
Citation:
Marino, MD (2018) RAMON: Region Aware Memory Controller. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 26 (4). pp. 697-710. ISSN 1063-8210 DOI:
https://doi.org/10.1109/TVLSI.2018.2789520

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/4683/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/4683/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

1

RAMON : Region Aware Memory Controller
Mario D. Marino, Kuan-Ching Li

Leeds Beckett University, Providence University

m.d.marino@leedsbeckett.ac.uk, kuancli@pu.edu.tw

Abstract—
Recent implementations of heterogeneous multicore systems (CPU,

GPU and hybrid) address the issue of communication latency between

CPU and GPU memory systems by merging these two, so that they can
share the same memory address space. In recent years, the combination
of the escalation in the number of cores with the rise in memory-
intensive applications has significantly increased bandwidth needs in both

homogeneous and heterogeneous systems. Since tasks assigned to CPU
and/or GPU cores will have different bandwidth demands, a two-tier
memory system is needed. Hence in this paper, RAMON is proposed as

a configurable memory system where different address space regions are
able to be dedicated to a different number of memory controllers (MCs),
concurrently to supply different amounts of bandwidth to a different
number of cores, providing different levels of memory parallelism. By

having different address space regions - simply regions, each with
a different number of MCs to match its bandwidth needs, memory
interference per region is reduced. Our findings show that RAMON

is promising and improves bandwidth by a factor of 9x for CPU regions,

14.1x for GPU regions, and 4.5x for combined heterogeneous regions.

I. INTRODUCTION

Recent multicore chip implementations are composed of
heterogeneous (central processing unit, i.e. CPU, and graphics
processing unit, i.e. GPU) cores. The need for more cores to
improve performance combined to memory-bound programs
execution significantly intensifies memory contention. For ex-
ample, high-end smartphones [1] and desktops [2] have 16
cores, which are likely to be further pushed to 32 or more
cores given demands for Big-Data, image processing and
interactivity.

Before integration of heterogeneous cores in one single
multicore chip, typical communication between CPU and
GPU cores was often performed via a Peripheral Component
Interconnect Express (PCIe) bus [3]. Despite width and clock
frequency augments in this bus, as well as improvements
in effective communication coordination by the application
(e.g., buffering and overlapping in software pipelining [4]),
bandwidth between CPUs and GPUs is still dictated by the
speed of this bus.

In order to overcome this communication bottleneck, CPU
and GPU cores are set to share the same address space
to form a heterogeneous region (further detailed) on the
same multicore chip, thus allowing data exchange through
exchanging addresses, rather than transferring contents via
PCIe. As a result, communication latencies are significantly
reduced, which allows performance improvements. However,
this approach requires both types of cores to share one single
address space, which further pushes the demands on the
memory system side.

As reported in [5] [6] [7] [8] [9], despite differences
among cores and bandwidth-bound applications trends, another
layer of contention that reduces the performance is represented
by memory interference due to different programs running
on different cores with different demands on the memory
channels.

A straightforward solution to address bandwidth needs in
future multicore generations is via the augment of memory
parallelism by increasing the number of memory controllers
(MCs), which are assumed to be connected to its ranks
(typically known as dual inlined memory module - DIMM,
that are sets of memory banks with data output aggregated and
sharing addresses). To exemplify sets of multiple MCs/ranks,
typical PCs present 2MCs/2ranks, embedded Tilera [10] mi-
croprocessor with 4MCs/4ranks, and IBM-Cisco router [11],
16MCs/16ranks. However, according to Marino [12] the in-
crease on the number of MCs is restricted by the number of
I/O pins. To address these I/O pin issues, the number of I/O
pin-based structures should be increased, while still respecting
the low power aspect.

Solutions that use a larger number of MCs typically rely
on the principles of modulation and different media [13][14].
Multiple frequency carriers can carry multiple data simulta-
neously over the same media, which can dramatically save
pin utilization whilst remaining significantly power-conscious
[13][14]. With reduced pin utilization, the number of MCs
can be increased to significantly higher levels. For example,
in either optical Corona [14] or in radio-frequency (RF) DIMM
Tree [13], no more than 64 MCs can be utilized.

To illustrate the benefits of a larger number of MCs,
using 32 RF-based MCs Marino [12] indicates a bandwidth
improvement factor of about 7.2x compared to 2-4 MCs in
typical microprocessors. Furthermore, according to Vantrease
et al. [14], an optical interface allows memory energy inter-
connection to be significantly reduced, which is fundamentally
important when exploring different numbers of MCs.

In this investigation, different degrees of memory paral-
lelism are proposed to be achieved through different number
of MCs with optical- [14] or RF-based [12] memory
interfaces applied to different types of regions (CPU, GPU
or heterogeneous), that is, Region Aware Memory Controller
(RAMON). Under several bandwidth-bound benchmarks us-
ing detailed-accurate simulators, RAMON presents the fol-
lowing contributions:

• Revisiting the operating system (OS) concept of address
space used by Marino and Li’s report [15], in RAMON
the novel concept of region is defined as an address
space range dedicated to different sets of cores (CPU,
GPU, or both), caches and respective interconnection.
The inclusion of the two latter elements differentiate
RAMON from Non Uniform Memory Access (NUMA-
node) mechanism in Linux OS. MC region awareness in
RAMON allows the formation of different regions with
different combinations of types of cores. In addition,
each formed region can be associated to a different
number of MCs, whilst the user can assign different tasks
of a program to different regions.

2

• In RAMON a novel scheme of reorganization and
property isolation is proposed to reduce or eliminate
memory interference and defined as follows. The reor-
ganization operation of a region permits the change on
the number of MCs associated to it i.e., and different
degrees of memory parallelism, thus likely reducing
memory contention via reducing memory interference.
Through reorganization, traffic of regions are ”more”
self contained - isolation property - which can reduce
or eliminate memory interference (i.e. related memory
requests) that do not belong to the region, as further
discussed. This novel scheme is enabled via the proposal
of a low-overhead configurable optical-crossbar.

• Architectural investigation of RAMON system impli-
cations when increasing the number of MCs for CPU,
GPU, and heterogeneous regions. This investigation
aims to determine the performance and power behavior
of several degrees of memory parallelism - represented
by different numbers of MCs. To develop this RAMON
investigation we vary the number of MCs for the dif-
ferent types of regions exploring significant larger MC
number of optical- and RF-based interfaces.

• An evaluation on system implications of larger number
of MCs applied to different types of regions rather than
to the same type of regions performed in [12] [16].

• An evaluation on system implications for larger numbers
of MCs in heterogeneous regions via using optical-
and RF-based interfaces (signal modulation) rather than
traditional digital transmission (where, to transmit a ”0”
or a ”1”, the whole line should be entirely set to the
respective level) developed in [15].

• The methodology utilized to determine the performance
when CPUs and GPUs are combined is an improved
version over the proposed in [15]. The methodology
consists of running each simulator (CPU and GPU)
independently in regions that contain the maximum
number of MCs allocated to each one. A formulation
to estimate the bandwidth of heterogeneous systems is
developed and compared to homogeneous ones.

• A user-feedback scheduling algorithm is introduced
aiming to reorganize regions in order to match the
bandwidth needs of that region. Consecutive runs of
this algorithm and reconfigurations can likely guide the
user to determine proper allocation of tasks as further
described.

• The increase in the number of MCs using optical or RF
interconnections has been investigated in current OOO
microprocessors [12][17][16]. In order to investigate the
impact of the number of MCs on heterogeneous regions,
we have to investigate it on CPU-regions - which we
compare to previous research [12] - as well as on GPU-
regions.

It is assumed that coherency aspects and scheduling of regions
of the memory system are beyond the scope of this investiga-
tion, assuming that coherency and scheduling of programs are
treated at the programming level environment. The remainder
of this paper is organized as follows. Section II describes the
background and motivation for increasing the MCs towards
improving bandwidth, and Section III describes RAMON ’s
properties of creation, isolation, and reorganization of regions.

...
L1

CPU

L2

L1

CPU

L2

L1

CPU

...

memory memory memory

L3

L1L1L1

L2L2L2

p
r
o

c
e
s
s
i
n

g

p
r
o

c
e
s
s
i
n

g

p
r
o

c
e
s
s
i
n

g
u

n
i
t

u
n

i
t

u
n

i
t

memory memory memory

MC MC

m
e
m

o
r
y

 c
h

a
n

n
e
l

m
e
m

o
r
y

 c
h

a
n

n
e
l

m
e
m

o
r
y

 c
h

a
n

n
e
l

MC
L2

m
e
m

o
r
y

 c
h

a
n

n
e
l

m
e
m

o
r
y

 c
h

a
n

n
e
l

m
e
m

o
r
y

 c
h

a
n

n
e
l

GPU region CPU region

MC MC

crossbar

MC

scheduled

request 16 MCs

example 2

example 1

request 1 MC

example 3

request 16 MCs

scheduling
application

scheduled

scheduled

16 sequential tasks

1 sequential task

1 heterogeneous task

example 1

request 16 MCs

1 heavily parallel task

example 2

request 31 MCs

1 heavily parallel task

example 3
1 heterogeneous task

request 16 MCs

scheduled

scheduled

scheduled

Fig. 1: CPU region and GPU region executing tasks

In Section IV, experimental methodology and results are
discussed. Section V analyzes the sensitivity of RAMON
operations and methodology. Section VI describes the related
work whilst Section VII the conclusion remarks and future
directions.

II. BACKGROUND AND MOTIVATION

Marino [12] characterizes the I/O pin problem as a set
of physical restrictions likely to occur when the number of
I/O pins increases, larger pin-densities are employed, and
faster clocks (666 MHz to 1.3 GHz or more) along the
processor-to-memory channel are implemented. These I/O pin
restrictions involve electro-migration, crosstalk effects among
pins [16], as well as a reliable design connection between
the motherboard and the processor chip [12]. In addition, as
the number of I/O pins is increased, area costs are likely to
increase correspondingly.

We illustrate the effects of restrictions, as (a) current em-
bedded and typical microprocessors in terms of cores versus
MC counts, (b) rank frequency and its effects on bandwidth,
and (c) the effects of pin-counts on bandwidth and MC
counts. To illustrate (a) and (c), as depicted by Marino
[12], most typical multicore systems have more cores than
MCs. This imbalance between MC counts and cores is very
significant in terms of magnitude. Furthermore, it is likely
to cause queueing of memory requests at the MCs rather
than processing them. As for (b), it is shown that low power
DDR (LPDDR) presents lower bandwidth when compared to
traditional DDR3/DDR4/GDDR5 memory, given that it was
designed aiming low power consumption [15][18].

3

Therefore, (a) and (b) demonstrate the need to focus on
systems with a larger number of MCs to tackle the approach
targeting a larger number of cores, so that techniques that
provide the utilization of a larger number of MCs are described
next.

Optical and RF technologies enable the exploration of
large bandwidth whilst using a small number of special pins,
which are designed for these technologies. Modulation in these
technologies enables the multiplexing of simultaneous carriers
which transmit simultaneous data, thus allowing significantly
larger bandwidth when compared to traditional transmission
with no modulation. To illustrate how modulation benefits
bandwidth in optical- or RF-modulation, bandwidth-per-pin is
defined similarly to [15]:

bw pin = ncarrier ∗ data rate/number of IO pins (1)

This equation shows that by reducing the number of pins
bandwidth-per-pin can be improved. Considering waves rep-
resented by multiple carriers placed at different frequency
ranges, as carriers are added larger data rates are achieved.
By using a low amount of pins, all of those combined can
generate higher bandwidth-per-pin magnitudes.

The following examples further illustrate the importance
of reducing pin utilization in MCs. For example, optical
Corona [14] only presents 2 optical pins/MC, whilst RFiof [12]
about 4 RFpins, therefore pin magnitude is noticeably reduced
when compared to 120 pins (of 240 pins total) utilized in
traditional DDR systems, thus enabling the use of a larger
number of MCs.

To estimate bandwidth improvements when augmenting the
number of MCs, we utilize the equation developed in [15]:

BwP = rank frequency ∗ width ∗ MCs (2)

where BwP represents the peak bandwidth the memory sys-
tem can supply, rank frequency represents the rank clock
frequency or data rate, and width refers to the number of
bits which represent the width of the rank. Equation 2 simply
allows to derive that peak bandwidth increases as the number
of MCs is increased, which means a larger degree of memory
parallelism.

Considering all elements on the memory path between
the core and the rank, peak bandwidth degrades due to
cache delays, crossbar contention, interconnection delays, MC
delays, memory bank delays, and program instructions which
effectively use memory (read and write). As all effects are
independent, effective bandwidth is obtained as follows:

Bw = BwP ∗ (1 − Misslatency%)

∗ (1 − BusDelay%) ∗ (1 − MCdelay%)

∗ (1 − NetworkCacheAndContention%)

∗ (1 − interconnectionDelay%)

∗ (1 − ActiveState%) ∗ (1 − NoReadWrite%)

(3)

where Bw is the effective bandwidth supplied to the cores
(either CPU, GPU, or both), Misslatency% corresponds to
the fraction of time spent on cache miss delays, BusDelay%
the fraction of time spent on bus delays, MCdelay%
the fraction of time spent at the MC queue/processing,
NetworkCacheAndContention% the fraction of time spent
on cache occupation, interconnectionDelay% the fraction of
time spent at optical- or RF-interconnection, ActiveState%

the fraction of time memory banks are active (read and write
operations occur), and NoReadWrite% the fraction of time
read and write operations are not present. Effective bandwidth
(Bw) follows peak bandwidth (BwP), and is still proportional
to the increase on the number of MCs.

Through a careful design that includes control of impedance
matching and interference, signal degradation, dispersion, and
divergence effects during transmission [15] are minimized.
Consequently, energy interconnection is minimized. For in-
stance, Vantrease et al. [14] illustrated an interconnection
energy reduction of about 80% when compared to traditional
transmission. Additionally, lower area utilization [16] favors
the utilization of a larger number of MCs based on either
technologies.

III. RAMON MANAGEMENT OF REGIONS

In RAMON we assume that each region keeps all commu-
nication needed mostly self-contained in the region, avoiding
CPUs/GPUs of different regions to access one or multiple re-
gions. Traffic is not self-contained when different regions need
the OS. As further described, a proper OS allocation to a region
can potentially allow lesser OS inter-region communication.
Despite being beyond this study, complete isolation could be
achieved by having multiple copies of the OS in all regions at
the expense of extra overhead to run these multiple OS copies,
which would also require a master OS to keep control of the
other OS copies.

A. User/OS Scheduling Assumptions in RAMON

RAMON allows the creation of new regions and/or the
reorganization of previous existing ones in terms of the number
of MCs. Heterogeneous tasks are considered to be a combi-
nation of CPU- and GPU-tasks, and assumed to be scheduled
and executed on heterogeneous regions. Furthermore, hetero-
geneous tasks are assumed to be created, scheduled, controlled
and triggered by the user (e.g. OpenCL [19]) or OS according
to bandwidth selection or Quality of Service (QoS) [9] level
of the aimed bandwidth.

These tasks are assumed to invoke RAMON operations
and region management. In this scenario, the frequency of
the creation and reorganization operations is controlled and
triggered by the user/OS. Additionally, the user/OS are as-
sumed to be responsible for controlling synchronization via
invoking the creation operation of separated regions so that
memory interference is minimized. Since there are overheads
to perform region operations, these overheads are of lower
time when compared to software ones (e.g. synchronization
among threads and memory allocation). Further considerations
are discussed along this section.

Though beyond this study, the following user-based feed-
back bandwidth-scheduling mechanism is proposed to be ap-
plied to a set of tasks in order to explore different degrees of
memory parallelism offered by different number of MCs:

1) For each individual task running in one region, identify
its bandwidth utilization: indirectly determining the
latency via Little’s law [20], through an estimation of
concurrency - i.e. simple circuits to count the number of
outstanding memory transactions - and latency - num-
ber of memory transactions waiting on the transaction

4

queues. These counters could be exposed to the user as
performance counters. Repeat this step for each task of
the set.

2) A new reference degree of memory parallelism for an
individual task can be estimated by the user/OS via as-
signing different number of MCs to each created region
or reorganized region. As a result, the configurations
with the highest performance can be found. Region
aspects are discussed in the following subsections.

3) Given the most bandwidth-performing region configu-
rations references were found in the previous step, the
user/OS can select the number of MCs to perform the
target region reconfiguration to achieve the bandwidth
goals whilst scheduling tasks via assigning or com-
bining them to be run into separate or shared regions
aiming to achieve the required bandwidth.

The proposed mechanism can be integrated to other reported
mechanisms such as [5] [6] [7] [8] [9] [21] further described
in Section VI. The proposed mechanism assumes applications
with constant bandwidth demand behavior. However, by split-
ting the tasks execution into time phases in which bandwidth
is approximately constant as well as estimating bandwidth
and reconfiguring the regions based into on the mentioned
time phases as previously indicated, the algorithm can be
repurposed to target variable bandwidth.

In all previous assumptions, RAMON exposes to the
user/OS the capability of creating new regions and/or recon-
figuring these regions in terms of number of MCs. Further-
more and importantly, given these previous considerations,
with a careful user/OS software-level application scheduling
and proper configuration of the MCs in different regions,
interference-related traffic among regions and likely delays are
likely to be reduced as further discussed.

B. Creation of CPU, GPU, and Heterogeneous Regions

As previously mentioned, each region is defined as a range
of addresses and a set of MCs associated with it. Each region
is likely to have a task or multiple tasks being executed
using the same address space and a dedicated number of
MCs. Since the number of cores/caches/MCs in each region
is reconfigurable, interleaving address mapping needs to be
changed accordingly. Once MCs are subject to the modification
of the address mappings on the caches, a region reconfiguration
should consider a new interleaving of address mappings, which
should be explored by the tasks allocated to that region.

Assuming that cache requests are interleaved at MCs, each
region accesses a range of addresses according to the available
number of MCs. Therefore, addresses accessed within one
region are guaranteed to be different, which means that the
regions are isolated. The only exception is to access OS-related
data/programs out of the region, if the OS is not allocated to
that region.

We illustrate the creation of different regions in Figure
1 based on [15] - different regions with homogeneous and
heterogeneous behaviours.

The crossbar utilizes region boundaries in order to de-
limit traffic inside each of these regions. Each region has a
unique identifier at the crossbar (further described in Subsec-
tion III-E1). When the creation operation is performed, a new
region is formed with the proper number of MCs and respective

tasks associated. In the case creation operation is successful,
likely-configurations with the appropriate MC counts dedicated
to the tasks are created. The creation operation (designed to
happen at creation time) fails when the configuration requested
or the number of MCs associated are not available to meet the
request and the user/OS is informed to reduce the number of
MCs requested.

As mentioned before, when multiple tasks are successfully
initialized at the crossbar regions are created accordingly.
For instance, at the initial phase presented in Figure 1, the
application requests the creation of two different regions. Next,
the application is able to schedule tasks to two different regions
(CPU and GPU).

C. Isolation of Regions

Tasks associated to a region mostly access memory ad-
dresses within that region, thus guaranteeing that most memory
traffic is contained within it. Isolation means that the MCs
assigned to each created region allow tasks to proceed with
their memory accesses, regardless of other tasks executed in
other regions. Also, tasks executed in different regions use
different numbers of MCs - each region likely to have a
different level of memory parallelism. Therefore, by having
traffic mostly self contained, memory interference of one
region in respect to another region is mostly reduced (with
the previous assumptions that only OS accesses are allowed to
cross regions). Additionally, if a region is set to run more than
one task and these tasks share multiple MCs, these tasks are
likely to cause memory interference. Instead, if two regions
are created, each one with separate MCs, a lesser amount of
traffic interference is likely to happen within each region.

D. Bandwidth Behavior

We assume cache addresses are interleaved on each MC and
that each region has a set of MCs dedicated to it. Memory
traffic between cores and MCs are mostly kept inside each
region, i.e., memory traffic between cores and MCs that do
not belong to that region is avoided. Some likely scenarios to
be observed are the following:

1) If MCs of a certain region were shared with another
one, these MCs would receive more traffic, thus likely
to cause a latency increase. However, if each region
has its own set of MCs, the set of each region would
receive its corresponding memory traffic predominantly.
Therefore, memory interference of other regions is
significantly reduced.

2) When executing bandwidth-bound programs, memory
traffic generated to respond to processor requests goes
through the cache network to get back to the cores.
Therefore, regions with larger cache network traffic are
likely to be subject to larger congestion. Consequently,
if properly separated at the crossbar, these regions can
have traffic minimized from the others, and network
interference is also reduced.

Let MCs be the total number of MCs available. Assuming
the existence of one heterogeneous region, (1) and (2) can
be demonstrated by comparing the bandwidth and traffic of a
heterogeneous region to the equivalent CPU and GPU regions,
all with the same amounts of dedicated MCs.

5

l1cache 0

resonator
ring

registers

config

core 0 + core i +

resonator

ring

registers

config resonator

ring

core n +

l1cache n l2cache nl2cache 0 l1cache i
core 1 +

l1cache 1

config

registers

l2cache i

ring
conf conf conf resonator

conf

registers

config

config = configure conf = configuration

l2cache 1

optical crossbar

addressaddress address

optical waveguides

address
registers

resonator

ring

conf

conf = configuration

control
signal

coupling region

coupling region

control
signal

add port

waveguide waveguide

drop port input port

throughout port

config

Fig. 2: left to right: Fig 2a crossbar design and Fig 2b configuration signal/ring resonator

We start by considering that the memory system has the
same properties, regardless of the type of region. As previously
mentioned in Subsection II, effective memory bandwidth (Bw)
supplied to any of the regions (CPU, GPU, or heterogeneous)
follows the number of MCs:

Bw = rank frequency ∗ width ∗ MCs

∗ (1 − Misslatency%) ∗ (1 − BusDelay%)

∗ (1 − NetworkCacheAndContention%)

∗ (1 − MCdelay%) ∗ (1 − RFinterconnectionDelay%)

∗ (1 − ActiveState%) ∗ (1 − NoReadWrite%)
(4)

If available MCs are assigned to a region, through isolation
these are mostly used for dealing with memory requests
generated by the cores on that region. For example, assuming
we have two heterogeneous regions, one with 75% of the MCs
available and the other one with the rest (25%), thus from
equation 5, the first heterogeneous region (A) would have:

BwhetA = rank frequency ∗ width ∗ 0.75 ∗ MCs

∗ (1 − Misslatency%) ∗ (1 − BusDelay%)

∗ (1 − NetworkCacheAndContention%)

∗ (1 − MCdelay%) ∗ (1 − RFinterconnectionDelay%)

∗ (1 − ActiveState%) ∗ (1 − NoReadWrite%)
(5)

where BwhetA is the effective bandwidth supplied to het-
erogeneous region A. Similar equation can be developed for
heterogeneous region B (replacing 0.75 with 0.25) and with
both we can state that BwhetA > BwhetB, which proves
(1). Analogously, case (2) can be demonstrated using the
same equations. More specifically, memory-bound applications
enable the generation of cache requests at the CPU-, GPU-,
or heterogeneous-regions. The respective memory responses
to these cache requests are generated at the ranks - memory
traffic - and repassed to the MCs, which themselves repass to
the crossbar/cache network. In this case, the network traffic

of a heterogeneous region would contain memory requests
generated at CPU and GPU cores and is comparatively larger
- likely to cause larger interference on the MC channels - than
the respective CPU and GPU regions.

E. Reorganization of Regions

Similarly to the creation, new identifiers are assigned so
that the region can be manipulated at the crossbar as further
described. At any point, reorganization of regions redefines any
existing address spaces as well as the number of MCs allocated
to it. Similarly to region creation, the amount of bandwidth
needed and respective MCs that enable that region to achieve
user desired bandwidth, whilst the creation of separated regions
associated to different tasks can decrease memory traffic per
MC - which reduces memory interference.

Importantly, if a region is reorganized, that means this
region is going to be decoupled in different regions. Since
reorganization of a region is assumed to be controlled by
the user/OS, the latter are in charge of reorganizing the
regions and assumed to associate new or previous tasks to
these new regions. To implement reorganization, we propose
a reconfigurable crossbar described next.

1) Crossbar Description and Design Scheme: The crossbar
is a key element not only in the reorganization operation in
RAMON but also on the other operations as well (creation
and isolation).

To understand the crossbar design and how address region
isolation is implemented, we first show how MCs are grouped
and dedicated to a region. Unique identifiers are associated to
each MC with the assumption of cache addresses interleaved
at each one of them. Since the address space and proper
amount of MCs can be used by tasks associated to that
region, memory traffic destined to a certain MC can be identi-
fied by comparing address mod (MCsDedicatedToRegion)
(address represents a general address, mod represents the
modulo operation, MCsDedicatedToRegion represents the
number of MCs dedicated to that region) to the MC identifier.

6

Importantly, when executing tasks, region boundaries are used
to prevent addresses from going out of bounds of that region,
thus guaranteeing that cache addresses are spread at the sets
of MCs associated to that region.

By guaranteeing memory traffic is kept within the bound-
aries corresponding to the set of MCs dedicated to that region,
memory traffic out of the region is avoided, which reduces
memory traffic destined to other MCs that belong to other
regions, i.e., it reduces the interference of other regions. Fur-
thermore, by having consecutive MC identifiers dedicated to a
region, network traffic of that region can be isolated. Region
boundaries are utilized at the crossbar to set the reconfiguration
hardware, formed by sets of registers and comparators, as
follows:

• Registers are required to perform creation and config-
uration operations. These registers contain the address
boundaries of each created or reorganized region, and
are assumed to be exposed to the user/OS scheduling
described in Subsection III-A.

• address mod (MCsDedicatedToRegion) calculations
are implemented in circuits via shift registers and XOR
elements. Since these calculations can occur frequently
so that memory traffic is isolated inside each region,
the hardware elements needed can be implemented in
separate at the microprocessor decode hardware unit,
thus not incurring additional overhead.

• Comparators are also required to enforce memory and
network traffic isolation. These comparators check the
validity of the address with respect to the boundaries of
that region, ensuring that the memory traffic is mostly
self-contained to that region. Each region has its own
comparators that guarantee that traffic is contained in
each of them.

• We assume that the memory interfaces are based on
optical and RF technologies. Therefore, the crossbar
is likely to be designed according to the modulation,
transmission, and proper pin-based interfaces required
by these technologies.

• Registers’ and comparators’ circuits complexity grows
linearly with the number of regions.

The individual complexity of the registers and comparators
involved in the operations of creation, isolation, and reorgani-
zation is negligible in terms of circuits complexity. Importantly,
since the number of regions is finite, the overall complexity of
the registers and comparators to assist the implementation of
the region operations is still estimated of low area/overhead. As
described next, we briefly approach the design of the crossbar
in the following subsection.

2) Reconfiguration and Optical Crossbar Design Scheme:
Regions should contain a number of MCs and proper net-
work, which will vary with the behavior of the applications.
The crossbar network should be easily configurable so as to
properly create regions. This configurable behavior can be
implemented using Photonics components. Indeed, according
to the logical operations proposed by Almeida et al. [22],
the direction of the light can be used to implement logical
operations. Before illustrating how crossbar operations are
implemented, we describe the basic optical inverter element
- such as the developed by Almeida et al. [22] - on which our
operations are based. As illustrated in Figure 2b, this element

Tool Description

Cacti [23] Cache latencies configuration.

DRAMsim [24] Capture memory transactions from DRAMsim and simulate

them with 4 to 32 RFMCs and 5MCs for the baseline.

Respond to M5 with the result of memory transaction

Determine power in each rank. Determine the number of

memory accesses. We have implemented boundary check

and memory traffic isolation.

M5 [25] Configured as 32-core, OoO processor generates memory

transactions, which are passed to DRAMsim [24].

Configured as 32-core, OoO processor since the 3D-stacking

and RF-systems simulated both have multiple MCs.

RF-crossbar Implemented in M5 [25] with RF settings from [13]. This

implementation is also responsible for region traffic isolation.

RF-communication RF-circuitry modeling and technology scaling [13].

delays

TABLE I: Methodology: tools and description

has the following ports: control, input, output, and throughout.
If control signal is ”1”, incoming data from the input port
is sent to the throughout port. And, if control signal is ”0”,
incoming data is not propagated to the throughout port.

Using these logical operations implemented with optical
inverter, we propose straightforward control circuits to be
connected to the optical logical control signal of the inverter
responsible for: (i) selecting cache addresses which belong to
the address range of the created regions; and (ii) filtering cache
addresses which do not belong to the specified range.

To select cache addresses that belong to a region, the control
operation circuit should be coupled to the optical control signal
so that these signals are sent to the throughout port. Conversely,
for addresses which do not belong to a specified region address
range, the control should send them to the drop port.

A general description of the operation of the crossbar is
illustrated in Figure 2a. The config (configure) block contains
registers and required operations in order to configure the
crossbar operation. This block takes the cache addresses of
different ranges as inputs while it generates the configuration
signal (conf as described in detail in Figure 2b) for that ring
resonator block as output. The circuits present in this block are
mainly composed by simple comparator circuits. The complex-
ity involved in this block - which participates to the operations
of creation, isolation, and reorganization - is not significant
in terms of overall circuits complexity. Though beyond this
study, overall complexity grows linearly with the number of
regions, and requires a trade-off investigation between low area
overheads and the number of regions required.

The configuration signal of the config registers block
in Figure 2a is connected to the control signal (conf)
of the ring resonator as depicted in Figure 2b. This sig-
nal is used to implement the address mod MCs and
address mod (MCsDedicatedToRegion) operations. We
detail this implementation in the next section.

IV. EXPERIMENTAL RESULTS

We start this section by describing the methodology em-
ployed in experiments performed, followed by presenting and
discussing the results obtained.

A. Methodology

As evaluation, we concentrate on determining the benefits on
the increase of the number of MCs in terms of bandwidth and
processor throughput (instructions per cycle), rather than the
reconfiguration process itself. As mentioned in the last section,

7

the time overheads of the optical reconfiguration process are
significantly smaller and the hardware unit responsible for it
is of low-magnitude area overhead.

Before describing the methodology adopted, the baseline
in terms of number of MCs for the regions is explained. We
utilize the number of MCs in real systems as the baseline MC
count for CPU, GPU, and heterogeneous regions, to resemble
real systems. An in-depth research on heterogeneous systems
currently available indicates that current heterogeneous sys-
tems [1] have 2MCs, which is adopted as the baseline.

For a global view of the methodology considered, all sim-
ulators employed and their descriptions are listed in Table I.
The general methodology employed in this paper is adopted
from [16], applied to each type of region. Bandwidth-bound
applications are used in order to evaluate the regions, since the
primary goal is to target bandwidth.

Region-related concepts are implemented as follows. Re-
gions boundary check is included in DRAMsim [24], while
network traffic isolation in M5 simulator [25]. Region bound-
ary check is basically implemented with the address-mod-
related calculations previously explained in Section III-E1.
As previously mentioned in III-A, memory traffic isolation is
controlled via user/OS tasks. Region identification is assumed
when the user/Linux tasks are created on M5 simulator [25]
or at the creation of GPU tasks in GPGPUsim [26], whilst
network traffic isolation is in M5 by filtering packets that
do not belong to that region (range of memory addresses
previously explained). Reorganization region identification,
boundary checking and network traffic isolation are imple-
mented similarly to the creation operation.

To evaluate the memory behavior of the CPU regions, we
combine the M5 [25] and the DRAMsim [24] simulators as
follows. To predict the behavior of future heterogeneous mul-
ticores, a 32-core processor model is created in M5 [25], and
as memory transactions are generated in M5 upon benchmark
execution, these are captured in DRAMsim [24] which is set
with multiple MCs, each associated with its own rank. Next,
DRAMsim responds to M5 with the result of each transaction.
In this environment, we confirm the appropriate calibration of
the bandwidth in one rank: about 2.0 GBytes/s as indicated in
the manuals [27]. For the CPU regions, we perform an analysis
of regions with MC counts ranging from 2MCs (baseline) to
32MCs. We should highlight that our investigation explores
up to 32MCs, significantly larger than currently used counts
in typical microprocessors.

In this evaluation, we have further utilized a CPU ISA
based on Alpha processor, set as a 4-way issue OOO core
similar to high performance microprocessors such as [1],
at 3.0 GHz with MCs operating at 1.5 GHz as in typical
microprocessors [28]. We used Cacti [23] to obtain cache
latencies and adopted miss status holding register (MSHR)
counts similarly to current microprocessors [28]. In order to be
able to increase the number of cores, these are connected as a
clustered architecture, and we utilize L2-MSHR structures [29]
that can be replicated to achieve higher memory bandwidths,
while we assumed an L2 similar to what can be found in
current microprocessors. However, instead of a shared L2, we
employed a private L2 to avoid L2-cache sharing effects which
would affect memory bandwidth and IPC measurements.

To model the behavior of GPU regions with a set of
assigned MCs, we used the GPGPUsim [26] simulator which

CPU region 32cores, 3.0GHz, OOO-Core, 4-wide issue

tournament branch predictor

GPU region 256cores,32shader cores,

Fermi-based [30], 0.325GHz, 22nm

L1 cache 32kBd cache + 32kB icache; assoc=2,

MSHR=8, latency=0.25ns

L2 CPU cache 1MB/per core ; assoc=8,

MSHR=16, latency=2.0ns

L2 GPU cache 32kB/MC, MSHR=16, latency=2.0ns

optical- or latency=1cycle, limited to 48GB/s

RF-crossbar

GPU interconnection 0.325GHz,

optical- 1 to 32MCs; 1MC/core, 1.5GHz; on-chip,

or RF-based MC close page mode, buffer size = 32entries/MC

Memory rank DDR3 1333MT/s, 1 rank/RFMC, 1GB, 8 banks,

64 bits 16384rows, 1024columns

Micron MT41K128M8 [27] tras=26.7cycles, tcas=trcd=8cycles

total optical/RF intercon. 3.5cm, 0.185ns

length/delay

TABLE II: modeled architecture parameters

already contains a module that implements multiple DDR-
based MC-systems. Memory transactions are generated by the
multiple GPU L3 caches and simulated in the memory module
of GPGPUsim. The GPU architecture modeled follows the
Nvidia Fermi architecture [30]. Similarly, we explore a variable
number of MCs from 2 to 32. Furthermore, we adopted similar
GPU cache settings [30] to GPU processors keeping proper (as
further described) RF-intercommunication delays [13] between
GPU L3 caches and the crossbar.

The most straightforward way to perform a detailed simu-
lation of the bandwidth impact on a heterogeneous region is
to employ a simulator for heterogeneous systems. However,
the higher computational complexity of these simulators can
lead to significant higher simulation times. Instead, we propose
a methodology that independently utilizes CPU and GPU
simulation infrastructures and combines them to determine the
impact of the increase of the number of MCs in heterogeneous
regions.

Similarly to Marino’s report[12], we employ ranks with
proper DDR-family settings in terms of timings, protocols,
control-data signal separations, and organization - in terms of
banks, rows, and columns. Timing parameters are based on
1GB DDR3 rank, based on Micron model MT41K128M8 [27].

Each MC is associated with one of the previous ranks, i.e.,
32 MCs are associated to 32 ranks. The sets of 32 MCs/32
ranks are coupled to 32 cores in order for the bandwidth to
feed these cores whilst keeping a balanced proportion core:MC
as 1:1. Furthermore, since each MC is connected to a different
DDR rank, cache lines interleaved along MCs are actually
interleaved along different ranks. Additionally, closed-page
mode was used aiming RAMON to target low energy usage
on a server environment.

To model communication delays, Chang validated modeling
methodology et al. [13] is followed: the optical and RF-
interconnection delays involved are of a similar order of
magnitude by signals delays when traversing the estimated
distance (e.g., 2.5cm [12]).

In this RF model, modulation and line separation are taken
into account so as to keep as low bit error rate (BER) as
possible. Therefore, L2 CPU caches are interconnected via an
RF-crossbar with a single cycle latency (adopting the same
timing settings as in [13]: 200ps - for TX-RX delays - plus
the rest of the burst cycle used to transfer 64 Bytes - memory
word - using high speed and modulation).

8

Benchmark Input Size read:write, MPKI

Copy, Add, Scale, Triad 12Mfloats, 2.54:1 , 54.3

(STREAM) 2 iterations

Backprop, 20000 elements, 2 iter. - , -

Hotspot, 6000 x 6000, 3 iter. 2.5:1 , 12.5

Pathfinder, 65536, 2 iter. - , -

Srad, (Rodinia) 2048 elements, 2 iter. 2.5:1 , 14.9

TABLE III: benchmarks and input sizes

Crossbar upper bandwidth was designed so that (i) as the
number of ranks (that follow the number of MCs) is increased,
total bandwidth is not restricted, and (ii) to approximate actual
delays [13]. Similar settings are also valid for connections to
GPU L2 caches.

Given that the number of regions in benchmarks evaluated
is of reduced magnitude (assumed maximum of 32 regions),
boundary registers and comparators setting delays involved
in the creation, isolation, and reorganization operations are
of significantly reduced magnitude when compared to cache
delays and RF-interconnection.

Next, the methodology employed to obtain power and
energy-per-bit is discussed. To obtain the total power, DRAM-
sim power models are considered, following the Micron formu-
lation [27] which includes the power spent on all ranks and
interconnection. To determine the total energy-per-bit spent,
we adapt the methodology described in [14] to the magnitudes
obtained in DRAMsim power infrastructure (which are also
based on the Micron formulations [27]) and combine them
with the memory bandwidth extracted from the benchmark,
if designed to measure bandwidth, the number of memory
transactions (DRAMsim or GPGPUsim) and execution time,
if otherwise. Table II contains all architectural parameters.

Benchmarks selection followed the methodology employed
in [12]. It consists of a selection of medium and high
bandwidth-bound benchmarks with a significant number of
misses per kiloinstructions (MPKI) to evaluate the memory
system: the STREAM [31] suite designed to measure memory
bandwidth, decomposed in its four sub-benchmarks (Copy,
Add, Scale, and Triad) as well as Backpropagation, Hotspot,
Pathfinder and Srad from Rodinia suite [32].

In addition, we exemplify some region operations (creation
and reorganization), assuming they happen as a sequence of
task termination followed by the creation of a new one, as
illustrated next. In experiments, we assume up to 32 different
regions since we have 32 cores.

Table III summarizes selected benchmarks, input dataset
sizes, read-to-write rate, and L2 MPKI obtained. In all bench-
marks, parallel regions of interest were executed until comple-
tion. All input datasets are larger than the total rank memory
size, which guarantees that all memory space is stressed.
Average results are calculated based on harmonic average.

To measure the implications on performance, it is proposed:

• to measure instructions per cycle (IPC) as an indication
of throughput/performance;

• to measure bandwidth gains on each type of region
(CPU, GPU, and heterogeneous);

• to perform an investigation of the degree of memory
parallelism for each type of region by performing an
investigation of the bandwidth gains from the baseline
(2 MCs) to the maximum number of MCs (32 MCs);

• to determine the maximum bandwidth of a CPU, GPU,
and heterogeneous region as top boundary magnitudes;

• to be able to determine the maximum bandwidth, each
selected benchmark is scheduled to each individual type
of region, with all MCs dedicated to that same one;

• to measure bandwidth for benchmarks not necessarily
designed to measure bandwidth (all from the Rodinia
suite [32]) by dividing the number of bytes the memory
system effectively transfers - obtained in the simulation
infrastructure correspondent to memory read and write
operations - by the execution time;

• to allow the creation of regions before proper bench-
marks’ executions in those regions.

B. Determining the bandwidth of a heterogeneous region

Since a CPU region contains solely CPU cores, we define
the memory bandwidth supplied to each CPU core as:

BwCPU =
Bw

CPUcores
(6)

where Bw is the effective bandwidth according to equation 3
and CPUcores represents the total number of CPU cores
present in that region. Similarly, for a GPU region with
GPUcores - clusters of cores (each cluster with an associated
MC), bandwidth can be expressed as:

BwGPU =
Bw

GPUcores
(7)

Now, a heterogeneous region created with cores from both
CPU and GPU regions has a maximum bandwidth expressed
as:

Bwhet =
Bw

CPUcores + GPUcores
(8)

Using Subsection III-C considerations and:

CPUcores +GPUcores > CPUcores and (9)

CPUcores +GPUcores > GPUcores (10)

We can derive that:

Bwhet =
BwCPU ∗ CPUcores

CPUcores + GPUcores
, and (11)

Bwhet =
BwGPU ∗GPUcores

CPUcores + GPUcores
(12)

Therefore, by analyzing equations 8, 9, and 10, we demon-
strate that the bandwidth of a heterogeneous region is lower
than the bandwidth of the respective CPU and GPU re-
gions (with similar MC counts) and can be calculated us-
ing the latter equations. Thus, to determine the bandwidth
of the heterogeneous region, without loss of generality, we
select the CPU region bandwidth results and apply the factor
CPUcores / (CPUcores + GPUcores) to determine it
next.

C. Bandwidth

Figures 3a to 3d show bandwidth results obtained for the
CPU and GPU regions when executing the selected bench-
marks. For all STREAM benchmarks which were designed
to measure the bandwidth, we can observe that bandwidth
increases as the number of MCs are increased. Similarly to the
bandwidth trends in STREAM suite, bandwidth also increases
proportionally to the number of MCs in Rodinia suite.

9

0

2

4

6

8

10

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Ba
ndw

idth
: no

rm
aliz

ed
to t

he
bas

elin
e (x

 tim
es)

MCs available in the region

Bandwidth - CPU region baseline - 2 MCs
2 MCs
4 MCs
8 MCs

16 MCs
32 MCs

Add Copy Scale Triad

Backprop

Hotspot

Pathfinder

Srad

0

2

4

6

8

10

12

14

16

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Ba
ndw

idth
 no

rm
aliz

ed
to t

he
bas

elin
e (x

 tim
es)

MCs available in the region

Bandwidth - GPU region

"baseline (2 MCs)"
2MCs

4 MCs
8 MCs

16 MCs
32 MCs

Add

Copy

Scale Triad

Backprop.

Hotspot

Pathfinder

Srad

0

2

4

6

8

10

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Ba
ndw

idth
: no

rm
aliz

ed
to t

he
bas

elin
e (x

 tim
es)

MCs available in the region

Bandwidth - Heterogeneous Region 2 MCs
4 MCs
8 MCs

16 MCs
32 MCs

baseline - 2 MCs

Add Copy Scale Triad

Backprop

Hotspot

Pathfinder

Srad

0

2

4

6

8

10

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Ban
dw

idth
: no

rma
lize

d to
 the

 ba
seli

ne
(x t

ime
s)

MCs available in the region

Bandwidth - Heterogeneous Region 2 MCs
4 MCs
8 MCs

16 MCs
32 MCs

baseline - 2 MCs
Add Copy Scale Triad

Backprop

Hotspot

Pathfinder

Srad

2-M
C r

egi
on 4-M

C r
egi

on 8-M
C r

egi
on 16-

MC
 reg

ion 32-
MC

 reg
ion

Fig. 3: Fig 3a (top) to Fig 3d (bottom), bandwidth versus number of MCs on Fig 3a for CPU
regions, on Fig 3b for GPU regions, and Fig 3c for heterogeneous regions; Fig 3d, reorganization.

10

0

2

4

6

8

10

12

14

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

IP
C

no
rm

ali
ze

d t
o t

he
 ba

se
lin

e (
x t

im
es

)

MCs available in the region

IPC - CPU region
2 MCs
4 MCs
8 MCs

16 MCs
32 MCs

baseline - 2 MCs

Add Copy Scale Triad

Backprop

Hotspot

Pathfinder

Srad

0

2

4

6

8

10

12

14

16

18

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

IP
C

no
rm

ali
ze

d t
o t

he
 ba

se
lin

e (
x t

im
es

)

MCs available in the region

IPC - GPU region

2 MCs
4 MCs
8 MCs

16 MCs
32 MCs

baseline - 2 MCs

STREAM Average

Backprop

Hotspot

Pathfinder

Srad

Fig. 4: top to bottom, IPC versus number of MCs on Fig 4a for CPU regions (top) and on Fig 4b
for GPU regions (bottom); STREAM Average: average IPC over STREAM benchmarks.

Our findings show that the largest bandwidth achieved is for
Add, where for 32 MCs it is about 9x times faster than the
baseline, while the smallest one is observed with Pathfinder,
where the 32MC-configuration is 2.2x faster than the 2MC-
configuration. Similar to the number of MC’ settings found
in [12], the selection of a larger input dataset allows larger
memory data transfers for Pathfinder in the CPU region. We
also observe that for the Copy and Scale benchmarks, the
bandwidth saturates at 16 MCs. By analyzing infrastructure
simulation statistics, we observe that this effect happens due
to the bandwidth limitations of the crossbar (Table II, 48GB/s).
By applying different degrees of parallelism through the use
of different numbers of MCs, tasks executed in CPU regions
yield significant bandwidth improvements when compared to
the baseline as the number of MCs (parallelism) is increased.

As shown in Figure 3b, just like with CPU regions, GPU
regions present similar trends in terms of augmenting MCs:
for all the benchmarks in the STREAM suite [31] and for
all the benchmarks in the Rodinia suite [32], bandwidth is
improved for the different degrees of memory parallelism. The

best bandwidth result happens for Copy, which for the 32-
MC configuration, is 14.1x higher than the baseline. The worst
result (2.3x faster than the baseline) happens for Hotspot with
the 32MC-configuration.

The largest bandwidth magnitude in both types of regions
occur for the largest number of MCs, which is obtained accord-
ing to the behavior observed in equation 2. By comparing CPU
to GPU regions, bandwidths are larger on the GPU ones, since
their architecture [30] demands higher memory bandwidth.

For STREAM suite [31], bandwidth behavior in both types
of regions increases proportionally to the number of MCs
available to that region. However, in Rodinia suite [32], it
is interesting to observe that some benchmarks present con-
sistent increase on bandwidth behavior, while others do not.
For example, Backpropagation and Srad bandwidths increase
proportionally with the number of MCs, while others such as
Hotspot and Pathfinder display the opposite behavior.

To explain this phenomenon, we point out that we follow tra-
ditional methodologies used in computer architecture [12][13],
since we are employing standard benchmarks selected from the

11

mentioned suites but not to explore benchmark parallelization
techniques in these different architectures. Furthermore, ac-
cording to Marino and Li’s report[15], to have a fair compari-
son between Hotspot and Pathfinder on these different architec-
tures, we should have both programs parallelized using similar
techniques to provide the best possible bandwidth, which is not
the case. For example, in the case of a GPU architecture, the
use of GPU caches are controlled via programming, which
is not the case of the Rodinia benchmarks [32], where CPU
programs use OpenMP and whilst GPU programs use CUDA.

Highlighting its importance, bandwidth improves in all types
of regions upon increasing the number of MCs. In addition,
this bandwidth improvement is valid for a significant diversity
of benchmarks for either CPU or GPU regions.

To estimate the bandwidth of a heterogeneous region, 32
cores (Table II) are used for the CPU regions, 32 shader
cores ((Table II) for GPU regions, CPU bandwidth results in
Figure 3a are used as inputs to equations 11 and 12. This
estimation is illustrated in Figure 3c. Instead of using the
baseline of the heterogeneous region as 2MCs, we use the one
from the homogeneous so that, bandwidth reduction can be
easily observed. The results show that bandwidth also increases
when the number of MCs is augmented.

D. Throughput or Processor Performance

We have measured the number of instructions per cycle
(IPC) in order to estimate processor performance improve-
ments. Figures 4a and 4b illustrate IPCs obtained in the
experimentation. As a general observation, for either CPU
or GPU regions, IPC increases follow bandwidth increases
as the number of MCs is increased. IPC largest magnitudes
are very significant, about 14x for CPU regions, and 17x for
GPUs. The best results obtained are for STREAM suite and
Hotspot in CPU regions, while Srad, STREAM, and Pathfinder
in GPU regions. The worst IPC gains obtained are present in
Backpropagation either in CPU and GPU regions.

E. Latency

Since bandwidth and latency are related [20], the effects
of several degrees of parallelism, can be observed in terms
of latency, which are measured as transaction queue average
occupancy. The results of these measurements are shown
in Figure 5a. Compared to the baseline, transaction queue
occupancy is respectively reduced by up to 93.3% in CPU
regions, up to 93.1% in in GPU regions, and up to 86.6%
in heterogeneous regions. Heterogeneous reduction is lower
since this type of region presents a larger memory contention
(more cores issuing memory requests). In all cases, occupancy
reduction demonstrates significantly lower levels of memory
interference.

Similar to the formulation developed to obtain bandwidth
dependency between CPU and GPU regions in heterogeneous
regions - represented by equations 11 and 12, we obtain latency
by using a similar proportionality factor. This estimation is
shown in Figure 5a, where significantly higher levels of latency
exhibits the behavior previously predicted.

To summarize, we observe that for isolated CPU or GPU
regions, as well as for merged ones, an increase on the
number of MCs benefits performance by improving memory
parallelism. Combined CPU/GPU sets need more bandwidth
to achieve the same levels of speedup of isolated ones.

F. Creation, Isolation, and Reorganization

In this subsection, operations of creation, isolation, and
reorganization are discussed. Various degrees of parallelism,
starting from 2MCs (baseline) to 32MCs were tested. To
perform the evaluation, each region is created with a different
number of MCs dedicated to it. For example, in Figure 3d, each
vertical bar corresponding to a MC configuration at the X axis
corresponds to a different region set with different numbers
of MCs. These regions were created or reorganized assuming
the user requested the experimented MC settings (X axis).
Similarly, different regions are present when performing the
evaluation of GPU regions.

Figure 3d illustrates the reorganization operation assumed
(Subsection IV-A) as a sequence of tasks created and termi-
nated. In this example, after a first region is created, it is
reorganized to have the number of MCs double as the previous.
This process is repeated until the maximum number of MCs
is achieved, after which it is terminated.

Results showing bandwidth improvements for each type of
region demonstrate that bandwidth significantly increases with
an increase of the number of MCs. Isolation property backs up
these results as showed in Subsection III-C, otherwise regions
would present much larger memory and network traffic for
CPU, GPU, and heterogeneous regions.

G. Energy

Due to space considerations, only energy-per-bit for
STREAM benchmarks are shown in Figure 5). This figure
shows that energy-per-bit decreases as the number of MCs
increase, which follows Marino’s report [12] and can be intu-
itively explained by dividing power usage over proportionally
increasing bandwidths. In addition, as noticed in the previous
(section) latency analysis, memory system is active for a lower
amount of time, thus reducing the energy-per-bit spent. Though
with different slopes, similar behavior is observed for the
remaining benchmarks.

H. Important Points: Design Guidance Outcomes

Very importantly, as previously mentioned in Section I,
even adopting optical or RF technology, as a guide to fu-
ture heterogeneous industry processors design, the drop in
bandwidth/latency and IPC is significant - roughly 60% -
when having more heterogeneous processors, as observed in
Figures 3a to 3d and previous homogeneous/heterogeneous
results. Furthermore, different regions allow the reduction of
interference (shown as lower levels of occupancy and higher
levels of memory bandwidth).

We conclude that the contention bottleneck on the PCI
e-bus due to communication between traditional CPUs and
GPUs is shifted to the memory system in heterogeneous
microprocessors is still present in scalable memory systems
given the drop in bandwidth/IPC.

A second important outcome is that the utilization of up to
32 MCs - compared to 8MCs in [15] - as a straightforward
approach to improve bandwidth/IPC (Section I) is significantly
beneficial. For homogeneous and heterogeneous cores, roughly
1.6 to 4.2x better bandwidth/IPCs are obtained. Importantly,
the use of more MCs approaches the bottlenecks analysis
mentioned in [15], i.e., when more cores are present.

12

0

0.5

1

1.5

2

2.5

2 4 8 1
6

3
2

2 4 8 1
6

3
2

2 4 8 1
6

3
2

O
c
c
u
p
a
n
c
y
 n

o
rm

a
li

z
e
d
 t

o
 b

a
s
e
li

n
e

number of MCs

Transaction Queue Occupancy

baseline

CPU region GPU region Het region

2MCs - baseline
4MCs
8MCs

16MCs
32MCs

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

E
n

e
rg

y
-p

e
r-

b
it

 (
n

o
rm

a
li

z
e
d

 t
o

 t
h

e
 b

a
s
e
li

n
e
)

Number of MCs

Total Energy per bit

"STREAM_energy"

"baseline_memory_energy_per_bit_5MCs"

Fig. 5: left to right: Fig 5a transaction queue occupancy and Fig 5b energy-per-bit versus number of MCs.

V. SENSITIVITY ANALYSIS

Our sensitivity analysis is designed to assess the impact
of several key aspects: (i) number of memory MCs and
cores; (ii) creation, isolation, and reorganization operations;
(iii) minimum acceptable performance degradation, and (iv)
benchmarks.

NumberofMCsandNumberofCores : different levels of
memory parallelism are estimated via experimenting different
number of MCs assigned to each region (2 to 32MCs).

Via properly designed pins, optical/RF technologies allow
the use of larger MCs, which potentially enables a larger num-
ber of cores. Aiming the highest memory parallelism possible,
a higher magnitude of MCs compared to cores is employed to
maintain the ratio core:MC (we used 32MCs/32ranks).

If the number of cores in either CPU, GPU, and hetero-
geneous regions is increased, pairs of MCs and ranks can
be augmented to match the core:MC proportion as previously
discussed. Using this strategy, the augment of the number of
MCs to larger magnitudes is an attractive solution for either
homogeneous or heterogeneous systems with larger numbers
of cores. In Marino and Li’s report [15], the number of MCs
selected is restricted to 8MCs, and we clearly went further up
to 32MCs in order to explore larger amounts of MCs.

Creation, Isolation, andReorganizationOperations :
these operations require the crossbar network to be configured
accordingly. Regardless of the type of MC interface (opti-
cal/RF), the registers and XORs to perform modulo operations,
as well as the registers and comparators required to perform
region boundaries grow linearly with the number of regions.
As previously mentioned, a trade-off investigation between the
area of these elements and the number of required regions
in CPU, GPU or heterogeneous applications is required to
establish bandwidth design requirements.

AcceptablePerformanceDegradationandCrossbar : As
we have demonstrated, the increase on the number of MCs
for memory-bound applications increases bandwidth whilst

reducing interference. In order to be used with a larger
number of MCs, cache-related structures should allow a larger
amount of memory traffic through, which can be achieved via
employing a low-transmission delay optical/RF crossbar set as
in reports [12][16]. As we have multi/many cores, by utilizing
replicated MSHR structures [29], we guarantee that traffic is
not restricted or reduced. Both previous conditions are likely
to avoid significant bandwidth degradation.
Benchmarks : The benchmarks utilized here are composed

of bandwidth-bound applications to evaluate the behavior of
each type of region, as well as several degrees of memory
parallelism via a different number of MCs. However, if lower
intense (lower misses per kilo instructions - MKPI) bandwidth-
bound applications or benchmarks that are not bandwidth-
bound are employed, the benefits of the increase on the number
of MCs are likely to be comparatively lower.

A design space exploration can determine the ratio between
the number of MCs - for CPU-, GPU-, or heterogeneous-
regions - and the number of cores to achieve a desired
bandwidth. Such exploration is beyond this study and funda-
mentally depends on the bandwidth level and QoS aimed.

VI. RELATED WORK

The work by Muralidhara et al. [5] proposes to map appli-
cations data that are likely to severely interfere with each other
on different channels and combine channel partitioning with
scheduling. RAMON is orthogonal to this work, in the sense
that as it aims to reduce memory interference on heterogeneous
regions, different numbers of channels are created. However,
RAMON could be coupled to Muralidhara’s techniques with
different scheduling and channel partitioning.

In the work by Xie et al. [6], memory banks are dy-
namically partitioned according to thread utilization profiling.
Configurable memory regions in RAMON with the isolation
property can reduce memory interference of other regions.
Despite its integration to OS/user OpenCL environment, it

13

could be combined to Xie et al.’s approach in order to create
configurable memory regions based on the profile utilization.

The research by Janz et al. [7] proposes a software schedul-
ing framework where an application interacts with the OS
to determine its memory address space dynamic footprint
utilization. Instead, RAMON proposes dynamic creation and
reconfiguration of regions with different number of MCs in
order to reduce memory interference, according to the OS or
the application (CUDA), where Janz’s framework fits.

Ausavarungnirun et al. [8] propose a different MC man-
agement which groups memory requests according to row-
buffer locality first, then inter-application scheduling, and
finally FIFO scheduling. RAMON ’s approach is orthogonal
to Ausavarungnirun et al.’s approach, where individual regions
creation or reconfiguration could be triggered by the latter.

Kayiran et al. [21] propose an integrated management tech-
nique that alleviates the GPU contention on shared resources
when on a heterogeneous environment. Although RAMON ’s
techniques of isolation and creation reduce the interference
of memory regions, by reconfiguring the crossbar, Kayiran et
al.’s management technique could be coupled to RAMON in
order to create/reconfigure regions.

Jeong et al. [9] investigate a QoS mechanism that keeps
GPU workloads to dynamically adapt CPU and GPU priorities.
RAMON ’s approach is orthogonal to the latter, i.e., as it
could be used to create/reconfigure regions to fit different
bandwidth needs using different MC settings according to the
QoS priority.

Usui et al [33] extended Jeong et al .’s approach [9] to
hardware accelerators trading off QoS applications bandwidth
and latency. RAMON is orthogonal to the latter and could
change the number of MCs in regions to match different
hardware accelerators and trade-off latency/bandwidth.

Memscale [18] is a set of software and hardware mecha-
nisms which includes OS policies and hardware power tech-
niques to trade-off memory energy and performance in typical
memory systems. RAMON shares with Memscale the simi-
larity of adopting bandwidth estimations independently. In the
former, each MC bandwidth is estimated independently, whilst
in RAMON bandwidth is estimated on each independent
region. Nevertheless, RAMON can have different regions and
each of them can have a variable number of MCs assigned
according to the bandwidth demands.

The investigation by Zhang et al. [34] proposes the uti-
lization of a variation-aware MC scheme that explores the
utilization of memory chunks with different access times.
RAMON ’s approach is orthogonal to the former approach,
since the proposed scheme can potentially explore not only dif-
ferent variation aspects but also different bandwidth demands.

Similarly, we share the same interface and RF-technology
principles of RFiop [16] and RFiof [12], as well as the optical
technology approaches [14] when increasing the number of
MCs. In this report, the concept of regions and their properties
are used to evaluate the impact of different degrees of memory
parallelism for different types of regions.

The work by Marino and Li [15] approaches multicore
bandwidth challenges via the increase of the number of MCs
in traditional digital-based embedded systems, which has a
restricted number of counts due to high I/O pin usage. Differ-
ently, RAMON approaches scalability of MCs using optical-
and RF-based interfaces that enable the use of a significant

larger number of MCs than in traditional digital systems as
in the report [15]. Additionally, in RAMON MC region
awareness is highlighted, whilst presenting a new low-area
overhead optical-crossbar design that enables the creation of
regions with isolation/reorganization properties. Moreover, a
significant extension of the bandwidth model initially proposed
in [15] is performed with a new detailed experimental inves-
tigation that considers energy and processor (instruction per
cycle - IPC) as a measure of throughput/performance for a
significant larger number of cores.

VII. CONCLUSIONS AND FUTURE WORK

In this investigation, RAMON approaches heterogeneous
multicore memory bandwidth demands via creating different
regions of memory for CPUs and GPUs, or combined hetero-
geneous CPU/GPU regions, where different levels of memory
parallelism are explored via different numbers of MCs. In
order to afford these different levels of memory parallelism,
each region of CPU, GPU, or heterogeneous should provide
isolation, i.e., should have its own memory space. Isolation
segregates memory accesses by regions and avoids memory
interference from other regions, also avoiding larger amounts
of memory contention and related memory traffic. The use of
a lower number of pins of optical- and RF-based interfaces
enables RAMON to achieve significantly higher levels of
memory parallelism when compared to traditional memory
systems with low amounts of MCs. Our findings show that
a larger number of MCs contributes to performance improve-
ment more than region isolation.

An important open issue for industry or research design is
to face a performance - represented by bandwidth or IPC -
drop of about 60% when using heterogeneous cores sharing the
same memory address space, even when using a high scalable
memory design.

As observed in this research, the bandwidth improvement
has a direct impact on processor performance improvement.
Since different algorithms demand significantly different de-
grees of memory parallelism, we leave the integration of
RAMON to user/OS scheduling strategies [5][6][7] as well
as a detailed trade-off of the crossbar area/circuits based on
application behaviors are directions for future research.

Given that memory bandwidth challenges is a very active
area of investigation, the evaluation of the proposed user-
feedback scheduling for application with constant and variable
demanding bandwidth proposed in Section III-A is also
planned. As future challenges, an investigative analysis of the
trade-offs involved in the crossbar when switching regions
operations (creation, isolation, and reorganization) could be
coupled with RAMON dynamic regions determination and
reconfiguration required in IoT, scientific and commercial
applications aiming to improve bandwidth. Moreover, we plan
to evaluate regions when introducing other types of cores
which run applications with different memory bandwidth re-
quirements.

VIII. ACKNOWLEDGEMENT

We would like to thank Maria Amelia Guitti Marino and
anonymous reviewers for their valuable feedbacks, discussions
and suggestions.

14

REFERENCES

[1] “AMD details first ARM-based server chip: up to 16 helpings of
Cortex-A57 clocked at 2GHz,” 2013. accessed date: 07/15/2017 -
http://www.engadget.com/2013/06/18/amd-seattle-arm-server-chip/.

[2] “AMD Reveals Details About Bulldozer Micro-
processors,” 2011. accessed date: 06/29/2017 -
http://www.xbitlabs.com/news/cpu/display/20100824154814

AMD Unveils Details About Bulldozer Microprocessors.html.

[3] “PCI Express* Architecture.” Accessed date: 04/10/2017 ;
http://www.intel.com/content/www/us/en/io/pci-express/pci-express-
architecture-devnet-resources.html.

[4] A. Udupa et al., “Software pipelined execution of stream programs on
gpus,” in CGO, (Washington), pp. 200–209, IEEE, 2009.

[5] S. P. M. et al., “Reducing memory interference in multicore systems
via application-aware memory channel partitioning,” in MICRO, (New
York), pp. 374–385, ACM, 2011.

[6] X. M. et al., “Improving system throughput and fairness simultaneously
in shared memory cmp systems via dynamic bank partitioning,” in
HPCA, pp. 344–355, IEEE Computer Society, 2014.

[7] J. M. R. et al., “A framework for application guidance in virtual memory
systems,” in VEE, pp. 344–355, ACM, 2013.

[8] R. A. et al., “Staged memory scheduling: Achieving high performance
and scalability in heterogeneous systems,” in ISCA, (Washington),
pp. 416–427, IEEE, 2012.

[9] M. K. J. et al., “A qos-aware memory controller for dynamically
balancing gpu and cpu bandwidth use in an mpsoc,” in DAC, (NY),
pp. 850–855, ACM, 2012.

[10] Shane Bell et al., “TILE64TM Processor: A 64-Core SoC with Mesh
Interconnect,” in ISSCC, pp. 88–90, IEEE, 2008.

[11] “The Push of Network Processing to the Top
of the Pyramid.” Accessed date: 06/10/2017 ;
http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf.

[12] M.D. Marino, “RFiof: An RF approach to the I/O-pin and Memory
Controller Scalability for Off-chip Memories,” in CF, ACM, 2013.

[13] K. Therdsteerasukdi et al, “The dimm tree architecture: A high band-
width and scalable memory system.,” in ICCD, pp. 388–395, IEEE,
2011.

[14] D. Vantrease et al., “Corona: System Implications of Emerging
Nanophotonic Technology,” in ISCA, (Washington), pp. 153–164, IEEE,
2008.

[15] M.D. Marino, K.C. Li, “Insights on Memory Controller Scaling in
Multi-core Embedded Systems ,” IJES, vol. 6, no. 4, 2014.

[16] M.D. Marino, “RFiop: RF-Memory Path To Address On-package I/O
Pad And Memory Controller Scalability,” in ICCD, (Quebec), IEEE,
2012.

[17] Aniruddha N. Udip, “Designing Efficient Memory for Future Comput-
ing Systems ,” in PhD Thesis, (Utah, USA), pp. 1–126, University of
Utah, School of Computing, 2012.

[18] Q. Deng et al., “Memscale: active low-power modes for main memory,”
in ASPLOS, (New York, USA), pp. 225–238, ACM, 2011.

[19] “The open standard for parallel programming of heterogeneous sys-
tems.” Accessed date: 09/30/2016 - https://www.khronos.org/opencl/.

[20] “Little, J. D. C. (1961). ”A Proof for the Queuing Formula: L = W”.
Operations Research 9 (3): 383387..” Accessed date: 06/22/2017 ; http:
//dx.doi.org/10.1287/opre.9.3.383.

[21] O. K. et al., “Managing gpu concurrency in heterogeneous architec-
tures,” in MICRO-47, (Washington), pp. 114–126, IEEE, 2014.

[22] V. R. Almeida et al., “All-Optical Control of Light on a Silicon Chip,”
Nature, no. 431, pp. 1081–1084, 2004.

[23] “CACTI 5.1.” Accessed Date: 05/12/2017;
http://www.hpl.hp.com/techreports/2008/HPL200820.html.

[24] David Wang et al, “DRAMsim: a memory system simulator,” SIGARCH

Comput. Archit. News, vol. 33, no. 4, pp. 100–107, 2005.

[25] Nathan L. Binkert et al, “The M5 Simulator: Modeling Networked
Systems,” IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[26] A.Bakhoda et al, “Analyzing CUDA workloads using a detailed GPU
simulator,” in ISPASS, (Boston, USA), pp. 163–174, IEEE, 2009.

[27] “Micron manufactures DRAM components and modules and NAND
Flash.” Accessed date: 10/07/2016 ; http://www.micron.com/.

[28] G.H. Loh, “3D-Stacked Memory Architectures for Multi-core Proces-
sors,” in ISCA, (Washington), pp. 453–464, IEEE, 2008.

[29] J. Tucks et al., “Scalable Cache Miss Handling for High Memory-Level
Parallelism,” in MICRO, (Washington), pp. 409–422, IEEE, 2006.

[30] White Paper, “Fermi Architecture White Paper - Nvidia,” in Technical

Report, 2009.

[31] McCalpin, John D., “Memory Bandwidth and Machine Balance in
Current High Performance Computers,” IEEE TCCA Newsletter, pp. 19–
25, 1995.

[32] Shuai Che et al , “Rodinia: A benchmark suite for heterogeneous
computing.,” in IISWC, pp. 44–54, IEEE, 2009.

[33] “SQUASH: Simple QoS-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators.” Accessed
date: 06/02/2017 ; http://http://arxiv.org/abs/1505.07502.

[34] X. Zhang et al., “Exploiting dram restore time variations in deep sub-
micron scaling,” in DATE, (San Jose), pp. 477–482, 2015.

IX. BIOGRAPHY

Mario D. Marino is currently a Senior Lecturer
in Leeds Beckett University. He received his B.E.
in Electrical Engineering in 1993, while MsC and
PhD in Computer Engineering in 1996 and 2001,
all from the University of Sao Paulo. He has
worked at several international universities as an assistant professor
and as a researcher. He has received a best paper award on an interna-
tional top conference and has co-authored several international articles
in journals, conferences and workshops which include computer
architecture, microprocessor evaluation, high-performance parallel
computing and embedded systems. He serves as an associate editor on
the International Journal of Embedded Systems (IJES - Inderscience)
and has served in of program committees in conferences, workshops,
and other journals. Mario is a member of IEEE and ACM.

Kuan-Ching Li is currently a Professor in the
Department of Computer Science and Information
Engineering at the Providence University, Taiwan.
He was a department chair in 2009, and the Special
Assistant to the University President since 2010. He
received his Ph.D. in 2001 from The University of
Sao Paulo (USP), Brazil. Dr. Li is recipient of awards from Nvidia and
Ministry of Science and Technology (MOST) Taiwan. He serves/has
served on the chairmanship positions of several conferences and
workshops, and has organized numerous conferences related to high-
performance computing and computational science & engineering. Dr.
Li is the Editor-in-Chief of International Journal of Computational
Science and Engineering (IJCSE), Embedded Systems (IJES) and
High Performance Computing and Networking (IJHPCN), all pub-
lished by Inderscience, also serving a number of journals associate
and guest editorship. His topics of interest include Cloud and GPU
computing and Big Data. Dr. Li is a Fellow of the IET and a senior
member of the IEEE.

