. We used a general model that accounts for the

channel gain and interference, dynamics of status updating,

and spatially queueing interactions. Our results revealed that,

when considering transmission protocols, LCFS-PR is a better

resort than FCFS toward minimizing AoI, whereas the gain

is more pronounced when the network is densely deployed.

Moreover, in a sparsely deployed network, simple channel

access controls such as ALOHA cannot reduce the AoI, as

long as the access probability is universally devised, and hence

ushering a call for more advanced designs. However, when the

infrastructure is densely rolled out, there exists a non-trivial

ALOHA channel access probability that minimizes the peak

and average AoI under both FCFS and LCFS-PR.

The framework provided in this paper allows one to ex-

plicitly characterize the effect of spatially interacting queues,

which is a fundamental conundrum in analyzing queueing

networks. More generally, our work helps to understand how

all the key features of a wireless network, i.e., interference,

load, and deployment strategy, affect the AoI performance. In

consequence, it opens the door for a variety of further design

options, e.g., to explore the impact of different buffer sizes,

retransmission schemes, or channel access approaches on the

AoI of a large-scale wireless network. Investigating up to what

extent power control can improve AoI is also regarded as a

concrete direction for future work.

APPENDIX

A. Proof of Lemma 2

Let us denote by M and N the inter-arrival time and the

total sojourn time, i.e., the time from a packet’s arrival to the

time it reaches destination, in the queue, respectively, which

are random variables. When conditioning on the point process

Φ, the dynamics over the typical link can be regarded as a

Geo/Geo/1 queue with service rate being pµΦ
0 . As such, under

the LCFS-PR discipline, the average AoI is given as [27]:

E
0
[

Aave
L |Φ

]

=
1

2
·
E
[

M2
]

E[M ]
+

E
[

min(N,M)
]

P
(

N ≤M
) −

1

2
. (50)

On the one hand, as M ∼ Geo(ξ) and N ∼ Geo(pµΦ
0 ), we

have the following

E[M ] =
1

ξ
, E[M2] =

2− ξ

ξ2
, (51)

P(N ≤M) = 1− E
[

(1− pµΦ
0 )
M
]

=
pµΦ

0

1− (1− pµΦ
0 )(1− ξ)

. (52)
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On the other hand, since M and N are independent random

variables, via simple calculations we have min(M,N) ∼
Geo(1− (1 − pµΦ

0 )(1 − ξ)). Thus the following holds

E
[

min(M,N)
]

=
1

1− (1− pµΦ
0 )(1 − ξ)

. (53)

The result in (9) then follows from substituting (51), (52), and

(53) into (50).

Next, the conditional peak AoI under LCFS-PR is given as

[27]:

E
0
[

Ap
L|Φ

]

=
E[M ]

P
(

N≤M
) +

E
[

N1{N≤M}
]

P
(

N≤M
) − 1. (54)

The nominator of the second term on the R.H.S. above can be

calculated as

E
[

N1{N ≤M}
]

= E

[

E
[

N1{N ≤M}
∣

∣M
]

]

=E

[

M
∑

m=1

m(1− pµΦ
0 )
m−1pµΦ

0

]

=E

[ 1− (1 − pµΦ
0 )
M

µΦ
0

− (1 − pµΦ
0 )M(1− pµΦ

0 )
M−1

]

=
pµΦ

0
[

1− (1− pµΦ
0 )(1 − ξ)

]2 . (55)

The expression in (10) then follows by substituting (51), (52),

and (55) into (54).

B. Proof of Theorem 1

For ease of exposition, let us denote qu,j = P(ζj = 1|‖yj−
y0‖ = u, ζ0 = 1), and Y Φ

0 = lnP(γ0 > θ|Φ). Given the

typical link is transmitting, by using Lemma 3, we can write

the moment generating function of Y Φ
0 as follows:

MY Φ
0
(s) = E

[

P(γ0 > θ|Φ)s
]

= e−
θsrα

ρ E
0
[

∏

j 6=0

(

1−
p qu,j

1 + ‖Xj − y0‖α/θrα
)

]

(a)
= e−

θsrα

ρ E
0
Φ̂

[

∏

j 6=0

(

1−
p qu,j

1+|u2+r2−2ur cosΨ|
α
2/θrα

)s
]

(b)
= exp

{

−
θsrα

ρ
− λ

∫ ∞

0

∫ 2π

0

dϕudu

×
(

1− E
[(

1−
p · qu,j

1+|u2+r2−2ur cosϕ|
α
2/θrα

)s]
)

}

(c)
= exp

{

−
θsrα

ρ
−

∫ ∞

0

∫ 2π

0

s
∑

k=1

(

s

k

)

×
λ (−p)k+1

E[qku,j ]dϕudu
[

1+|u2+r2−2ur cosϕ|
α
2/θrα

]k

}

(d)
= exp

{

−
θsrα

ρ
−2πλ

∫ ∞

0

∫ 2π

0

s
∑

k=1

(

s

k

)

× (−1)k+1
E[qku,j ]

[

1−
1

pHθ(
u
r , ϕ, p)

]k dϕ

2π
udu

}

(56)

where (a) is to take the expectation of point process Φ by

conditioning on the locations of receivers Φ̂, in which a typical

pair is depicted per Fig. 9, and using the cosine law, (b)
follows from the probability generating functional (PGFL) of

a PPP [26], (c) aims to further expand the expression via the

Binomial theorem, and (d) follows from substituting (16) into

the equation and algebraic manipulation. In order to obtain

a complete expression of (56), we need to further compute

E[qku,j ]. By using Lemma 4, we arrive at the following:

E
[

qku,j
]

= E
[

1{p · µΦ
j ≤ ξ}|‖yj − y0‖ = u, ζ0 = 1

]

+ E
[

(ξ/pµΦ
j )
k
1{p · µΦ

j > ξ}|‖yj − y0‖ = u, ζ0 = 1
]

. (57)

At this stage, let us assume the CDF of µΦ
0 , Fθ(u), is available.

The first term on the right hand side (R.H.S.) of (57) can then

be computed as follows:

E
[

1{p · µΦ
j ≤ ξ}|‖yj − y0‖ = u, ζ0 = 1

]

=P

(

µΦ!o

j <
ξ

p
·

1 +D0j

1 +D0j − p

∣

∣‖yj − y0‖ = u, ζ0 = 1
)

(a)
=

∫ 2π

0

Fθ

( ξ

p
+

ξ

1−p+(r2+u2−2ur cosϕ)
α
2/θrα

)dϕ

2π

=

∫ 2π

0

Fθ

(

Hθ

(u

r
, ϕ, p

)

)dϕ

2π
, (58)

where µΦ!o

j denotes a reduced point process by removing the

points associated with the typical link from Φ, and (a) follows

by using the Slivnyark’s theorem [26]. Analogously, we can

obtain the expression for the second term on the R.H.S. of

(57) as follows:

E

[

( ξ

pµΦ
j

)k
1{p · µΦ

j > ξ}|‖yj − y0‖ = u, ζ0 = 1
]

=

∫ 2π

0

∫ 1

Hθ(
u
r ,ψ,p)

t−kHk
θ(
u

r
, ψ, p)Fθ(dt)

dψ

2π
. (59)

By using the Gil-Pelaze theorem [42], we have the CDF of

µΦ
0 given as follows:

Fθ(u) = P
[

P(γ0 > θ|Φ) < u
]

= P(Y Φ
0 < lnu)

=
1

2
−

1

π

∫ ∞

0

Im
{

u−jωMY Φ
0
(jω)

}dω

ω
. (60)

The expression in (15) then follows by plugging back (56),

(58), and (59) into the above equation and further simplify

the expression via change of variable as v = u/r.
Finally, since Fθ(u) is given in the form of a fix-point

equation, we can iteratively solve for the exact expression via

similar approach as [22]8.

C. Proof of Theorem 2

Because the dynamics at the typical link can be abstracted

as a queueing system with uniform arrivals and a random

departure rate, then, according to Loynes’ theorem [44], the

transmissions over the typical link are stable if and only if the

packet arrival rate does not exceed the mean departure rate,

i.e.,

ξ ≤ p · P(γ0,t > θ) = p · ps. (61)

8Such an approach to solve the fixed-point equation via successive approx-
imations is known as the Picard’s method [43].
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Fig. 9. Example of a two-points location topology given the distance between
receivers being ‖y0 − yj‖ = u.

The R.H.S. of the above inequality is the mean of the random

quantity given by (6), which can be derived via two steps.

First, let us assume the transmission success probability ps is

currently available. Then, given the typical node is transmitting

data, the conditional transmission success probability at a

generic link j per (11) can be written as follows:

µΦ
j = e−

θrα

ρ

∏

i6=0,i6=j

(

1−
paΦi

1 +Dij

)

×
(

1−
1

1 +D0j

)

= µΦ!0

j ×
(

1−
1

1 +D0j

)

(62)

where µΦ!0

j is the conditional transmission success probability

of link j given the reduced Point process Φ!0, which is

obtained by removing the dipoles of link 0 from the the

original point process Φ. Using the expression in (62), and by

denoting the distance between two receivers as ‖y0−yj‖ = u,

we can calculate the active probability at node j as

P(ζj = 1|‖y0 − yj‖ = u, ζ0 = 1)

= E

[

min
{ ξ

pµΦ
j

, 1
}
∣

∣‖y0 − yj‖ = u, ζ0 = 1
]

(a)
= E

[

min
{ ξ

pµΦ!0

j

(

1 +
1

D0j

)

, 1
}∣

∣‖y0 − yj‖ = u, ζ0 = 1
]

(b)
≈ E

[

min
{ ξ

pE[µΦ!0

j ]

(

1+
1

|u2+r2−2ur cosΨ|α/2/θrα

)

, 1
}

]

(c)
=

∫ 2π

0

min
{ ξ

pps

[

1 +
θrα

(u2 + r2 − 2ur cosψ)α/2
]

, 1
}dψ

2π
(63)

where (a) is by substituting (17), (b) by taking expectation

directly to the term µΦ!0

j in the denominator, as well as

leveraging the Cosine Rule to expand D0j , and (c) follows

from using the Slivnyark’s theorem, which gives E[µΦ!0

j ] = ps.
As such, in the steady state, we can approximate the

locations of the interfering nodes using a non-homogeneous

PPP with spatial density:

G(u) = P(ζj = 1|‖y0 − yj‖ = u, ζ0 = 1). (64)

To this end, we can take an expectation on both sides of (6)

and get the following:

ps=e
− θrα

ρ E

[

∏

j 6=0

(

1−
paΦj

1 +Dj0

)

]

=e−
θrα

ρ E
0
Φ̂

[

∏

j 6=0

E
[

1−
paΦj

1+Dj0

∣

∣‖y0 − yj‖=u
]

]

=exp
(

−
θrα

ρ
−

∫ ∞

0

∫ 2π

0

λ p θ rαG(u)ududϕ

θrα+
(

u2+r2−2ur cosϕ
)

α
2

)

. (65)

The result then follows from algebraic manipulations.
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