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Abstract—In this paper, we propose a novel wireless caching
scheme to enhance the physical layer security of video stream-
ing in cellular networks with limited backhaul capacity. By
proactively sharing video data across a subset of base stations
(BSs) through both caching and backhaul loading, secure co-
operative joint transmission of several BSs can be dynamically
enabled in accordance with the cache status, the channel condi-
tions, and the backhaul capacity. Assuming imperfect channel
state information (CSI) at the transmitters, we formulate a two-
stage non-convex mixed-integer robust optimization problem
for minimizing the total transmit power while providing quality
of service (QoS) and guaranteeing communication secrecy
during video delivery, where the caching and the cooperative
transmission policy are optimized in an offline video caching
stage and an online video delivery stage, respectively. Although
the formulated optimization problem turns out to be NP-hard,
low-complexity polynomial-time algorithms, whose solutions
are globally optimal under certain conditions, are proposed
for cache training and video delivery control. Caching is
shown to be beneficial as it reduces the data sharing overhead
imposed on the capacity-constrained backhaul links, introduces
additional secure degrees of freedom, and enables a power-
efficient communication system design. Simulation results con-
firm that the proposed caching scheme achieves simultaneously
a low secrecy outage probability and a high power efficiency.
Furthermore, due to the proposed robust optimization, the
performance loss caused by imperfect CSI knowledge can be
significantly reduced when the cache capacity becomes large.

I. INTRODUCTION

THE rapidly growing video-on-demand (VoD) streaming

traffic in cellular networks has introduced significant

challenges for service providers as both the radio resources
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in the radio access network (RAN) and the capacity of the

backhaul links are limited [2], [3]. Wireless caching has been

proposed to meet the stringent VoD streaming requirements

in the fifth generation (5G) cellular networks [4]–[9]. Differ-

ent from traditional wireless networking paradigms, wireless

caching is a content-centric solution for VoD streaming and

intelligently exploits the fact that the content requested by

users is highly correlated [10]. By pre-storing the most

popular files at base stations (BSs) and access points (APs),

wireless caching enables quick access to these files via

wireless networks and, consequently, improves the quality of

service (QoS) in video streaming. Meanwhile, by reusing the

cached content for transmission to multiple users, the back-

haul traffic is significantly reduced [4]. Recently, caching

has also been exploited as a physical layer mechanism to fa-

cilitate cooperative multiple-input multiple-output (MIMO)

transmission [5]–[8] and cross-layer resource allocation [9].

These schemes effectively exploit the multiplexing and

diversity gains introduced by caching for spectral efficiency

enhancement in the RAN as well as energy savings in

the entire cellular network. Therefore, wireless caching is

an appealing option for supporting cellular VoD streaming

while providing a capacity enhancement in both the RAN

and the backhaul. More importantly, caching has introduced

a new type of cellular resource, namely, the cache memory,

and additional degrees of freedom to enhance the system

performance. Recently, an advanced network architecture for

exploiting distributed cache memories at BSs, referred as

Fog-RAN, has been proposed for 5G in [11]–[14].

Meanwhile, due to the broadcast nature of wireless trans-

mission, VoD streaming data is vulnerable to potential

eavesdroppers such as non-paying subscribers and malicious

attackers. Thus, secure video streaming schemes providing

both video data protection and streaming QoS guarantees

are needed in 5G cellular networks. However, secure data

delivery in cache-enabled transmission was not considered

until recently. The existing works [15]–[17] were motivated

by the coded caching scheme proposed in [18]. Specifically,

each user is equipped with a local cache to pre-store parts of

a popular video content. By properly encoding the cached

and the delivered content (e.g., via index coding), coded

multicast delivery opportunities are enabled for serving
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various user requests at high delivery rates [18]. In [15],

a coded caching scheme was proposed to guarantee secure

information delivery when eavesdroppers attempt to inter-

cept the video data over a multicast link. To ensure com-

munication secrecy, the cached and the delivered contents

are encoded/encrypted using random secret keys and secure

coded multicast delivery is enabled based on Shannon’s

one-time pad method. Coded caching was extended to

device-to-device (D2D) cellular networks in [16], where a

sophisticated key generation and encryption scheme was

proposed. However, the encryption methods in [15], [16] can

incur significant signaling overhead for sharing the secret

keys; for example, one-time pad based methods typically

require the size of the secret keys to be as large as the file

size. In [17], a non-encryption based secure video delivery

scheme, which prevents eavesdroppers from obtaining the

number of coded packets required for successful video file

recovery, was proposed for cache-enabled heterogeneous

small cell networks. Nevertheless, an information-theoretic

characterization of the secrecy considered in [17] is missing.

On the other hand, MIMO-based physical layer secu-

rity (PLS) techniques have been proposed to guarantee

information-theoretic secrecy in 5G cellular networks [19]–

[21]. Different from one-time pad or encryption meth-

ods, PLS techniques opportunistically exploit the inher-

ent properties of wireless channels to enhance communi-

cation secrecy without using secret keys. In an MIMO

wiretap channel with full channel state information (CSI),

information-theoretic studies have revealed that the maximal

number of secure degrees of freedom (s.d.o.f.)1 enabled

by multiple antennas is given by min([Nt − Ne]
+, Nr)

[19]–[22], where Nt, Nr, and Ne are the number of trans-

mit, receive, and eavesdropping antennas, respectively, and

[x]+ , max(x, 0). Because of their superior performance

and low overhead compared to encryption based methods,

MIMO-based PLS techniques have been widely advocated

for secure transmission in cellular networks. However, to

the best of the authors’ knowledge, despite the increasing

interest in secure cache-enabled communication, the benefits

of caching for PLS enhancement have not been investigated

in the literature yet.

To fill this void, in this paper, we show that caching is

an effective method to enhance the PLS of cellular VoD

streaming. Specifically, assume that each BS is equipped

with a cache. By caching the same video data at differ-

ent BSs, several BSs can participate in cooperative joint

secure transmission of the video data. Correspondingly, by

exploiting the large transmit antenna array formed by the

cooperating BSs, the s.d.o.f. can be significantly increased

and the PLS can be enhanced [19]. Meanwhile, as caching

1Strictly positive s.d.o.f. indicate that the system’s secrecy capacity can
be scaled up by increasing the transmit power.

reduces the data sharing overhead typically needed for BS

cooperation [23], the s.d.o.f. can be increased even if the

cellular network has capacity-constrained backhaul links.

Interestingly, since data caching takes place a priori, e.g.,

in the early mornings when cellular traffic is low, the

overhead of data sharing and channel estimation incurred

by the cache-enabled joint transmission is comparable to

that of traditional coordinated beamforming [23, Section IV-

A] adopted for intercell interference mitigation, particularly

when the cache capacity is large.

In [1], we have investigated cache-enabled cooperative

joint secure transmission assuming perfect knowledge of the

channels between the BSs and the legitimate users as well

as the channels between the BSs and the eavesdropper. Yet,

in practical systems, the channels to passive eavesdroppers

are not perfectly known since an eavesdropper can remain

silent for long periods of time. This leads to a reduction

of the s.d.o.f. for cooperative transmission [21], [22] and

increases the likelihood of data leakage. In this paper, we

extend [1] to mitigate the impact of imperfect CSI knowl-

edge. To enhance communication secrecy, artificial noise

(AN)-based jamming is applied to effectively interfere the

eavesdropper’s reception [24]–[26]. In particular, since the

AN is generated randomly and locally at the BSs involving

neither the cache nor the backhaul, cooperative jamming

by all BSs is considered in this paper for achieving high

power efficiency. Moreover, to prevent data leakage under

imperfect CSI and as power efficiency is of paramount

importance for the design of future communication sys-

tems, the joint optimization of cooperative transmission and

AN-based jamming is formulated as a robust optimization

problem for minimization of the total transmit power while

providing QoS and guaranteeing communication secrecy

during video delivery.

We note that cache-enabled cooperative transmission for

transmit power minimization and delivery time minimization

has been investigated in [5]–[8] and [13], [14], respectively.

However, these works did not consider PLS nor backhaul

capacity constraints. Hence, the solutions proposed in [5]–

[8], [13], [14] are not applicable to the considered problem,

which motivates this work. The main contributions of this

paper are as follows:

• We propose caching as a mechanism to enhance secure

cellular video streaming with limited backhaul capacity.

Thereby, the cache is instrumental for reducing the

backhaul traffic and supporting secure data transmis-

sion via BS cooperation.

• Assuming imperfect CSI knowledge, we formulate a

two-stage non-convex robust optimization problem for

the minimization of the total BS transmit power while

satisfying QoS and secrecy constraints for video de-

livery. Effective caching and delivery algorithms with



polynomial-time computational complexity are devel-

oped to solve the problem. In particular, we show

that the proposed algorithms are asymptotically optimal

when the cache capacity and the number of data sets

adopted for cache training are sufficiently large.

• Simulation results show that the proposed schemes can

efficiently utilize the cache capacity to enhance PLS

and reduce the total BS transmit power. Moreover, the

proposed robust algorithms ensure secure communica-

tion even for imperfect CSI knowledge.

The remainder of this paper is organized as follows. In

Section II, we present the system model for cache enabled

cooperative video delivery. The formulation and solution of

the proposed two-stage robust control problem are provided

in Sections III and IV, respectively. In Section V, the

performance of the proposed robust algorithms is evaluated

by simulation, and finally, Section VI concludes the paper.

Notation: Throughout this paper, R and C denote the sets

of real and complex numbers, respectively; CL denotes the

set of L×L complex matrices; IL, 1L, and 0L are the L×L
identity, all-one, and zero matrices, respectively; diag(v) is

a diagonal matrix with the diagonal elements given by the

elements of vector v; (·)T and (·)H are the transpose and

complex conjugate transpose operators, respectively; tr(·),
rank(·), det(·), λmax(·), and ‖·‖F denote the trace, rank,

determinant, maximum eigenvalue, and Frobenius norm of

a square matrix, respectively; Pr(·) and E(·) denote the

probability mass operator and the expectation operator,

respectively; the circularly symmetric complex Gaussian

distribution is denoted by CN (µ,C) with mean vector µ

and covariance matrix C; ∼ stands for “distributed as”; |X |
and conv(X ) represent the cardinality and the convex hull

of set X , respectively; X ×Y denotes the Cartesian product

of sets X and Y; A � 0 (A ≻ 0) indicates that matrix

A is positive semidefinite (definite); ∇Xf (X) denotes the

complex-valued gradient of f(X) with respect to matrix X;

finally, ⌊·⌋ denotes the rounding operator and (nk ) is the

binomial coefficient.

II. SYSTEM MODEL

We consider video streaming in the downlink of a multi-

cell cellular network as shown in Fig. 1(a). A set of

BSs, M = {1, . . . ,M}, each equipped with Nt antennas,

broadcast the video data to a set of single-antenna legitimate

receivers (LRs), K = {1, . . . ,K}. Since the broadcasted

video data may be overheard by a passive eavesdropping

receiver (ER), securing the video delivery is desirable to

reduce the chance of potential information leakage. We

assume that the ER is equipped with Ne antennas2.

The video server located at the Internet edge owns a

library of video files, F = {1, . . . , F}, which are intended

2The ER may represent a set of distributed ERs with a total number of
Ne antennas which are connected to perform joint eavesdropping.

for delivery. The size of video file f ∈ F is Vf bits. The

BSs are connected to the video server via dedicated “last-

mile” wired backhaul links such as digital subscriber lines.

We assume that the backhaul links are secure. However,

since each backhaul is shared by different types of traffic

(e.g., voice, data, multimedia, control signaling, etc.), the

backhaul capacity available for supporting video streaming

may be time-varying and limited. To reduce the backhaul

traffic, a cache is deployed at each BS for pre-storing the

video data.

The cache-enabled system is time-slotted and its operation

is divided into two stages. In the first stage, a portion of

the video files is cached at the BSs. To reduce the system

overhead, the cache is updated when the network utilization

is low, e.g., during early mornings. In the second stage, users

request video files and in response, a subset of the BSs

cooperate to address the requests. We assume that there is

a central processor (CP) also located at the Internet edge,

which is capable of performing computationally intensive

signal processing tasks. The video caching and delivery

control decisions are determined at the CP and conveyed

to the BSs via the backhaul links. In this paper, we focus

on static caching for notational convenience. Nevertheless,

the proposed schemes can be extended to spatio-temporally

dynamic caching by executing the corresponding algorithms

multiple times across space and time. A list of key notations

is shown in Table I.

A. Caching and Backhaul Loading in Two Stages

We assume hypertext transfer protocol (HTTP) based

video streaming [27]. Thereby, file f is split/segmented into

L subfiles/segments of equal sizes, i.e., Vf/L, and each

subfile (f, l)∈F × L is delivered in one time slot3, where

L≫1 and L={1, . . . , L}, cf. Fig. 1(b). Let binary variable

qf,l,m ∈ {0, 1} indicate the participation of BS m ∈ M
in the cooperative transmission of subfile (f, l). The set of

BSs cooperating for delivering subfile (f, l) is then defined

as MCoop
f,l , {m∈M | qf,l,m = 1} ⊆ M. To facilitate

cooperative BS transmission, the video data can be conveyed

to the cooperating BSs in two manners: (1) caching the

data ahead of time; (2) loading it via the backhaul links

instantaneously during delivery. The data caching decisions

are determined in the first stage based on the statistics or

historical records of the user requests4 . The cache status re-

mains unchanged once it is updated according to the caching

3Herein, one time slot corresponds to a streaming session in HTTP
video streaming. To facilitate a succinct formulation of the transmit power
minimization problem for video file delivery, we neglect any inter-session
delay caused by packet scheduling and user interruptions.

4Similar to file popularity estimation [4], the proposed cache training is
performed based on profiles of user requests (and CSI) and does not require
explicit a priori knowledge of the file popularity. Note that the proposed
caching scheme is offline. Online cache training based on learning was
studied in [28].



TABLE I
LIST OF KEY NOTATIONS.

M, K, MCoop
f,l Sets of M BSs, K LRs, subset of cooperating BSs for delivery of subfile (f, l)

F , L Sets of F video files and L subfiles per file

ρ , (k, f, l), S Request of LR k for subfile (f, l) and set of user requests

cf,l,m, bf,l,m, qf,l,m Caching, backhaul loading, and cooperative delivery decisions for subfile (f, l) at BS m
wm,ρ, wρ Beamforming vectors for BS m and BS set M
v, V AN and its covariance matrix

Bmax
m , Cmax

m Backhaul link capacity and cache size at BS m
Γρ, Rρ, Rsec

ρ SINR, achievable rate, and achievable secrecy rate at LR ρ

Re,ρ Capacity of the ER for eavesdropping LR ρ

time

File
subfile subfile

... ...
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Fig. 1. (a) System model for cooperative beamforming and jamming for secure video delivery. (b) Each file is split/segmented into multiple
subfiles/segments. Each subfile can be shared through both caching and backhaul loading to enable cooperative joint transmission.

decisions. Since the information of the user requests, the

channel state, and the backhaul capacity are only known

online at the time of request, joint optimization of backhaul

loading and BS cooperative transmission is deferred to the

second stage when this information is (partially) available.

We note that two-stage control schemes have also been

widely studied in the literature of stochastic control [29],

[30] as they can incorporate online information for improved

system performance. For a similar reason, two-stage control

is a popular choice for operating cache-enabled cellular

networks [5], [6], [9].

For the purpose of data sharing, we cache cf,l,m ∈ [0, 1]
portion and load via the backhaul bf,l,m ∈ [0, 1] portion

of subfile (f, l) at BS m, respectively. We assume that

the same portion of each subfile of file f is cached at

BS m, i.e., cf,l,m = cf,m, ∀l ∈ L. Fig. 1(b) illustrates

the caching and backhaul loading process for cooperative

transmission of subfile (f, l). We can establish the following

relation between caching, backhaul loading, and cooperation

formation

bf,l,m = (1 − cf,m)qf,l,m. (1)

That is, successful cooperative transmission of subfile (f, l)
is possible, i.e., qf,l,m = 1, only when its data symbols

are fully available at BS m such that bf,l,m + cf,m = 1.

Otherwise, (1) enforces qf,l,m = 0 and bf,l,m = 0.

The aggregate backhaul load of BS m ∈ M is given by

Bm,l =
∑

f∈F
bf,l,mQf , (2)

where the fixed parameter Qf (in bps) represents the data

rate required to load subfile (f, l) via the backhaul at BS

m. We have Qf = Vf/(τL) or equivalently
cf,mVf

L
+

bf,l,mQfτ =
Vf

L
, where τ denotes the duration of a time

slot. Note that Bm,l ≤ ∑
f∈F qf,l,mQf , in other words,

caching reduces the backhaul capacity required for cooper-

ative BS transmission.

B. Cooperative Beamforming and Jamming for Secure

Video Delivery

When subfile (f, l) is available at BS subset MCoop
f,l , these

BSs employ joint cooperative beamforming and jamming to

deliver the subfile. Assume that an LR requests one (sub)file



at a time5 [6]. We denote the request of LR k for subfile

(f, l) by ρ , (k, f, l) and the set of user requests by

S ⊆ K × F × L. Here, S is known at the beginning of

the online delivery stage. With a slight abuse of notation,

in the following, the LRs are also indexed by ρ when the

requested (sub)files need to be specified. Note that there is

a one-to-one correspondence between ρ and k.

The data symbols of subfile (f, l) for serving request ρ are

denoted by sρ ∈ C and are modeled as complex Gaussian

random variables6 with sρ ∼ CN (0, 1) [31, Ch. 5], [32,

Ch. 9]. Let wm,ρ ∈ CNt×1 be the beamforming vector used

at BS m ∈ M for sending symbol sρ. As the cooperative

BS set MCoop
f,l dynamically changes with the cache status

during backhaul loading, cf. (1), we impose

(1− qf,l,m)wm,ρ = 0, ∀m ∈ M, ∀ρ ∈ S, (3)

to adaptively adjust the beamforming vectors, wm,ρ, accord-

ing to the cooperation decisions, qf,l,m. Based on (3), we

have wm,ρ = 0, ∀m /∈ MCoop
f,l . Without loss of generality,

let wρ, [wH
1,ρ, . . . ,w

H
M,ρ]

H

∈ CMNt×1 be the joint beamforming vector for serving

request ρ. Furthermore, complex Gaussian distributed AN,

v ∈ CMNt×1, is sent cooperatively by BS set M to

proactively interfere the reception of the ER. We assume

v ∼ CN (0, V), where V is the covariance matrix of the

artificial noise, i.e., V , E
[
vvH

]
. The joint transmit signal

of BS set M, denoted as x ∈ C
MNt×1, is thus given by

x =
∑

ρ∈S
wρsρ + v. (4)

Note that (3) and (4) describe a flexible BS cooperation

topology, which allows any cooperative set MCoop
f,l ⊆ M,

provided that MCoop
f,l ensures problem feasibility. For exam-

ple, (3) and (4) correspond to joint transmission with full

BS cooperation when |MCoop
f,l | = M, ∀f , and coordinated

beamforming when |MCoop
f,l | = 1, ∀f , respectively.

C. Channel Model and Channel State Information

We assume a frequency flat fading channel model. The

received signals at LR ρ ∈ S and the ER, denoted by yρ ∈ C

5If an LR requests several files simultaneously, orthogonal frequency
multiple access (OFDMA) can be adopted to simultaneously deliver multi-
ple video data streams to a single-antenna LR [31]. For a given subcarrier
assignment, the model considered in this paper still applies at the expense
of extra notations.

6Gaussian data symbols are capacity-achieving for the additive white
Gaussian noise channel, and hence, are commonly assumed for analytical
formulation of the achievable rate [31], [32]. On the other hand, if the
modulation and coding schemes (MCS) employed in practical VoD systems
are not capacity-achieving, the achievable rate expression can be amended
by introducing an equivalent signal-to-noise ratio (SNR), SNR

∆
, where

∆ ≥ 1 defines the SNR gap between the channel capacity and the rate
achievable with the adopted MCS [33].

and ye ∈ CNe×1, respectively, are given by

yρ = hH
ρ x+ zρ (5)

= hH
ρ wρsρ︸ ︷︷ ︸

desired signal

+
∑

ρ′∈S,ρ′ 6=ρ
hH
ρ wρ′sρ′

︸ ︷︷ ︸
multiuser interference

+ hH
ρ v

︸︷︷︸
injected AN

+ zρ,

and ye = GHx+ ze, where

hρ = [hH
1,ρ, . . . ,h

H
M,ρ]

H ∈ C
MNt×1 and (6)

G = [GH
1 , . . . ,GH

M ]H ∈ C
MNt×Ne

are the channel vectors/matrices from BS set M to LR ρ and

the ER, respectively. hm,ρ ∈ CNt×1 and Gm ∈ CNt×Ne

model the channels between BS m ∈ M and the corre-

sponding LR/ER receivers; and zρ ∼ CN (0, σ2) and ze ∼
CN (0, σ2

eINe
) are the zero-mean complex Gaussian noises

at the LRs and the ER with variance σ2 and covariance ma-

trix σ2
e INe

, respectively. Here, the channel vectors/matrices

capture the joint effects of multipath fading and path loss;

in addition, zρ and ze represent the joint effects of thermal

noise and possible out-of-system interference.

For channel estimation, we assume a time division duplex

(TDD) system with slowly time-varying channels. At the

beginning of each time slot, the LRs send orthogonal pilot

sequences simultaneously in the uplink. Due to channel

reciprocity, the LRs’ downlink channels are estimated by

measuring the pilot signals. We assume that the pilot se-

quences are long enough such that the CSI of the LRs can

be reliably estimated at the CP7. In contrast, we consider

imperfect CSI for the ER8 since the ER does not directly

interact with the BSs during channel estimation, which

prevents a timely and accurate estimation of its CSI. Let

Ĝ ∈ C
MNt×Ne be the estimate of the ER channel matrix

G. We write G = Ĝ + ∆G, where ∆G is the estimation

error matrix and its value is unknown at the CP. To capture

the effect of imperfect CSI, we assume that ∆G lies in a

continuous set of possible values given by

Ue ,

{
∆G ∈ C

MNt×Ne | ‖∆G‖2F ≤ ε2e

}
. (7)

Here, Ue is referred to as the uncertainty set associated with

channel estimate Ĝ and εe ≥ 0 is a measure for the accuracy

of the channel estimate of the ER. In practice, the value of

εe depends on the channel coherence time and the adopted

channel estimation method. Note that the above imperfect

7In practice, the CSI of the LRs can be imperfect if channel estimation
errors occur, which degrades communication secrecy. The proposed robust
optimization framework can be easily extended to tackle CSI imperfection
at the LRs [25], [26]. However, as the imperfect CSI for the ER usually
dominates other source of imperfection, we neglect the effect of imperfect
CSI at the LRs to keep the paper readable. The results of this paper provide
a performance upper bound for the case of imperfect CSI at LRs.

8Even though the ER is passive and silent, it may still be possible
to estimate the CSI of the ER based on the local oscillator power that
is unintentionally leaked from its radio frequency (RF) front end during
eavesdropping [34].



CSI model is commonly adopted in the literature [25], [26],

and the special case εe = 0 corresponds to the optimistic

scenario when G is perfectly known at the CP.

D. Achievable Secrecy Rate

The achievable rate at LR ρ ∈ S, denoted by Rρ, is given

by

Rρ = log (1 + Γρ) , (8)

Γρ =
1
σ2

∣∣hH
ρ wρ

∣∣2

1 + 1
σ2

∑
ρ′∈S,ρ′ 6=ρ

∣∣hH
ρ wρ′

∣∣2 + 1
σ2hH

ρ Vhρ

,

where Γρ is the received signal-to-interference-plus-noise

ratio (SINR) at LR ρ. In (8), the term
∑

ρ′∈S,ρ′ 6=ρ

∣∣hH
ρ wρ′

∣∣2
accounts for the interference power caused by multiuser

transmission, cf. (5).

To guarantee secure VoD streaming, the proposed secure

delivery scheme is designed to avoid VoD data leakage even

under worst-case conditions. Specifically, we assume that the

ER can eavesdrop the information intended for LR ρ after

canceling the interference caused by all other LRs. This is

possible if the ER adopts advanced receiver structures such

as successive interference cancellation decoders [31, Ch.

8.3]. Thus, the achievable secrecy rate for LR ρ is modeled

as [19], [25],

Rsec
ρ = [Rρ −Re,ρ]

+
, ρ ∈ S, (9)

where Re,ρ denotes the capacity of the ER for decoding

subfile (f, l) of LR ρ and is given by [31, Chapter 8]

Re,ρ = log det
(
INe

+
1

σ2
e

GZ−1
e,ρG

Hwρw
H
ρ

)
, ρ ∈ S, (10)

with Ze,ρ = INe
+ 1

σ2
e
GHVG.

According to (9), for power-efficient secure video de-

livery, the cooperative beamforming and jamming has to

ensure a certain rate difference between Rρ and Re,ρ

while consuming as little transmit power as possible. This

means that multiuser interference should be reduced through

cooperative beamforming across a virtual transmit antenna

array whose size, according to (1) and (3), depends on the

caching decisions. At the same time, the covariance matrix

V for cooperative jamming has to be properly designed to

degrade the capacity of the ER channel, cf. (10), without

causing interference to the LRs, cf. (8). Therefore, caching,

cooperative beamforming, and AN-based jamming have to

be judiciously and jointly optimized to reap the benefits of

cache-enabled secrecy.

III. ROBUST TWO-STAGE PROBLEM FORMULATION

In this section, we formulate a two-stage robust optimiza-

tion problem for minimization of the total BS transmit power

while taking into account the secrecy/QoS constraints of the

LRs and the imperfect CSI knowledge regarding the ER. In

the first stage, the cached video data is optimized offline.

In the second stage, the cooperative transmission strategy is

optimized online for a given cache and backhaul status. For

ease of discussion, we first present the formulation of the

second-stage problem.

A. Second-Stage Online Delivery Control

The BS cooperation formation policy DII,1 ,

[qf,l,m, bf,l,m] and the cooperative transmission policy

DII,2 , [wρ,V] (including beamforming and jamming)

are optimized in the second stage. For this purpose, we

assume that the set of user requests S is given and the

cache status {cf,m} has already been determined in the first

stage. Let DII , [DII,1,DII,2] be the optimization space of

the second (delivery) stage. The considered optimization

problem is formulated in (11) at the top of the next page,

where Bmax
m is the backhaul capacity available for video

sharing at BS m, Pmax
m is the maximum transmit power

at BS m, and Λm is an MNt × MNt diagonal matrix

defined as Λm = diag(0T
(m−1)Nt×1,1

T
Nt×1,0

T
(M−m)Nt×1),

such that tr
(
wm,ρw

H
m,ρ

)
= tr

(
Λmwρw

H
ρ

)
holds. By

constraints C1, C2, and C4, BS m is only allowed to

cooperate in transmitting subfile (f, l) if qf,l,m = 1
or bf,l,m + cf,l,m = 1; otherwise, if qf,l,m = 0 and

bf,l,m + cf,l,m < 1, BS m cannot cooperate as wρ = 0.

Constraints C3 and C5 limit the maximum backhaul rate

and the maximum transmit power of each BS, respectively.

C6 guarantees a minimum required video delivery rate,

Rreq
ρ , to provide video streaming QoS for LR ρ. C7 ensures

that the capacity of the ER is kept below a maximum

tolerable secrecy threshold Rtol
e,ρ for video data protection.

Due to the imperfect CSI of the ER, the capacity of the

ER is constrained for all possible estimation error matrices

within the uncertainty set, i.e., for any ∆G ∈ Ue, in C7,

to provide robustness in secure communication. C6 and C7

together guarantee a minimum achievable secrecy rate of

Rsec
ρ = [Rreq

ρ −Rtol
e,ρ]

+ for LR ρ, provided that problem R0

is feasible.

Remark 1. If, instead of (7), the probability distribution of

the channel estimation error matrix is known, e.g., if ∆G

is complex-valued Gaussian distributed, the robust design in

R0 is still applicable and can ensure a probabilistic secrecy

outage constraint, e.g., Pr(Rsec
ρ < [Rreq

ρ − Rtol
e,ρ]

+) ≤ α,

by following a similar approach as in [25]. Meanwhile, if

perfect CSI knowledge of the ER is available, i.e., εe = 0 in

C7, the optimal solution of R0 provides a performance upper

bound for the case of imperfect CSI. However, the methods

for solving R0 for εe = 0 and εe > 0 differ slightly in how

C7 is dealt with, cf. Section IV.

B. First-Stage Offline Cache Training

A historical data driven approach [9], [29] is adopted for

optimizing the offline caching in the first stage. Assume

that Ω sets of typical scenario data are available for training



R0: minimize fII ,
∑

ρ∈S
tr(wρw

H
ρ +V) (11)

subject to C1: bf,l,m = (1− cf,m)qf,l,m, (f, l) ∈ F × L, m ∈ M,

C2: bf,l,m ∈ [0, 1], qf,l,m ∈ {0, 1} , (f, l) ∈ F × L, m ∈ M,

C3:
∑

f∈F
bf,l,mQf ≤ Bmax

m , ∀l, ∀m, C4: (1− qf,l,m)wρ = 0, ∀m, ∀ρ,

C5: tr
(
Λm

(∑
ρ∈S

wρw
H
ρ +V

))
≤ Pmax

m , m ∈ M,

C6: Rρ ≥ Rreq
ρ , ρ ∈ S, C7: max

∆G∈Ue

Re,ρ ≤ Rtol
e,ρ, ρ ∈ S,

variables DII = [qf,l,m, bf,l,m,wρ,V],

the cache, e.g., obtained from past system records. Each

set of scenario data consists of the user requests, CSI,

and the available backhaul capacities at a particular time

instant. The scenario data is indexed by ω ∈ {1, . . . ,Ω}. Let

CI , [cf,m, DI,ω] be the first-stage (caching) optimization

space, where DI,ω , [qf,l,m,ω, bf,l,m,ω,wρ,ω,Vω] denotes

the auxiliary delivery decisions for scenario ω during train-

ing. We define the feasible delivery set for scenario ω by

DI,ω , {DI,ω | C1, C2, C4–C7}, where C1, C2, and C4–

C7 need to be reformulated with an augmented system state

space. For example, C1 and C2 are rewritten as

C1: bf,l,m,ω = (1− cf,m)qf,l,m,ω, (12)

C2: cf,m, bf,l,m,ω ∈ [0, 1], qf,l,m,ω ∈ {0, 1} ,
and C4–C7 are similarly formulated.

The objective of the first-stage problem is the mini-

mization of the average transmit power for the considered

scenarios, i.e.,

Q0: minimize
1

Ω

Ω∑

ω=1

fI,ω (13)

subject to C3:
1

Ω

Ω∑

ω=1

∑

f∈F

bf,l,m,ωQf ≤
1

Ω

Ω∑

ω=1

Bmax
m,ω , ∀m,

C8:
∑

f∈F

cf,mVf ≤ Cmax
m , m ∈ M,

C9: DI,ω ∈ DI,ω, ω ∈ {1, . . . ,Ω} ,
variables CI = [cf,m, qf,l,m,ω, bf,l,m,ω,wρ,ω,Vω],

where fI,ω ,
∑

ρ∈S tr(wρ,ωw
H
ρ,ω + Vω) is the instanta-

neous transmit power for scenario ω and Cmax
m is the cache

capacity at BS m. C3 is an average backhaul capacity con-

straint and C8 is the cache capacity constraint. Considering

C3 and C8, the number of cooperating BSs during online

VoD streaming depends largely on the values of Cmax
m and

Bmax
m,ω . Note that C3 is a relaxation of the per-scenario

backhaul capacity constraint
∑

f∈F bf,l,m,ωQf ≤ Bmax
m,ω ,

ω ∈ {1, . . . ,Ω}. In the caching phase, when the actual back-

haul capacity at the time of delivery is uncertain, C3 avoids

the conservative use of the backhaul links, considering that

the actual cooperative transmission decisions are deferred

to the second stage when the available backhaul capacity

is known. Furthermore, C3 facilitates the design of low-

complexity asymptotically optimal cache training as will be

revealed in Section IV-C.

Problems R0 and Q0 are non-convex mixed-integer non-

linear programs (MINLPs)9 due to non-convex constraints

C6, C7, and the binary optimization variables qf,l,m ∈
{0, 1} and qf,l,m,ω ∈ {0, 1}. Moreover, problems R0 and

Q0 involve bilinear constraints C1 and C4. Even setting

aside secrecy, the formulated two-stage control problem is

more practical compared to the problems considered in [6]–

[8], as it accounts for binary cooperation formation deci-

sions, capacity-constrained backhaul links, and imperfect

CSI. However, MINLPs are generally NP-hard and there

are no known polynomial-time algorithms to solve them

optimally [35]. In Section IV, to strike a balance between

computational complexity and optimality, we present two

effective polynomial-time suboptimal algorithms for solving

problems R0 and Q0, respectively. We further show that the

proposed algorithms are asymptotically optimal when the

cache capacity and the number of scenarios considered are

sufficiently large, respectively.

IV. SOLUTION OF TWO-STAGE PROBLEM

In this section, the solutions of problems R0 and Q0

are presented. We first tackle problem R0. The approach

employed for solving problem R0 is then extended to solve

problem Q0.

A. Optimal Solution of Problem R0 in Large Cache Capac-

ity Regime

We first discuss special conditions under which problem

R0 is solvable in polynomial time. The corresponding results

provide the basis for solving problem R0 in the general case.

9For a non-convex MINLP, even if the integer constraints are relaxed to
convex constraints, the problem remains non-convex [35].



Let F(S) , {f | (k, f, l) ∈ S} be the set of files re-

quested by the LRs in S, where F(S) ⊆ F . We define

F (S) , |F(S)|, which satisfies F (S) ≤ min {|S| , F}.

For a given cache status {cf,m}, C1 is an affine equality

constraint which enables the elimination of the backhaul

loading decision variables bf,l,m. As a result, problem R0

is reformulated as

R0: minimize fII (14)

subject to C4, C5, C6, C7, V � 0,

C2: qf,l,m ∈ {0, 1} , (f, l) ∈ F × L,m ∈ M,

C̃3 :
∑

f∈F(S)

qf,l,mQf,m ≤ Bmax
m , ∀l, ∀m,

variables DII = [qf,l,m, bf,l,m,wρ,V],

where Qf,m , (1 − cf,m)Qf is the “effective” data rate

required for loading subfile (f, l) into BS m via the backhaul

link and hence, constraints C̃3 and C3 are equivalent. We

have the following lemma for the BS cooperation formation

in (14).

Lemma 1 (Monotonicity of R0). Let f1
II and f2

II de-

note the optimal objective values for given cooperation

sets MCoop,1
f,l and MCoop,2

f,l , respectively. If MCoop,1
f,l ⊆

MCoop,2
f,l , ∀(f, l) ∈ F(S)× L, then f1

II ≥ f2
II holds.

Proof: Assume that V is given. If MCoop,i
f,l is adopted

for solving problem R0, let Di
ρ and Di

m,ρ be the resulting

feasible sets of wρ and wm,ρ, respectively, where Di
ρ =∏M

m=1 Di
m,ρ, i = 1, 2. Considering constraint C4, we have

0 ∈ Di
m,ρ if m ∈ M, and Di

m,ρ = {0} if m /∈ MCoop,i
f,l .

Besides, D1
m,ρ = D2

m,ρ if m ∈ MCoop,1
f,l and m ∈ MCoop,2

f,l .

Thus, D1
ρ ⊆ D2

ρ holds if MCoop,1
f,l ⊆ MCoop,2

f,l . We have

f1
II ≥ f2

II for any given V, since the objective function of

R0 for given V is only a function of wρ. This completes

the proof.

In systems with large cache capacity, the backhaul capac-

ity constraints C3/C̃3 can be removed and there is no loss of

optimality as the cache can effectively offload the backhaul

traffic. Besides, fully cooperative transmission with coopera-

tion set MF−Coop
f,l = M is feasible and, based on Lemma 1,

optimal considering MCoop
f,l ⊆ MF−Coop

f,l , ∀MCoop
f,l .

Furthermore, the non-convex problem R0 becomes poly-

nomial time solvable. This is in fact due to the more general

result that, whenever the cooperation sets are fixed (i.e.,

the cooperation formation decision DII,1 = [qf,l,m, bf,l,m]
is known a priori), the resulting problem, denoted by

R0(DII,2),

R0(DII,2): minimize fII (15)

subject to C4, C5, C6, C7, V � 0,

variables DII,2 = [wρ,V],

is polynomial time solvable. In particular, despite the seem-

ingly non-convex constraints C4, C6, and C7 included in

R0(DII,2), we will reveal the hidden convexity of R0(DII,2)

and show that R0(DII,2) can be solved optimally and effi-

ciently via an equivalent convex problem. For this purpose,

C4, C6, and C7 are first transformed into convex forms

below.

We first apply the big-M reformulation [35] of bilinear

constraint C4, which gives

C4: tr
(
Λmwρw

H
ρ

)
≤ qf,l,mPmax

m , m ∈ M,ρ ∈ S. (16)

We note that C4 is equivalent to C4, as both constraints

enforce wm,ρ = 0 whenever BS m /∈ MCoop
f,l cannot

participate in the cooperative transmission of subfile (f, l).
For example, if qf,l,m = 0, we have tr

(
Λmwρw

H
ρ

)
=

‖wm,ρ‖22 = 0, which results in wm,ρ = 0; on the other

hand, if qf,l,m = 1, C4 is inactive due to C5. Moreover,

for a given BS cooperation decision qf,l,m, C4 reduces to a

convex quadratic inequality constraint.

Next, let Wρ , wρw
H
ρ � 0 and Hρ , hρh

H
ρ . The

QoS constraint C6 can be transformed into affine inequality

constraints,

C6 ⇐⇒ Γρ ≥ κreq
ρ (17)

⇐⇒ C6 :
1

κreq
ρ

tr (WρHρ) ≥ σ2 +
∑

ρ′ 6=ρ

tr (Wρ′Hρ) , ∀ρ,

where κreq
ρ , 2R

req
ρ − 1. C6 and C6 are equivalent if and

only if the following constraint holds

C10: Wρ � 0 and rank(Wρ) ≤ 1. (18)

Finally, Proposition 1 is applied to transform C7.

Proposition 1. Assume that C10 holds. If εe > 0, the

secrecy constraint C7 can be equivalently transformed into

a convex linear matrix inequality (LMI) as

C̃7: UH
e (Wρ − κtol

ρ

σ2
e

V)Ue � (19)

diag
(
(κtol

ρ − δe)11×Ne
,
δe

ε2e
11×MNt

)
, δe ≥ 0,

where Ue =
[
Ĝ, IMNt

]
and κtol

ρ , σ2
e (2

Rtol
e,ρ − 1). More-

over, if εe = 0, C7 is equivalent to

C7: GHWρG � σ2
e κ

tol
ρ Ze,ρ, (20)

where Ze,ρ is defined after (10).

Proof: Please refer to Appendix A.

Now, by applying the above transformations and relaxing

the rank constraint rank(Wρ) ≤ 1, i.e., removing it from

C10, we obtain the following convex semidefinite program

(SDP),



R1: minimize tr
(∑

ρ∈S
Wρ +V

)
(21)

subject to C4: tr (ΛmWρ) ≤ qf,l,mPmax
m , ∀m, ∀ρ,

C5: tr
(
Λm

(∑

ρ∈S

Wρ +V
))

≤ Pmax
m , ∀m,

C6, C̃7/C7, C10: Wρ � 0,V � 0, ∀ρ,
variables Wρ,V, δe,

where C̃7 and C7 are applied when εe > 0 and εe = 0,

respectively. Generally, problem R1 achieves a lower bound

on the optimal value of R0(DII,2). If the solution of R1

further satisfies rank(Wρ) ≤ 1, ρ ∈ S, then the optimal

solution of problem R0(DII,2) is readily available based on

Wρ = wρw
H
ρ , i.e., the relaxation is tight. For the problem

at hand, however, the relaxation is always tight, which is

established in the following theorem.

Theorem 1 (Rank of Optimal Wρ). Problems R0(DII,2)

and R1 are equivalent in the sense that both problems have

the same optimal value; in particular, the optimal solution

W∗
ρ of R1 satisfies rank(W∗

ρ) ≤ 1, ρ ∈ S, and the

optimal beamforming vector w∗
ρ of R0(DII,2) is given by the

principal eigenvector of W∗
ρ. This result holds for εe ≥ 0.

Proof: Please refer to Appendix B.

Based on Theorem 1, problem R0(DII,2) can be efficiently

solved using standard convex optimization algorithms. For

example, the interior-point method [36], [37], which is

implemented in existing numerical convex program solvers

such as CVX [38], is applicable. The resulting computa-

tional complexity of solving problem R0(DII,2) with respect

to the number of LRs, K , the number of eavesdropping

antennas, Ne, and the total number of transmit antennas,

MNt, is given by [39, Theorem 3.12]

Θsdp = O




√
Φ log

(
ǫ−1

)
︸ ︷︷ ︸

Number of iterations

(
ΞΦ3 + Ξ2Φ2 + Ξ3

)
︸ ︷︷ ︸

Complexity per iteration


 , (22)

with Φ,MNt(K+1) and Ξ,MK+M+2K . Herein, ǫ>0
is the desired solution accuracy specified for the adopted

numerical solver and O(·) denotes the big-O notation.

Based on (22), the algorithm for solving problem R0(DII,2)

has a polynomial-time computational complexity, which is

desirable for real time implementation [38].

B. General Case: Greedy Iterative Solution of R0

For limited cache capacity, problem R0 is NP-hard

due to the non-convex constraints C2 and C3. The op-

timal solution has to be determined by enumerating all

possible cooperation sets satisfying the backhaul capac-

ity constraint C3. For this purpose, enumeration methods

such as exhaustive search and branch-and-bound [35] are

applicable. However, although the remaining cooperative

beamforming problem, i.e., problem R0(DII,2), can be ef-

ficiently solved for each choice of cooperation sets, cf.

Theorem 1, the overall computational complexity grows

exponentially with the number of BSs due to the combi-

natorial nature of the problem. To be specific, we define

Tm , min
{⌊

Bmax
m /minf∈F(S)Qf,m

⌋
, F (S)

}
and Tm ,⌊

Bmax
m /maxf∈F(S)Qf,m

⌋
. According to Lemma 1, the

optimal cooperation formation solutions are contained in the

vertices of the polyhedral simplex defined by the intersection

of hyperplanes
∑

f∈F(S) qf,l,m ≤ Tm and hypercubes

qf,l,m ∈ [0, 1], where Tm ≤ Tm ≤ Tm,m ∈ M. As

a result, the enumeration of approximately
∏M

m=1

(
Tm

F (S)

)

vertices (cooperation sets) is required in the worst case

for solving problem R0 by exhaustive search (branch-and-

bound).

Non-polynomial time enumeration methods are only ap-

plicable for systems of small size. For practical systems with

medium and large sizes, however, effective polynomial-time

algorithms are desired. Herein, a low-complexity iterative

algorithm based on greedy heuristics is proposed to solve

problem R0 and is summarized in Algorithm 1.

Let k be the iteration index. Define Qk ,

{(f,m) | qf,l,m = 1,m ∈ M, f ∈ F (S)} as the BS

cooperation solution set at iteration k. Algorithm 1

starts with the initialization Q0 =
∏

f∈F(S)MF−Coop
f,l

=
∏

f∈F(S)M, that is, qf,l,m = 1, ∀m ∈ M, ∀f ∈ F (S).
At iteration k = 1, 2, . . ., the qf,l,m’s are fixed according

to Qk−1 and, consequently, the cooperative beamforming

solutions are obtained via problem R0(DII,2), whose

optimal value is denoted by f∗
II(Qk−1). If Qk−1 fulfills

the backhaul capacity constraint C3, the algorithm stops

and returns the solutions for cooperative BS transmission.

Otherwise, the greedy algorithm sets qf ′,l,m′ = 0 for that

(f ′,m′) ∈ Qk−1 which incurs the smallest penalty on the

total transmit power, i.e.,

(f ′,m′) ∈ argmin
(f,m)∈F(S)×Mvio

k

[f∗
II(Qk−1\ {(f,m)})− f∗

II(Qk−1)] ,

(23)

and updates Qk = Qk−1\ {(f ′,m′)}. In (23), Mvio
k−1

denotes the index set of BSs violating constraint C3 if Qk−1

is adopted for cooperative transmission, i.e.,

Mvio
k−1 ,

{
m ∈ M |

∑

(f,m)∈Qk−1

Qf,m > Bmax
m

}
. (24)

The iteration process is repeated until C3 is fulfilled.

Note that during each iteration of Algorithm 1, (23) is

solved by enumerating F (S) ×
∣∣Mvio

k−1

∣∣ choices of (f,m).
The total number of choices is bounded from above by

F (S)×
∣∣Mvio

0

∣∣×T in the worst case, where
∑

m∈M Tm ≤
T ≤ ∑

m∈M Tm. Consequently, the overall computational

complexity of Algorithm 1 is given by

Θgreedy = F (S)×
∣∣Mvio

0

∣∣ × TΘsdp, (25)

which grows only polynomially with the number of BSs M
and the number of LRs K , cf. (22). In general, the proposed



Algorithm 1 Greedy Iterative Algorithm for Solving R0

1: Initialization: Q0 ←
∏

f∈F(S)M
F−Coop
f,l , k ← 1;

2: Solve problem R0(DII,2) for Q0;
3: while Mvio

k−1 6= ∅ (cf. (24)) do

4: for each (f,m) ∈ F(S)×Mvio
k do

5: Solve problem R0(DII,2) for Qk−1\ {(f,m)};
6: end for
7: Qk ← Qk−1\ {(f

′,m′)}, where (f ′, m′) solves (23);
8: k ← k + 1,
9: end while

greedy algorithm is suboptimal. However, for large cache

capacity, Algorithm 1 terminates without having to solve

(23) and the obtained solution is globally optimal.

Remark 2. We note that alternative polynomial-time meth-

ods that could be used to solve problem R0 have certain

pitfalls. For example, by reformulating the binary variables

as ℓ0-norms, problem R0 can be solved by the approxima-

tion methods proposed in [40], [41]. However, the solutions

obtained by these approximation methods are generally

(primal) infeasible for most of the cases under investigation.

This is because, on the one hand, the big-M constraint C4

would force qf,l,m to small non-zero fractions instead of

binary solutions that fulfill C2. On the other hand, generating

primal feasible solutions from approximate results is a non-

trivial task for NP-hard problems. For example, a brute-

force deterministic or random rounding of these continuous

solutions usually leads to the violation of the backhaul

capacity constraint C3. For similar reasons, primal feasibility

is also not ensured when other polynomial-time methods

such as convex relaxation (e.g., linear programming or SDP

based relaxation of the binary constraints) and difference of

convex programming (also referred to as successive convex

approximation) [42] are adopted. Yet, with Algorithm 1, the

likelihood of obtaining an infeasible primal solution is low

due to the greedy iterative search, cf. (24). As will be shown

in Section V, the solution obtained with Algorithm 1 is close

to the optimal value in the medium and large cache capacity

regimes.

C. Solution of Problem Q0

Problem Q0 has a considerably (Ω-times) larger problem

size than R0. Hence, solving problem Q0 via enumera-

tion methods seems impossible due to the overwhelming

computational complexity. Besides, the greedy suboptimal

method in Algorithm 1 cannot be directly applied for solving

problem Q0 since constraint C1 becomes bilinear over the

joint optimization space {CI} of Q0. We address both issues

by applying the following binary relaxation method.

In particular, the bilinear constraint C1 is transformed to

C̃1 : cf,m + bf,l,m,ω ≥ qf,l,m,ω. (26)

If the average backhaul capacity is insufficient, C̃1 and C8

together lead to bf,l,m,ω = (1 − cf,m) × qf,l,m,ω since

Q0 enjoys a similar monotonicity as R0, cf. Lemma 1;

otherwise, C̃1 is inactive. Thus, C̃1 and C1 are equivalent.

Moreover, let C̃2 be a relaxation of C2 where the binary

constraints are replaced by qf,l,m,ω ∈ [0, 1]. By adopting C̃1

and C̃2, we arrive at a relaxed version of Q0:

Q1: minimize
1

Ω

∑Ω

ω=1
fI,ω (27)

subject to C3,C8, C9: DI,ω ∈ D̂I,ω, ω ∈ {1, . . . ,Ω} ,
variables CI = [cf,m, qf,l,m,ω, bf,l,m,ω,wρ,ω,Vω],

where D̂I,ω ,

{
DI,ω | C̃1, C̃2, C4–C7

}
. Although problem

Q1 remains non-convex due to constraints C4, C6, and

C7, an equivalent convex SDP can be obtained for Q1

in a similar manner as for problem R0, cf. Section IV-A.

Thus, the relaxed problem Q1 can be solved efficiently (in

polynomial time) using the interior point method [36].

In general, the proposed relaxation solution of Q1 pro-

vides a performance lower bound for Q0. However, the

following theorem establishes that the relaxation solution

is asymptotically optimal in the limiting case of large Ω.

Theorem 2 (Asymptotic Optimality of the Relaxation Solu-

tion). Problems Q1 and Q0 become equivalent as Ω → ∞ in

the sense that their optimum values and the optimal caching

decisions become identical if problem Q0 is feasible.

Proof: Please refer to Appendix C.

V. SIMULATION RESULTS

In this section, we evaluate the system performance for

the proposed caching and secure delivery schemes. Consider

a cluster of M = 7 hexagonal cells, where a BS is deployed

at the center of each cell with an inter-BS distance of

500 m. Each BS is equipped with Nt = 4 antennas and

the ER has Ne = 2 antennas. We assume that a library

of F = 10 video files, each of duration 45 minutes and

size 500 MB (Bytes), is delivered to K = 5 single-

antenna LRs. Consequently, an estimated secrecy data rate

of Rsec
ρ ≈ Qf = 500× 8.0× 106/(45× 60) ≈ 1.5 Mbps is

required at each LR for uninterrupted video streaming. The

LRs and the ER are uniformly and randomly distributed in

the system while the minimum distance between receiver

and BS is 50 m. Each LR requests one file independent

of the other LRs. Let θf be the probability of file f ∈ F
being requested and let θ = [θ1, . . . , θF ] be the probability

distribution of the requests for the different files. We set

θf = 1
fκ /

∑
f∈F

1
fκ with κ = 1.1 according to the Zipf

distribution [10]. Moreover, the 3GPP path loss model

(“Urban Macro NLOS” scenario) in [43] is adopted. For

channel estimation, we define the normalized estimation

error of the ER as α2 ,
ε2e

‖G‖2
F

. Unless otherwise specified,

we assume α2 = 0.05. The capacities of the backhaul

links are independently and identically distributed (i.i.d.) as

Pr(Bmax
m = 0 Mbps) = 0.3, Pr(Bmax

m = 3 Mbps) = 0.4,



TABLE II
SIMULATION PARAMETERS.

Parameters Settings

System bandwidth 10 MHz

Duration of time slot τ = 10 ms

File splitting L = 45 mins/τ = 2.7× 104

BS transmit power Pmax
m = 48 dBm

Noise power density −172.6 dBm/Hz

Delivery QoS requirement Rreq
ρ = 1.1×Rsec

ρ = 1.65 Mbps

Delivery secrecy threshold Rtol
e,ρ = 0.1 ×Rsec

ρ = 0.15 Mbps

and Pr(Bmax
m = 6 Mbps) = 0.3, ∀m, which can be

interpreted as the probabilities of high, medium, and low

non-VoD traffic scenarios in the cellular network, respec-

tively. The other relevant system parameters are given in

Table II. Before video delivery starts, Ω = 50 scenarios are

randomly generated based on the adopted models for the

user preference, CSI, and backhaul capacity to determine

the initial cache status, cf. problem Q0.

A. Performance of the Proposed Caching Scheme

First, we study the performance of the proposed caching

scheme. For comparison, we consider three heuristic caching

schemes as baselines:

• Baseline 1 (Preference-based caching): The most pop-

ular files are cached. Assuming θ is known, the cache

control decision is made based on

maximize
∑

f∈F ,m∈M
θfcf,mVf (28)

subject to cf,m ∈ [0, 1], f ∈ F ,m ∈ M, C8,

variables cf,m.

• Baseline 2 (Uniform caching): The same amount of

data is cached for each file, i.e.,

cf,mVf =
1

F
min{Cmax

m ,
F∑

f ′=1

Vf ′}, ∀f, ∀m, (29)

and the users’ preferences are not taken into account.

• Baseline 3 (Power-efficient caching): This scheme is

identical to the proposed caching scheme, except that

the secrecy constraint C7 in Q0 is excluded from DI,ω

during cache placement.

For Baselines 1, 2, and 3, the proposed delivery scheme,

i.e., Algorithm 1, is adopted.

Figs. 2(a) and 2(b) show the total transmit power and the

secrecy outage probability, defined as pout , Pr(Rsec
ρ <

[Rreq
ρ − Rtol

e,ρ]
+), of the considered caching schemes as

functions of the cache capacity, respectively. Herein, pout

corresponds to the probability that problem R0 is infeasible

because either the scheme fails to satisfy the QoS constraint

C6 or the secrecy constraint C7. As can be observed from

Figs. 2(a) and 2(b), a larger cache capacity leads to both a

lower total BS transmit power and a smaller secrecy outage

probability10 as larger (virtual) transmit antenna arrays can

be formed during video delivery. For example, for the

proposed scheme, the average number of cooperating BSs is

4.0 for Cmax
m = 4000 MB (80% of library size) compared

to 2.8 for Cmax
m = 1000 MB (20% of library size), which

leads to a transmit power reduction of up to 4.8 dB. The

performance gap between the considered caching schemes

is negligible for small (large) cache capacities because of

insufficient (saturated) BS cooperation. For medium cache

capacities, however, the proposed caching scheme achieves

considerable transmit power savings due to its ability to

exploit the historical information regarding user requests,

backhaul capacity, and CSI for resource allocation. For a

similar reason, both the transmit power and the secrecy

outage probability of Baseline 3 are lower than those of

Baselines 1 and 2. However, the performance of Baseline 3

is generally worse than that of the proposed scheme. This

indicates that including the secrecy constraint also for cache

placement is necessary for maximizing the performance

during video file delivery. Note also that when the increase

in cache capacity is not sufficient to support additional

BSs for cooperative transmission, the performance does not

improve. As a result, the total transmit power in Fig. 2(a)

decreases in a piece-wise constant manner as the cache

capacity increases.

B. Performance of the Proposed Delivery Scheme

Next, we study the performance of the proposed delivery

scheme. As a performance benchmark, the optimal solution

of problem R0 is evaluated by an exhaustive search. Besides,

the following naive delivery schemes are considered as

baselines:

• Baseline 4 (Coordinated beamforming): The user is as-

sociated with the nearest BS which has sufficient back-

haul capacity available. Each video (sub)file is only

delivered from the associated BS, i.e.,
∑

m∈M qf,l,m =
1, ∀(f, l) ∈ F × L.

• Baseline 5 (Full BS cooperation): The backhaul ca-

pacity constraints are dropped and all BSs cooperate to

serve all users, i.e., qf,l,m = 1, ∀f, l,m. For Baselines 4

and 5, the optimal beamforming solutions are obtained

based on R0(DII,2) where qf,l,ms are fixed accordingly.

• Baseline 6 (Non-robust transmission): Different from

the proposed delivery scheme, the CP treats the pos-

sibly erroneous channel estimate Ĝ as accurate. Con-

sequently, the delivery decisions are made according

to R0 by setting ε2e = 0, irrespective of the channel

estimation errors.

Figs. 3(a) and 3(b) illustrate the performance of the

considered delivery schemes as functions of the cache

10In case of outage, in a practical system, a retransmission request would
be triggered.
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Fig. 2. (a) Total BS transmit power and (b) secrecy outage probability versus cache capacity (in percentage of the total library size) for
different caching schemes.
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Fig. 3. (a) Total BS transmit power and (b) secrecy outage probability versus cache capacity (in percentage of the total library size) for
different delivery schemes.

capacity11. The initial cache status is determined by solving

problem Q0. From Fig. 3(a), we observe that, as expected,

Baselines 4 and 5 constitute performance lower and up-

per bounds for the proposed delivery scheme, respectively.

Comparing the proposed delivery scheme and the optimal

delivery scheme, the performance gap between them reduces

as the cache capacity increases. This is because, for large

cache capacities, less backhaul traffic is generated and

correspondingly the probability that C3 is active is reduced.

It is interesting to observe that for a cache capacity of

3600 MB (70% of library size), the proposed scheme already

11The secrecy outage probability for Baseline 5 is not shown as Baseline
5 is infeasible for most cache capacity values.

achieves the same performance as the optimal delivery

scheme. Meanwhile, Fig. 3(a) shows that the total transmit

power of Baseline 6 is lower than that of the proposed

scheme. In the large cache capacity regime, Baseline 6 even

consumes less transmit power than full BS cooperation. This

is because, under imperfect CSI, cooperative beamforming

alone is not sufficient to prevent data leakage to the ER.

Hence, the proposed scheme and Baseline 5 have to transmit

a non-negligible amount of AN to degrade the reception of

the ER for enhancing communication secrecy. On the other

hand, as the AN can also leak into the LR channels, cf.

(8), a higher transmit power is also needed for cooperative

beamforming to fulfill the QoS constraint C6. Nevertheless,

we observe from Fig. 3(b) that, by consuming extra transmit
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Fig. 4. (a) Total BS transmit power and (b) secrecy outage
probability of different delivery schemes versus normalized channel
estimation error: the performances of the proposed scheme and
Baseline 6 are shown as solid and dotted lines, respectively; the
performances of Baselines 4 and 5 are as dashed lines, respectively.

power under imperfect CSI, the secrecy outage probability of

the proposed and the optimal schemes can be kept low and

decreases significantly with the cache capacity. In contrast,

for Baseline 6, the BSs transmit with insufficient power

since the imperfect CSI is treated as perfect CSI. As a

consequence, the secrecy outage probability for Baseline 6 is

the highest among all the considered schemes and decreases

much slower for increasing cache capacity than that of the

proposed scheme. This implies that the imperfection of CSI

has to be carefully taken into account for guaranteeing the

secrecy of video delivery.

C. Impact of Channel Estimation Errors

In Figs. 4(a) and 4(b), we show the performance of the

considered delivery scheme versus the normalized channel

estimation error α2 for different cache capacities. As can

be observed, for the proposed scheme, Baseline 4, and

Baseline 5, both the total transmit power and the secrecy

outage probability increase with the value of α2. This is

because, as the uncertainty region Ue is enlarged, the secrecy

constraint C7 becomes more stringent, and to satisfy C7,

a higher AN power is needed. Meanwhile, to satisfy the

QoS constraint C6, a higher beamforming power is also

needed to combat the leaked AN at the LRs. Nevertheless,

by consuming extra transmit power, the proposed delivery

scheme is able to maintain a reasonably low secrecy outage

probability despite the deteriorating CSI quality. Moreover,

for large cache capacities, the increase in transmit power is

significantly reduced because a large cooperative transmit

antenna array can be formed, and the performance gap

between the proposed scheme and Baseline 5 becomes

negligible. On the other hand, as Baseline 4 has only limited

spatial degrees of freedom, its secrecy outage probability

increases significantly with α2 even though a large transmit

power is consumed. As for Baseline 6, although the transmit

power remains constant as α2 increases, a high secrecy

outage probability results, cf. Fig. 4(b).

D. Impact of the Number of Transmit Antennas

In Figs. 5(a) and 5(b), the performance of the proposed

delivery scheme, Baseline 4, and Baseline 5 versus the

cache capacity is evaluated for different numbers of transmit

antennas, respectively. For a given cache capacity, more

transmit antennas Nt equipped at the BSs, which increase

the s.d.o.f., lead to transmit power savings for the considered

schemes in Fig. 5(a). For similar reasons, the secrecy outage

probability of the considered schemes is also decreased

in Fig. 5(b) by using larger Nt. However, different from

Baselines 4 and 5, a further reduction in both the secrecy

outage probability and the total BS transmit power can be

achieved for the proposed scheme by increasing the cache

capacity at the BSs. Particularly, when the cache capacity

is sufficiently large, the proposed scheme achieves the

same power efficiency as Baseline 5, while simultaneously

yielding a small secrecy outage probability.

VI. CONCLUSION

In this paper, caching was exploited to improve PLS for

cellular video streaming. Caching and cooperative transmis-

sion were optimized based on a mixed-integer two-stage

robust optimization problem for minimization of the total

transmit power needed to secure video streaming under

imperfect CSI knowledge. Caching was shown to reduce

the backhaul capacity required for cooperative transmission

among a large group of BSs and to increase the avail-

able s.d.o.f. As the problem was shown to be NP-hard,

suboptimal polynomial-time algorithms were developed to

solve the problem efficiently. The optimality of the proposed
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Fig. 5. (a) Total BS transmit power and (b) secrecy outage
probability of the proposed delivery scheme (solid line), Baseline
4 (dotted line) and Baseline 5 (dashed line) versus cache capacity
(in percentage of the total library size) for different numbers of
transmit antennas at BSs.

algorithms was verified in the regimes of a large cache ca-

pacity and a large number of training scenarios, respectively.

Simulation results showed that the proposed caching and

delivery schemes can significantly enhance both the PLS and

power efficiency of cellular video streaming. Moreover, by

deploying caches with large capacities, both the performance

advantages and the robustness of full BS cooperation can be

reaped even for limited backhaul capacities and imperfect

CSI knowledge.

APPENDIX A

PROOF OF PROPOSITION 1

Constraint C7 is first transformed to an LMI as follows,

C7
(a)⇐⇒ 1 +

1

σ2
e

wH
ρ GZ−1

e,ρG
Hwρ ≤ 2R

tol
e,ρ , ∀∆G ∈ Ue,

(b)⇐⇒ tr
(
Z
− 1

2
e,ρG

Hwρw
H
ρ GZ

− 1
2

e,ρ

)
≤ κtol

ρ

(c)
=⇒ λmax

(
Z
− 1

2
e,ρG

HWρGZ
− 1

2
e,ρ

)
≤ κtol

ρ (30)

⇐⇒ Z
− 1

2
e,ρG

HWρGZ
− 1

2
e,ρ � κtol

ρ I

⇐⇒ C7: GHWρG � κtol
ρ Ze,ρ, ∀∆G ∈ Ue,

where (a) follows from Sylvester’s determinant identity

det(I + AB) = det(I + BA), (b) follows from the trace

identity tr(AB) = tr(BA), and (c) is due to the inequality

λmax(A) ≤ tr(A) for A � 0 [44] and the variable sub-

stitution Wρ = wρw
H
ρ . For (c), λmax(A) = tr(A) holds

if rank(A) ≤ 1. Considering the variable transformation

Wρ = wρw
H
ρ , we conclude that C7 and C7 are equivalent

if rank(Wρ) ≤ 1.

For perfect CSI with εe = 0, C7 is a convex constraint

that can be easily applied in SDP. On the other hand,

when εe > 0, C7 becomes semi-infinite, i.e., it represents

infinitely many LMIs of Wρ and V, due to the continuous

uncertainty set Ue. Hence, although the constraint is convex,

the optimization problem is still computationally infeasible.

To resolve this problem, transforming the semi-infinite con-

straint into a finite number of convex constraints is necessary

and will be accomplished by the following lemma.

Lemma 2 (Robust Quadratic Matrix Inequality [45]). Let

f(X) = XHAX+XHB+BHX+C, and D � 0. Then,

the following two statements are equivalent:

(i) f(X) � 0 holds for any X ∈
{
X | tr

(
XHDX

)
≤ 1

}
;

(ii) There exist some δ ≥ 0 satisfying the following LMI,
[

C− δI BH

B A+ δD

]
� 0. (31)

Substituting G = Ĝ+∆G, constraint C7 is equivalently

reformulated as

∆GHTe,ρ∆G+ ĜHTe,ρ∆G+∆GHTe,ρĜ (32)

+ ĜHTe,ρĜ− κtol
ρ INe

� 0, ∀∆G ∈ Ue,

where Te,ρ , Wρ − κtol
ρ

σ2
e
V. Based on Lemma 2, constraint

(32) is equivalent to[
ĜHTe,ρĜ+ (δe − κtol

ρ )INe
ĜHTe,ρ

Te,ρĜ Te,ρ − δe

ε2e
IMNt

]
� 0,

∃δe ≥ 0,

⇐⇒ C̃7: UH
e Te,ρUe �

[
(κtol

ρ − δe)INe
0

0 δe

ε2e
IMNt

]
,

δe ≥ 0. (33)



Besides, constraints C7 and C̃7 are equivalent if

rank(Wρ) ≤ 1. This completes the proof.

APPENDIX B

PROOF OF THEOREM 1

Note that problems R0(DII,2) and R1 are equivalent if and

only if the rank constraint rank(W∗
ρ) ≤ 1 is fulfilled. Below

we only prove the result for problem R1 with εe > 0 and

C̃7. The result for εe = 0 and C7 can be proved similarly;

see [1].

Let α = [αmρ], β = [βm], λ = [λρ], Φρ, and Θρ =
[Θ1ρ, Θ2ρ] be the Lagrangian multipliers associated with

constraints C4, C5, C6, C̃7, and C10, respectively, where

αmρ ≥ 0, βm ≥ 0, λρ ≥ 0,Φρ � 0,Θ1ρ � 0, and Θ2ρ � 0.

The Lagrangian of problem R1 is

L(Wρ,V;Υ) =
∑

ρ

tr
[(
B1ρ − 2λρHρ −Θ1ρ

)
Wρ (34)

+
(
B2ρ − κtol

ρ ĜΦρĜ
H −Θ2ρ

)
V
]
+∆0,

where Υ , [α,β,λ,Φρ,Θρ], ∆0 is a collection of terms

irrelevant for the proof, and

B1ρ , I+Λα,β
ρ + ĜΦρĜ

H +
∑

ρ∈S

(1 + κreq
ρ )λρHρ ≻ 0,

B2ρ , I+Λβ + λρHρ ≻ 0, (35)

with Λα,β
ρ ,

∑
m∈M(αmρ + βm)Λm and Λβ

,∑
m∈M βmΛm. It can be verified that R1 is a convex

optimization problem and fulfills Slater’s constraint quali-

fication. Thus, strong duality holds for problem R1 and the

Karush–Kuhn–Tucker (KKT) conditions are both necessary

and sufficient for a primal-dual point (Wρ,V; Υ) to be

optimal. The KKT conditions for problem R1 are given by

∇Wρ
L = B1ρ − 2λρHρ −Θ1ρ = 0, (36)

Wρ � 0, λρ ≥ 0, WρΘ1ρ = 0. (37)

Based on (36) and (37), we have WρB1ρ = 2λρWρHρ.

Besides, constraint C6 is satisfied with equality for the opti-

mal solution and thus λρ > 0. Moreover, since rank(Hρ) ≤
1, the rank of the optimal Wρ can be determined as

rank(Wρ)
(a)
= rank(WρB1ρ)

(b)
= rank(λρWρHρ) (38)

(c)

≤ min {rank(λρWρ), rank(Hρ)} ≤ 1,

where (a) is due to B1ρ ≻ 0, (b) is a result of (36) and

(37), and (c) follows from the rank inequality rank(AB) ≤
min {rank(A), rank(B)} [44]. Thus, rank(W∗

ρ) ≤ 1 has

to hold if problem R1 is feasible. This completes the proof.

APPENDIX C

PROOF OF THEOREM 2

We first assume that the caching decisions are given in

problems Q0 and Q1, where the resulting problems are

denoted by Q0(DI,ω) and Q1(DI,ω), respectively. Without

loss of generality, Q0(DI,ω) can be written in general form

as

Q0(DI,ω): minimize
1

Ω

∑Ω

ω=1
fI,ω(DI,ω) (39)

subject to
∑Ω

ω=1
gI,ω(DI,ω) � 0,

DI,ω ∈ DI,ω, ω ∈ {1, . . . ,Ω} ,
variables DI,ω = [qf,l,m,ω, bf,l,m,ω,wρ,ω,Vω],

where gI,ω , [gI,ω,1, . . . , gI,ω,M ]: RΩ×1 → RM×1 is an

affine vector-valued function and represents the backhaul

constraint C3 with gI,ω,m(·) ,
∑

f∈F bf,l,m,ωQf − Bmax
m,ω .

Herein, DI,ω is a non-convex set because of C2. We assume

that Q0(DI,ω) is feasible. Let f∗ and q∗ denote the primal

and the dual optimal values of Q0(DI,ω), respectively.

Meanwhile, Q1(DI,ω) is obtained from Q0(DI,ω) by re-

laxing the binary constraint C2. Due to the convexity of

Q1, strong duality holds for problem Q1(DI,ω). Based on

Lagrangian duality theory, it can be further shown that the

dual problems of Q1(DI,ω) and Q0(DI,ω) are identical [46,

Chapter 5.5.3]. Consequently, the optimal value of Q1(DI,ω)

is also given by q∗. Then, Theorem 2 can be proved by

resorting to the following proposition, which estimates the

duality gap for Q0(DI,ω).

Proposition 2. For problem Q0(DI,ω), the duality gap, f∗−
q∗, is bounded and satisfies

0 ≤ f∗ − q∗ ≤ O
(
M + 1

Ω

)
. (40)

Specifically, according to (40), the difference between

the optimal values of Q1(DI,ω) and Q0(DI,ω) becomes

negligible for a sufficiently large value of Ω, i.e.,

lim
Ω→∞

(f∗ − q∗) = 0. (41)

Since (41) holds for arbitrary caching decisions, the perfor-

mance gap between Q1 and Q0 also vanishes as Ω → ∞.

Therefore, the remainder of the proof will be focused on

establishing (40) in Proposition 2.

Proof of Proposition 2: The left hand side inequality

in (40) is simply due to the weak duality property for

general nonlinear optimization problems [46, Chapter 5.1.2].

To prove the right hand side of (40), let us define the sets

Xω ,
{
xω , [gI,ω(DI,ω), fI,ω(DI,ω)] ∈ RM+1 | DI,ω ∈

DI,ω

}
, ω ∈ {1, . . . ,Ω}, and their vector (Minkowski) sum

X ,

{
x=

∑Ω
ω=1 xω | xω ∈ Xω

}
⊆RM+1. Here, xω defines

an achievable constraint-objective value pair. For simplicity

of notation, we also write X =
∑Ω

ω=1 Xω. Using X and

its convex hull, conv(X ), the primal optimum and the dual

optimum of Q0(DI,ω) are given by

f∗ = min {z | (y, z) ∈ X with y � 0} and (42)

q∗ = min {z | (y, z) ∈ conv(X ) with y � 0} ,



respectively. Assume that (y∗, q∗) ∈ conv(X ) obtains the

dual optimum with y∗ � 0.

The estimation of the duality gap is feasible due to

the Shapley-Folkman theorem [47], [36, Proposition 5.26].

Specifically, constrained by the dimension of its subspace

R(M+1)×1, each point of set conv(X ) ⊆ R(M+1)×1 can be

represented as the vector sum of at least (Ω−M−1) out of

Ω points in Xω. This means, for each (y∗, q∗)∈ conv(X ),
there exist two index subsets I, I ⊂ {1, . . . ,Ω} satisfying

I ∩I = ∅, I ∪I = {1, . . . ,Ω}, and |I| ≤ M +1, such that

∑
ω∈I

y∗
ω +

∑
ω∈I

gI,ω(DI,ω) � 0 and (43)
∑

ω∈I
q∗ω +

∑
ω∈I

fI,ω(DI,ω) = q∗Ω

hold for (y∗
ω , q

∗
ω) ∈ conv(Xω), ω ∈ I and DI,ω ∈ DI,ω,

ω ∈ I . In other words, at most M + 1 vectors obtained

from the dual (relaxed) problem can be infeasible for the

primal problem Q0(DI,ω), i.e., (y∗
ω, q

∗
ω) ∈ conv(Xω) but

(y∗
ω , q

∗
ω) /∈ Xω for ω ∈ I.

Therefore, we construct suboptimal solutions for

Q0(DI,ω) from the dual (relaxed) solutions in (43). Let

αi
ω ∈ [0, 1] and

∑M+2
i=1 αi

ω = 1. For each ω ∈ I, we can

express y∗
ω and q∗ω as convex combinations of D̂i

I,ω ∈ DI,ω,

i ∈ {1, . . . ,M + 2}, i.e.,

y∗
ω =

∑M+2

i=1
αi
ωgI,ω(D̂

i
I,ω) (44)

� gI,ω , min
{∑M+2

i=1
αi
ωgI,ω(D̂

i
I,ω) | D̂i

I,ω ∈ DI,ω

}
,

q∗ω =
∑M+2

i=1
αi
ωfI,ω(D̂

i
I,ω)

≥ f I,ω , min

{∑M+2

i=1
αi
ωfI,ω(D̂

i
I,ω) | D̂i

I,ω ∈ DI,ω

}
.

We define the primal solution DI,ω ∈ DI,ω, ω ∈ I ∪I, with

DI,ω ∈ argmin
{
fI,ω(DI,ω) | gI,ω(DI,ω) � gI,ω, (45)

DI,ω ∈ DI,ω

}
,

for ω ∈ I. The feasible set of (45) is generally nonempty and

thus DI,ω usually exists. Meanwhile, DI,ω is primal feasible

since gI,ω(DI,ω)�y∗
ω�0, but generally suboptimal for (42)

since
∑

ω∈I∪I fI,ω(DI,ω) ≥ f∗Ω.

However, DI,ω incurs only a bounded penalty on the

objective value,

fI,ω(DI,ω)− q∗ω
(a)

≤ fI,ω(DI,ω)− f I,ω ≤ ̺ω
(b)

≤ fUB
I,ω − fLB

I,ω ,
(46)

where fUB
I,ω , max {fI,ω(DI,ω) | DI,ω ∈ DI,ω} and fLB

I,ω ,

min {fI,ω(DI,ω) | DI,ω ∈ DI,ω}. In (46), (a) is due to (44),

and (b) holds since fUB
I,ω ≥ fI,ω(DI,ω) ≥ fLB

I,ω , ∀DI,ω ∈
DI,ω. We have ̺ω < +∞ since fI,ω(·) is a continuous

function and DI,ω 6= ∅ if problem Q0(DI,ω) is feasible. Let

̺max , max {̺ω | ω = 1, . . . ,Ω}. The duality gap finally

satisfies

f∗ ≤ 1

Ω

∑
ω∈I∪I

fI,ω(DI,ω) (47)

(a)

≤ q∗ +
1

Ω

∑
ω∈I

(
f I,ω − q∗ω + ̺ω

)

≤ q∗ +
M + 1

Ω
̺max,

where (a) is due to (43) and (46). This completes the proof.

Remark 3. Eq. (41) implies that the vector sum of Ω sets, X ,

in subspace R(M+1)×1 tends to be convexified as Ω → ∞
or M ≪ Ω, in the sense that any vector in its convex hull,

conv(X ), can be closely approximated by a vector in X
itself due to the underlying geometry. This property has been

exploited to solve MINLPs in several disciplines [48], [49].
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