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Abstract—This paper is concerned with the channel estimation
problem in Millimeter wave (mmWave) wireless systems with
large antenna arrays. By exploiting the inherent sparse nature of
the mmWave channel, we first propose a fast channel estimation
(FCE) algorithm based on a novel overlapped beam pattern
design, which can increase the amount of information carried by
each channel measurement and thus reduce the required channel
estimation time compared to the existing non-overlapped designs.
We develop a maximum likelihood (ML) estimator to optimally
extract the path information from the channel measurements.
Then, we propose a novel rate-adaptive channel estimation
(RACE) algorithm, which can dynamically adjust the number
of channel measurements based on the expected probability
of estimation error (PEE). The performance of both proposed
algorithms is analyzed. For the FCE algorithm, an approximate
closed-form expression for the PEE is derived. For the RACE
algorithm, a lower bound for the minimum signal energy-to-noise
ratio required for a given number of channel measurements is
developed based on the Shannon-Hartley theorem. Simulation
results show that the FCE algorithm significantly reduces the
number of channel estimation measurements compared to the
existing algorithms using non-overlapped beam patterns. By
adopting the RACE algorithm, we can achieve up to a 6dB gain
in signal energy-to-noise ratio for the same PEE compared to the
existing algorithms.

I. INTRODUCTION

Millimeter wave (mmWave) communication has been shown
to be a promising technique for next generation wireless sys-
tems due to a large expanse of available spectrum [3]–[6]. This
spectrum, ranging from 30GHz to 300GHz, offers a potential
200 times the bandwidth currently allocated in today’s mobile
systems [7]. However, a critical challenge in exploiting the
mmWave frequency band is its severe signal propagation loss
compared to that over conventional microwave frequencies [5],
[8], [9]. To compensate for such a loss, large antenna arrays
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can be employed to achieve a high power gain. Fortunately,
owing to the small wavelength of mmWave signals, these
arrays can be packed into small areas at the transmitter and
receiver [10], [11]. For such mmWave systems, channel state
information (CSI) is essential for effective communication and
precoder design. However, the use of large antenna arrays
results in a large multiple-input multiple-output (MIMO) chan-
nel matrix. This makes the channel estimation of mmWave
systems very challenging due to the large number of channel
parameters to be estimated. Moreover, owing to the high
frequency, it is often not feasible to obtain digital samples
from each antenna [3]. To resolve this high frequency sampling
problem, analog beamforming techniques have been proposed
and widely adopted in open literature (see [10], [12]–[14] and
references therein). The main idea of analog beamforming is
to control the phase of the signal transmitted or received by
each antenna via a network of analog phase shifters.

Using analog beamforming techniques, the most straightfor-
ward channel estimation method is to exhaustively search in
all possible angular directions. Specifically, consider a system
with N transmit antennas and N receive antennas. If we
aim at achieving a minimum angular resolution of π/N , an
exhaustive search-based channel estimation would then require
a set of N transmit beamforming vectors at the transmitter
designed to span all possible beam directions and likewise with
N receive beamforming vectors at the receiver. By searching
all possible N2 combinations, an N × N matrix can be
formed whose entries represent the channel gains between
the N transmit and the N receive beams. This matrix is
commonly referred to as the virtual channel matrix [15]–[19].
Despite the large number of entries expected for the mmWave
MIMO channel matrix, it has been shown in recent measure-
ments [20], [21] that the mmWave channel exhibits sparse
propagation characteristics in the angular domain. That is,
there are only a few dominant propagation paths in mmWave
channels. This sparsity can be seen in the virtual channel
matrix, as only a limited number of transmit and receive
direction combinations have a non-zero gain [15]. Therefore,
the key objective of mmWave channel estimation is to identify
these paths so that the transceiver can align the transmit and
receive beams along these paths.

Recently, some compressed sensing based channel estima-
tion algorithms have been proposed to explore the channel
sparsity in mmWave systems, e.g., [1], [5], [10], [22]. The
fundamental idea in some of these approaches is to search
multiple transmit/receive directions in each measurement, by
creating initial beam patterns that span a wider angular range

ar
X

iv
:1

60
3.

01
92

6v
3 

 [
cs

.I
T

] 
 1

9 
Se

p 
20

16



2

than those used by the exhaustive search. Similar adaptive
beamforming algorithms and multi-stage codebooks were pro-
posed in [14], [23]–[25]. More recent work [26] has also
shown that such hierarchical codebooks can be achieved with
a single RF chain by exploiting sub-array and deactivation
(turning-off) antenna processing techniques. By initially using
wider beam patterns, multi-stage approaches are able to reduce
the number of measurements required for channel estimation.
However, this introduces a loss of directionality gain, leading
to a lower signal-to-noise ratio (SNR) at the receiver and a
higher probability of estimation error (PEE). In this sense,
there exists a challenging trade-off between estimation time
and accuracy for mmWave channel estimation.

As one of the seminal works on multi-stage codebook
approaches, [5] developed a “divide and conquer” search type
algorithm to estimate sparse mmWave channels. As shown in
Fig. 1, in each stage of this algorithm, the possible ranges
of angles of departure (AODs) and angles of arrival (AOAs)
are both divided into K << N non-overlapped angular sub-
ranges. Correspondingly, K non-overlapped beam patterns
are designed at both the transmitter and receiver such that
each transmit (receive) beam pattern exactly covers one AOD
(AOA) sub-range. The channel estimation carried out in each
stage consists of K2 time slots. In each time slot, the pilot
signal is transmitted using one of the K beam patterns at the
transmitter, and then collected by one of the K beam patterns
at the receiver. The corresponding channel output for each
pair of transmit-receive beam patterns can then be obtained.
These K2 time slots span all the combinations of transmit-
receive beam patterns. By comparing the magnitudes of the
corresponding K2 channel outputs, the transmit/receive sub-
ranges that the AOD/AOA most likely belong to are deter-
mined. The receiver can then feed back the AOD information
for use at the transmitter. Afterwards, the algorithm will limit
the estimation to the angular sub-range identified at each
link end in the previous stage and further divide it into K
sub-ranges for the channel estimation in the next stage. An
example of multi-stage angular refinement, using our proposed
approach, can be seen in Fig. 3. This process continues until
the smallest beam width resolution is reached. It is shown in
[5] that the algorithm requires estimation time proportional to
K2dlogK(N)e per path. Despite the significant improvement
when compared to the exhaustive search approach, such a
channel estimation algorithm still might not be quick enough
to track the fast channel variations, especially for mmWave
mobile channels with rapidly changing parameters. Further-
more, at high SNR it may not be necessary to perform so many
measurements, which would result in an unnecessary time
delay. Adaptive training approaches are also investigated in
[27]–[30]. While these approaches are shown to significantly
improve system performance as the number of measurement
iterations is increased, there is generally no adaptation of
the number of measurements with respect to the associated
probability of success or channel conditions.

Motivated by this, in this paper we develop a fast mmWave
MIMO channel estimation framework by designing a set of
novel overlapped beam patterns that can significantly reduce
the number of channel estimation measurements. In order

Fig. 1. Illustration of the beam patterns adopted in the first (a) and second
(b) stages of the channel estimation algorithm of [5] when K = 3. The
three sub-ranges in the first stage are, [0, π/3), [π/3, 2π/3) and [2π/3, π),
respectively. By assuming that the possible AOAs/AODs are reduced to the
sub-range [0, π/3) in the first stage, this sub-range is further divided into
[0, π/9), [π/9, 2π/9) and [2π/9, π/3), respectively, in the second stage.

to improve estimation accuracy, we then introduce a novel
rate-adaptive channel estimation approach, where the average
number of channel measurements is adapted to channel con-
ditions. The main contributions of this paper are summarized
as follows:

• Relying on novel overlapped beam pattern design, we
first present a fast channel estimation (FCE) algorithm
for mmWave systems. In this algorithm, we develop a
maximum likelihood (ML) detector to optimally extract
the channel AOD/AOA information from the measure-
ments. We also design a linear minimum mean squared
error (LMMSE) channel estimator to estimate the channel
coefficients by optimally combining the selected measure-
ments in all stages.

• We then develop a rate-adaptive channel estimation
(RACE) algorithm, in which additional measurements are
permitted when the current measurements are found to
have an inadequate probability of success. In this way,
the number of measurements can adapt to the channel
conditions and the channel estimation accuracy can be
significantly improved with minimal measurements.

• We analyze the probability of channel estimation error
for the FCE algorithm. In particular, we derive a closed-
form approximation, lower bound and upper bound for
the PEE. Based on the Shannon-Hartley theorem, we
also provide some theoretical analysis for the minimum
energy required to estimate the channel using the RACE
algorithm.

• Finally, we compare the performance of the proposed
algorithms to that of the algorithm in [5] with non-
overlapped beam patterns. Simulation results show that
both of the proposed algorithms can significantly reduce
the number of channel measurements compared to [5].
We show that the FCE algorithm achieves a guaranteed
reduction of channel measurements, at the expense of
estimation accuracy. On the other hand, the RACE algo-
rithm can achieve the same average reduction of channel
measurements as the FCE algorithm, but using up to 6dB
less signal energy compared to the algorithm in [5].
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Notation : A is a matrix, a is a vector, a is a scalar, and A
is a set. ||A||2 is the 2-norm of A, det(A) is the determinant
of A and |A| represents the cardinality of A. AT , AH and
A∗ are the transpose, conjugate transpose and conjugate of
A, respectively. For a square matrix A, A−1 represents its
inverse. We use diag(a) to denote a diagonal matrix with
entries of a on its diagonal. IN is the N ×N identity matrix,
1N is an N×1 all 1 column vector and d·e denotes the ceiling
function. CN (m,R) is a complex Gaussian random vector
with mean m and covariance matrix R. E[a] and Cov[a]
denote the expected value and covariance of a, respectively.
A ⊗B denotes the Kronecker product of A and B whereas
A�B denotes the row-wise Kronecker product of A and B.

II. SYSTEM MODEL

Consider a mmWave MIMO system composed of Nt trans-
mit antennas and Nr receive antennas. We consider that
both the transmitter and receiver are equipped with a limited
number of radio frequency (RF) chains. Following [5], we
further assume that these RF chains, at one end, can only be
combined to form a single beam pattern, indicating that only
one pilot signal can be transmitted and received at one time.
In this paper, for simplicity, we consider the unconstrained
beamforming vectors by ignoring some practical constraints
imposed by hardware such as constant amplitude and quan-
tized phase shifters. However, in practice, our unconstrained
beamforming vectors could be realized by using a network
of constrained beamformers with quantized phase shifters
and constant amplitude as the hybrid-beamforming approach
adopted in [5] and depicted by Figure 2 therein. To estimate
the channel matrix, the transmitter sends a pilot signal x, with
unit energy (||x||2 = 1), to the receiver. Denote by f and w
(||f ||2 = ||w||2 = 1), respectively, the Nt × 1 beamforming
vector at the transmitter and Nr×1 beamforming vector at the
receiver. The corresponding channel output can be represented
as

y =
√
PwHHfx+ wHq, (1)

where H denotes the Nr × Nt MIMO channel matrix, P
is the transmit power and q is an Nr × 1 complex additive
white Gaussian noise (AWGN) vector following distribution
CN (0, N0INr

).
In this paper we follow [31] and adopt a two-dimensional

(2D) sparse geometric-based channel model. Specifically, we
consider an L-path channel between the transceiver, with
the lth path having steering AOD, φtl , and AOA, φrl where
l = 1, ..., L. Then the corresponding channel matrix can be
expressed in terms of the physical propagation path parameters
as

H =
√
NtNr

L∑
l=1

αlar(φ
r
l )a

H
t (φtl) (2)

where αl is the fading coefficient of the lth propagation path,
and at(φ

t
l) and ar(φ

r
l ) respectively denote the transmit and

receive spatial signatures of the lth path. To simplify the
analysis, we assume that the transmitter and receiver have the
same number of antennas (i.e., Nt = Nr = N ). However, it is
worth pointing out that the developed schemes can be easily

extended to a general asymmetric system. If uniform linear
antenna arrays (ULA) are employed at both the transmitter and
receiver, we can define at(φ

t
l) = u(φtl) and ar(φ

r
l ) = u(φrl ),

respectively, where

u(ε) ,
1√
N

[1, ej2πε, · · · , ej2π(N−1)ε]T . (3)

Here, the steering angle, φtl , is related to the physical angle
θtl ∈ [0, π) by φtl =

d sin(θtl )
λ with λ denoting the signal

wavelength1. A similar expression can be written for φrl at the
receiver. With half-wavelength spacing, the distance between
antenna elements becomes d = λ/2.

From (2), we can see that the overall channel state informa-
tion of each path includes only three parameters, i.e., the AOD
φrl , the AOA φrl , and the fading coefficient αl. We assume
that the fading coefficient of each path follows a complex
Gaussian distribution with zero mean and variance PR and
that both φtl and φrl can only take some discrete values from
the set UN = {0, πN , · · · ,

π(N−1)
N }. Here, for the sake of

ensuing mathematical problem formulation, we only consider
the discrete AOA and AOD. It is noteworthy that they can
be continuous in practice. However, the extension to the case
with continuous AOD/AOA may require the consideration of
other more practical issues such as the number of RF chains
to realize the beam patterns and the hardware constraints (e.g.,
quantized phase shifters) imposed on the RF beamforming
vectors, which may constitute a new paper. We thus have left
this extension as our future work.

We aim to find an efficient way to estimate the three
parameters for each path. The key challenge here is how to
design a sequence of f ′s and w′s in such a way that the
channel parameters can be quickly and accurately estimated.
We consider M pairs of beam patterns that are designed to
span all possible transmit-receive combinations. Denote by fm
and wm, respectively, the transmit and receive beamforming
vectors adopted in the mth channel measurement time slot
such that ||fm||2 = ||wm||2 = 1, ∀ m = 1, · · · ,M . Similarly
to [5], we assume the same pilot symbol x is transmitted
during the M time slots. Then, after M time slots, we can
obtain a sequence of M measurements represented as

y =
√
Pxhv + n, (4)

where hv describes the channel input-output relationship for a
given set of transmit and receive beamforming vectors defined
by

hv =


wH

1 Hf1

wH
2 Hf2

...
wH
MHfM

 (5)

1Note that the use of ULA results in no distinguishable difference between
AODs θtl and −θtl or between AOAs θrl and −θrl . Hence, only AODs and
AOAs in the range [0, π) need to be considered.
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and

n =


wH

1 q1

wH
2 q2
...

wH
MqM

 (6)

is an M × 1 vector of the corresponding noise terms. Note
that since ||wm||2 = 1, ∀ m, the vector n follows the same
distribution as that of qm, i.e., n ∼ CN (0, N0IM ).

Motivated by the geometric sparsity of the mmWave chan-
nel, in the following two sections, we propose to use a set
of overlapped beam patterns that are able to estimate the
AOD/AOA information very quickly. We then extend the algo-
rithm to use a rate-adaptive estimation approach. The adaptive
nature of the algorithm permits additional measurements to be
performed under poor channel conditions. This allows the fast
channel estimation to be carried out with significant accuracy
and energy efficiency.

III. FAST CHANNEL ESTIMATION WITH OVERLAPPED
BEAM PATTERNS

In this section, we develop a fast channel estimation frame-
work for mmWave systems using overlapped beam patterns,
as illustrated in Fig. 3. Specifically, we design a set of
beam patterns that are adopted in different measurement time
intervals and are overlapped with one another in the angular
domain. A maximum likelihood based estimation algorithm
is then proposed to accurately retrieve the channel state
information from the set of measurements. The proposed
channel estimation algorithm also works in a similar multi-
stage manner as that in [5] where each stage reduces the
possible sub-ranges in which the AOD/AOA are expected to
be found.

A. An Example of Overlapped Beam Pattern Design

We will first explain the design principle of overlapped
beam patterns using a simple example. Following Fig. 1, we
divide the AOD/AOA angular spaces into K = 3 sub-ranges
in the first stage, denoted by S1 = {ε ∈ UN |0 ≤ ε < π/3},
S2 = {ε ∈ UN |π/3 ≤ ε < 2π/3} and S3 = {ε ∈ UN |2π/3 ≤
ε < π}, respectively. However, instead of using 3 beam
patterns to cover them at each transceiver end as in Fig. 1(a),
we propose to use only 2 overlapped beam patterns to achieve
this. Fig. 2(a) illustrates our designed beam patterns in the
first stage. We can see that the first and second beam patterns
cover S1, S2 and S2, S3, respectively, and are overlapped in
the whole range of S2. Intuitively, if a path is observed in
two measurements using adjacent beam patterns, the AOD or
AOA must belong to the overlapped sub-range of these two
beam patterns. It is also seen that each beam pattern can have
different amplitudes in different sub-ranges. We represent the
amplitudes of each beam pattern in different sub-ranges by a
vector. For beam pattern 1 and 2 in Fig. 2(a), these vectors
are respectively defined as

b1 =
[
b1,1, b1,2, b1,3

]
, b2 =

[
b2,1, b2,2, b2,3

]
(7)

Fig. 2. Illustration of the overlapped beam patterns adopted in the first (a)
and second (b) stages of the proposed algorithm when K = 3. By assuming
that the possible AOAs/AODs are reduced to the sub-range [0, π/3) in the
first stage, this sub-range is further divided into [0, π/9), [π/9, 2π/9) and
[2π/9, π/3), respectively, in the second stage.

where bi corresponds to the ith beam pattern with bi,k de-
noting the amplitude of the ith beam pattern in sub-range
Sk, ∀ k = 1, ...,K. By using M = 4 measurement time
slots, we can then span all beam pattern combinations between
the transceiver. We denote the sequential set of beam patterns
respectively adopted at the transmitter and receiver by

B
(M)
T =


b1

b1

b2

b2

 =


b1,1, b1,2, b1,3
b1,1, b1,2, b1,3
b2,1, b2,2, b2,3
b2,1, b2,2, b2,3

 , (8)

B
(M)
R =


b1

b2

b1

b2

 =


b1,1, b1,2, b1,3
b2,1, b2,2, b2,3
b1,1, b1,2, b1,3
b2,1, b2,2, b2,3

 . (9)

We refer to these as the beam pattern design matrices, with
their mth row denoting the beam pattern adopted in the mth
measurement time slot, where m = 1, ...,M . The efficient
design of these beam patterns can lead to many solutions.
However, one desirable property is that the same quantity of
signal energy is transmitted/received via each sub-range over
all measurements, i.e., the energy of each column of (8)-(9)
should have the same Euclidean norm. This provides the same
accuracy for each possible sub-range combination. Another
desirable property is that the transmit/receive beamforming
gains of all measurement patterns are equal, i.e., the energy
of each rows of (8)-(9) should be the same.

One possible way to make the beam pattern sub-range
amplitudes in (7) follow the aforementioned properties, is to
normalize B

(M)
T and B

(M)
R to have unit energy in each row

and have equal energy in each column. For the beam patterns
in Fig. 2, we have b1,3 = b2,1 = 0, as beam patterns 1 and 2
do not cover, respectively, the third and first sub-ranges. Due
to the symmetry between the two beam patterns, we further
have b1,1 = b2,3 = β1 and b1,2 = b2,2 = β2. This leads to
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β1 = 1√
3

and β2 =
√

2√
3

, and the matrices in (8)-(9) become

B
(M)
T =


√

2√
3

1√
3

0
√

2√
3

1√
3

0

0 1√
3

√
2√
3

0 1√
3

√
2√
3

 , B(M)
R =


√

2√
3

1√
3

0

0 1√
3

√
2√
3√

2√
3

1√
3

0

0 1√
3

√
2√
3

 .
(10)

In order to observe the resultant amplitude gains (i.e., the
transceiver gain) over each of the K2 = 9 sub-range combina-
tions, we introduce another matrix referred to as the generator
matrix. We define this as the row-wise Kronecker product
between the transmit beam pattern design matrix and the
receive beam pattern design matrix such that

G(M) = B
(M)
T � B

(M)
R =


b1 ⊗ b1

b1 ⊗ b2

b2 ⊗ b1

b2 ⊗ b2

 (11)

=
1

3


2
√

2 0
√

2 1 0 0 0 0

0
√

2 2 0 1
√

2 0 0 0

0 0 0
√

2 1 0 2
√

2 0

0 0 0 0 1
√

2 0
√

2 2

 ,
(12)

recalling that � and ⊗ represent the row-wise Kronecker
and Kronecker product operations, respectively. By denoting
b
(m,kt)
T and b(m,k

r)
R as the entry on the ktth and krth column

on the mth row in B
(M)
T and B

(M)
R , respectively, we can

express the dth column of G(M) as

G
(M)
d =


b
(1,kt)
T b

(1,kr)
R

...
b
(M,kt)
T b

(M,kr)
R

 (13)

where the relationship d = K(kt − 1) + kr is a result of the
Kronecker product operation.

The columns of generator matrix describe the M = 4 re-
ceived measurement gains over each of the K2 = 9 sub-range
combinations. For example, if a path were present between the
transmit sub-range kt = 3 and the receive sub-range kr = 1,
the measurement vector y would be expected to be a scalar
multiple of column d = 7 of G(M), expressed as G

(M)
7 . It is

important to note that the sets of beam patterns used in this
paper are not unique. We later show that their performance,
in terms of PEE, depends only on the Euclidean distance
between each column of G(M), which directly determines
the probability that one column corresponding to a certain
sub-range is to be mistaken for another. In the example set
shown in (12), each column has the same equal minimum
Euclidean distance when compared with all other columns,
although some have more spatial neighbours at this minimum
distance than others.

B. Beamforming Vector Design

To generate the beam patterns illustrated in Fig. 2(a) and
described in (10), the transmit and receive beamforming
vectors should be designed as follows. Denote by fm and
wm, respectively, the transmit beamforming vector and receive
beamforming vector corresponding to the mth pair of beam
patterns in B

(M)
T and B

(M)
R . We then design the product of

the transmit array response and transmit beamforming vector
to have

uH(ε)fm = Cb
(m,k)
T , if ∃ k ∈ {1, 2, ...,K}, ε ∈ Sk, (14)

and the product of the receiver array response and receive
beamforming vector to have

uH(ε)wm = Cb
(m,k)
R , if ∃ k ∈ {1, 2, ...,K}, ε ∈ Sk, (15)

where u(ε) has been defined in (3) and C is a scalar constant
that ensures ||fm||2 = ||wm||2 = 1. Physically, C corre-
sponds to the average directivity gain of each beam pattern and
is the same for all m = 1, · · · ,M due to the normalization
of the rows in (10). Eqs. (14) and (15) can be expressed in a
matrix form as

UHfm =


Cb

(m,1)
T 1|S1|

...
Cb

(m,K)
T 1|SK |

 , z
(m)
T (16)

and

UHwm =


Cb

(m,1)
R 1|S1|

...
Cb

(m,K)
R 1|SK |

 , z
(m)
R (17)

where |S| denotes the cardinality of set S and U =[
u(0),u

(
π
N

)
, · · · ,u

(
π(N−1)

N

)]
is a matrix whose columns

describe the antenna array response at each angle. Therefore
fm and wm can be designed as

fm = (UUH)−1Uz
(m)
T (18)

and

wm = (UUH)−1Uz
(m)
R (19)

where (UUH)−1U is the pseudo inverse of U .

C. Channel Measurements

We now perform channel estimation in the first stage using
the previously designed transmit and receive beamforming
vectors {fm} and {wm}. In each time slot, the beamforming
vectors fm and wm are adopted to transmit/receive the pilot
signal x. If we substitute the channel in (2) into (5), we get

h(M)
v = xN

L∑
l=1

αl

 (aHr (φrl )w1)HaHt (φtl)f1
...

(aHr (φrl )wM )HaHt (φtl)fM

 . (20)

Without loss of generality, let us consider the case with
AOD, φtl ∈ Sktl and AOA, φrl ∈ Skrl , where ktl and krl are
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Fig. 3. Illustration of multi-stage channel estimation using the example overlapped beam patterns. Here we use an arrow to represent the propagation path to
be estimated. As can be seen, in the first stage, it is expected that a signal will only be received in the first and second measurements (due to the propagation
path angle). As the transmit beam patterns used are predetermined and thus known to the receiver, it can be logically deduced that the AOD at the transmitter
can only belong to the 1st sub-range and that the AOA at the receiver should belong to the 2nd sub-range. It is noteworthy that this series of measurements
(i.e., [3,3,7,7]) corresponds to the 2nd column of the generator matrix in (12). The receiver then feeds back the AOD sub-range to the transmitter for
the channel estimation in next stage. Both the transceiver and receiver then divide their estimated sub-range into narrower sub-ranges and carry out further
overlapped sub-range measurements. As can be seen, in the second stage, it is expected that a signal will only be received in the final measurement. Logically,
this means that the AOD at the transmitter is within the 3rd sub-range and the AOA at the receiver is on the 3rd sub-range. This series of measurements (i.e.,
[7, 7, 7, 3]) also corresponds to the 9th column of the generator matrix in (12).

respectively, the transmit and receive sub-range indices of the
lth propagation path. By recalling (14)-(15) we write

uH(φtl)fm = Cb
(m,ktl )
T and uH(φrl )wm = Cb

(m,krl )
R (21)

which leads to

h(M)
v = xNC2

L∑
l=1

αl


b
(1,ktl )
T b

(1,krl )
R

...

b
(M,ktl )
T b

(M,krl )
R

 . (22)

We can see from (13) that the vector term in (22) is the
weighted sum of the columns of G(M) i.e., the weighted sum
of columns dl = K(ktl − 1) + krl , ∀ l = 1, ..., L, in G(M).
Therefore we can express hv by the generator matrix as

h(M)
v = xNC2G(M)vT (23)

where v is a 1 × K2 sparse row vector that describes the
channel gain at each of the K2 sub-range combinations by

vdl = αl, ∀ l = 1, ..., L (24)

and zero otherwise. For example with K = 3, a single path
(i.e., L = 1) with coefficient α1, exists on the first transmit
sub-range (i.e., kt1 = 1) and second receive sub-range (i.e.,
kr1 = 2) leads to d1 = K(kt1 − 1) + kr1 = 2 and

v = {0, α1, 0, 0, 0, 0, 0, 0, 0}. (25)

Finally by using (23), we can re-write the received channel
output vector defined in (1), after M measurements, as

y(M) =
√
PNC2xG(M)vT + n(M). (26)

D. Maximum Likelihood Detection of AOD/AOA Information

We now require an efficient means of detecting v given that
a generator matrix G(M) has been used to obtain the channel
outputs in (26). Due to its optimal detection properties, this
subsection elaborates how to implement a maximum likelihood
detection [32] method to extract the AOD/AOA information
from the received measurements. We begin by considering the
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distribution of y(M). From (26), this can be expressed as

y(M) ∼ CN (
√
PN2C4x E[G(M)vT ] + E[n(M)], (27)

PN2C4||x||2 Cov[G(M)vT ] + Cov[n(M)]).
(28)

Recall that n(M) ∼ CN (0, N0IM ), where IM is the M ×M
identity matrix. Also recall that the pilot signal x has unit
energy, i.e., ||x||2 = 1. For the signal component, as each
of the path coefficients αl have zero mean we can write
E[G(M)vT ] = 0 and

Cov[G(M)vT ] = E[G(M)vT (G(M)vT )H ] (29)

= N2C4G(M)E[vTv](G(M))H . (30)

By defining a binary version of v, denoted by v̄, with elements
defined by

v̄d =

{
1, if ||vd||2 > 0, ∀ d = 1, ...,K2 ;

0, otherwise
(31)

we can separate the AOD/AOA information in v̄ from each
of the path coefficient variances, PR. As each path coefficient
has variance E[αlα

∗
l ] = PR, ∀ l, this then gives E[vTv] =

PRv̄
T v̄. We can then re-write the distribution of y(M) as

y(M) ∼ CN (0,Σv) (32)

where

Σv = PN2C4PR G(M)v̄T v̄(G(M))H +N0IM . (33)

It can now be seen that y(M) follows a zero mean, circularly
symmetric complex Gaussian (CSCG) distribution with corre-
sponding probability density function (PDF) defined as [33]

f(y(M)|v̄,G(M)) =
1

πMdet(Σv)
exp(−(y(M))HΣ−1

v y(M)).

(34)

Now let us find the conditional probability of v̄, given the
receive measurement vector y(M) and knowledge of G(M),
denoted by p(v̄|y(M),G(M)). Define V as the set of all
possible binary channel realizations such that v̄ ∈ V . We also
define |V| to represent the cardinality of this set. Following
the principle of maximum likelihood detection and based on
Bayes rule [34], we can express the probability of v̄ for all
possible v̄ ∈ V as

p(v̄|y(M),G(M)) =
f(y(M)|v̄,G(M))p(v̄)

p(y(M)|G(M))
(35)

where the term

p(y(M)|G(M)) =
∑
v̄∈V

f(y(M)|v̄,G(M))p(v̄) (36)

is independent of a particular channel realization. We assume
that each channel realization is equiprobable, therefore

p(v̄) =
1

|V|
, ∀ v̄ ∈ V. (37)

We then denote the probability that the dth element of v̄ has
a path by p(v̄d = 1), ∀ d = 1, ...,K2. We can express this

probability as the sum of all p(v̄|y(M),G(M)) in (35) in which
v̄d = 1 by

p(v̄d = 1|y(M),G(M)) =
∑

v̄ ∈ V
v̄d = 1

p(v̄|y(M),G(M)). (38)

Following the maximum likelihood approach we then find the
most likely sub-range combination by

d̂ = argmax
d

[p(v̄d = 1|y(M),G(M))]. (39)

Finally by finding the most likely transmitter and receiver
subranges through

k̂t =
⌈ d̂
K

⌉
, k̂r = d̂−K(k̂t − 1) (40)

we can reduce the ranges of possible AOD and AOA to,
respectively, the k̂tth transmit and k̂rth receive angular sub-
ranges. Each of these two sub-ranges will be further divided
into another K sub-ranges for the channel estimation in the
next stage.

E. Multi-stage Generalization

In general the proposed channel estimation algorithm works
in a similar multi-stage manner as that in [5], requiring
S = dlogKNe stages. We show a high level overview of
this process in Fig. 3. In the sth stage, we initially divide
the possible AOA angular space into K non-overlapped sub-
ranges S(s)

r,1 ,S
(s)
r,2 , . . . ,S

(s)
r,K and divide the possible AOD angu-

lar space into S(s)
t,1 ,S

(s)
t,2 , · · · ,S

(s)
t,K . Then only M overlapped

beam pattern pairs will be designed at the transmitter and
receiver to cover these K sub-ranges. The designed M beam
patterns are characterized by the M ×K beam pattern design
matrices B

(s,M)
T and B

(s,M)
R . These should be generated

to maximize the minimum Euclidean distance between the
columns of the corresponding generator matrix G(s,M).

Given B
(s,M)
T and B

(s,M)
R , we can then generate both

the transmit beamforming vectors {f (s)
m } and receive beam-

forming vectors {w(s)
m } respectively in the same way as in

(18)-(19). For example, to generate f (s)
m , the corresponding

vector z(m)
T in (16), which is redefined as z(s,m)

T for rigorous-
ness, should be designed such that its ith entry, denoted by
[z

(s,m)
T ]i, ∀ i = 1, ..., N , satisfies

[z
(s,m)
T ]i=

{
Csb

(m,kt)
T , if πi

N ∈ S
(s)
t,kt

, ∃ kt ∈ {1, · · · ,K};
0, if πi

N /∈ S(s)
t,kt

, ∀ kt ∈ {1, · · · ,K}
(41)

where Cs is a scalar constant for the sth stage to guarantee
that f (s)

m satisfies ||f (s)
m ||2 = 1. Physically, [z

(s,m)
T ]i describes

the desired beam pattern amplitude at angle πi
N when f (s)

m is
used. Each receive beamforming vector w(s)

m can be designed
in the same way.

The channel output on the sth estimation stage can then be
obtained after M time slots by

y(s,M) =
√
Psxh

(s,M)
v + n(s,M) (42)
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Algorithm 1: Fast channel estimation (FCE) algorithm for
mmWave channels using overlapped beam patterns
Input : Transmitter and receiver both know, N , K
and have B

(s,M)
T , B(s,M)

R .
Initialization : Set initial sub-ranges,
S(1)
t,k ,S

(1)
r,k , ∀ k = 1, · · · ,K

for s ≤ S do
// Calculate:
{f (s)

m } based on S(s)
t,k , ∀ k = 1, · · · ,K and B

(s,M)
T

{w(s)
m } based on S(s)

r,k , ∀ k = 1, · · · ,K and B
(s,M)
R

for m = 1 to M do
Transmitter transmits using f (s)

m

Receiver measures using w
(s)
m

end
// After M measurements:
y(s,M) =

√
Pxh(s,M)

v + n(s,M)

d̂(s) = argmax
d

[p(v̄d = 1|y(s,M),G(s,M))]

k̂
(s)
t =

⌈
d̂(s)

K

⌉
, k̂

(s)
r = d̂(s) −K(k̂

(s)
t − 1)

// Refine sub-ranges based on k̂(s)
t and k̂(s)

r

S(s+1)
t,k ,S(s+1)

r,k , ∀ k = 1, · · · ,K.
end
Output :

φ̂t = π
N

S∑
s=1

(k̂
(s)
t − 1)KS−s, φ̂r = π

N

S∑
s=1

(k̂
(s)
r − 1)KS−s

α̂ = PRr̂
H(r̂PRr̂

H +N0I |r̂|)
−1r

where

h(s,M)
v =


(w

(s)
1 )HHf

(s)
1

(w
(s)
2 )HHf

(s)
2

...
(w

(s)
M )HHf

(s)
M

 (43)

and Ps denotes the transmit power of the pilot signal in the
sth stage. Similar to that in [5], we prefer that all the stages
have an equal probability of failure, indicating that we should
allocate power among stages inversely proportional to the
beamforming gains of these beam patterns, i.e.,

Ps =
PT
C4
s

, ∀ s = 1, 2, · · · , S (44)

where PT is a constant. Similar to (39) we then find the most
likely sub-range combination of the sth stage by

d̂(s) = argmax
d

[p(v̄d = 1|y(s,M),G(s,M))] (45)

with the corresponding most likely transmitter and receiver
sub-ranges given by

k̂
(s)
t =

⌈ d̂(s)

K

⌉
, k̂(s)

r = d̂(s) −K(k̂
(s)
t − 1). (46)

The selected sub-ranges, S(s)

t,k̂
(s)
t

and S(s)

r,k̂
(s)
r

are then used for
the channel estimation in the next stage. This process continues
until the minimum angle resolution π

N is reached requiring

S = dlogK(N)e stages. It is worth pointing out that although
the proposed algorithms are elaborated based on the estimation
process of a single path, their implementation in multi-path
scenario is actually feasible by following the same procedure
as in [5, Algorithm 2]. More specifically, multiple paths are
estimated sequentially, with the first path being estimated using
the multi-stage algorithms described above. Subsequent paths
can then be found by returning to the first stage and repeating
the estimation. Moreover, in each stage’s measurements, the
expected contributions from all previously estimated paths can
be subtracted to reveal new paths.

F. Estimation of the Fading Coefficient

Once all estimation stages described in the previous sub-
section have been performed, we estimate the identified path
fading coefficient α. In [5], the value of α was estimated based
on the measurement of the final stage only. To improve the
estimation accuracy, we estimate α by using all measurements
in all stages of the algorithm. Denote by r and r̂, respectively,
the vector of all received measurements and the vector of their
estimates such that

r =

 y(1,M)

...
y(S,M)

 , r̂ =


x
√
P1NC

2
1G

(1,M)

d̂(1)

...
x
√
PSNC

2
SG

(S,M)

d̂(S)

 (47)

where G
(s,M)
i denotes the ith column of G(s,M). Provided

that the AOD/AOA estimation is correct in each stage, we can
write

r = r̂α+ w (48)

where w is the SM × 1 vector of corresponding noise terms.
In the case where the AOD/AOA estimation is incorrect, the
estimation of the fading coefficient is not important as there
will be a beam misalignment between the transmitter and
receiver. Following the LMMSE principle [35], we can then
estimate the fading coefficient α as

α̂ = PRr̂
H(r̂PRr̂

H +N0I |r̂|)
−1r (49)

where I |r̂| is an |r̂|×|r̂| identity matrix. Now we can formally
describe the proposed fast channel estimation algorithm using
overlapped beam patterns in Algorithm 1.
Remark 1. It can be seen that, compared with the channel

estimation algorithm in [5] with the same value of K, our
proposed algorithm also requires S = dlogKNe stages, but
the number of measurement time slots required in each stage
reduces to M , instead of K2. In general, this yields a K2

M
reduction in measurement time slots. For the example of K =
3 discussed earlier with M = 4, a K2

M2 = 225% increase in
estimation rate can be achieved.

IV. RATE ADAPTIVE CHANNEL ESTIMATION ALGORITHM

The proposed channel estimation scheme explained in the
previous section uses a fixed G(s,M) where the detector is
forced to make a decision after M measurements, irrespective
of what the computed probability p(v̄d̂(s) = 1|y(s,M),G(s,M))
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may be. Leveraging the detection method developed in the pre-
vious section, we now propose a novel rate-adaptive channel
estimation (RACE) algorithm.

We first introduce a target maximum probability of estima-
tion error (PEE), denoted by Γ. The basic principle of the
RACE algorithm is that after the M initial measurements
are completed in any given stage, if the most likely sub-
range combination probability does not satisfy p(v̄d̂(s) =

1|y(s,M),G(s,M)) > (1 − Γ), then additional measurements
will be performed. To this end, the receiver will feedback
the current most likely transmit sub-range, k̂(s)

t , and also
the information indicating whether more measurements are
required or not.

Note that the non-overlapped algorithm proposed in [5] also
feeds back a sub-range number to the transmitter, however
we include an additional bit corresponding to whether more
measurements in this stage are required or not. This feedback
only requires dlog2(K) + 1e bits, which will be shown to be
negligible at high signal-to-noise ratio (SNR) as the average
number of additional measurements required is close to zero.

If the specified probability threshold was not met after
the M th measurement, instead of further dividing sub-ranges
corresponding to k̂(s)

t and k̂(s)
r at the transmitter and receiver,

additional measurement will be further applied to the current
stage. Since the most likely sub-range combination has been
determined based on the previous M overlapped measure-
ments, there is no motivation to measure on multiple sub-range
combinations in the new measurement. In other words, the best
strategy of the system for the subsequent measurement is to
measure the most likely sub-range combination only. It is also
important to note, however, that the beam pattern combination
used in the new measurement will still be overlapped with
previous measurements already taken on this most likely sub-
range combination. The beamforming vectors associated with
the new measurement are designed to correspond to a newly
added row to each of B(s,M)

T and B
(s,M)
R yielding B

(s,M+1)
T

and B
(s,M+1)
R , respectively. We define

−→
b Ki as a 1×K sparse

binary row vector with a single 1 in its ith entry and 0

otherwise such that
−→
b Ki = [0i−1, 1,0K−i] where 0i is a 1× i

all zeros row vector. The updated beam pattern design matrices
B

(s,M+1)
T and B

(s,M+1)
R can then be expressed as

B
(s,M+1)
T =

[
B

(s,M)
T−→
b K
k̂
(s)
t

]
, B

(s,M+1)
R =

[
B

(s,M)
R−→
b K
k̂
(s)
r

]
. (50)

The (M + 1)th transmit and receive beamforming vectors can
then be calculated from the new row in these matrices and be
used to measure the channel, obtaining y(s,M+1). The updated
generator matrix corresponding to (50) can be described by

G(s,M+1) = B
(s,M+1)
T �B

(s,M+1)
T =

[
G(s,M)

−→
b K

2

d̂(s)

]
. (51)

The estimation parameters can then be updated based on
the updated G(s,M+1) and y(s,M+1) and the ML detector
developed in the previous section. We can generalize this
to G(s,M+R) where R = 0, 1, ... indexes the additional
measurements.

Algorithm 2: Rate-adaptive channel estimation (RACE)
algorithm for mmWave channels
Input : Transmitter and receiver both know, N , K
and have B

(s,M)
T , B(s,M)

R .
Initialization : Set initial sub-ranges,
S(1)
t,k ,S

(1)
r,k , ∀ k = 1, · · · ,K

for s ≤ S do
// Calculate:
{f (s)

m } based on S(s)
t,k , ∀ k = 1, · · · ,K and B

(s,M)
T

{w(s)
m } based on S(s)

r,k , ∀ k = 1, · · · ,K and B
(s,M)
R

for m = 1 to M do
Transmitter transmits using f (s)

m

Receiver measures using w
(s)
m

end
// After M measurements:
y(s,M) =

√
Pxh(s,M)

v + n(s,M)

d̂(s) = argmax
d

[p(v̄d = 1|y(s,M),G(s,M))]

k̂
(s)
t =

⌈
d̂(s)

K

⌉
, k̂

(s)
r = d̂(s) −K(k̂

(s)
t − 1)

// Carry out additional measurements if required:
R = 0
while p(v̄d̂(s) = 1|y(s,M+R),G(s,M+R)) < (1− Γ)
and (M +R < Mmax) do
R = R+ 1 // Increment re-measurement index
Transmitter transmits with:
f

(s)
M+R based on S(s)

t,k , ∀ k and
−→
b K
k̂
(s)
t

Receiver measures with:
w

(s)
M+R based on S(s)

r,k , ∀ k and
−→
b K
k̂
(s)
r

Update:

d̂(s) = argmax
d

[p(v̄d = 1|y(s,M+R),G(s,M+R))]

k̂
(s)
t =

⌈
d̂(s)

K

⌉
, k̂

(s)
r = d̂(s) −K(k̂

(s)
t − 1)

end

// Refine sub-ranges based on k̂(s)
t and k̂(s)

r

S(s+1)
t,k ,S(s+1)

r,k , ∀ k = 1, · · · ,K.
end
Output :

φ̂t = π
N

S∑
s=1

(k̂
(s)
t − 1)KS−s, φ̂r = π

N

S∑
s=1

(k̂
(s)
r − 1)KS−s

α̂ = PRr̂
H(r̂PRr̂

H +N0I |r̂|)
−1r

The proposed RACE algorithm is formally described in
Algorithm 2. As can be seen from the algorithm description,
this process then repeats until either the threshold condition
has been met (i.e., p(v̄d̂ = 1|y(s,M),G(s,M)) > (1 − Γ)) or
a maximum number of measurements, denoted by Mmax, has
been reached (i.e., M + R = Mmax). Under fading channel
conditions, there always exists a non-zero probability of an
‘outage’ occurring when the path coefficient is close to zero.
By imposing the upper limit to the number of measurements
we reduce the time and energy expended in this case. As
the RACE algorithm is able to compute the probability of
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successful estimation during the estimation process, it can
minimize the number of measurements required for successful
estimation and therefore reduce the associated energy.

V. PERFORMANCE ANALYSIS

In this section, we focus on the performance analysis of the
proposed algorithms when a single path is present between the
transmitter and receiver. Specifically, we derive two analytical
expressions. The first is an expression for the PEE (i.e., an
incorrect estimation of the AOA or AOD), whereas the second
expression is for the minimum energy-to-noise ratio required
by the RACE algorithm for a specified average number of
measurement, M +R.

A. Probability of AOD/AOA Estimation Error

As the RACE algorithm seeks to achieve a fixed error rate
by means of an adaptive G(s,M+R), we first need to find the
PEE for a fixed generator matrix, G(s,M+R), ∀ s = 1, ..., S.
Note that this is also the case in Algorithm 1 with a fixed
generator matrix, G(s,M), ∀ s = 1, ..., S. We begin by
defining the PEE in a given stage s, assuming all previous
stages have been correct, as

pEE|G(s,M+R),v̄(s) = p(v̄(s) 6= v̂(s)) (52)

where the term p(v̄(s) 6= v̂(s)) represents the probability that
the estimated AOD/AOA information v̂(s) is not equal to the
physical channel, v̄(s).

If we treat the channel vector v̄(s) as information be-
ing encoded by the generator matrix G(s,M+R), we can
model this estimation error event as a maximum likeli-
hood decoding error. We can then say that v̄(s) 6= v̂(s)

occurs when the received measurement vector y(s) =
αx
√
PsN2C4

sG
(s,M+R)(v̄(s))T + n(s), is incorrectly ’de-

coded’ to another received measurement vector y′(s) =
αx
√
PsN2C4

sG
(s,M+R)v̄′T , ∀ v̄′ ∈ V and v̄′ 6= v̄(s). We

then express the probability of this event as

p(v̄(s) 6= v̂(s)) =
⋃

v̄′ ∈ V
v̄′ 6= v̄

p(y(s) → y′(s)). (53)

As the decoding approach used in this paper is based upon
maximum likelihood, we can calculate such an error prob-
ability from the Euclidean distance between the received
measurement sets. With reference to [36], we can then express
the pairwise error probability of this decoding error over a
fading channel with coefficient α ∼ CN (0, PR) as

p(y(s) → y′(s)) =
1

2

[
1−

√
γ̄2

γ̄2 + 2

]
(54)

where

γ̄ =

√
PsC4

sN
2PR

2N0
||G(s,M+R)(v̄(s) − v̄′)T || (55)

By substituting these terms into (52) and averaging over each
v̄(s) we get

pEE|G(s,M+R) =
∑
v̄∈V

p(v̄)pEE|G(s,M+R),v̄(s) (56)

=
∑
v̄∈V

⋃
v̄′ ∈ V
v̄′ 6= v̄

p(v̄)

2

[
1−

√
γ̄2

γ̄2 + 2

]
. (57)

Expressing the exact probability of the union term in (57) is
quite difficult due to complicated boundaries between each
column in G(s,M+R). This is a direct result of the generator
matrix not containing a full set of normalized (M+R)×1 vec-
tors. For example, (12) does not contain the scaled versions of
the vectors [0, 1, 1, 0]T , [1, 1, 0, 1]T , [1, 0, 1, 1]T , [1, 1, 1, 0]T ,
[0, 1, 1, 1]T or [0, 0, 0, 0]T . This is an inherent property of the
generator matrix being constructed from two smaller matrices
B

(s,M)
T and B

(s,M)
R that do not contain the all-zero column

vector. We can, however, find an upper bound of expression
in (57) by replacing the union term with a summation to get

pEE|G(s,M+R) <
∑
v̄∈V

∑
v̄′ ∈ V
v̄′ 6= v̄

p(v̄)

2

[
1−

√
γ̄2

γ̄2 + 2

]
. (58)

The resulting upper bound in (58) is found to be quite
loose in most cases. Motivated by this, we find a much
tighter approximation by only considering v̄′ that minimizes
||G(s,M+R)(v̄(s)−v̄′)T || (i.e., only considering spatially adja-
cent columns of G(s,M+R)). We define this minimum distance
for each v̄(s) by

dmin(v̄(s)) = min
v̄′ ∈ V
v̄′ 6= v̄

||G(s,M+R)(v̄(s) − v̄′)T || (59)

and the set of vectors causing it as

Vmin(v̄(s)) =
{

argmin
v̄′ ∈ Vmin
v̄′ 6= v̄

||G(s,M+R)(v̄(s) − v̄′)T ||
}
.

(60)

We therefore approximate pEE|G(s,M+R) by

pEE|G(s,M+R) ≈
∑
v̄∈V

∑
v̄′ ∈ Vmin
v̄′ 6= v̄

p(v̄)

2

[
1−

√
γ̄2

γ̄2 + 2

]
.

(61)

We also provide a greatly simplified lower bound for Al-
gorithm 1 when R = 0, by only considering a single one
of these v̄′ that cause a minimum distance. Recall that the
generator matrix is designed such that all paths have the
same minimum Euclidean distance, which we define here as√
Emin = dmin(v̄(s)), ∀ v̄(s). By assuming each channel

realization is equiprobable, this leads to

pEE|G(s,M) >
1

2

[
1−

√
PsC4

sN
2PREmin

PsC4
sN

2PREmin + 4N0

]
(62)
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Fig. 4. Comparison of the AOA/AOD probability of estimation error numerical results with the derived analytical expression. Fig. (a) uses shows the PEE
for a single stage system, whereas Fig. (b) shows a system with S = 3. Both systems use PR = 1 and are compared to the total energy per noise ratio,
calculated by ET = M

∑S
s=1 Ps. The Analytical Approximation, Lower Bound and Upper Bound in (a) refer to, (61), (62) and (58), respectively. In (b),

the Analytical Approximation refers to the substitution of (61) into (64) where as the Analytical Upper Bound refers to the substitution of (58) into (64).

Finally, we upper bound the probability of an error occurring
in any of the S stages as

pEE = 1−
S∏
s=1

(1− pEE|G(s,M+R)) (63)

<

S∑
s=1

pEE|G(s,M+R) (64)

<

S∑
s=1

∑
v̄∈V

∑
v̄′ ∈ V

v̄′ 6= v̄(s)

p(v̄)

2

[
1−

√
γ̄2

γ̄2 + 2

]
. (65)

In order to validate our analysis, Figs. 4 (a) and (b) compare
the derived analytical expressions with their corresponding
Monte Carlo simulations for a single stage system and three
stage system, respectively. As we can observe from Fig. 4(a),
the given in (61) is actually quite tight. Focusing on the three
stage system in Fig. 4(b), we see that the substitution of the
approximation in (61) into the upper bound (64) causes some
disparity, however still provides a tighter approximation than
(65). A lower bound is not presented in Fig. 4(b) as the use
of (62) in the upper bound (64) would not be mathematically
correct.

B. Minimum Energy and Time Requirement for the RACE
Algorithm

We now present an expression for the minimum signal
energy-to-noise ratio required by the RACE algorithm for an
average number of measurements in a given stage. From an
information theory standpoint, we can describe the RACE
algorithm as the information process that a 1 × K2 binary
vector v̄(s) is encoded into M +R symbols by the generator
matrix G(s,M+R). This information transfer has an equivalent
modulation rate of C = K2/(M + R) information bits per

measurement time slot duration. The Shannon-Hartley theorem
[37] tells us that the minimum received SNR required for error
free detection at this rate is

SNRr ≥ 2C − 1

= 2
K2

M+R − 1 (66)

where from (26), for a given v̄(s), G(s,M+R) and α, we know
the average received SNR can be expressed as

SNRr =
||α||2PsC4

sN
2

N0

||G(s,M+R)(v̄(s))T ||2

(M +R)
. (67)

Substituting (67) into (66) gives

||α||2PsC4
sN

2

N0

||G(s,M+R)(v̄(s))T ||2

(M +R)
≥ 2

K2

(M+R) − 1. (68)

By denoting the total energy used in stage s by Es = Ps(M+
R), we can re-write (68) as

Es
N0
≥ (M +R)2(2

K2

(M+R) − 1)

||α||2C4
sN

2||G(s,M+R)(v̄(s))T ||2
. (69)

The expression in (69) gives a good insight into how
to minimize the amount of energy required for successful
channel estimation. For example, one intuitive approach to
reduce the energy requirement is to maximize the term,
C4
sN

2||G(s,M+R)(v̄(s))T ||2 which directly determines the
amount of energy that arrives at the receiver. Furthermore,
as we have a minimum number of M initial measurements
that have been designed such that they propagate non-zero
energy over each sub-range combination (i.e., each col-
umn of G(s,M+R) has a non-zero norm), we ensure that
||G(s,M+R)(v̄(s))T ||2 > 0, ∀ v̄(s). This then guarantees that
Es/N0 always takes on a finite value.

As G(s,M+R) is adaptive and based on feedback, it becomes
quite difficult to determine the exact energy requirement for
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Fig. 5. Comparison of the minimum number of measurements required
for channel estimation in a single stage, using the RACE algorithm, to the
analytical expression in (73) with pFB = 1 and pFB = 1/K2. Here we use
N = 3, K = 3, ||α|| = 1 and Mmax =∞.

various R > 0. However, if we let g(s,M+R)
t denote the tth row

of G(s,M+R), we can expand the term ||G(s,M+R)(v̄(s))T ||2
by splitting it into the sum of received energy in each measure-
ment time slots. The row/column energy normalization, seen
in the design of (10), leads to the generator matrix having
||G(s,M)(v̄(s))T ||2 = M

K2 ∀ v̄(s). Expanding this expression
we then get

||G(s,M+R)(v̄(s))T ||2

=

M+R∑
t=1

(
g

(s,M+R)
t (v̄(s))T

)2
= ||G(s,M)(v̄(s))T ||2 +

M+R∑
t=M+1

(
g

(s,M+R)
t (v̄(s))T

)2
=

M

K2
+

M+R∑
t=M+1

(
g

(s,M+R)
t (v̄(s))T

)2
. (70)

Following the RACE algorithm, we can also deduce that the
term g

(s,M+R)
t (v̄(s))T in (70) results in either unit energy or

no energy, depending on whether the most likely sub-range
combination from the previous measurement timeslot was
correct or not. If we denote the probability of this information
being incorrect as pEE|G(s,M+R−1) we can then write the
average energy contribution from this term as

||G(s,M+R)(v̄(s))T ||2 =
M

K2
+

R∑
R′=1

(1− pEE|G(s,M+R′−1)).

(71)

Substituting (71) back into (69), we have

Es
N0
≥ (M +R)2(2

K2

M+R − 1)

C4
sN

2||α||2
[
M
K2 +

R∑
R′=1

(1− pEE|G(s,M+R′−1))
] .
(72)

Unfortunately, the probability in (72) still depends on previous
sub-range estimates determined from the previous measure-
ment and is thus difficult to obtain a closed-form. We can
however, consider a few extreme cases where we assume a
fixed probability of correct feedback information. That is, we
use pFB = 1 − pEE|G(s,M+R−1) , ∀ R > 0. Finally, we can
express the average minimum energy to noise ratio required for
successful channel estimation in a given stage with a certain
number of measurements to be

Es
N0
≥ (M +R)2(2

K2

M+R − 1)

C4
sN

2||α||2
[
M
K2 +R× pFB

] . (73)

To validate this expression, Fig. 5 shows the average number of
measurements required to estimate the AOD/AOA information
in a single stage for a range of different signal energy to noise
ratios. Here we also plot (73) for two special cases. The first is
when pFB = 1, representing the best case scenario where the
previous sub-range estimate is always correct. The second is
the worst case scenario where the previous sub-range estimate
is random (i.e., no feedback) giving pFB = 1/K2.

As we can see from Fig. 5, (73) provides a bound for the
best case scenario pFB = 1, and for the worst case scenario
pFB = 1/K2. To make the simulation results match the
bounds, here we do not limit the number of measurements
(i.e., Mmax = ∞). Although pFB = 1/K2 still gives a
mathematical lower bound for the energy requirement, the
condition that pFB = 1/K2 describes a system that performs
far worse than the RACE algorithm. As such, we see the
two lines intercept at high SNR. We can also observe from
this figure that the RACE algorithm falls between these two
curves and converges to R = 0 at high SNR. Finally, the
asymptotic nature of the results in Fig. 5 supports the need
to set Mmax << ∞ so that measurements do not continue
indefinitely.

C. Discussion of System Performance Parameters

We end this section by briefly discussing the performance
parameter selection for the proposed algorithms for a gener-
alized mmWave MIMO system with Nt transmit antenna and
Nr receive antenna, each equipped with a limited number of
RF chains such that they can only transmit and receive with
a single beam pattern.

1) Selection of number of sub-ranges in each stage, K:
In general, by using a smaller value of K, a faster channel
estimation can be achieved at a greater energy efficiency and
a more computationally efficient ML detection. The main
drawback of setting a smaller K lies in the wider beam
patterns and the resultant loss of directionality gain. From
an energy efficiency point of view, this loss is outweighed
by the speed advantage. However, if a peak power constraint
were imposed, more directionality may be required in the early
stages and this can be achieved by increasing K. Selection of
K may also depend on the number of antennas being equipped
at each link end. For example, it is generally accepted that a
mmWave mobile link will have more antennas at a base station
(BS) than at the mobile station (MS) [6], [38]. For such a
general asymmetric system, it is possible to use different K in
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Fig. 6. Average minimum distance between the columns of the optimized
generator matrix versus the number of measurements, M , for a range of
different sized beam pattern description matrices.

each stage and at each transceiver end. This grants flexibility to
achieve the same number of estimation stages for each system.
Then it is only important that the product of the K’s over all
stages equals to the antenna number. An alternative approach
is to simply use more stages at the BS than at the MS. In
this case, once the MS has reached its final stage before the
transmitter, it can continue its role in the estimation procedure
by utilizing the already estimated AOA.

2) Selection of M and design of B
(s,M)
T and B

(s,M)
R :

Given that K in each stage has been selected for an arbi-
trary antenna number N , we now propose a method to find
the optimal design of the beam pattern description matrices
B

(s,M)
T and B

(s,M)
R . To include the asymmetric case where

K is different at the transmitter and receiver, we use KT and
KR to denote the number of sub-ranges at the transmitter and
receiver, respectively. We therefore find the optimal design of
B

(s,M)
T and B

(s,M)
R for an arbitrary KT , KR and M based

on the theoretical analysis of PEE conducted in the previous
sub-sections. With this result, we then show the performance
trade-off for selecting larger/smaller M.

From the analytical expressions (52)-(55), we can see that
minimizing the PEE is equivalent to maximizing the expres-
sion in (55). We denote the optimal beam pattern description
matrices by B

(s,M)
Topt

and B
(s,M)
Ropt

at the transmitter and receiver,
respectively, and we thus have

{B(s,M)
Topt

,B
(s,M)
Ropt

} =

argmax
BT ,BR

√
PsC4

sN
2PR

2N0
||G(s,M)(v̄(s) − v̄′)T ||,

s.t., diag(BT (BT )H) = 1, diag(BR(BR)H) = 1,

diag((BT )HBT ) =
M

K
1, diag((BR)HBR) =

M

K
1 (74)

by recalling that G(s,M) = B
(s,M)
T � B

(s,M)
R and where 1

is an all-1 vector. The constraints imposed on B
(s,M)
T and

B
(s,M)
R in (74-76), correspond the rows and columns of the

matrices having a constant norm. To avoid repetition, we do
not list the constraints under (75-76), however they still apply.
The row and column normalization are imposed, respectively,
to:

1) Keep a constant transmit power for each measurement of
a given stage. It can be achieved when the norms of all
rows in B

(s,M)
T are the same i.e., diag(BT (BT )H) = 1.

Similarly, to receive with unit gain, we also have and
diag((BR)HBR) = M

K 1.
2) Keep the total energy collected by different AOD/AOA

sub-range combinations across all the measurements
the same. This ensures the fairness of estimation
success in all sub-range combinations. It can be
achieved when the norms of all columns in B

(s,M)
T

and B
(s,M)
R are the same, e.g., diag((BT )H)BT =

M
K 1, diag((BR)HBR) = M

K 1.

Since the square root term is independent of B
(s,M)
T and

B
(s,M)
R for a fixed KT and KR, we thus can rewrite (74)

as

{B(s,M)
Topt

,B
(s,M)
Ropt

} = argmax
BT ,BR

||G(s,M)(v̄(s) − v̄′)T ||. (75)

For channels with a single dominant path, the vectors v(s) and
v′ only contain a single non-zero element. More specifically,
G(s,M)(v(s) − v′) can be simplified to the subtraction of
two columns of G(s,M). Since the channel estimation error
is dominated by the columns of G(s,M) with the smallest
Euclidean distance, we can then re-write (75) as,

{B(s,M)
Topt

,B
(s,M)
Ropt

} =

argmax
BT ,BR

(
min
i, j
i 6= j

||g(s,M)
i − g

(s,M)
j ||

)
. (76)

by recalling that g(s,M)
i represents the ith column of the matrix

G(s,M). In order to find a solution for B
(s,M)
Topt

, B(s,M)
Ropt

, we

then define B(M,K)
b = {B(1)

b ,B
(2)
b , · · · } as the set of all

possible M ×K binarized beam pattern description matrices.
In order to approximate the normalization constraints, we first
normalize the columns of all matrices in this set followed
by the normalization of the rows. We denote this normalized
set by B(M,K) = {B(1),B(2), · · · }. We can then carry out
an offline search within this set to achieve the best solution
B

(s,M)
Topt

and B
(s,M)
Ropt

i.e., by comparing all combinatorial pairs

of B
(s,M)
T ∈ B(M,KT ),B

(s,M)
R ∈ B(M,KR). It should be

noted that there might be multiple solutions to the optimal
beam pattern description matrices B

(s,M)
Topt

and B
(s,M)
Ropt

, which
simply have different column permutations but result in the
same performance.

For larger M and K, the complexity of the above search-
based approach can be reduced by further constraining the set
B(M,K)
b . For example, to keep the directivity gains similar

in all beam patterns in each stage, we fix the number of
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Fig. 7. (a) Probability of estimation error (PEE) results of the RACE algorithm and (b) average number of measurements over a single path AWGN channel
with varying target PEE, Γ

non-zero sub-ranges at the transmitter and receiver to WT

and WR, respectively. To impose this constraint, we reduce
B(M,K)
b to the set of all M ×K binarized beam patterns that

have row weights of WT at the transmitter and WR at the
receiver. Here, row weight refers to the number of non-zero
entries in each row of a matrix. For the example beam patterns
given in (12), we have a row weight of WR = WT = 2. In
general, transmitting/measuring on a greater number of sub-
ranges in each measurement will lead to a lower minimum
number of measurements required for estimation. This is
because all sub-range combinations can be spanned in a fewer
number measurements. This choice, however, will lead to less
directional beam patterns, and therefore a loss of directivity
gain.

By using the aforementioned approach and by denoting
KT and KR as the number of sub-ranges at the transmitter
and receiver respectively, Fig. 6 shows the average minimum
Euclidean distance between the columns of the generator
matrix versus M for a range of different KT and KR.
Here we constrain the row weights at the transmitter to be
WT = KT − 1 and that at the receiver to be WR = KR − 1.
We can see from this figure that for a fixed KT and KR, adding
additional measurements can increase the spatial separation of
the columns in the generator matrix. Based on our analysis,
this in turn decreases the probability that one path is mis-
takenly estimated as another, therefore improving the overall
estimation performance. On the other hand, using a larger
M will require a greater number of channel measurements
in each stage. If the FCE algorithm is used, we can increase
the value of M to improve the estimation performance. If the
RACE algorithm is employed, it is generally desired to set
M relatively low, resulting in a fast estimation that is then
confirmed, if needed, by additional measurements. It can also
be seen that, when larger values of KT and KR are employed
with a similar M , the average minimum Euclidean distances
are found to be smaller. This is because these parameters

correspond to the estimation of a larger number of sub-range
combinations in each stage. Although the energy required for
estimation in a single stage may need to be increased for a
fixed PEE, the number of over all stages would be less, due
to the increased values of K.

3) Selection of Mmax and Γ : Finally, the selection of the
maximum number of measurements per stage Mmax should be
selected based upon any maximum timing constraints. Increas-
ing Mmax will significantly increase the energy efficiency at
medium to high SNR regime, although the average number of
measurements per stage will still converge to M at high SNR.
We find that, for a fading channel with Gaussian distributed
channel coefficients, the selection of Γ is not as important as
Mmax. This is due to the non-zero probability of an outage
condition. In general, increasing Γ will reduce the PEE by
increasing the average number of measurements and therefore
expending more energy. In contrast, at high SNR, increasing
Mmax will allow more measurements to be carried out in the
unlikely event that it needs them. Therefore the later uses less
average energy.

VI. NUMERICAL RESULTS

We now provide some numerical examples to verify the
performance of our proposed algorithms. First, we evaluate
the impact of the target PEE, Γ, on channel estimation
performance by comparing the results of the RACE algorithm
over a simple single path AWGN channel with K = 3,
M = 4, and N = 3 (i.e., single stage). Here we use
|α| = PR = 1 with varying Γ. To show the constant average
PEE, here we set Mmax = 250 so that even at low SNR, the
achieved PEE is unaffected by the number of measurements
saturating to its maximum. In addition, as the channel is
AWGN, there will also be no chance of a “deep fade” where
measurements may continue indefinitely. From Fig. 7 (a) and
(b), we can see that the RACE algorithm increases the number
of measurements in attempt to hold the PEE below the target
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Fig. 8. Numerical performance results of the proposed algorithms compared to the non-overlapped algorithm presented in [5] for (a) probability of estimation
error (PEE) and (b) average number of measurements required for channel estimation.

value. We also see that the PEE achieved is normally lower
than the target PEE. This is largely because the target PEE is
actually the highest allowable PEE, for which no additional
measurements are required. As such, the average PEE is the
average of many channel estimations with performance better
than this target. Furthermore, in some cases (particularly in
mid-SNR where the number of measurements are low), a
single additional measurement on the correct sub-range will
significantly increase the PEE beyond the target PEE. We see
that this effect diminishes at low SNR where the significance
of additional measurements is not as large as that in medium
to high SNR. That is, the average PEE is closer to the target
PEE.

We now consider a mmWave system with N = 27 an-
tennas at both the transmitter and receiver. We use a single
path channel with fading coefficient, α, assumed to follow a
complex Gaussian distribution with zero mean and variance
PR = 1. We assume the corresponding AOD, φtl ∈ UN , and
AOA, φtl ∈ UN , to follow a random uniform distribution.
We set K = 3 for both of our algorithms and the non-
overlapped multi-stage algorithm in [5], all requiring S = 3
stages. K2 = 9 measurements are required in each stage of [5].
However, in our proposed algorithms, only M = 4 time slots
are involved in each stage the FCE algorithm and a minimum
of M = 4 for the RACE algorithm. The performance of the
RACE algorithm is shown for a number of different values
of maximum measurements, Mmax, and uses a target PEE of
Γ = 10−2. Power allocation among S = 3 stages is applied
to all algorithms as (44).

Fig. 8(a) shows the probability of an incorrect AOD/AOA
estimate after the S stages of estimation have been carried out
and Fig. 8(b) shows the average total number of measurements
required for the same estimation. The total energy required in
the overall channel estimation process is calculated by ET =∑S
s=1 Ps(M +R). We can see that, to achieve the same PEE

as that in [5], the FCE algorithm requires 2.5dB more energy

for a given noise power N0. However, the number of required
channel measurements is decreased by a factor of 2.25.

For the RACE algorithm, we can also see that with Mmax =
5, while still significantly faster than [5], it has an improved
energy gain for a given PEE compared to Mmax = 4, but still
worse than than [5] by about 1dB. When Mmax is increased
to Mmax = K2 = 9, we can observe from Fig. 8(a) that
the required energy in this case is around 2.5dB better than
[5]. From Fig. 8(b) we see that when Mmax = K2 = 9 is
used, the RACE algorithm is always faster than [5] and, at
medium to high SNR (i.e., ET /N0 > 25), the average number
of channel measurements converges to SM . That is, using the
proposed RACE algorithm with Mmax = K2 achieves 2.25
factor reduction of channel measurements while also achieving
an energy gain of 2.5dB for a given probability of error.
Further increasing the maximum number of measurements to
Mmax = 2K2 = 18 (i.e., the algorithm at most requires
twice the measurements required of [5]) we see that the
RACE algorithm achieves an energy gain of 6dB compared
to [5] at medium to high SNR, while requiring an average
of 2.25 times less channel measurements. Furthermore, we
can observe from SNR’s greater than 10.5dB that the average
number of measurements required in the RACE algorithm is
also less than that required by the algorithm in [5].

Fig. 9 shows the relative MSE in dB of the fading coefficient
α, i.e., E[|α− α̂|2]. As can be seen, the LMMSE estimator
proposed in section III-F is compared to the one only using
measurements from final stage estimation. We can see that
the multi-stage LMMSE estimator improves the performance
accuracy of the fading coefficient estimation for all algorithms.
In the low SNR range, we also see that the proposed FCE algo-
rithm has slightly worse estimation accuracy when compared
to [5]. This is predominantly caused by the FCE algorithm
having a worse PEE for the same SNR. This performance
loss diminishes at mid to high SNR due to the inherent
spread of energy over multiple sub-range combinations in the
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overlapped beam pattern design. For example, in the event
that the FCE algorithm selects an incorrect angular range in
the final stage, the next most likely sub-range will usually
still contain some information of α. Focusing on the medium
SNR range, Fig. 9 also shows that the RACE algorithm with
Mmax = K2 = 9 is able to estimate the fading coefficient
more accurately when compared to both the FCE algorithm
and the algorithm in [5]. This is because, after the additional
measurements are directed onto the most likely propagation
path. This, in turn, increases the final estimation accuracy once
the AOD/AOA have been determined. As the average number
of these additional measurements converges to zero at high
SNR, this performance gain is lost at high SNR. Interestingly,
at high SNR, it can be seen that all approaches converge to
a similar path coefficient MSE performance, despite having
different PEE. This is largely because when each algorithm
identifies an incorrect AOA/AOA, it is usually when the
channel is in a deep fade. As a result, misestimating the path
coefficient in this case has little effect on overall MSE of the
channel fading coefficient. As such, PEE is really a better
performance metric for beam misalignment.

We now test the performance of the proposed algorithms
under multipath scenarios. Similarly, with [5], we simulate
the cases with L = 2 paths, shown in Fig. 10 (a) and (b),
respectively and with L = 3 paths, shown in Fig. 11 (a)
and (b), respectively. In these figures, the most immediate
observation is that the FCE algorithm reaches an error floor at
high SNR. This is mainly because the non-zero probability of
two or more paths having similar magnitude and being in both
the non-overlapped sub-ranges. In this scenario, the received
measurement vector will be similar to one very strong path
in the overlapped region. This is largely the motivation for
the RACE algorithm as it permits an additional measurement
to confirm the true sub-range combination corresponding to

one of the propagation paths. As can be observed in these two
figures, the RACE algorithm is able to seamlessly adapt to this
scenario, still yielding up to a 5dB gain compared to [5] and
converging on being almost 2.25 times faster on average. It is
worth noting that this time advantage is only possible with the
initial overlapped beam pattern design of the FCE algorithm.
That is, the RACE algorithm still needs the initial beam pattern
design of FCE to be faster than [5]. Finally, similarly to [5], we
can also see that the performance of RACE increases slightly
as the number of paths increases from L = 1 to L = 3. This is
understandable since the chance of detecting one of multiple
paths is greater than the chance of detecting a single one.

VII. CONCLUSION

In this paper we have proposed a novel fast channel estima-
tion algorithm for mmWave communication systems based on
a novel overlapped beam pattern design. In general, our pro-
posed algorithm can speed up the channel estimation process
by a factor of K2/M when compared to existing algorithms
with non-overlapped beam patterns. Using a fixed number of
measurements, we show that this reduction of measurements
comes at an energy-to-noise ratio expense of 2.5dB in order
to achieve the same probability of estimation error (PEE).
For channels with rapidly changing channel information, this
cost may be justified in order to improve the estimation
speed. We have also proposed a novel rate-adaptive channel
estimation algorithm, in which additional measurements are
carried out when a high probability of estimation error is
expected. We show that by taking this approach, the channel
can be estimated more efficiently, yielding significant gains of
up to 6dB when compared to the algorithm in [5], while still
converging to the same average number of measurements as
the fast channel estimation (FCE) algorithm at high SNR.
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