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Abstract

The recursive least-squares (RLS) algorithm has well-documented merits for reducing complexity and

storage requirements, when it comes to online estimation ofstationary signals as well as for tracking slowly-

varying nonstationary processes. In this paper, adistributed recursive least-squares (D-RLS) algorithm is

developed for cooperative estimation using ad hoc wirelesssensor networks. Distributed iterations are

obtained by minimizing a separable reformulation of the exponentially-weighted least-squares cost, using

the alternating-minimization algorithm. Sensors carry out reduced-complexity tasks locally, and exchange

messages with one-hop neighbors to consent on the network-wide estimates adaptively. A steady-state

mean-square error (MSE) performance analysis of D-RLS is conducted, by studying a stochastically-driven

‘averaged’ system that approximates the D-RLS dynamics asymptotically in time. For sensor observations

that are linearly related to the time-invariant parameter vector sought, the simplifying independence setting

assumptions facilitate deriving accurate closed-form expressions for the MSE steady-state values. The

problems of mean- and MSE-sense stability of D-RLS are also investigated, and easily-checkable sufficient

conditions are derived under which a steady-state is attained. Without resorting to diminishing step-sizes

which compromise the tracking ability of D-RLS, stability ensures that per sensor estimates hover inside

a ball of finite radius centered at the true parameter vector,with high-probability, even when inter-sensor

communication links are noisy. Interestingly, computer simulations demonstrate that the theoretical findings

are accurate also in the pragmatic settings whereby sensorsacquire temporally-correlated data.
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I. INTRODUCTION

Wireless sensor networks (WSNs), whereby large numbers of inexpensive sensors with constrained

resources cooperate to achieve a common goal, constitute a promising technology for applications as

diverse and crucial as environmental monitoring, process control and fault diagnosis for the industry, and

protection of critical infrastructure including the smartgrid, just to name a few. Emergent WSNs have

created renewed interest also in the field of distributed computing, calling for collaborative solutions that

enable low-cost estimation of stationary signals as well asreduced-complexity tracking of nonstationary

processes; see e.g., [22], [33].

In this paper, adistributed recursive least-squares (D-RLS) algorithm is developed for estimation and

tracking using ad hoc WSNs with noisy links, and analyzed in terms of its stability and mean-square error

(MSE) steady-state performance. Ad hoc WSNs lack a central processing unit, and accordingly D-RLS

performs in-network processing of the (spatially) distributed sensor observations. In words, a two-step

iterative process takes place towards consenting on the desired global exponentially-weighted least-squares

estimator (EWLSE): sensors perform simple local tasks to refine their current estimates, and exchange

messages with one-hop neighbors over noisy communication channels. New sensor data acquired in real

time enrich the estimation process and learn the unknown statistics ‘on-the-fly’. In addition, the exponential

weighting effected through a forgetting factor endows D-RLS with tracking capabilities. This is desirable

in a constantly changing environment, within which WSNs areenvisioned to operate.

A. Prior art on distributed adaptive estimation

Unique challenges arising with WSNs dictate that often times sensors need to perform estimation in a

constantly changing environment without having availablea (statistical) model for the underlying processes

of interest. This has motivated the development ofdistributed adaptiveestimation schemes, generalizing

the notion of adaptive filtering to a setup involving networked sensing/processing devices [3, SectionI-B].

The incremental (I-) RLS algorithm in [24] is one of the first such approaches, which sequentially

incorporates new sensor data while performing least-squares estimation. If one can afford maintaining

a so-termed Hamiltonian cyclic path across sensors, then I-RLS yields the centralized EWLS benchmark

estimate. Reducing the communication cost at a modest pricein terms of estimation performance, an I-RLS

variant was also put forth in [24]; but the NP-hard challengeof determining a Hamiltonian cycle in large-

size WSNs remains [18]. Without topological constraints and increasing the degree of collaboration among

sensors, a diffusion RLS algorithm was proposed in [3]. In addition to local estimates, sensors continuously

diffuse raw sensor observations and regression vectors perneighborhood. This facilitates percolating new
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data across the WSN, but estimation performance is degradedin the presence of communication noise. When

both the sensor measurements and regression vectors are corrupted by additive (colored) noise, the diffusion-

based RLS algorithm of [1] exploits sensor cooperation to reduce bias in the EWLSE. All [3], [1] and [24]

include steady-state MSE performance analysis under the independence setting assumptions [23, p. 448].

Distributed least mean-squares (LMS) counterparts are also available, trading off computational complexity

for estimation performance; for noteworthy representatives see [7], [14], [26], and references therein. Recent

studies have also considered more elaborate sensor processing strategies including projections [8], [12],

adaptive combination weights [30], or even sensor hierarchies [4], [26], and mobility [32].

Several distributed (adaptive) estimation algorithms arerooted on iterative optimization methods, which

capitalize upon the separable structure of the cost definingthe desired estimator. The sample mean estimator

was formulated in [20] as an optimization problem, and was solved in a distributed fashion using a

primal dual approach; see, e.g., [2]. Similarly, the incremental schemes in e.g., [7], [19], [21], [24] are all

based on incremental (sub)gradient methods [17]. Even the diffusion LMS algorithm of [14] has been

recently shown related to incremental strategies, when these are adopted to optimize an approximate

reformulation of the LMS cost [5]. Building on the frameworkintroduced by [27], the D-LMS and D-RLS

algorithms in [15], [16], [26] are obtained upon recasting the respective decentralized estimation problems

as multiple equivalent constrained subproblems. The resulting minimization subtasks are shown to be highly

paralellizable across sensors, when carried out using the alternating-direction method of multipliers (AD-

MoM) [2]. Much related to the AD-MoM is the alternating minimization algorithm (AMA) [31], used here

to develop a novel D-RLS algorithm offering reduced complexity when compared to its counterpart of [15].

B. Contributions and paper outline

The present paper develops a fully distributed (D-) RLS typeof algorithm, which performs in-network,

adaptive LS estimation. D-RLS is applicable to general ad hoc WSNs that are challenged by additive

communication noise, and may lack a Hamiltonian cycle altogether. Different from the distributed Kalman

trackers of e.g., [6], [22], the universality of the LS principle broadens the applicability of D-RLS to a wide

class of distributed adaptive estimation tasks, since it requires no knowledge of the underlying state space

model. The algorithm is developed by reformulating the EWLSE into an equivalent constrained form [27],

which can be minimized in a distributed fashion by capitalizing on the separable structure of the augmented

Lagrangian using the AMA solver in [31] (Section II). From analgorithmic standpoint, the novel distributed

iterations here offer two extra features relative to the AD-MoM-based D-RLS variants in [15], [25]. First,

as discussed in Section II-B the per sensor computational complexity is markedly reduced, since there is no
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need to explicitly carry out a matrix inversion per iteration as in [15]. Second, the approach here bypasses

the need of the so-termed bridge sensors [25]. As a result, a fully distributed algorithm is obtained whereby

all sensors perform the same tasks in a more efficient manner,without introducing hierarchies that may

require intricate recovery protocols to cope with sensor failures.

Another contribution of the present paper pertains to a detailed stability and MSE steady-stateper-

formance analysisfor D-RLS (Section IV). These theoretical results were lacking in the algorithmic pa-

pers [15], [25], where claims were only supported via computer simulations. Evaluating the performance of

(centralized) adaptive filters is a challenging problem in its own right; prior art is surveyed in e.g., [28], [29,

pg. 120], [23, pg. 357], and the extensive list of referencestherein. On top of that, a WSN setting introduces

unique challenges in the analysis such as space-time sensordata and multiple sources of additive noise,

a consequence of imperfect sensors and communication links. The approach pursued here capitalizes on

an ‘averaged’ error-form representation of the local recursions comprising D-RLS, as a global dynamical

system described by a stochastic difference-equation derived in Section III-B. The covariance matrix of

the resulting state is then shown to encompass all the information needed to evaluate the relevant global

and sensor-level performance metrics (Section III-C). Forsensor observations that are linearly related

to the time-invariant parameter vector sought, the simplifying independence setting assumptions [29, pg.

110], [23, pg. 448] are key enablers towards deriving accurate closed-form expressions for the mean-square

deviation and excess-MSE steady-state values (Section IV-B). Stability in the mean- and MSE-sense are

also investigated, revealing easily-checkable sufficientconditions under which a steady-state is attained.

Numerical tests corroborating the theoretical findings arepresented in Section V, while concluding

remarks and possible directions for future work are given inSection VI.

Notation: Operators⊗, (.)T , (.)†, λmax(.), tr(.), diag(.), bdiag(.), E [.], vec[.] will denote Kronecker

product, transposition, matrix pseudo-inverse, spectralradius, matrix trace, diagonal matrix, block diagonal

matrix, expectation, and matrix vectorization, respectively. For both vectors and matrices,‖.‖ will stand

for the2−norm. and|.| for the cardinality of a set or the magnitude of a scalar. Positive definite matrixM

will be denoted byM ≻ 0. Then×n identity matrix will be represented byIn, while 1n will denote the

n× 1 vector of all ones and1n×m := 1n1
T
m. Similar notation will be adopted for vectors (matrices) ofall

zeros. For matrixM ∈ R
m×n, nullspace(M) := {x ∈ R

n : Mx = 0m}. The i-th vector in the canonical

basis forRn will be denoted bybn,i, i = 1, . . . , n.
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II. PROBLEM STATEMENT AND DISTRIBUTED RLS ALGORITHM

Consider a WSN with sensors{1, . . . , J} := J . Only single-hop communications are allowed, i.e., sensor

j can communicate only with the sensors in its neighborhoodNj ⊆ J , having cardinality|Nj|. Assuming

that inter-sensor links are symmetric, the WSN is modeled asan undirected connected graph with associated

graph Laplacian matrixL. Different from [1], [3] and [24], the present network modelaccounts explicitly

for non-ideal sensor-to-sensor links. Specifically, signals received at sensorj from sensori at discrete-

time instantt are corrupted by a zero-mean additive noise vectorηij(t), assumed temporally and spatially

uncorrelated. The communication noise covariance matrices are denoted byRηj
:= E[ηi

j(t)(η
i
j(t))

T ],

j ∈ J .

The WSN is deployed to estimate a real signal vectors0 ∈ R
p×1 in a distributed fashion and subject to

the single-hop communication constraints, by resorting tothe LS criterion [23, p. 658]. Per time instant

t = 0, 1, . . . , each sensor acquires a regression vectorhj(t) ∈ R
p×1 and a scalar observationxj(t),

both assumed zero-mean without loss of generality. A similar setting comprising complex-valued data

was considered in [3] and [24]. Here, the exposition focuseson real-valued quantities for simplicity, but

extensions to the complex case are straightforward. Given new data sequentially acquired, a pertinent

approach is to consider the EWLSE [3], [23], [24]

ŝewls(t) := arg min
s

t
∑

τ=0

J
∑

j=1

λt−τ
[

xj(τ)− hT
j (τ)s

]2
+ λtsTΦ0s (1)

where λ ∈ (0, 1] is a forgetting factor, whileΦ0 ≻ 0p×p is included for regularization. Note that in

forming the EWLSE at timet, the entire history of data{xj(τ),hj(τ)}tτ=0, ∀ j ∈ J is incorporated in the

online estimation process. Wheneverλ < 1, past data are exponentially discarded thus enabling tracking

of nonstationary processes. Regarding applications, a distributed power spectrum estimation task matching

the aforementioned problem statement, can be found in [15].

To decompose the cost function in (1), in which summands are coupled through the global variables,

introduce auxiliary variables{sj}Jj=1 representing local estimates ofs0 per sensorj. These local estimates

are utilized to form the separable convexconstrainedminimization problem

{ŝj(t)}Jj=1 := arg min
{sj}J

j=1

t
∑

τ=0

J
∑

j=1

λt−τ [xj(τ)− hT
j (τ)sj ]

2 + J−1λt
J
∑

j=1

sTj Φ0sj,

s. t. sj = sj′ , j ∈ J , j′ ∈ Nj. (2)

From the connectivity of the WSN, (1) and (2) are equivalent in the sense that̂sj(t) = ŝewls(t), ∀ j ∈ J
andt ≥ 0; see also [27]. To arrive at the D-RLS recursions, it is convenient to reparametrize the constraint
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set (2) in the equivalent form

sj = z̄
j′

j , sj′ = z̃
j′

j , and z̄j
′

j = z̃
j′

j , j ∈ J , j′ ∈ Nj, j 6= j′. (3)

where{z̄j′j , z̃
j′

j }j′∈Nj
, j ∈ J , are auxiliary optimization variables that will be eventually eliminated.

A. The D-RLS algorithm

To tackle the constrained minimization problem (2) at time instantt, associate Lagrange multipliersvj′

j

anduj′

j with the first pair of consensus constraints in (3). Introduce the ordinary Lagrangian function

L [s , z , v ,u ] =

J
∑

j=1

t
∑

τ=0

λt−τ [xj(τ)− hT
j (τ)sj ]

2 + J−1λt

J
∑

j=1

sTj Φ0sj

+

J
∑

j=1

∑

j′∈Nj

[

(vj′

j )
T (sj − z̄

j′

j ) + (uj′

j )
T (sj′ − z̃

j′

j )
]

(4)

as well as the quadraticallyaugmentedLagrangian

Lc [s , z , v ,u ] = L [s, z ,v,u] +
c

2

J
∑

j=1

∑

j′∈Nj

[

‖sj − z̄
j′

j ‖22 + ‖sj′ − z̃
j′

j ‖22
]

(5)

wherec is a positive penalty coefficient; ands := {sj}Jj=1, z := {z̄j′j , z̃
j′

j }
j′∈Nj

j∈J , and[v ,u ] := {vj′

j ,u
j′

j }
j′∈Nj

j∈J .

Observe that the remaining constraints in (3), namelyz ∈ Cz := {z : z̄j
′

j = z̃
j′

j , j ∈ J , j′ ∈ Nj, j 6= j′},

have not been dualized.

Towards deriving the D-RLS recursions, the alternating minimization algorithm (AMA) of [31] will be

adopted here to tackle the separable EWLSE reformulation (2) in a distributed fashion. Much related to

AMA is the alternating-direction method of multipliers (AD-MoM), an iterative augmented Lagrangian

method specially well-suited for parallel processing [2],[15], [27]. While the AD-MoM has been proven

successful to tackle the optimization tasks stemming from general distributed estimators of deterministic and

(non-)stationary random signals, it is somehow curious that the AMA has remained largely underutilized.

To minimize (2) at time instantt, the AMA solver entails an iterative procedure comprising three steps

per iterationk = 0, 1, 2, . . .

[S1] Multiplier updates:

v
j′

j (t; k) = v
j′

j (t; k − 1) + c[sj(t; k)− z̄
j′

j (t; k)], j ∈ J , j′ ∈ Nj

u
j′

j (t; k) = u
j′

j (t; k − 1) + c[sj′(t; k)− z̃
j′

j (t; k)], j ∈ J , j′ ∈ Nj.

[S2] Local estimate updates:

s(t, k + 1) = arg min
s

L [s, z (t, k), v (t, k),u(t, k)] . (6)
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[S3] Auxiliary variable updates:

z (t, k + 1) = arg min
z∈Cz

Lc [s(t, k + 1), z , v (t, k),u (t, k)] . (7)

Steps [S1] and [S3] are identical to those in AD-MoM [2]. In words, these steps correspond to dual ascent

iterations to update the Lagrange multipliers, and a block coordinate-descent minimization of the augmented

Lagrangian with respect toz ∈ Cz, respectively. The only difference is with regards to the local estimate

updates in [S2], where in AMA the new iterates are obtained byminimizing the ordinary Lagrangian with

respect tos. For the sake of the aforementioned minimization, all othervariables are considered fixed

taking their most up to date values{z (t, k), v (t, k),u (t, k)}. For the AD-MoM instead, the minimized

quantity is the augmented Lagrangian both in [S2] and in [S3].

The AMA was motivated in [31] for separable problems that arestrictly convex ins , but (possibly) only

convex with respect toz . Under this assumption, [S2] still yields a unique minimizer per iteration, and the

AMA is useful for those cases in which the Lagrangian is much simpler to optimize than the augmented

Lagrangian. Because of the regularization matrixΦ0 ≻ 0p×p, the EWLS cost in (2) is indeed strictly

convex for allt > 0, and the AMA is applicable. Section II-B dwells into the benefits of minimizing the

ordinary Lagrangian instead of its augmented counterpart (5), in the context of distributed RLS estimation.

Carrying out the minimization in [S3] first, one finds

z̄
j′

j (t, k + 1) = z̃
j′

j (t, k + 1) =
1

2
[sj(t, k + 1) + sj′(t, k + 1)] , j ∈ J , j′ ∈ Nj

so thatvj′

j (t; k) = −u
j′

j (t; k) for all k > −1 [15]. As a resultvj′

j (t; k) is given by

v
j′

j (t; k) = v
j′

j (t; k − 1) +
c

2
[sj(t; k) − sj′(t; k)] , j ∈ J , j′ ∈ Nj. (8)

Moving on to [S2], from the separable structure of (4) the minimization (6) can be split intoJ subproblems

sj(t, k+1) = argmin
sj





t
∑

τ=0

λt−τ [xj(τ)− hT
j (τ)sj ]

2 + J−1λtsTj Φ0sj +
∑

j′∈Nj

[

v
j′

j (t, k)− v
j
j′(t, k)

]T

sj



 .

Since each of the local subproblems corresponds to an unconstrained quadratic minimization, they all admit

closed-form solutions

sj(t, k + 1) = Φ−1
j (t)ψj(t)−

1

2
Φ−1

j (t)
∑

j′∈Nj

[

v
j′

j (t, k)− v
j
j′(t, k)

]

(9)

where

Φj(t) :=

t
∑

τ=0

λt−τhj(τ)h
T
j (τ) + J−1λtΦ0 = λΦj(t− 1) + hj(t)h

T
j (t) (10)

ψj(t) :=

t
∑

τ=0

λt−τhj(τ)xj(τ) = λψj(t− 1) + hj(t)xj(t). (11)
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Recursions (8) and (9) constitute the AMA-based D-RLS algorithm, whereby all sensorsj ∈ J keep track

of their local estimatesj(t; k+1) and their multipliers{vj′

j (t; k)}j′∈Nj
, which can be arbitrarily initialized.

From the rank-one update in (10) and capitalizing on the matrix inversion lemma, matrixΦ−1
j (t) can be

efficiently updated according to

Φ−1
j (t) = λ−1Φ−1

j (t− 1)−
λ−1Φ−1

j (t)hj(t)h
T
j (t)Φ

−1
j (t− 1)

λ+ hT
j (t)Φ

−1
j (t− 1)hj(t)

. (12)

with complexityO(p2). It is recommended to initialize the matrix recursion withΦ−1
j (0) = JΦ−1

0 := δIp,

whereδ > 0 is chosen sufficiently large [23]. Not surprisingly, by direct application of the convergence

results in [31, Proposition 3], it follows that:

Proposition 1: For arbitrarily initialized {vj′

j (t;−1)}j
′∈Nj

j∈J , sj(t; 0) and c ∈ (0, cu); the local estimates

sj(t; k) generated by(9) reach consensus ask → ∞; i.e.,

lim
k→∞

sj(t; k) = ŝewls(t), for all j ∈ J .

The upper boundcu is proportional to the modulus of the strictly convex cost function in (2), and

inversely proportional to the norm of a matrix suitably chosen to express the linear constraints in (3);

further details are in [31, Section 4]. Proposition 1 asserts that per time instantt, the AMA-based D-RLS

algorithm yields a sequence of local estimates that converge to the global EWLSE sought, ask → ∞, or,

pragmatically for large enoughk. In principle, one could argue that running many consensus iterations may

not be a problem in a stationary environment. However, when the WSN is deployed to track a time-varying

parameter vectors0(t), one cannot afford significant delays in-between consecutive sensing instants.

One possible way to overcome this hurdle is to run a single consensus iteration per acquired observation

xj(t). Specifically, lettingk = t in recursions (8)-(9), one arrives at a single time scale D-RLS algorithm

which is suitable for operation in nonstationary WSN environments. Accounting also for additive communi-

cation noise that corrupts the exchanges of multipliers andlocal estimates, the per sensor tasks comprising

the novel AMA-basedsingle time scaleD-RLS algorithm are given by

v
j′

j (t) = v
j′

j (t− 1) +
c

2

[

sj(t)− (sj′(t) + η
j′

j (t))
]

, j′ ∈ Nj (13)

Φ−1
j (t+ 1) = λ−1Φ−1

j (t)−
λ−1Φ−1

j (t)hj(t+ 1)hT
j (t+ 1)Φ−1

j (t)

λ+ hT
j (t+ 1)Φ−1

j (t)hj(t+ 1)
(14)

ψj(t+ 1) = λψj(t) + hj(t+ 1)xj(t+ 1) (15)

sj(t+ 1) = Φ−1
j (t+ 1)ψj(t+ 1)− 1

2
Φ−1

j (t+ 1)
∑

j′∈Nj

[

v
j′

j (t)− (vj
j′(t) + η̄

j′

j (t))
]

. (16)

October 29, 2018 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 8

Algorithm 1 : AMA-based D-RLS

Arbitrarily initialize {sj(0)}Jj=1
and{vj′

j (−1)}j
′∈Nj

j∈J .

for t = 0, 1,. . . do

All j ∈ J : transmitsj(t) to neighbors inNj .

All j ∈ J : update{vj′

j (t)}j′∈Nj
using (13).

All j ∈ J : transmitvj′

j (t) to eachj′ ∈ Nj .

All j ∈ J : updateΦj(t+ 1) andψj(t+ 1) using (14) and (15), respectively.

All j ∈ J : updatesj(t+ 1) using (16).

end for

Recursions (13)-(15) are tabulated as Algorithm 1, which also details the inter-sensor communications

of multipliers and local estimates taking place within neighborhoods. When powerful error control codes

render inter-sensor links virtually ideal, direct application of the results in [15], [16] show that D-RLS can

be further simplified to reduce the communication overhead and memory storage requirements.

B. Comparison with the AD-MoM-based D-RLS algorithm

A related D-RLS algorithm was put forth in [15], whereby the decomposable exponentially-weighted LS

cost (2) is minimized using the AD-MoM, rather than the AMA asin Section II-A. Recall that the AD-MoM

solver yieldssj(t+1) as the optimizer of the augmented Lagragian, while its AMA counterpart minimizes

the ordinary Lagrangian instead. Consequently, differentfrom (16) local estimates in the AD-MoM-based

D-RLS algorithm of [15] are updated via

sj(t+ 1) = Φ̄
−1
j (t+ 1)ψj(t+ 1) +

c

2
Φ̄

−1
j (t+ 1)

∑

j′∈Nj

[

sj(t) + (sj′(t) + η
j′

j (t))
]

− 1

2
Φ̄

−1
j (t+ 1)

∑

j′∈Nj

[

v
j′

j (t)− (vj
j′(t) + η̄

j′

j (t))
]

(17)

where [cf. (10)]

Φ̄j(t) :=

t
∑

τ=0

λt−τhj(τ)h
T
j (τ) + J−1λtΦ0 + c|Nj |Ip. (18)

Unlessλ = 1, it is impossible to derive a rank-one update forΦ̄j(t) as in (10). The reason is the

regularization termc|Nj |Ip in (18), a direct consequence of the quadratic penalty in theaugmented

Lagrangian (5). This prevents one from efficiently updatingΦ̄
−1
j (t+ 1) in (17) using the matrix inversion

lemma [cf. (14)]. Direct inversion of̄Φj(t + 1) per iteration dominates the computational complexity of

the AD-MoM-based D-RLS algorithm, which is roughlyO(p3) [15].
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Unfortunately, the penalty coefficient cannot be set to zerobecause the D-RLS algorithm breaks down.

For instance, when the initial Lagrange multipliers are null and c = 0, D-RLS boils down to a purely

local (L-) RLS algorithm where sensors do not cooperate, hence consensus cannot be attained. All in

all, the novel AMA-based D-RLS algorithm of this paper offers an improved alternative with an order

of magnitude reduction in terms of computational complexity per sensor. With regards to communication

cost, the AD-MoM-based D-RLS and Algorithm 1 here incur identical overheads; see [15, Sec. III-B] for

a detailed analysis of the associated cost, as well as comparisons with the I-RLS [24] and diffusion RLS

algorithms [3].

While the AMA-based D-RLS algorithm is less complex computationally than its AD-MoM counterpart

in [15], Proposition 1 asserts that when many consensus iterations can be afforded, convergence to the

centralized EWLSE is guaranteed providedc ∈ (0, cu). On the other hand, the AD-MoM-based D-RLS

algorithm will attain the EWLSE for anyc > 0 (cf. [15, Prop. 1]). In addition, it does not require tuning

the extra parameterδ, since it is applicable whenΦ0 = 0p×p because the augmented Lagrangian provides

the needed regularization.

III. A NALYSIS PRELIMINARIES

A. Scope of the analysis: assumptions and approximations

Performance evaluation of the D-RLS algorithm is much more involved than that of e.g., D-LMS [16],

[26]. The challenges are well documented for the classical (centralized) LMS and RLS filters [23], [29],

and results for the latter are less common and typically involve simplifying approximations. What is more,

the distributed setting introduces unique challenges in the analysis. These include space-time sensor data

and multiple sources of additive noise, a consequence of imperfect sensors and communication links.

In order to proceed, a few typical modeling assumptions are introduced to delineate the scope of the

ensuing stability and performance results. For allj ∈ J , it is assumed that:

(a1) Sensor observations adhere to the linear modelxj(t) = hT
j (t)s0 + ǫj(t), where the zero-mean

white noise{ǫj(t)} has varianceσ2
ǫj

;

(a2) Vectors{hj(t)} are spatio-temporally white with covariance matrixRhj
≻ 0p×p; and

(a3) Vectors{hj(t)}, {ǫj(t)}, {ηj′j (t)}j′∈Nj
and {η̄j′j (t)}j′∈Nj

are independent.

Assumptions (a1)-(a3) comprise the widely adoptedindependence setting, for sensor observations that are

linearly related to the time-invariant parameter of interest; see e.g., [29, pg. 110], [23, pg. 448]. Clearly,

(a2) can be violated in, e.g., FIR filtering of signals (regressors) with a shift structure as in the distributed

power spectrum estimation problem described in [26] and [15]. Nevertheless, the steady-state performance
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results extend accurately to the pragmatic setup that involves time-correlated sensor data; see also the

numerical tests in Section V. In line with a distributed setting such as a WSN, the statistical profiles of

both regressors and the noise quantities vary across sensors (space), yet they are assumed to remain time

invariant. For a related analysis of a distributed LMS algorithm operating in a nonstationary environment,

the reader is referred to [16].

In the particular case of the D-RLS algorithm, a unique challenge stems from the stochastic matrices

Φ−1
j (t) present in the local estimate updates (16). Recalling (10),it is apparent thatΦ−1

j (t) depends

upon thewhole historyof local regression vectors{hj(τ)}tτ=0. Even obtainingΦ−1
j (t)’s distribution or

computing its expected value is a formidable task in general, due to the matrix inversion operation. It is for

these reasons that some simplifying approximations will beadopted in the sequel, to carry out the analysis

that otherwise becomes intractable.

Neglecting the regularization term in (10) that vanishes exponentially ast → ∞, the matrixΦj(t) is

obtained as an exponentially weighted moving average (EWMA). The EWMA can be seen as an average

modulated by a sliding window of equivalent length1/(1 − λ), which clearly grows asλ → 1. This

observation in conjunction with (a2) and the strong law of large numbers, justifies the approximation

Φj(t) ≈ E[Φj(t)] =
Rhj

1− λ
, 0 ≪ λ < 1 and t → ∞. (19)

The expectation ofΦ−1
j (t), on the other hand, is considerably harder to evaluate. To overcome this

challenge, the following approximation will be invoked [3], [23]

E[Φ−1
j (t)] ≈ E−1[Φj(t)] ≈ (1− λ)R−1

hj
, 0 ≪ λ < 1 and t → ∞. (20)

It is admittedly a crude approximation at first sight, becauseE
[

X−1
]

6= E[X]−1 in general, for any random

variableX. However, experimental evidence suggests that the approximation is sufficiently accurate for all

practical purposes, when the forgetting factor approachesunity [23, p. 319].

B. Error-form D-RLS

The approach here to steady-state performance analysis relies on an ‘averaged’ error-form system

representation of D-RLS in (13)-(16), whereΦ−1
j (t) in (16) is replaced by the approximation(1−λ)R−1

hj
,

for sufficiently larget. Somehow related approaches were adopted in [3] and [1]. Other noteworthy analysis

techniques include the energy-conservation methodology in [35], [23, p. 287], and stochastic averaging [29,

p. 229]. For performance analysis of distributed adaptive algorithms seeking time-invariant parameters, the

former has been applied in e.g., [13], [14], while the lattercan be found in [26].
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Towards obtaining such error-form representation, introduce the local estimation errors{y1,j(t) := sj(t)−
s0}Jj=1 and multiplier-based quantities{y2,j(t) :=

1
2

∑

j′∈Nj
(vj′

j (t− 1)−v
j
j′(t− 1))}Jj=1. It turns out that

a convenient global state to describe the spatio-temporal dynamics of D-RLS in (13)-(16) isy(t) :=

[yT
1 (t) yT

2 (t)]
T = [yT

1,1(t) . . . y
T
1,J(t) y

T
2,1(t) . . . y

T
2,J(t)]

T ∈ R
2Jp. In addition, to concisely capture the

effects of both observation and communication noise on the estimation errors across the WSN, define the

Jp×1 noise supervectorsǫ(t) :=
∑t

τ=0 λ
t−τ [hT

1 (τ)ǫ1(τ) . . .h
T
J (τ)ǫJ (τ)]

T andη̄(t) := [η̄T1 (t) . . . η̄
T
J (t)]

T .

Vectors{η̄j(t)}Jj=1 represent the aggregate noise corrupting the multipliers received by sensorj at time

instantt, and are given by

η̄j(t) :=
1

2

∑

j′∈Nj

η̄
j′

j (t). (21)

Their respective covariance matrices are easily computable under (a2)-(a3). For instance,

Rǫ(t) := E[ǫ(t)ǫT (t)] =
1− λ2(t+1)

1− λ2
bdiag(Rh1

σ2
ǫ1 , . . . ,RhJ

σ2
ǫJ ) (22)

while the structure ofRη̄ := E[η̄(t)η̄T (t)] is given in Appendix E. Two additionalJp × 1 com-

munication noise supervectors are needed, namelyηα(t) :=
[

(ηα1 (t))
T . . . (ηαJ (t))

T
]T

and ηβ(t) :=
[

(ηβ1 (t))
T . . . (ηβ

J(t))
T
]T

, where forj ∈ J

ηαj (t) :=
c

4

∑

j′∈Nj

η
j′

j (t), η
β
j (t) :=

c

4

∑

j′∈Nj

η
j
j′(t). (23)

Finally, let (c/2)L⊗ Ip ∈ R
Jp×Jp be a matrix capturing the WSN connectivity pattern through the (scaled)

graph Laplacian matrixL, and defineR−1
h := bdiag(R−1

h1

, . . . ,R−1
hJ

). Based on these definitions, it is

possible to state the following important lemma established in Appendix A.

Lemma 1: Let (a1) and (a2) hold. Then fort ≥ t0 with t0 sufficiently large while0 ≪ λ < 1, the global

statey(t) approximately evolves according to

y(t+ 1) = bdiag((1− λ)R−1
h , IJp)







Υy(t) +





IJp

0Jp×Jp



 ǫ(t+ 1) +





IJp

0Jp×Jp



 η̄(t)

+





IJp

−IJp



ηα(t)−





IJp

−IJp



ηβ(t)







(24)

where the2Jp × 2Jp matrix Υ consists of theJp × Jp blocks [Υ]11 = −[Υ]21 = −Lc and [Υ]12 =

−[Υ]22 = −IJp. The initial conditiony(t0) should be selected asy(t0) = bdiag(IJp,Lc)y
′(t0), where

y′(t0) is any vector inR2Jp.

The convenience of representingy(t) as in Lemma 1 will become apparent in the sequel, especially

when investigating sufficient conditions under which the D-RLS algorithm is stable in the mean sense
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(Section IV-A). In addition, the covariance matrix of the state vectory(t) can be shown to encompass all

the information needed to evaluate the relevant per sensor and networkwide performance figures of merit,

the subject dealt with next.

C. Performance Metrics

When it comes to performance evaluation of adaptive algorithms, it is customary to consider as figures of

merit the so-called MSE, excess mean-square error (EMSE), and mean-square deviation (MSD) [23], [29].

In the present setup for distributed adaptive estimation, it is pertinent to address both global (network-

wide) and local (per-sensor) performance [14]. After recalling the definitions of the local a priori error

ej(t) := xj(t)−hT
j (t)sj(t−1) and local estimation errory1,j(t) := sj(t)− s0, the per-sensor performance

metrics are defined as

MSEj(t) := E[e2j (t)]

EMSEj(t) := E[(hT
j (t)y1,j(t− 1))2]

MSDj(t) := E[‖y1,j(t)‖2]

whereas their global counterparts are defined as the respective averages across sensors, e.g., MSE(t) :=

J−1
∑J

j=1E[ej(t)
2], and so on.

Next, it is shown that it suffices to evaluate the state covariance matrixRy(t) := E[y(t)yT (t)] in order

to assess the aforementioned performance metrics. To this end, note that by virtue of (a1) it is possible to

write ej(t) = −hT
j (t)y1,j(t−1)+ǫj(t). Becausey1,j(t−1) is independent of the zero-mean{hj(t), ǫj(t)}

under (a1)-(a3), from the previous relationship between the a priori and estimation errors one finds that

MSEj(t) = EMSEj(t) + σ2
ǫj . Hence, it suffices to focus on the evaluation of EMSEj(t), through which

MSEj(t) can also be determined under the assumption that the observation noise variances are known, or

can be estimated for that matter. IfRy1,j
(t) := E[y1,j(t)y

T
1,j(t)] denotes thej-th local error covariance

matrix, then MSDj(t) = tr(Ry1,j
(t)); and under (a1)-(a3), a simple manipulation yields

EMSEj(t) = E[tr((hT
j (t)y1,j(t− 1))2)] = tr(E[hj(t)h

T
j (t)y1,j(t− 1)yT

1,j(t− 1)])

= tr(E[hj(t)h
T
j (t)]E[y1,j(t− 1)yT

1,j(t− 1)]) = tr(Rhj
Ry1,j

(t− 1)).

To derive corresponding formulas for the global performance figures of merit, letRy1
(t) := E[y1(t)y

T
1 (t)]

denote the global error covariance matrix, and defineRh := E[Rh(t)] = bdiag(Rh1
, . . . ,RhJ

). It follows

that MSD(t) = J−1tr(Ry1
(t)), and EMSE(t) = J−1tr(RhRy1

(t− 1)).
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TABLE I

EVALUATION OF LOCAL AND GLOBAL FIGURES OF MERIT FROMRy(t)

MSD EMSE MSE

Local tr([Ry(t)]11,j) tr(Rhj
[Ry(t− 1)]11,j) tr(Rhj

[Ry(t− 1)]11,j) + σ
2

ǫj

Global J
−1tr([Ry(t)]11) J

−1tr(Rh[Ry(t− 1)]11) J
−1tr(Rh[Ry(t− 1)]11) + J

−1
∑J

j=1
σ
2

ǫj

It is now straightforward to recognize thatRy(t) indeed provides all the information needed to evaluate

the performance of the D-RLS algorithm. For instance, observe that the global error covariance matrix

Ry1
(t) corresponds to theJp× Jp upper left submatrix ofRy(t), which is denoted by[Ry(t)]11. Further,

the j-th p× p diagonal submatrix (j = 1, . . . , J) of [Ry(t)]11 is exactlyRy1,j
(t), and is likewise denoted

by [Ry(t)]11,j . For clarity, the aforementioned notational conventions regarding submatrices withinRy(t)

are illustrated in Fig. 1. In a nutshell, deriving a closed-form expression forRy(t) enables the evaluation

of all performance metrics of interest, as summarized in Table I. This task will be considered in Section

IV-B.

Remark 1 Since the ‘average’ system representation ofy(t) in (24) relies on an approximation that

becomes increasingly accurate asλ → 1 and t → ∞, so does the covariance recursion forRy(t) derived

in Section IV-B. For this reason, the scope of the MSE performance analysis of this paper pertains to the

steady-statebehavior of the D-RLS algorithm.

IV. STABILITY AND STEADY-STATE PERFORMANCEANALYSIS

In this section, stability and steady-state performance analyses are conducted for the D-RLS algorithm

developed in Section II-A. Because recursions (13)-(16) are stochastic in nature, stability will be assessed

both in the mean- and in the MSE-sense. The techniques presented here can be utilized with minimal

modifications to derive analogous results for the AD-MoM-based D-RLS algorithm in [15].

A. Mean Stability

Based on Lemma 1, it follows that D-RLS achieves consensus inthe mean sense on the parameters0.

Proposition 2: Under (a1)-(a3) and for0 ≪ λ < 1, D-RLS achieves consensus in the mean, i.e.,

lim
t→∞

E[y1,j(t)] = 0p, ∀ j ∈ J
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provided the penalty coefficient is chosen such that

0 < c <
4

(1− λ)λmax(R
−1
h (L⊗ Ip))

. (25)

Proof: Based on (a1)-(a3) and since the data is zero-mean, one obtains after taking expectations on

(24) thatE[y(t)] = bdiag((1−λ)R−1
h , IJp)ΥE[y(t−1)]. The following lemma characterizes the spectrum

of the transition matrixΩ := bdiag((1 − λ)R−1
h , IJp)Υ; see Appendix B for a proof.

Lemma 2: Regardless of the value ofc > 0, matrix Ω := bdiag((1 − λ)R−1
h , IJp)Υ ∈ R

2Jp×2Jp has

p eigenvalues equal to one. Further, the left eigenvectors associated with the unity eigenvalue have the

structurevT
i =

[

01×Jp qT
i

]

, whereqi ∈ nullspace(Lc) and i = 1, . . . , p. The remaining eigenvalues are

equal to zero, or else have modulus strictly smaller than oneprovidedc satisfies the bound(25).

Back to establishing the mean stability result, let{ui} and{vT
i } respectively denote the collection ofp

right and left eigenvectors ofΩ associated with the eigenvalue one. By virtue of Lemma 2 and provided

c satisfies the bound (25), one has thatlimt→∞Ωt =
∑p

i=1 uiv
T
i ; hence,

lim
t→∞

E[y(t)] =

(

p
∑

i=1

uiv
T
i

)

y(t0) =

(

p
∑

i=1

uiv
T
i

)

bdiag(IJp,Lc)y
′(t0)

=

(

p
∑

i=1

ui

[

01×Jp qT
i Lc

]

)

y′(t0) = 02Jp.

In obtaining the second equality, the structure fory(t0) that is given in Lemma 1 was used. The last

equality follows from the fact thatqi ∈ nullspace(Lc) as per Lemma 2, thus completing the proof.

Before wrapping up this section, a comment is due on the sufficient condition (25). When performing

distributed estimation under0 ≪ λ < 1, the condition is actually not restrictive at all since a1 − λ

factor is present in the denominator. Whenλ is close to one, any practical choice ofc > 0 will result in

asymptotically unbiased sensor estimates. Also note that the bound depends on the WSN topology, through

the scaled graph Laplacian matrixLc.

B. MSE Stability and Steady-State Performance

In order to assess the steady-state MSE performance of the D-RLS algorithm, we will evaluate the figures

of merit introduced in Section III-C. The limiting values ofboth the local (per sensor) and global (network-

wide) MSE, excess mean-square error (EMSE), and mean-square deviation (MSD), will be assessed. To

this end, it suffices to derive a closed-form expression for the global estimation error covariance matrix

Ry1
(t) := E[y1(t)y

T
1 (t)], as already argued in Section III-C.
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The next result provides an equivalent representation of the approximate D-RLS global recursion (24),

that is more suitable for the recursive evaluation ofRy1
(t). First, introduce thep(

∑J
j=1 |Nj |)× 1 vector

η(t) :=
[

{(η1
j′(t))

T }j′∈N1
. . . {(ηJj′(t))T }j′∈NJ

]T
(26)

which comprises the receiver noise terms corrupting transmissions of local estimates across the whole

network at time instantt, and defineRη := E[η(t)ηT (t)]. For notational convenience, letR−1
h,λ :=

(1− λ)R−1
h .

Lemma 3: Under the assumptions of Lemma 1, the global statey(t) in (24) can be equivalently written

as

y(t+ 1) = bdiag(IJp,Lc)z(t+ 1) +





R−1
h,λ

0Jp×Jp



 η̄(t) +





R−1
h,λ(Pα −Pβ)

Pβ −Pα



η(t). (27)

The inner statez(t) := [zT1 (t) z
T
2 (t)]

T is arbitrarily initialized at timet0, and updated according to

z(t+1) = Ψz(t)+Ψ





R−1
h,λ(Pα −Pβ)

C



η(t−1)+Ψ





R−1
h,λ

0Jp×Jp



 η̄(t−1)+





R−1
h,λ

0Jp×Jp



 ǫ(t+1) (28)

where the2Jp × 2Jp transition matrixΨ consists of the blocks[Ψ]11 = [Ψ]12 = −R−1
h,λLc and [Ψ]21 =

[Ψ]22 = LcL
†
c. Matrix C is chosen such thatLcC = Pβ − Pα, where the structure of the time-invariant

matricesPα andPβ is given in Appendix E.

Proof: See Appendix C.

The desired statey(t) is obtained as a rank-deficient linear transformation of theinner statez(t), plus a

stochastic offset due to the presence of communication noise. A linear, time-invariant, first-order difference

equation describes the dynamics ofz(t), and hence ofy(t), via the algebraic transformation in (27).

The time-invariant nature of the transition matrixΨ is due to the approximationsΦ−1
j (t) ≈ R−1

h,λ, j ∈ J ,

particularly accurate for large enought > t0. Examination of (28) reveals that the evolution ofz(t) is driven

by three stochastic input processes: i) communication noise η(t − 1) affecting the transmission of local

estimates; ii) communication noisēη(t − 1) contaminating the Lagrange multipliers; and iii) observation

noise withinǫ(t+ 1).

Focusing now on the calculation ofRy1
(t) = [Ry(t)]11 based on Lemma 3, observe from the upper

Jp× 1 block of y(t + 1) in (27) thaty1(t+ 1) = z1(t+ 1) +R−1
h,λ[η̄(t) + (Pα −Pβ)η(t)]. Under (a3),

z1(t+ 1) is independent of the zero-mean{η̄(t),η(t)}; hence,

Ry1
(t) = Rz1(t) +R−1

h,λ

[

Rη̄ + (Pα −Pβ)Rη(Pα −Pβ)
T
]

R−1
h,λ (29)
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which prompts one to obtainRz(t) := E[z(t)zT (t)]. Specifically, the goal is to extract its upper-leftJp×Jp

matrix block [Rz(t)]11 = Rz1(t). To this end, define the vectors

η̄λ(t) :=





R−1
h,λ

0Jp×Jp



 η̄(t), ηλ(t) :=





R−1
h,λ(Pα −Pβ)

C



η(t) (30)

whose respective covariance matricesRη̄
λ
:= E[η̄λ(t)η̄

T
λ (t)] andRη

λ
:= E[ηλ(t)η

T
λ (t)] have a structure

detailed in Appendix E. Also recall thatǫ(t) depends on the entire history of regressors up to time instant t.

Starting from (28) and capitalizing on (a2)-(a3), it is straightforward to obtain a first-order matrix recursion

to updateRz(t) as

Rz(t) = ΨRz(t− 1)ΨT +ΨRη̄
λ
ΨT +ΨRη

λ
ΨT +





R−1
h,λ

0Jp×Jp



Rǫ(t)





R−1
h,λ

0Jp×Jp





T

+ΨRzǫ(t)





R−1
h,λ

0Jp×Jp





T

+






ΨRzǫ(t)





R−1
h,λ

0Jp×Jp





T






T

(31)

:= ΨRz(t− 1)ΨT +Rν (t) (32)

where the cross-correlation matrixRzǫ(t) := E[z(t− 1)ǫT (t)] is recursively updated as (cf. Appendix D)

Rzǫ(t) = λΨRzǫ(t− 1) + λ





R−1
h,λ

0Jp×Jp



Rǫ(t− 1). (33)

For notational brevity in what follows,Rν (t) in (32) denotes all the covariance forcing terms in the

right-hand side of (31). The main result of this section pertains to MSE stability of the D-RLS algorithm,

and provides a checkable sufficient condition under which the global error covariance matrixRy1
(t) has

bounded entries ast → ∞. Recall that a matrix is termed stable, when all its eigenvalues lie strictly inside

the unit circle.

Proposition 3: Under (a1)-(a3) and for0 ≪ λ < 1, D-RLS is MSE stable, i.e.,limt→∞Ry1
(t) has bounded

entries, provided thatc > 0 is chosen so thatΨ is a stable matrix.

Proof: First observe that becauseλ ∈ (0, 1), it holds that

lim
t→∞

Rǫ(t) = lim
t→∞

(

1− λ2(t+1)

1− λ2

)

bdiag(Rh1
σ2
ǫ1
, . . . ,RhJ

σ2
ǫJ
)

=

(

1

1− λ2

)

bdiag(Rh1
σ2
ǫ1
, . . . ,RhJ

σ2
ǫJ
) =: Rǫ(∞). (34)
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If c > 0 is selected such thatΨ is a stable matrix, then clearlyλΨ is also stable, and hence the matrix

recursion (33) converges to the bounded limit

Rzǫ(∞) = (I2Jp − λΨ)−1





λR−1
h,λ

0Jp×Jp



Rǫ(∞). (35)

Based on the previous arguments, it follows that the forcingmatrixRν (t) in (31) will also attain a bounded

limit as t → ∞, denoted asRν (∞). Next, we show thatlimt→∞Rz(t) has bounded entries by studying

its equivalent vectorized dynamical system. Upon vectorizing (32), it follows that

vec[Rz(t)] =vec[ΨRz(t− 1)ΨT ] + vec[Rν (t)]

= (Ψ⊗Ψ) vec[Rz(t− 1)] + vec[Rν (t)]

where in obtaining the last equality we used the property vec[RST] =
(

TT ⊗R
)

vec[S]. Because the

eigenvalues ofΨ ⊗ Ψ are the pairwise products of those ofΨ, stability of Ψ implies stability of the

Kronecker product. As a result, the vectorized recursion will converge to the limit

vec[Rz(∞)] =
(

I(2Jp)2 −Ψ⊗Ψ
)−1

vec[Rν (∞)] (36)

which of course implies thatlimt→∞Rz(t) = Rz(∞) has bounded entries. From (29), the same holds true

for Ry1
(t), and the proof is completed.

Proposition 3 asserts that the AMA-based D-RLS algorithm isstable in the MSE-sense, even when the

WSN links are challenged by additive noise. While most distributed adaptive estimation works have only

looked at ideal inter-sensor links, others have adopted diminishing step-sizes to mitigate the undesirable

effects of communication noise [10], [11]. This approach however, limits their applicability to stationary

environments. Remarkably, the AMA-based D-RLS algorithm exhibits robustness to noise when using a

constant step-sizec, a feature that has also been observed for AD-MoM related distributed iterations in

e.g., [26], [27], and [15].

As a byproduct, the proof of Proposition 3 also provides partof the recipe towards evaluating the

steady-state MSE performance of the D-RLS algorithm. Indeed, by plugging (34) and (35) into (31) one

obtains the steady-state covariance matrixRν (∞). It is then possible to evaluateRz(∞), by reshaping

the vectorized identity (36). MatrixRz1(∞) can be extracted from the upper-leftJp× Jp matrix block of

Rz(∞), and the desired global error covariance matrixRy1
(∞) = [Ry(∞)]11 becomes available via (29).

Closed-form evaluation of the MSE(∞), EMSE(∞) and MSD(∞) for every sensorj ∈ J is now possible

givenRy1
(∞), by resorting to the formulae in Table I.

Before closing this section, an alternative notion of stochastic stability that readily follows from Proposi-

tion 3 is established here. Specifically, it is possible to show that under the independence setting assumptions
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(a1)-(a3) considered so far, the global error norm‖y1(t)‖ remains most of the time within a finite interval,

i.e., errors are weakly stochastic bounded (WSB) [28], [29,pg. 110]. This WSB stability guarantees that

for any θ > 0, there exists aζ > 0 such that Pr[‖y1(t)‖ < ζ] = 1− θ uniformly in time.

Corollary 1: Under (a1)-(a3) and for0 ≪ λ < 1, if c > 0 is chosen so thatΨ is a stable matrix, then the

D-RLS algorithm yields estimation errors which are WSB; i.e., limζ→∞ supt≥t0 Pr[‖y1(t)‖ ≥ ζ] = 0.

Proof: Chebyshev’s inequality implies that

Pr[‖y1(t)‖ ≥ ζ] ≤ E[‖y1(t)‖2]
ζ2

=
tr([Ry(t)]11)

ζ2
. (37)

From Proposition 3,limt→∞[Ry(t)]11 has bounded entries, implying thatsupt≥t0 tr([Ry(t)]11) < ∞. Taking

the limit asζ → ∞, while relying on the bound in (37) which holds for all valuesof t ≥ t0, yields the

desired result.

In words, Corollary 1 ensures that with overwhelming probability, local sensor estimates remain inside a

ball with finite radius, centered ats0. It is certainly a weak notion of stability, many times the only one that

can be asserted when the presence of, e.g., time-correlateddata, renders variance calculations impossible;

see also [26], [28]. In this case where stronger assumptionsare invoked, WSB follows immediately once

MSE-sense stability is established. Nevertheless, it is animportant practical notion as it ensures – on a

per-realization basis – that estimation errors have no probability mass escaping to infinity. In particular,

D-RLS estimation errors are shown WSB in the presence of communication noise; a property not enjoyed

by other distributed iterations for e.g., consenting on averages [34].

V. NUMERICAL TESTS

Computer simulations are carried out here to corroborate the analytical results of Section IV-B. Even

though based on simplifying assumptions and approximations, the usefulness of the analysis is justified

since the predicted steady-state MSE figures of merit accurately match the empirical D-RLS limiting

values. In accordance with the adaptive filtering folklore,whenλ → 1 the upshot of the analysis under the

independence setting assumptions is shown to extend accurately to the pragmatic scenario whereby sensors

acquire time-correlated data. ForJ = 15 sensors, a connected ad hoc WSN is generated as a realizationof

the random geometric graph model on the unit-square, with communication ranger = 0.3 [9]. To model

non-ideal inter-sensor links, additive white Gaussian noise (AWGN) with varianceσ2
η = 10−1 is added at

the receiving end. The WSN used for the experiments is depicted in Fig. 2.

With p = 4 and s0 = 1p, observations obey a linear model [cf. (a1)] with sensing WGN of spatial

variance profileσ2
ǫj
= 10−3αj, whereαj ∼ U [0, 1] (uniform distribution) and i.i.d.. The regression vectors
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hj(t) := [hj(t) . . . hj(t − p + 1)]T have a shift structure, and entries which evolve according to first-

order stable autoregressive processeshj(t) = (1 − ρ)βjhj(t − 1) +
√
ρωj(t) for all j ∈ J . We choose

ρ = 5 × 10−1, the βj ∼ U [0, 1] i.i.d. in space, and the driving white noiseωj(t) ∼ U [−
√
3σωj

,
√
3σωj

]

with spatial variance profile given byσ2
ωj

= 2γj with γj ∼ U [0, 1] and i.i.d.. Observe that the data is

temporally-correlated, implying that (a2) does not hold here.

For all experimental performance curves obtained by running the algorithms, the ensemble averages are

approximated by sample averaging200 runs of the experiment.

First, with λ = 0.95, c = 0.1 and δ = 100 for the AMA-based D-RLS algorithm, Fig. 3 depicts the

network performance through the evolution of the EMSE(t) and MSD(t) figures of merit. Both noisy

and ideal links are considered. The steady-state limiting values found in Section IV-B are extremely

accurate, even though the simulated data does not adhere to (a2), and the results are based on simplifying

approximations. As intuitively expected and analyticallycorroborated via the noise-related additive terms

in (29) and (31), the performance penalty due to non-ideal links is also apparent.

We also utilize the analytical results developed throughout this paper to contrast the per sensor perfor-

mance of D-RLS and the D-LMS algorithm in [16]. In particular, the parameters chosen for D-LMS are

µ = 5 × 10−3 and c = 1. Fig. 4 shows the values of the EMSEj(∞) and MSDj(∞) for all j ∈ J . As

expected, the second-order D-RLS scheme attains improved steady-state performance uniformly across all

sensors in the simulated WSN. In this particular simulated test, gains as high as5dB in estimation error can

be achieved at the price of increasing computational burdenper sensor, fromO(p) to O(p2) per iteration.

VI. CONCLUDING SUMMARY AND FUTURE WORK

A distributed RLS-like algorithm is developed in this paper, which is capable of performing adaptive

estimation and tracking using WSNs in which sensors cooperate with single-hop neighbors. The WSNs

considered here are quite general since they do not necessarily possess a Hamiltonian cycle, while the inter-

sensor links are challenged by communication noise. Distributed iterations are derived after: i) reformulating

in a separable way the exponentially weighed least-squares(EWLS) cost involved in the classical RLS

algorithm; and ii) applying the AMA to minimize this separable cost in a distributed fashion. The AMA

is especially well-suited to capitalize on the strict convexity of the EWLS cost, and thus offer significant

reductions in computational complexity per sensor, when compared to existing alternatives. This way, salient

features of the classical RLS algorithm are shown to carry over to a distributed WSN setting, namely

reduced-complexity estimation when a state and/or data model is not available and fast convergence rates

are at a premium.
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An additional contribution of this paper pertains to a detailed steady-state MSE performance analysis,

that relies on an ‘averaged’ error-form system representation of D-RLS. The theory is developed under

some simplifying approximations, and resorting to the independence setting assumptions. This way, it is

possible to obtain accurate closed-form expressions for both the per sensor and network-wide relevant

performance metrics ast → ∞. Sufficient conditions under which the D-RLS algorithm is stable in the

mean- and MSE-sense are provided as well. As a corollary, theD-RLS estimation errors are also shown

to remain within a finite interval with high probability, even when the inter-sensor links are challenged

by additive noise. Numerical simulations demonstrated that the analytical findings of this paper extend

accurately to a more realistic WSN setting, whereby sensorsacquire temporally correlated sensor data.

Regarding the performance of the D-RLS algorithm, there arestill several interesting directions to pursue

as future work. First, it would be nice to establish a stochastic trajectory lockingresult which formally

shows that asλ → 1, the D-RLS estimation error trajectories closely follow the ones of its time-invariant

‘averaged’ system companion. Second, the steady-state MSEperformance analysis was carried out when

0 ≪ λ < 1. For the infinite memory case in whichλ = 1, numerical simulations indicate that D-RLS

provides mean-square sense-consistent estimates, even inthe presence of communication noise. By formally

establishing this property, D-RLS becomes an even more appealing alternative for distributed parameter

estimation in stationary environments. While the approximations used in this paper are no longer valid

when λ = 1, for Gaussian i.i.d. regressors matrixΦ−1(t) is Wishart distributed with known moments.

Under these assumptions, consistency analysis is a subjectof ongoing investigation.

APPENDIX

A. Proof of Lemma 1: Let t0 be chosen large enough to ensure that

lim
t→t0

Φj(t) = lim
t→t0

t
∑

τ=0

λt−τhj(τ)h
T
j (τ) + J−1λtΦ0 ≈

Rhj

1− λ
, j ∈ J .

For t > t0, consider replacingΦ−1
j (t) in (16) with the approximation(1− λ)R−1

hj
for its expected value,

to arrive at the ‘average’ D-RLS system recursions

v
j′

j (t) = v
j′

j (t− 1) +
c

2

[

sj(t)− (sj′(t) + η
j′

j (t))
]

, j′ ∈ Nj (38)

sj(t+ 1) = (1− λ)R−1
hj
ψj(t+ 1)− 1

2
(1− λ)R−1

hj

∑

j′∈Nj

[

v
j′

j (t)− (vj
j′(t) + η̄

j′

j (t))
]

(39)
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After summing(vj′

j (t)− v
j
j′(t))/2 over j′ ∈ Nj, it follows from (38) that for allj ∈ J

y2,j(t+ 1) :=
1

2

∑

j′∈Nj

(vj′

j (t)− v
j
j′(t)) = y2,j(t) +

c

2

∑

j′∈Nj

(sj(t)− sj′(t))−
c

4

∑

j′∈Nj

(ηj′

j (t)− η
j
j′(t)) (40)

= y2,j(t) +
c

2

∑

j′∈Nj

(y1,j(t)− y1,j′(t))− ηαj (t) + ηβj (t), (41)

where the last equality was obtained after adding and subtracting c|Nj |s0 from the right-hand side of (40),

and relying on the definitions in (23). Next, starting from (39) and upon: i) using (a1) to eliminate

ψj(t+ 1) =

t+1
∑

τ=0

λt+1−τhj(τ)h
T
j (τ)s0 +

t+1
∑

τ=0

λt+1−τhj(τ)ǫj(τ) ≈
Rhj

1− λ
s0 +

t+1
∑

τ=0

λt+1−τhj(τ)ǫj(τ)

from (39); ii) recognizingy2,j(t + 1) in the right-hand side of (39) and substituting it with (41);and iii)

replacing the sums of noise vectors with the quantities defined in (21) and (23); one arrives at

y1,j(t+ 1) = (1− λ)R−1
hj



− c

2

∑

j′∈Nj

(y1,j(t)− y1,j′(t))− y2,j(t)





+ (1− λ)R−1
hj

[

t+1
∑

τ=0

λt+1−τhj(τ)ǫj(τ) + η
α
j (t)− ηβj (t) + η̄j(t)

]

. (42)

What remains to be shown is that after stacking the recursions (42) and (41) forj = 1, . . . , J to form

the one fory(t + 1), we can obtain the compact representation in (24). Examining (41) and (42), it is

apparent that a common matrix factor bdiag((1−λ)R−1
hj

, IJp) can be pulled out to symplify the expression

for y(t + 1). Consider first the forcing terms in (24). Stacking the channel noise terms from (42) and

(41), readily yields the last three terms inside the curly brackets in (24). Likewise, stacking the terms
∑t+1

τ=0 λ
t+1−τhj(τ)ǫj(τ) for j = 1, . . . , J yields the second term due to the observation noise; recall the

definition of ǫ(t + 1). This term as well as the vectors̄ηj(t) are not present in (41), which explains the

zero vector at the lower part of the second and third terms inside the curly brackets of (24).

To specify the structure of the transition matrixΥ, note that the first term on the right-hand side of (41)

explains why[Υ]22 = IJp. Similarly, the second term inside the first square bracketsin (42) explains why

[Υ]12 = −IJp. Next, it follows readily that upon stacking the terms(c/2)
∑

j′∈Nj
(y1,j(t)−y1,j′(t)), which

correspond to a scaled Laplacian-based combination ofp × 1 vectors, one obtains[(c/2)L ⊗ Ip]y1(t) =

Lcy1(t). This justifies why[Υ]11 = −[Υ]21 = −Lc.

A comment is due regarding the initialization fort = t0. Although the vectors{y1,j(t0)}Jj=1 are

decoupled so thaty1(t0) can be chosen arbitrarily, this is not the case for{y2,j(t0)}Jj=1 which are coupled

and satisfy
J
∑

j=1

y2,j(t) =

J
∑

j=1

∑

j′∈Nj

(vj′

j (t− 1)− v
j
j′(t− 1)) = 0p, ∀ t ≥ 0. (43)
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The coupling across{y2,j(t)}Jj=1 dictatesy2(t0) to be chosen in compliance with (43), so that the system

(24) is equivalent to (38) and (39) for allt ≥ t0. Let y2(t0) = Lcy
′
2(t0), wherey′

2(t0) is any vector inRJp.

Then, it is not difficult to see thaty2(t0) satisfies the conservation law (43). In conclusion, for arbitrary

y′(0) ∈ R
2Jp the recursion (24) should be initialized asy(0) = bdiag(IJp,Lc)y

′(0), and the proof of

Lemma 1 is completed. �

B. Proof of Lemma 2: Recall the structure of matrixΥ given in Lemma 1. A vectorvT
i :=

[

vT
1,i vT

2,i

]

with {vj,i}2j=1 ∈ R
Jp×1 is a left eigenvector ofΩ associated to the eigenvalue one, if and only if it solves

the following linear system of equations

−vT
1,i(1− λ)R−1

h Lc + vT
2,iLc = vT

1,i

−vT
1,i(1− λ)R−1

h + vT
2,i = vT

2,i

The second equation can only be satisfied forv1,i = 0Jp, and upon substituting this value in the first

equation one obtains thatv2,i ∈ nullspace(Lc) = nullspace(L ⊗ Ip) for all values ofc > 0. Under the

assumption of a connected ad hoc WSN, nullspace(L) = span(1J ) and hence nullspace(L ⊗ Ip) is a

p-dimensional subspace.

Following steps similar to those in [27, Appendix H], it is possible to express the eigenvalues ofΩ

that are different from one as the roots of a second-order polynomial. Such a polynomial does not have

an independent term, so that some eigenvalues are zero. Withrespect to the rest of the eigenvalues, it is

possible to show that their magnitude is upper bounded byλmax(IJp−(1−λ)R−1
h Lc). Hence, it is possible

to selectc > 0 such thatλmax(IJp − (1− λ)R−1
h Lc) < 1, or equivalently|1− (1− λ)λmax(R

−1
h Lc)| < 1,

which is the same as condition (25). �

C. Proof of Lemma 3: The goal is to establish the equivalence between the dynamical systems in (24)

and (27) for allt ≥ t0, when the inner state is arbitrarily initialized asz(t0) = y′(t0). We will argue by

induction. Fort = t0, it follows from (28) thatz(t0 + 1) = Ψy′(t0) + [R−1
h,λ 0T ]T ǫ(t0 + 1), since (by

convention) there is no communication noise fort < t0. Upon substitutingz(t0 + 1) into (27), we find

y(t0+1) = bdiag(IJp,Lc)Ψy′(t0)+





R−1
h,λ

0Jp×Jp



 (ǫ(t0+1)+ η̄(t0))+





R−1
h,λ(Pα −Pβ)

Pβ −Pα



η(t0). (44)

Note that: i) bdiag(IJp,Lc)Ψ = Υbdiag(IJp,Lc); ii) y(t0) = bdiag(IJp,Lc)y
′(t0) for the system in

Lemma 1; and iii)ηα(t) = Pαη(t), while ηβ(t) = Pβη(t) [cf. Appendix E]. Thus, the right-hand side of

(44) is equal to the right-hand side of (24) fort = t0.

Suppose next that (27) and (28) hold true fory(t) andz(t), with t ≥ t0. The same will be shown for

y(t+ 1) andz(t+ 1). To this end, replacey(t) with the right-hand side of (27) evaluated at timet, into
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(24) to obtain

y(t+ 1) = bdiag(R−1
h,λ, IJp)







Υbdiag(IJp,Lc)z(t) +Υ





R−1
h,λ

0Jp×Jp



 η̄(t− 1) +





IJp

0Jp×Jp



 ǫ(t+ 1)

+Υ





R−1
h,λ(Pα −Pβ)

Pβ −Pα



η(t− 1) +





IJp

0Jp×Jp



 η̄(t) +





IJp

−IJp



ηα(t)−





IJp

−IJp



ηβ(t)







= bdiag(IJp,Lc)



Ψz(t) +Ψ





R−1
h,λ

0Jp×Jp



 η̄(t− 1) +Ψ





R−1
h,λ(Pα −Pβ)

C



η(t− 1)

+





R−1
h,λ

0Jp×Jp



 ǫ(t+ 1)



+





R−1
h,λ

0Jp×Jp



 η̄(t) +





R−1
h,λ(Pα −Pβ)

Pβ −Pα



η(t) (45)

where in obtaining the last equality in (45), the following were used: i) bdiag(IJp,Lc)Ψ = Υbdiag(IJp,Lc)

; ii) the relationship betweenηα(t),ηβ(t) andη(t) given in Appendix E; and iii) the existence of a matrix

C such thatLcC = Pβ −Pα. This made possible to extract the common factor bdiag(IJp,Lc) and deduce

from (45) thaty(t+ 1) is given by (27), whilez(t+ 1) is provided by (28).

In order to complete the proof, one must show the existence ofmatrix C. To this end, via a simple

evaluation one can check that nullspace(Lc) ⊆ nullspace(PT
β −PT

α ), and sinceLc is symmetric, one has

nullspace(Lc)⊥range(Lc). As nullspace(PT
β −PT

α )⊥range(Pβ −Pα), it follows that range(Pβ −Pα) ⊆
range(Lc), which further implies that there existsC such thatLcC = Pβ −Pα. �

D. Derivation of (33): First observe that the noise supervectorǫ(t) obeys the first-order recursion

ǫ(t) :=

t
∑

τ=0

λt−τ [hT
1 (τ)ǫ1(τ) . . .h

T
J (τ)ǫJ (τ)]

T = λǫ(t− 1) + [hT
1 (t)ǫ1(t) . . .h

T
J (t)ǫJ (t)]

T . (46)

Because under (a3) the zero-mean{ǫj(t)}j∈J are independent ofz(t− 1) [cf. (28)], it follows readily that

Rzǫ(t) := E[z(t − 1)ǫT (t)] = λE[z(t − 1)ǫT (t − 1)]. Plugging the expression forz(t − 1) and carrying

out the expectation yields

E[z(t− 1)ǫT (t− 1)] = ΨE[z(t− 2)ǫT (t− 1)] +Ψ





R−1
h,λ(Pα −Pβ)

C



E[η(t− 3)ǫT (t− 1)]

+Ψ





R−1
h,λ

0Jp×Jp



E[η̄(t− 3)ǫT (t− 1)] +





R−1
h,λ

0Jp×Jp



E[ǫ(t− 1)ǫT (t− 1)]

= ΨRzǫ(t− 1) +





R−1
h,λ

0Jp×Jp



Rǫ(t− 1). (47)

The second equality follows from the fact that the zero-meancommunication noise vectors are independent

of ǫ(t− 1). Scaling (47) byλ yields the desired result.
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E. Structure of matrices Pα, Pβ , Rη̄ , Rη , Rη̄
λ
, and Rη

λ
: In order to relate the noise supervectors

ηα(t) and ηβ(t) with η(t) in (26), introduce twoJp × (
∑J

j=1 |Nj|)p matricesPα := [p1 . . .pJ ]
T and

Pβ := [p′
1 . . .p

′
J ]

T . The (
∑J

j=1 |Nj|)p × p submatricespj , p′
j are given bypj := [(pj,1)

T . . . (pj,J)
T ]T

andp′
j := [(p′

j,1)
T . . . (p′

j,J)
T ]T , with pj,r,pj′,r defined forr = 1, . . . , J as

pT
j,r :=







c
4b

T
|Nr|,r(j)

⊗ Ip if j ∈ Nr

0p×|Nr|p if j /∈ Nr

, (p′
j,r)

T :=







c
411×|Nr| ⊗ Ip if r = j

0p×|Nr|p if r 6= j
.

Note thatr(j) ∈ {1, . . . , |Nr|} denotes the order in whichηrj(t) appears in{ηr
j′(t)}j′∈Nr

[cf. (26)]. It is

straightforward to verify thatηα(t) = Pαη(t) andηβ(t) = Pβη(t).

Moving on to characterize the structure ofRη̄ andRη , from (21) and recalling that communication

noise vectors are assumed uncorrelated in space [cf. (a3)],it follows that

Rη̄ = bdiag





∑

j′∈N1\{1}

Rη
1,j′

, . . . ,
∑

j′∈NJ\{J}

Rη
J,j′



 .

Likewise, it follows from (26) thatRη is a block diagonal matrix with a total of
∑J

j=1 |Nj| diagonal

blocks of sizep× p, namely

Rη = bdiag
(

{Rη
j′ ,1

}j′∈N1
, . . . , {Rη

j′,J
}j′∈NJ

)

.

Note also that the blocksRη
j,j

= 0p×p for all j ∈ J , since a sensor does not communicate with itself. In

both cases, the block diagonal structure of the covariance matrices is due to the spatial uncorrelatedness

of the noise vectors.

What is left to determine is the structure ofRη̄
λ

andRη
λ
. From (30) one readily obtains

Rη̄
µ
=





R−1
h,λ

0Jp×Jp



Rη̄





R−1
h,λ

0Jp×Jp





T

, Rη
µ
=





R−1
h,λ(Pα −Pβ)

C



Rη





R−1
h,λ(Pα −Pβ)

C





T

.

(48)
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Fig. 1. The covariance matrixRy(t) and some of its inner submatrices that are relevant to the performance evaluation of the

D-RLS algorithm.
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Fig. 2. An ad hoc WSN withJ = 15 sensors, generated as a realization of the random geometricgraph model on the unity

square, with communication ranger = 0.3.
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Fig. 3. Global steady-state performance evaluation. D-RLSis ran with ideal links and when communication noise with variance

σ
2

η = 10−1 is present.
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Fig. 4. Local steady-state performance evaluation. D-RLS is compared to the D-LMS algorithm in [16].
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