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Abstract—A mobility map, which provides maximum achievable
speed on a given terrain, is essential for path planning of
autonomous ground vehicles in off-road settings. While physics-
based simulations play a central role in creating next-generation,
high-fidelity mobility maps, they are cumbersome and expensive.
For instance, a typical simulation can take weeks to run on
a supercomputer and each map requires thousands of such
simulations. Recent work at the U.S. Army CCDC Ground
Vehicle Systems Center has shown that trained machine learning
classifiers can greatly improve the efficiency of this process.
However, deciding which simulations to run in order to train the
classifier efficiently is still an open problem. According to PAC
learning theory, data that can be separated by a classifier is ex-
pected to require O(1/ε) randomly selected points (simulations)
to train the classifier with error less than ε. In this paper, building
on existing algorithms, we introduce an active learning paradigm
that substantially reduces the number of simulations needed to
train a machine learning classifier without sacrificing accuracy.
Experimental results suggest that our sampling algorithm can
train a neural network, with higher accuracy, using less than half
the number of simulations when compared to random sampling.

I. INTRODUCTION

Mobility is the essential requirement for all military ground
vehicles and the loss of mobility due to unfavorable terrain
or soil conditions can jeopardize a mission’s success and can
leave troops stranded. To avoid this scenario, a planner must
use a mobility map that gives the maximum predicted speed
the vehicles would be expected to reach while traversing a
treacherous off-road terrain. The NATO Reference Mobility
Model (NRMM) is widely used for predicting the mobility of
ground vehicles [1], [2]. However, newer vehicles containing
advanced technologies have mobility capabilities that cannot
easily be predicted using the NRMM method because of its
empirical nature. As a result, the NATO Next Generation
NRMM Team has identified physics-based modeling, mainly
using the discrete element method (DEM), as being a potential
high-fidelity method for predicting mobility [3].

While physics-based simulations can offer more accurate
predictions of vehicle mobility, generating a mobility map that
can accurately predict a mobility metric—such as the speed-
made-good, defined as the ratio of the Euclidean distance and
the time required to travel between two points, regardless
of the actual path taken [1]—requires tens of thousands of
simulations. Consequently, it can take weeks to generate such
maps using high performance computing (HPC) architectures.
Recent work by Mechergui and Jayakumar [4] showed that

machine learning classifiers can be trained to quickly generate
mobility maps. While this approach is promising, it comes
with its own challenges.

The main obstacle with using supervised learning is the
computational expense that is incurred when constructing
the training set. A computationally-intensive DEM simulation
must be performed to predict the speed-made-good to label a
single data point. This becomes prohibitively expensive since
performing each numerical simulation can take over a week
on a 20-core compute node using state-of-the-art simulation
software; see [5] for more details. Based on the usage cost of
the HPC cluster utilized for running the numerical simulations
in this paper (the Flux supercomputer at the University of
Michigan [6]), generating even a small training set with
200 points costs over ten thousand dollars. An additional
issue is that simple sampling techniques, such as uniform
random sampling, often choose uninformative data points that
have little to no effect on the accuracy of the classifier. In
other words, running simulations with parameter values that
the classifier is already confident about only reinforces the
model and does little to illuminate inaccuracies that can be
improved upon. Finally, the focus of [4] was on training
classifiers with 2-dimensional feature spaces only, when in
actuality, the speed-made-good depends on many parameters,
such as the terrain topology and profile, soil type (mud, snow,
sand, etc.), vegetation, and weather conditions. This poses a
significant challenge due to the curse of dimensionality and
the computational limitations that prevent us from generating
large training sets.

Of course, some of these challenges may be alleviated by
more efficient DEM simulations, algorithms for which are an
active area of research [7]–[10]. However, even a moderate
reduction in simulation times would not eliminate the need for
machine learning-based predictions. Once trained, a machine
learning classifier, such as a multilayer perceptron (MLP), can
generate mobility maps on-the-fly. This is critically impor-
tant since changing weather conditions can quickly alter soil
properties. In addition, uncertainty quantification techniques
that account for imprecise measurements can be significantly
hindered if the model evaluation time is long. Machine learn-
ing classifiers offer a faster and more economical means of
addressing these problems. However, training these algorithms
in a reasonable time with an affordable budget is still a
challenge.

To reduce the number of simulations, in this work, we
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Fig. 1. (a) A DEM-based simulation of a vehicle traversing off-road conditions. The vehicle shown in this figure will be used for all experiments. (b) An
example of a mobility map. The colors indicate the maximum sustained speed an off-road vehicle would be expected to reach.

developed an active learning-based approach that allows us
to generate mobility maps using less data. Unlike supervised
learning where the entire training set is constructed a priori,
active learning allows the classifier to interactively query an
annotator about a pool of unlabeled data [11]. Once the queried
instances have been labeled, they are added to the training set,
the classifier is retrained, and a new set of instances are chosen.
In many cases, this iterative approach can train a classifier
with higher accuracy using fewer instances when compared
to supervised learning. Active learning has been utilized
in many areas, including natural language processing, drug
discovery, text classification, image retrieval, medical image
classification, and landslide prediction [12]–[17]. In general,
an active learning-based approach is often advantageous when
the application has a large amount of unlabeled data available,
but labeling that data is expensive or time-consuming. This is
precisely the situation that arises when training a classifier
to generate mobility maps. In our case, the annotator is a
computationally demanding DEM-based simulation, and the
unlabeled pool that the active learner picks from consists of all
possible combinations of soil parameters. Building on existing
active learning algorithms, we propose a framework that is
tailored to the needs of mobility map construction.

The paper is organized as follows. We will begin by
giving a primer on active learning in Section II, where we
review the query-by-bagging algorithm and discuss some of

its advantages over uncertainty sampling. In Section III, we
will focus on some of the main considerations that went
into the development of our active learning approach tailored
to mobility map generation. Section IV will focus on our
experimental results, where we used physics-based simulations
to train a neural network to predict the speed-made-good using
2- and 3-dimensional feature spaces. Finally, Section V will
give our conclusions along with areas for future research.

II. PRELIMINARIES

In this section, we begin by introducing the notion of a version
space and show how it can be used to identify informative
instances. This will lead to a discussion about the query-by-
committee and query-by-bagging algorithms and why query-
by-bagging is well-suited for predicting simulation results.

A. Version Space

To begin with, assume that all instances have noise-free labels.
To introduce the version space, we first need to define a
hypothesis. A hypothesis h : X → Y is a function, generated
by a machine learning algorithm, that maps instances x in
the feature space X to labels y in the set of class labels
Y . A hypothesis space H is the set of all hypotheses under
consideration. For example, a single set of values for the
weights in a MLP could be used to specify a single hypothesis,
and the set of all possible sets of values for the weights
in a MLP could be thought of as being representative of a



hypothesis space. The set of all hypotheses h ∈ H that are
consistent with the training set L is referred to as the version
space V [18]. To be precise,

V = {h ∈ H|h(x) = y for all 〈x, y〉 ∈ L} .

Now suppose that V is bounded and that there exists a
hypothesis c ∈ H that can correctly label any instance in X .
This hypothesis would be consistent with any training set, so
we can conclude that c ∈ V . We would like to query instances
that allow us to focus in on c by reducing the size of V .
If we choose to query an instance whose label happens to
be consistent with all of the hypotheses in V , then V would
remain unchanged after the instance was added to L. Clearly,
this is something we would like to avoid. On the other hand, if
we query an instance that has a label that is inconsistent with
some of the hypotheses in V , then those hypotheses would
be eliminated from V . Since the label for a point is unknown
in advance, a good approach is to query instances where any
label will result in the elimination of a large portion of V .
In other words, we should try to query points that create the
greatest amount of disagreement. For example, we could try to
query instances where at least half of the hypotheses disagree,
no matter the label. This would cut the size of V by at least
a half each time we queried a point, giving us exponential
convergence onto c. The main challenge with doing this is
in determining when the majority of the hypotheses in V
disagree. Fortunately, the query-by-committee algorithm gives
us a way of approximating this.

B. Query-By-Committee

The query-by-committee (QBC) algorithm is a highly effective
active learning technique that focuses on reducing the version
space by forming a committee of hypotheses that serve as a
representative sample of V [19]. This committee of hypotheses
determines whether a point should be queried or not by
following a voting process. If the majority of the hypotheses in
the committee disagree on the label for a point, then querying
that point will eliminate at least half of the committee members
from V . Furthermore, if the committee is representative of V ,
then we would expect that V would be approximately halved
as well. Under certain conditions, QBC has been shown to
achieve prediction error ε with high probability using O(1/ε)
unlabeled instances and O (log(1/ε)) queries [20], that is, an
exponential improvement over random sampling.

While such a promising theoretical guarantee is encourag-
ing, it turns out that QBC has few practical applications. Part
of the reason for this is that noisy labels can lead to scenarios
where V is empty. In other words, noisy labels can result in the
elimination of hypotheses that would otherwise be consistent
with the data. As a result, this can make it impossible to form
a committee. An additional issue can also occur when V is
nonempty. When using a deterministic classifier, such as a
SVM, it can be difficult to find multiple hypotheses that are
consistent with the data [21]. The answer to both of these
issues is to randomize the training set using a technique called
query-by-bagging [22].

Algorithm 1: Query-By-Committee
Input: Number of trials: N
Number of committee members: nc
A randomized classifier: A
Initialize: L1, U1 with random instances
for k = 1, . . . , N do

1. Train A on Lk and generate h1, . . . , hnc
.

2. Choose a point x∗ ∈ Uk that satisfies
maxy∈Y |{t ≤ nc|ht(x) = y}| ≤ nc/2.

3. Query x∗ to obtain y∗ = Oracle(x∗).
4. Lk+1 = Lk ∪ {〈x∗, y∗〉} , Uk+1 = Uk \ {x∗}

end
Output: h(x) = argmaxy∈Y |{t ≤ nc|ht(x) = y}| ,
where ht are hypotheses of the N th stage.

C. Query-By-Bagging

The query-by-bagging (QBag) algorithm, first introduced by
Abe and Mamitsuka [22], can be thought of as a combination
of QBC and bagging [23]. Like QBC, the method uses an
ensemble of classifiers to make querying decisions. However,
instead of training all committee members on the same data,
QBag trains each classifier on a subset of the training set.
Usually, these subsets are constructed by randomly sampling
(with replacement) from the original training data. This allows
deterministic classifiers, such as a SVM, to generate multiple
predictions while still being trained with data that has a similar
distribution to the initial training set. Like QBC, instances are
queried if there is a significant amount of disagreement among
the committee members.

D. Comparison with Uncertainty Sampling

Uncertainty sampling is a popular approach for performing
active learning [24]. It has been used with many different
applications and has been shown to reduce the number of
queried instances under certain conditions. In this work, we
avoided uncertainty sampling; we would like to highlight some
of the reasons why. Let’s begin with a brief overview of
the approach. The main idea behind uncertainty sampling is
simple: query instances where the model is most uncertain
about the label. There are numerous ways to do this. For
example, an active learner may query the instance with the
greatest Shannon entropy, which is given by

φENT(x) = −
∑
y

Pθ(y|x) log2 Pθ(y|x),

where Pθ(y|x) is the predicted probability, generated by the
classifier, that an unlabeled instance x will have label y
given a set of model parameters θ. The result for this and
many other metrics is that most of the queried instances tend
to lie on or near the decision boundaries. While sampling
along decision boundaries can help the classifier make more
accurate predictions, there are some additional considerations
that shouldn’t be overlooked.

To begin with, uncertainty sampling bases its queries on the
predictions made by a single classifier, which is often trained



using limited data. As a result, the classifier may make highly
erroneous assumptions about the location of the decision
boundaries. Most likely, this would cause the learner to query
uninformative points, which in our case, would result in a poor
utilization of our computing resources. This problem is made
worse when points are queried in batches, since each point
in the batch is queried using the same inaccurate classifier.
For our application, multiple simulations will be performed in
parallel, so batch sampling is a must. An additional concern
has to do with noisy data. While all learning algorithms
tend to perform worse on noisy data, uncertainty sampling
is especially vulnerable. This is due to the classifier relying
on a small set of unreliable data, which can easily lead to
inaccurate predictions.

With QBag, an ensemble of classifiers is used to make
querying decisions. This means that a few inaccurate classifiers
would not necessarily alter the querying results. Instead, the
ensemble tends to have an averaging effect where highly
erroneous predictions can be balanced out by the more sensible
ones. An additional benefit is that each classifier in the
ensemble is trained using a slightly different training set.
This means that a mislabeled point has less influence on
the querying process since some of the classifiers will be
unaware of its existence. For additional details on how our
active learning paradigm performs with noisy data, refer to
Section III-C. Also, it is important to keep in mind that QBag
is a version space method and was not developed with noisy
data in mind. Most of the data we will be dealing with is
deterministic, except for an occasionally mislabeled point due
to numerical errors in the DEM-based simulations.

III. PROPOSED PARADIGM

This section will focus on some of the challenges that were
encountered while developing our active learning paradigm.
We will discuss several topics that are relevant to the applica-
tion, such as classifier selection, dealing with noisy labels, and
exploration vs exploitation. This section will conclude with
pseudocode for our active learning paradigm.

A. Model Selection

Selecting the right machine learning algorithm is an essential
part of making accurate predictions. For this application, the
main challenge is in generating a large enough training set,
so the learning algorithm needs to be resourceful with the
limited data it has available. Our scheme uses a classifier
because many mobility maps use distinct colors to classify
speed ranges, like the one shown in Fig. 1(b). For this type of
mobility map, accurately resolving the decision boundaries is
far more important than knowing the precise speed throughout
the feature space. Therefore, a classifier that can query in-
stances along the decision boundaries would likely require less
data than a regression model that might spread itself thin by
attempting to make accurate predictions throughout the entire
feature space.

In [4], authors tested the efficacy of various classifiers
to generate mobility maps including kNNs, SVMs, MLPs,

kriging, decision trees and random forests. They found that
MLP provided the most accurate predictions followed by
SVM. In our own tests using these classifiers, we obtained
similar results. Only two features—the longitudinal slope and
the cone index—were considered in [4]. However, additional
features are usually required in practice and little is known
about the target function in those cases. Therefore, a general
purpose classifier is needed. As a result, we ruled out SVM
classifiers with linear, quadratic or cubic kernels, since they
cannot accurately model disjoint regions of the same class.
Instead, we focused on MLP and SVM with a Gaussian kernel.
These two classifiers were compared in Section IV-B1 using
preliminary data.

B. Overfitting

Because little is known about the target function in advance,
the classifier needs to be complex enough to accurately capture
the underlying trends in the data. While on the other hand, if
the classifier is too complex, it may “memorize” individual
instances and overfit the data. This is especially concerning
since our training sets will be limited in size. As a result,
we utilized several techniques to avoid overfitting while still
ensuring that the model can capture more complex patterns in
the data.

To begin with, the MLP classifier will use a rectified linear
unit (ReLU) as the activation function. Unlike sigmoid and
tanh activation functions, ReLU is sparsely activated [25].
This means that neurons can be turned off during the training
process which reduces the complexity of the model and helps
to prevent overfitting.

Bagging will be used to reduce the importance placed
on individual data instances. Bagging uses an ensemble of
classifiers to make predictions about new data instances and
works by training each classifier in the ensemble on a subset
of the training set. Usually these subsets are constructed
by randomly selecting instances from the training set with
replacement. To make predictions about new instances, the
ensemble takes a majority vote among its members. This
averaging effect reduces the variance and helps to prevent
overfitting.

Finally, both SVM and MLP classifiers will use a grid
search to tune model parameters. While performing the grid
search, the accuracy of the models will be measured using
a k-fold cross-validation. This approach will allow us to
approximate the accuracy of the model without having to use
additional resources to construct a validation set. For the SVM,
the penalty parameter C will be updated using a grid search
each time a new batch of unlabeled instances is chosen. For the
MLP, the number of neurons will be viewed as a parameter and
will be determined using a grid search as well. By allowing
the MLP to start with a few neurons and gradually add more as
additional data becomes available, we are able to avoid issues
with overfitting while still allowing the model to increase in
complexity when needed. Refer to the Section IV-B1 for more
details.



C. Noisy Labels

Noisy data, due to numerical errors or anomalies in the
simulations, can have a detrimental effect on the accuracy of
any learning algorithm. This is especially the case when using
active learning, since the querying techniques are designed to
seek out instances that will greatly affect the accuracy of the
classifier. Based on data that was obtained in [4], we estimated
that approximately 2% of data instances would be mislabeled.
While agnostic active learning techniques that are designed
for noisy data sets do exist (e.g., [26]), they tend to converge
more slowly than aggressive techniques, such as QBag, when
labels are mostly deterministic.

As previously mentioned, we used QBag to query instances
and bagging to make predictions. Because each classifier in the
ensemble only sees a subset of the training set, this reduces the
impact a mislabeled instance may have on querying decisions
and model predictions. In addition, when mislabeled instances
do influence the querying process, they often lead the active
learner to select unlabeled instances near the mislabeled point.
If the incorrect label was the result of a random error and not a
more fundamental issue with the oracle, then labeling instances
near a mislabeled point can provide additional evidence for
the right class. To make sure our active learning paradigm can
perform well when instances are occasionally mislabeled, we
tested it using an oracle that incorrectly labeled instances 10%
of the time. The results from these experiments are given in
Section IV-B1.

D. Batch-Mode Sampling

In order to generate enough data for the learning algorithm,
we will need to run multiple simulations at a time. However,
choosing instances that are close to each other or a labeled
point can give redundant information if the label happens to
match the class of its neighbors. To avoid this, let us first define
the region of disagreement. Let D, the region of disagreement,
be the set of points in the feature space X where no more than
half of the committee members agree on a label. That is,

D =

{
x ∈ X

∣∣∣∣max
y∈Y
|{t ≤ nc|ht(x) = y}| ≤ nc/2

}
,

where t is a positive integer, ht is the tth classifier, and nc
is the size of the committee. To avoid redundancies, we will
choose instances in the region of disagreement that are both far
from labeled instances and other instances that will be queried
in the same batch. We do this by first choosing the unlabeled
instance in the region of disagreement that is as far as possible
from all other labeled instances. Next, we choose the instance
that is in the region of disagreement and that is also as far
as possible from any labeled instance and the first queried
instance. This process repeats until the number of sampled
points equals the batch size. We summarize this process in
Algorithm 2. To determine the batch size, we ran experiments
on the test function shown in Fig. 2. Refer to Section 3 for
more details.

Algorithm 2: MaxMinSample(n,U ,L)
Input: Number of points to sample: n
A set of unlabeled instances to choose from: U
A set of labeled instances: L
Initialize Q1 = ∅
for k = 1, . . . , n do

x∗k = arg max
xk∈U

(
min

x∈L∪Qk

‖x− xk‖2

)
Qk+1 = Qk ∪ {x∗k}

end
Output: A set of well-spaced instances: Qn+1

E. Exploration vs Exploitation

Sampling bias is an issue with many active learning strategies.
By allowing the learning algorithm to query new instances,
there’s often a good chance that the final training set will
not accurately represent the true underlying distribution of
the target function. As a result, this can cause the active
learner to converge to a suboptimal hypothesis. In practice,
this often means that the learning algorithm never discovers
that it incorrectly classified a portion of the feature space,
because the sampling scheme only queries points outside of
the misclassified region. This tends to happen when the active
learner queries too many points near the known decision
boundaries and ignores more distant points that might expose
the learner’s oversight.

One way to avoid this is by occasionally querying points
outside the region of disagreement. However, this can be
tricky since querying too many points will slow down the
convergence of our scheme, but not querying enough points
may cause the learner to misclassify large portions of the
feature space. This conundrum is known as the exploration
vs. exploitation dilemma. In this case, exploration is referring
to the process of querying over a large portion of the feature
space so that all misclassified regions are discovered in a
reasonable time. Exploitation, on the other hand, is the process
of querying over small regions with promising results, such as
the region of disagreement, in order to refine the ensemble’s
predictions.

To find the right balance, we performed experiments on the
test function discussed in Section IV-A1. We found that if
we used 1/8th of the queried points for exploration and the
remaining points for exploitation, then the convergence was
only slightly slower than what we observed when we didn’t
use any exploratory points at all. Also, this proportion was still
large enough so that the scheme could quickly and consistently
discover all 5 classes.

When choosing exploratory points, we used the same ap-
proach that we used when doing batch sampling. The only
difference is that we now choose points outside of the region
of disagreement. We used this approach since we wanted to
avoid querying exploratory points near labeled points, since
doing so would likely provide us with redundant information.



Algorithm 3: Active Learning Paradigm
Input: Number of trials: N
Batch size: nb
Number of exploratory points: ne
Number of committee members: nc
A classifier: A
Initialize: L1, U1 with random instances
for k = 1, . . . , N do

1. Use cross validation to find parameters for A.
2. Randomly sample from Lk with replacement to obtain

subsamples L′1, . . . ,L′nc
each of size mc.

3. Train A on each subsample to obtain h1, . . . , hnc
.

4. Find D which consists of the points x ∈ U that satisfy
maxy∈Y |{t ≤ nc|ht(x) = y}| ≤ nc/2.

5. Qk = MaxMinSample(nb − ne,D,Lk)
6. Ek = MaxMinSample(ne,U \ D,Lk)
7. X∗ = Qk ∪ Ek, y∗ = Oracle(X∗)
8. Lk+1 = Lk ∪ 〈X∗, y∗〉 , Uk+1 = Uk \X∗

end
Output: h(x) = argmaxy∈Y |{t ≤ nc|ht(x) = y}| ,
where ht are hypotheses of the N th stage.

IV. EXPERIMENTS

This section will focus on the experiments that were performed
using our active learning scheme. We will begin by describing
the setup for these experiments along with additional details
on how the active learning paradigm was configured. We
will then discuss the results from some of the preliminary
tests we performed. We used these preliminary tests to gauge
the model’s performance before running simulations. After
observing satisfactory results from the preliminary tests, we
then used physics-based simulations to label instances in both
2- and 3-dimensional features spaces. For the 2-dimensional
problem, the adhesion factor and friction coefficient were used
as the two features. These features differ from the ones that
were considered in [4] and will serve as a credible challenge
to our active learning scheme, since the target function is
unknown in advance. Finally, we will include a third feature,
the soil density, and will compare our results with random
sampling.

A. Experimental Setup

1) Preliminary Tests: We initially had access to the 528
data points that were generated in [4]. The points and their
labels are shown in Fig. 2(a). The labels indicate a range
for the speed-made-good based on the longitudinal slope and
the cone index. Before running simulations, we constructed a
test function in order to gauge the performance of our active
learning scheme. The test function was constructed by training
SVM with a cubic kernel on the 528-point data set and is
shown in Fig. 2(b). We felt that this test function would serve
as a good predictor of the model’s performance, since the
original data set was generated using the same DEM-based
model.

Fig. 2. (a) This figure shows the original data set that was obtained in [4].
There is a total of 528 points, and each point was labeled by running a DEM
simulation. (b) This figure shows the target function that was used in the
preliminary tests. The target function was constructed by training SVM with
a cubic kernel on the data set in (a).

For the preliminary tests, we used a MLP and a SVM with
a Gaussian kernel to predict the speed-made-good. The test
function in Fig. 2(b) was used as the ground truth. For the
MLP classifier, we used a single hidden layer and determined
the number of nodes by performing a 10-fold cross-validation
on the labeled pool. We started with just 4 nodes in the
hidden layer, and with each new batch, we either halved,
doubled, or left the number of nodes unchanged, depending
on which option gave the lowest cross-validation error. As a
safeguard, we never let the number of nodes drop below 2,
even though this did not appear to be a significant issue, since
the number of nodes tended to gradually increase as more
labeled data became available. This approach was adopted
because unlike supervised learning where the training set
is known in advance, little may be known about the target
function and its complexity, so choosing a reasonable number
of nodes without eventually overfitting or underfitting the
available data can sometimes be challenging. For the 2D test
case, we did not see much difference in the prediction accuracy
when we used fewer nodes, such as 10, or a larger number,



such as 100. However, in a 3D preliminary test case where we
extruded the 2D test function, overfitting became more of an
issue, and an adaptive approach was needed.

For the SVM, we set the kernel coefficient γ = 1/2 and
used a grid search combined with a 10-fold cross-validation
on the training data to determine the penalty parameter C.
The penalty parameter was updated each time a new batch of
labeled instances was added to the labeled pool L.

For both classifiers, we set the batch size nb = 32, the
number of exploratory points ne = 4, and the number of
committee members nc = 20. While smaller committee sizes
would likely yield similar results, we were not as concerned
with the computational cost of the active learner, since it’s cost
is negligible in comparison to the simulations. In addition, a
large committee can help to average out some of the more
extreme predictions made by a minority of its members. This
can help to avoid excessive fluctuations in the predictions made
by the committee as more training data becomes available.

To understand how our scheme would perform with occa-
sionally mislabeled data, we ran additional tests where each
queried instance was mislabeled 10% of the time. We chose
this number, because we felt it was a conservative overestimate
of the noise that may result due to numerical errors in the
simulations. As a commonly used yard-stick, we compared all
of our results to random sampling, where we used the same
ensemble of 20 classifiers to make predictions.

2) 2D Problem: To test our scheme’s performance on a
“real-world” problem, we ran full length DEM simulations to
predict the speed-made-good for a previously unknown target
function. This target function depends on two dimensionless
variables: the friction coefficient and the adhesion factor. Since
we could only perform this test once, due to computational
constraints, we used a MLP as our classifier, since it tended to
make more accurate predictions with fewer training instances
when compared to the SVM. Refer to Section IV-A1 for more
details.

As mentioned previously, additional tests performed on
the target function in Fig. 2(b) did not show any significant
difference in the accuracy of the predictions when we varied
the number of neurons in the hidden layer from 10 to 100.
Therefore, we used 100 neurons for the 2D problem in case
the target function happened to be fairly complex. It wasn’t
until later, after the simulations for the 2D problem completed,
that we observed that overfitting could pose a more significant
challenge in 3D. As a result, the adaptive approach that was
mentioned earlier was only utilized for the 3D case and the
preliminary tests. However, based on our earlier tests, we do
not expect that using 100 neurons in the hidden layer would
have any significant effect on the accuracy of our predictions
for the 2D case.

Other than the number of neurons in the hidden layer, all
hyperparameters will be the same as the ones used in the
preliminary tests. This includes the batch size, which was set to
32. We chose this number because it appeared to be a relatively
large batch size that consistently gave rapid convergence to the
target function in Fig. 2. In an ideal setting, a smaller batch

size would be preferred, but due to the computational demands
involved in labeling points, running simulations in parallel was
the only practical option.

3) 3D Problem: For the 3D case, we added an additional
parameter, the soil density, and again used DEM simulations
to label queried points. The setup for this test was nearly
identical to the 2D case, except for a few things. The first was
that we allowed the number of neurons in the hidden layer
to vary, depending on the cross-validation errors. Second, we
ran many more simulations. To be precise, we ran a total of
1,384 full length DEM simulations. In all, there were 468
simulations that were used to make up the testing set, 448
simulations that were chosen using our sampling scheme,
and 448 simulations that were used to construct a randomly
generated training set. In addition to that, 20 more simulations
were used to construct the initial data set that the QBag and
random sampling schemes both started from. Of course, we
would expect that more data would be needed due to the
curse of dimensionality. However, there may be a slight benefit
that comes with this extra dimension. This leads to the third
difference, which is the size of the batches. For the 2D case,
we used batches of 32. However, for some problems with 3
features, we noticed that quick convergence could often be
observed with batch sizes larger than 32. We suspect that
this is the case, because the higher dimensionality of the
decision boundaries makes it possible for more points to be
queried simultaneously without too much redundancy. Because
of this and additional tests we performed using basic 3D test
functions, we will be using batches of 64 on the 3D case.

B. Results

1) Preliminary Tests: Figs. 3(a) and 3(b) show a com-
parison between random sampling and our active learning
approach. The predictions for both figures were generated by
an ensemble of MLPs. Notice how the active learning-based
approach focuses heavily on the decision boundaries while
occasionally sampling points throughout the feature space. In
Fig. 3(a), we can see that the same ensemble had difficulties
reproducing the test function when we used a training set con-
sisting of randomly queried points. Notice how the ensemble
often guesses where the decision boundary is by placing the
line approximately halfway between neighboring points with
distinct labels. While this may seem like a reasonable thing
to do, and it probably is, the lack of data near the decision
boundaries results in a classifier that misses many of the
details that are captured by our active learning-based approach.
As a result, our sampling scheme achieved an accuracy of
99.0% with only 212 labeled data points, and random sampling
achieved an accuracy of 95.7%. While this may not seem like
a huge difference, obtaining that extra 3.3% can be extremely
difficult when the accuracy is so high to begin with.

Fig. 4(a) shows how the number of queried instances
impacts the error rates for the ensemble of classifiers. To
generate these plots, each ensemble was trained 30 times
starting with distinct, randomly generated initial training sets.
Each line indicates the median accuracy that was obtained



Fig. 3. These two figures show a comparison between random sampling (a)
and our active learning scheme (b). In both cases, the target function in Fig.
2(b) was used as the ground truth. For this comparison, all queried points
were correctly labeled.

by the corresponding ensemble, and the error bars show the
50% confidence interval. Notice how both MLP and SVM
classifiers attained higher accuracies with lower variation when
they were trained using our active learning scheme. After
being training on 212 points, the MLP reached a median
accuracy of 98.9% when trained with our scheme, and the
SVM performed slightly better with a final accuracy of 99.1%.
With random sampling, the MLP maxed out with a median
accuracy of 95.4% and the SVM attained a median accuracy
of 95.3%. Now suppose that the desired accuracy is set at 95%.
Using random sampling, this is first achieved by the MLP after
running 180 simulations and by the SVM after running 212
simulations. With our active learning-based approach, 95%
accuracy is first surpassed using 116 simulations.

In Fig. 4(b), we again compared random sampling with
our active learning scheme. However, this time, we trained
the classifiers with noisy data. As before, we used the same
ensemble of 20 MLPs. The difference is that we intentionally
provided the learner with incorrect labels 10% of the time. This
was to simulate noisy labels due to numerical inaccuracies in

the DEM-based simulations. We will see later that this in fact
became an issue once we started labeling instances using simu-
lations. However, despite being trained with partially incorrect
data, our active learning scheme still outperformed random
sampling, though in general we wouldn’t necessarily expect
the difference to be as large as it was in the noise free case. Part
of the reason we’re seeing such a considerable improvement
in performance, despite the noisy data, may be due to the
ensemble creating a small region of disagreement around the
mislabeled instances. This could coax the learning algorithm
into querying additional points nearby. If the mislabeled point
was simply the result of a random error, then querying more
points nearby could provide additional evidence for the correct
label.

Based on the results from Figs. 4(a) and 4(b), we decided
to mainly focus on the MLP classifier in the remaining tests.
The reason for this is that the MLP typically produced more
accurate results sooner than the SVM. This is an important
feature when generating mobility maps, since in most cases it
will only be possible to run a limited number of simulations.

2) 2D Problem: In Figs. 5(a) and 5(b), we compare the
predictions made by the MLP ensembles after querying points
randomly and with our active learning scheme, respectively. In
each case, we trained on the same initial set of 20 randomly
sampled points. After that, an additional 192 instances were
queried for each approach. To measure the accuracy of the
predictions, we constructed a separate testing set that consisted
of 212 randomly generated points. We found that the active
learning scheme did significantly better than random sampling.
To be precise, the active learning scheme achieved 98.1%
accuracy on the testing set, while random sampling only
reached 93.4%.

The prediction accuracy vs. the number of simulations is
shown in Fig. 6. Notice that after being trained with 116
points, our scheme surpassed the highest accuracies obtained
by random sampling. Therefore, to reach 95% we would need
to sample at least 65 more points with the random scheme
than we would with the active learning approach.

Finally, if we refer back to Fig. 5, there’s one more thing
to discuss. Near the point (0.5, 0.05), there appears to be a
data point that was mislabeled. (The point near (0.5, 0.09)
may have been mislabeled as well.) As mentioned earlier, the
potential for noisy data was a concern from the beginning.
In this case, it appears that the mislabeled point may be the
result of the time step being too large in the DEM simulations,
since the simulations tend to lose stability when the friction
coefficient and adhesion factor are both small. This could
potentially be addressed by applying a voting filter to the data
in order to identify points with questionable labels [27]. The
speed-made-good could then be reevaluated using a smaller
time-step.

3) 3D Problem: In Figs. 7(a) and 7(b), we plotted the
labeled instances that were selected using random sampling
and our active learning scheme, respectively. Notice that most
of the points selected by our active learning scheme tend to
cluster around the decision boundaries. In addition, there are



Fig. 4. These two figures compare the median accuracy of the tested schemes
as the number of labeled instances is increased. (a) Shows the accuracy
when all queried points are correctly labeled. (b) Shows the accuracy when
10% of the data is mislabeled. The error bars in both figures show the
50% confidence interval when the learning algorithms were trained 30 times
with distinct, randomly generated initial data. Notice that the improvement in
accuracy for the MLP is reduced when some of the training set is mislabeled.
Mislabeled data can erode away at some of the gains in accuracy that are
achieved through active learning. Therefore, it’s imperative that the number
of mislabeled instances be kept to a minimum.

a few instances farther away that serve as exploratory points.
For this test, each batch of 64 points had 56 points that were
queried within the region of disagreement and 8 points were
used for exploratory purposes.

Fig. 8 shows a horizontal slice of the prediction that was
generated using our active learning scheme. The figure shows
how the friction coefficient and the adhesion factors affect
the speed-made-good when the density of the soil is fixed at
1,800 kg/m3. It turns out that in the 2D case, we also fixed
the density at 1,800 kg/m3, so this slice should correspond
to the prediction shown in Fig. 5(b). On first observations, it
appears that the main difference is along the decision boundary
between the red and orange classes. As mentioned before,
this is likely due to inaccurate labels that were the result of
numerical instabilities in the DEM simulations. In future tests,
it may be beneficial to either reduce the time step when points

Fig. 5. These two figures compare the predictions that resulted from using
random sampling (a) and our active learning paradigm (b). Each point
was labeled by running a DEM simulation. Because simulations could be
performed in parallel, we queried points in batches of 32. In each batch,
28 points were selected using active learning and the remaining 4 were
chosen outside the region of disagreement using Algorithm 2. Each figure
was generated by training an ensemble of MLPs on 212 labeled instances.

are queried in that region or to rerun a simulation using a
smaller time step when a voting filter considers the label to
be questionable.

Finally, in Fig. 9 we compared the convergence behavior of
random sampling with our active learning scheme. We found
that our scheme provided a significant benefit over random
sampling. As an example, if we used random sampling to
train the ensemble with 95% accuracy, we would need to run
404 simulations to generate the data. On the other hand, if we
used our active learning scheme, we would only needed 148
labeled points in order to exceed that same accuracy. That’s
nearly a reduction in the number of simulations by a factor of
3.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated that query-by-bagging can be used to
significantly reduce the number of physics-based simulations



Fig. 6. This figure compares the convergence behavior of random sampling
with our active learning paradigm. Notice that our active learning paradigm
obtains a higher accuracy with only 116 points than random sampling with
212 points.

Fig. 7. (a) A scatter plot of the points that were queried using random
sampling. The colors indicate the label that was obtained by running a DEM
simulation for each point. (b) A scatter plot of the points that were queried
using our active learning scheme. Notice that the scheme tends to query points
near the decision boundaries.

Fig. 8. This figure shows the prediction that was generated by the 3D model
after it was trained using our active learning scheme. In this figure, the density
of the soil was fixed at 1800 kg/m3, which corresponds to the density that
was used in the 2D case.

Fig. 9. This figure compares the convergence behavior of random sampling
with our active learning paradigm. Notice that our active learning paradigm
exceeds 95% accuracy with only 148 points. This contrasts with random
sampling, which needs 404 points to reach 95% accuracy.

that are needed to construct a mobility map when compared to
random sampling. In addition, we have expanded the feature
space and are able to accurately predict the speed-made-good
using the friction coefficient, the adhesion factor, and the
density. Finally, we have provided a framework for generating
mobility maps that can be used to incorporate additional soil
parameters.

There are a number of interesting directions for future work.
To begin with, more work needs to be done to determine
which parameters are most important for predicting the speed-
made-good. That is, feature reduction or feature extraction
techniques need to be utilized to reduce the dimension of the
feature space. This could be done using a technique such as
principal component analysis or by training an autoencoder.

Another direction could focus on expanding the feature



space to include multiple vehicle designs or multiple soil
types (mud, snow, sand, etc.). This could be done by using
a one-hot encoding. By using a single classifier with multiple
vehicle designs or soil types, it may be possible to reduce the
overall number of simulations. This is because some of the
information that’s learned for a single vehicle design or soil
type could prove to be useful when training the learner about
a new vehicle or soil type.

Finally, it may be possible to use transient data to predict
the speed-made-good. When running simulations, we made
sure that the vehicle’s speed came to a steady-state before
labeling the point. However, there were many cases where
the final label was obvious long before the vehicle reached
a steady-state. Therefore, it may be reasonable to train a
classifier to predict the label for the speed-made-good long
before the simulation reaches a steady-state. This could help
to significantly reduce the runtime for some of the simulations.
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