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Abstract—In practical applications, decision-makers with het-
erogeneous dynamics may be engaged in the same decision-
making process. This motivates us to study distributed Nash
equilibrium seeking for games in which players are mixed-
order (first- and second-order) integrators influenced by un-
known dynamics and external disturbances in this paper. To
solve this problem, we employ an adaptive neural network to
manage unknown dynamics and disturbances, based on which a
distributed Nash equilibrium seeking algorithm is developed by
further adapting concepts from gradient-based optimization and
multi-agent consensus. By constructing appropriate Lyapunov
functions, we analytically prove convergence of the reported
method. Theoretical investigations suggest that players’ actions
would be steered to an arbitrarily small neighborhood of the
Nash equilibrium, which is also testified by simulations.

Index Terms—Mixed-order integrators; Nash equilibrium;
neural network; distributed network.

I. INTRODUCTION

Game theory acts as an effective technique for investigating

interactive decision-making situations involving multiple par-

ticipants. Typical examples that fall into the game theoretic

framework include economic dispatch problems [1], charging

coordination among electric vehicles [2], energy consumption

coordination in the smart grid [3], global optimization [4],

and formation control of multi-agent systems [5]. The wide

applications of games motivate many researchers to direct

their energies to the development of Nash equilibrium seeking

algorithms, leading to fruitful results in this field. For instance,

games in which players are first-order integrators, second-

order integrators, high-order integrators and linear-invariant

dynamic ones were respectively investigated in [6]- [13].

Games in which players are described by Euler-Lagrange sys-

tems were investigated in [14] and hybrid games, in which both

discrete-time players and continuous-time players are engaged,

were addressed by the authors in [15]. It is worth mentioning
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that most of existing works focused on games in which

players have homogeneous dynamics and related results on

games with heterogeneous players are quite limited. However,

with distinct computation abilities, working environment and

dynamics, decision-makers exhibit significant and remarkable

heterogeneity in various perspectives. Steered by the incen-

tive to accommodate heterogeneity among different entities,

heterogeneous multi-agent systems have attracted quite a few

attention. For example, the authors in [16]- [18] and [19]

were concerned with formation control, output regulation as

well as optimal coordination in linear multi-agent systems

respectively, in which the constant matrices associated with

the agents’ dynamics are different from each other. Nonlinear

systems with heterogeneous dimensions were considered in

[20]. Moreover, second-order systems with time-varying gains

and distinct inertia were explored in [21]. Among various

kinds of heterogeneities, systems with both first- and second-

order agents are of great interest since velocity-driven vehicles

may work and collaborate with acceleration-driven ones [22].

The authors in [23] dealt with consensus for a category

of multi-agent systems where the engaged agents are de-

scribed by first-order integrators as well as second-order

integrators without using knowledge on the agents’ velocity

information. In addition, average consensus problems were

addressed in [22] under similar settings. Consensus protocols

were considered to be subject to bounded delays for mixed-

order systems in a discrete-time scenario in [24]. However,

few results on games in which players’ dynamics are of

different order have been reported, especially when both

nonlinear dynamics and disturbances are involved. Therefore,

this paper focuses on the establishment of distributed Nash

equilibrium seeking algorithms for games with mixed-order

participants. Moreover, as in many practical situations, e.g.,

physical hydraulic systems [25], air hybrid vehicles [26] and

marine surface vessels [27], external disturbances and un-

modeled dynamics are inevitable due to complex working

environment of engineering actuators and limited knowledge

about the explicit system model, this paper further considers

that players’ dynamics are influenced by unknown nonlinear

dynamics and time-varying disturbances. Noticing that radial

basis function neural network (RBFNN) has been proven to

be effective for approximating unknown continuous mappings

over a compact domain (see, e.g., [28]- [31]), this paper takes

the benefits of RBFNN to establish robust Nash equilibrium

seeking strategies for the considered mixed-order games. With

http://arxiv.org/abs/2009.12744v3


some preliminary findings presented in [32], we give the core

contributions and novelties of this manuscript as follows.

1) This paper accommodates games with mixed-order

integrator-type players who are suffering from both

unknown nonlinear dynamics and time-varying distur-

bances. In comparison with the state of art, the setting

has rarely been explored. The presented exploration

provides a unified viewpoint on how to simultaneously

deal with first- and second-order players and offers

convenience for the applications of games in mixed-

order multi-agent systems.

2) Un-modeled but Lipschitz nonlinear dynamics and dis-

turbances are addressed through adapting an adaptive

neural network. By compensating players’ dynamics

with the approximated value generated by the neural

network, a distributed Nash equilibrium seeking strat-

egy is developed for mixed-order games. This paper

significantly improves its conference version [32] by

considering the disturbances and nonlinear dynamics

that are unknown beforehand.

3) The convergence property of the reported algorithm

is analytically investigated on the basis of Lyapunov

stability analysis. The mathematical investigations show

that the reported method is capable of steering players’

actions and velocities respectively to be arbitrarily close

to the Nash equilibrium and zero.

We organize the remaining sections as below. Related

preliminary knowledge is offered in Section II and Section

III shows the problem in consideration. Method development

and the corresponding analysis are provided in Section IV.

Numerical illustrations are offered in Section V. Furthermore,

concluding statements are illustrated in Section VI.

II. PRELIMINARIES

Algebraic graph theory: Graph G = (N, E) is given by

a vertex set N = {1, 2, · · · , N}, together with the associated

edge set E ⊆ N×N. This paper considers that G is undirected

in the sense that for any (i, j) ∈ E , we can derive that (j, i) ∈
E . Furthermore, the graph is connected provided that for every

pair of distinct vertices, there exists a path. The adjacency

matrix and Laplacian matrix of G are defined as A = [aij ]
and L = D −A, respectively, in which aij = 1 if (j, i) ∈ E ,

else, aij = 0 (aii = 0), D is a diagonal matrix with its ith

diagonal entry being
∑N

j=1 aij and the notation B = [bij ]
illustrates a matrix whose (i, j)th entry is bij [6].

Radial basis function neural networks: A continuous

function l(z) : RN → R
N can be estimated on a compact

domain z ∈ Ωz ⊂ R
N by

lNN (z) = WTS(z), (1)

in which W ∈ R
q×N is an adjustable weight ma-

trix and q is the neuron number. Moreover, S(z) =
[s1(z), s2(z), · · · , sq(z)]T is the activation function given by

si(z) = exp

[−(z − µi)
T (z − µi)

ρ2i

]

, i = 1, 2, · · · , q, (2)

in which µi = [µi1, µi2, · · · , µiN ]T denotes the center of

the receptive field, and ρi denotes the width of the Gaussian

function [28].

Then, for z ∈ Ωz and any arbitrary small positive constant ε̄,

there exist a weight matrix W ∗ ∈ R
q×N and a neural number

q so that

l(z) = W ∗TS(z) + ε, (3)

in which ε is the estimation error that satisfies |ε| ≤ ε̄ [28].

Lemma 1: [28] Assume that V (t) ≥ 0 is a continuous

function defined for t ≥ 0 and V (0) is bounded. Then, if

V̇ (t) ≤ −aV (t) + b, (4)

where a > 0, b > 0 are constants, we can obtain that

V (t) ≤ V (0)e−at +
b

a
(1− e−at). (5)

Lemma 2: [35] For any ǫ > 0 and η ∈ R,

0 ≤ |η|−ηtanh(
η

ǫ
) ≤ Kǫ, (6)

where K = e−(K+1).

III. PROBLEM DESCRIPTION

Consider a game containing N players, in which the player

set is given by N = {1, 2, · · · , N}. Suppose that n (n ≥ 1
and n < N ) of them are first-order integrators whose actions

are steered by

ẋi = ui + gi(x) + di(t), i ∈ Nf , (7)

in which xi ∈ R, ui ∈ R, gi(x) ∈ R, di(t) ∈ R, respectively

represent for the action, the control signal to be designed, the

unknown dynamics and the external, time-varying disturbance

of player i. Moreover, x is a vector containing all players’

actions, i.e., x = [x1, x2, · · · , xN ]T and Nf is the set of first-

order players, i.e., Nf = {1, 2, · · · , n}. Furthermore, assume

that the rest of players are second-order integrators whose

actions evolve according to

ẋi = vi,

v̇i = ui + gi(x) + di(t), i ∈ Ns,
(8)

in which xi ∈ R, vi ∈ R, ui ∈ R, gi(x) ∈ R and di(t) ∈ R,

respectively denote the action, velocity, control signal, un-

known dynamics and disturbance of player i. In addition,

Ns is the set of second-order integrators, i.e., Ns = {n +
1, n+2, · · · , N}. Based on the above notations, it is clear that

N = Nf

⋃

Ns. Associate each player i, i ∈ N with a cost func-

tion fi(x), which can be alternatively denoted as fi(xi,x−i)
by defining x−i = [x1, x2, · · · , xi−1, xi+1, · · · , xN ]T . The

purpose of this manuscript is to construct control signals

ui, i ∈ N so that players’ actions x can be steered to the

Nash equilibrium x∗ = (x∗
i ,x

∗
−i), that satisfies

fi(x
∗
i ,x

∗
−i) ≤ fi(xi,x

∗
−i), (9)

for xi ∈ R, i ∈ N.

For notational simplicity, let ∇ifi(x) = ∂fi(x)
∂xi

and

∇2
ijfi(x) = ∂2fi(x)

∂xi∂xj
. The mathematical development of this

paper is based on the subsequent conditions.



Assumption 1: For each i ∈ N, fi(x) is C2 and ∇ifi(x) is

globally Lipschitz with constant l̄i for x ∈ R
N .

Assumption 2: The players can exchange information

through an undirected and connected graph G.

For notational convenience, let A0 = diag{aij} for i, j ∈ N

denote a diagonal matrix with its diagonal elements succes-

sively being a11, a12, · · · , a1N , a21, · · · , aNN . Moreover, let

⊗ denote the Kronecker product. Then, under Assumption 2,

−(L⊗ IN×N +A0), in which IN×N is an identity matrix of

dimension N ×N , is Hurwitz. Hence, P(L⊗ IN×N +A0) +
(L⊗IN×N +A0)P = Q for some symmetric positive definite

matrices P and Q of compatible dimensions [6].

Assumption 3: For x, z ∈ R
N ,

(x− z)T (P(x)− P(z)) ≥ m||x− z||2, (10)

where m > 0 is a constant and P(x) =
[∇1f1(x),∇2f2(x), · · · ,∇NfN (x)]T .

Assumption 4: For x ∈ R
N , ∇2

ijfi(x) is bounded for i ∈
Ns, j ∈ N.

Assumption 5: For each i ∈ N, gi(x) is globally Lipschitz

with constant ηi and di(t) is bounded.

Remark 1: Note that in [34], it is required that the un-

modeled dynamics gi(x) is sufficiently smooth with its first

two partial derivatives being bounded provided that x is

bounded. Similarly, the disturbance di(t) is supposed to be

sufficiently smooth with ḋi(t) and d̈i(t) being bounded in [7]

[34]. From Assumption 5, we see that these conditions are

relaxed to some extent in this paper. Moreover, compared with

internal model based approaches in [9] [10], we do not assume

disturbances to be of specific forms and different from [12]

that considered quadratic games, this paper considers games

with general costs. Besides, this paper considers mixed-order

system dynamics while in the aforementioned works, players’

dynamics are of the same order. The heterogeneity would

further introduce some difficulties in the establishment and

analytical study of the seeking algorithms.

IV. MAIN RESULTS

In this section, a distributed Nash equilibrium seeking

strategy will be developed on the basis of adaptive neural net-

works, consensus algorithms and gradient-based optimization

algorithms. Moreover, the corresponding convergence analysis

will be provided.

A. Method Establishment

To realize disturbance rejection in the considered game, the

core idea of this paper is to adapt RBFNN (see, e.g., [28]

and many other references) to accommodate the unknown

disturbances and dynamics. With RBFNN, the control input

of player i for i ∈ Nf is designed as

ui = −k1(xi − zi)− ŴT
i Si(yi)− φi, (11)

in which k1 is a positive constant, zi ∈ R and Ŵi ∈ R
qi×1 (qi

is the number of neurons for player i) are adaptively updated

according to

żi = −k2∇ifi(yi), (12)

in which k2 is a positive constant, ∇ifi(yi) = ∇ifi(x) |x=yi

and
˙̂
Wi = βSi(yi)(xi − zi), (13)

if ŴT
i Ŵi < Wmax or alternatively, ŴT

i Ŵi = Wmax and (xi−
zi)Ŵ

T
i Si(yi) < 0, where β and Wmax are positive constants.

In addition,

˙̂
Wi = βSi(yi)(xi − zi)− β

(xi − zi)Ŵ
T
i Si(yi)

ŴT
i Ŵi

Ŵi, (14)

if ŴT
i Ŵi = Wmax and (xi − zi)Ŵ

T
i Si(yi) ≥ 0. Note that it

is required that ŴT
i (0)Ŵi(0) ≤ Wmax, which can be achieved

by chosen the initial value of Ŵi to be zero. Moreover, in

(11),

φi = δtanh

(Kδ(xi − zi)

ǫ

)

, (15)

in which ǫ > 0, δ > 0 are constants. Furthermore, yi ∈ R
N

and is defined as yi = [yi1, yi2, · · · , yiN ]T where yij is

produced by

ẏij = −k3

(

N
∑

k=1

aik(yij − ykj) + aij(yij − x̄j)

)

, j ∈ N,

(16)

where k3 > 0 is a constant, x̄j = zj for j ∈ Nf and x̄j = xj

for j ∈ Ns.

Remark 2: The control input designed for first-order

integrator-type players in (11) contains a regulation term

xi − zi, which is employed to regulate xi to zi. As the

purpose of this paper is to drive x to x∗, such a regulation

term actually transfers the problem to drive z, defined as

z = [z1, z2, · · · , zN ]T , to x∗, which is achieved by (12)

and (16). In addition, ŴT
i Si(yi) and φi are designed based

on RBFNN to address unknown dynamics and time-varying

disturbances.

By similar ideas, for second-order players, the control input

of player i for i ∈ Ns is designed as

ui = −k2k4∇ifi(yi)− k4vi − ŴT
i Si(yi)− φi, (17)

where k4 > 0 is a constant and Ŵi is updated according to

˙̂
Wi = βSi(yi)(k2∇ifi(yi) + vi), (18)

if ŴT
i Ŵi < Wmax or alternatively ŴT

i Ŵi = Wmax and

(k2∇ifi(yi) + vi)Ŵ
T
i Si(yi) < 0. Moreover, if ŴT

i Ŵi =
Wmax and (k2∇ifi(yi) + vi)Ŵ

T
i Si(yi) ≥ 0,

˙̂
Wi =βSi(yi)(k2∇ifi(yi) + vi)

− β
(k2∇ifi(yi) + vi)Ŵ

T
i Si(yi)

ŴT
i Ŵi

Ŵi,
(19)

where ŴT
i (0)Ŵi(0) ≤ Wmax.

Furthermore,

φi = δtanh

(Kδ(k2∇ifi(yi) + vi)

ǫ

)

, (20)

and

ẏij = −k3

(

N
∑

k=1

aik(yij − ykj) + aij(yij − x̄j)

)

, j ∈ N.

(21)



Remark 3: The control input design for second-order play-

ers in (17) is similar to the control design in (11), where

ŴT
i Si(yi) and φi are included to accommodate unknown

dynamics and disturbances. Different from (11), stabilization

of players’ velocities vi is needed and achieved by the negative

feedback of velocity vi in (17). In addition, it should be noted

that multi-agent consensus components in (16) and (21) are of

the same format but x̄i = xi for second-order players, while

x̄j = zj for first-order integrators.

Recalling the dynamics of first- and second-order integrator-

type players in (7) and (8), we get that for first-order players,

ẋf =− k1(xf − zf )− [ŴT
i Si(yi)]Nf

− [φi]Nf
+ [gi(x)]Nf

+ [di(t)]Nf
,

żf =− k2[∇ifi(yi)]Nf
,

(22)

and for second-order players,

ẋs =vs,

v̇s = − k4vs − k2k4[∇ifi(yi)]Ns
− [ŴT

i Si(yi)]Ns

− [φi]Ns
+ [gi(x)]Ns

+ [di(t)]Ns
,

(23)

and for y = [yT
1 ,y

T
2 , · · · ,yT

N ]T ,

ẏ = −k3(L ⊗ IN×N +A0)(y − 1N ⊗ x̄), (24)

where x̄ = [x̄1, x̄2, · · · , x̄N ]T , xf = [xi]Nf
, zf = [zi]Nf

,

xs = [xi]Ns
, vs = [vi]Ns

and the notation [pi]Nf
([pi]Ns

)
defines the concatenated vector of pi for i ∈ Nf (i ∈ Ns).

By similar analysis in [28], the subsequent result, which is

needed in the convergence analysis of the proposed method,

can be obtained.

Lemma 3: By the adaptive laws in (13)-(14) and (18)-(19),

ŴT
i (t)Ŵi(t) ≤ Wmax, ∀i ∈ N, (25)

for all t ≥ 0.

Proof: The analysis follows that of [28] and the details

are provided in Section VII-A for the convenience of readers.

In the subsequent section, the analytical investigation on the

proposed method will be presented.

B. Convergence Analysis

Before we continue to present the convergence results, the

following supportive result is provided.

Lemma 4: Under Assumptions 1-5, there exists a positive

constant k∗2 so that for each k2 > k∗2 , there exist positive

constants k∗1(k2), k
∗
3(k2) so that for k1 > k∗1 , k3 > k∗3 , there

exists a positive constant k∗4(k2, k3) so that for k4 > k∗4 ,
x(t), zf (t), vs(t) and y(t) generated by the proposed method

in (22)-(24) stay bounded given that their initial values are

bounded.

Proof: Let v̄i = k2∇ifi(yi) + vi for i ∈ Ns and v̄s =
[v̄i]Ns

. Then,

v̄s = vs + k2[∇ifi(yi)]Ns
. (26)

Therefore,

ẋs =v̄s − k2[∇ifi(yi)]Ns
,

˙̄vs =v̇s + k2H1[ẏi]Ns

=− k4v̄s + k2H1[ẏi]Ns
− [ŴT

i Si(yi)]Ns

− [φi]Ns
+ [gi(x)]Ns

+ [di(t)]Ns
,

(27)

where H1 ∈ R
(N−n)×N(N−n) is a matrix whose ith row

is [0T
N(i−1),∇

2
i1fi(yi), · · · ,∇2

iNfi(yi),0
T
N(N−n−i)] for i ∈

{1, 2, 3, · · · , N − n}.

To obtain the conclusion, define V =
∑4

i=1 Vi, in which

V1 =
1

2
(x̄− x∗)T (x̄− x∗), V2 =

1

2
v̄T
s v̄s,

V3 =
1

2
(xf − zf )

T (xf − zf ),

V4 =(y − 1N ⊗ x̄)TP(y − 1N ⊗ x̄).

(28)

Then, by Assumption 3,

V̇1 =(x̄− x∗)T ˙̄x

=(x̄− x∗)[żTf , ẋ
T
s ]

T

=− k2(x̄− x∗)T [∇ifi(yi)]N

+ (x̄ − x∗)T [0T
n , v̄

T
s ]

T

=− k2(x̄− x∗)T (P(x̄)− P(x∗))

+ k2(x̄− x∗)T (P(x̄)− [∇ifi(yi)]N)

+ (x̄ − x∗)T [0T
n , v̄

T
s ]

T

≤− k2m‖x̄− x∗‖2 + ‖x̄− x∗‖‖v̄s‖
+ k2 max

i∈N

{l̄i}‖x̄− x∗‖‖y− 1N ⊗ x̄‖,

(29)

where P(x̄) = P(x)|x=x̄ and

V̇2 =v̄T
s (−k4v̄s + k2H1[ẏi]Ns

)

+ v̄T
s (−[ŴT

i Si(yi)]Ns
− [φi]Ns

)

+ v̄T
s ([gi(x)]Ns

+ [di(t)]Ns
)

=− k4‖v̄s‖2 + k2v̄
T
s H1[ẏi]Ns

+ v̄T
s (−[ŴT

i Si(yi)]Ns
− [φi]Ns

)

+ v̄T
s ([gi(x)]Ns

+ [di(t)]Ns
)

≤− k4‖v̄s‖2 + as‖v̄s‖+ v̄T
s ([gi(x)]Ns

− [gi(x
∗)]Ns

)

+ k2k3b‖y− 1N ⊗ x̄‖‖v̄s‖,
(30)

in which b = sup[yi]Ns∈R(N−n)N‖H1‖‖L⊗IN×N +A0‖, as =√
N − n(

√
q
√
Wmax+δ+d+g), and d, g are positive constants

that satisfy |di(t)| < d, |gi(x∗)| < g for i ∈ N.

Moreover,

V̇3 =(xf − zf )
T (ẋf − żf )

=(xf − zf )
T (−k1(xf − zf ) + k2[∇ifi(yi)]Nf

)

+ (xf − zf )
T (−[ŴT

i Si(yi)]Nf
− [φi]Nf

)

+ (xf − zf )
T ([gi(x)]Nf

+ [di(t)]Nf
)

≤− k1‖xf − zf‖2 + af‖xf − zf‖
+ k2

√
N max

i∈N

{l̄i}‖xf − zf‖‖x̄− x∗‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y − 1N ⊗ x̄‖

+ (xf − zf )
T ([gi(x)]Nf

− [gi(x
∗)]Nf

),

(31)



where af =
√
n(
√
q
√
Wmax + δ+ d+ g) and we have utilized

that ‖[∇ifi(yi)]N‖ = ‖[∇ifi(yi)]N−P(x̄)+P(x̄)−P(x∗)‖ ≤
maxi∈N{l̄i}‖y− 1N ⊗ x̄‖+

√
N maxi∈N{l̄i}‖x̄− x∗‖ based

on Assumption 1.

Furthermore,

V̇4 =(ẏ − 1N ⊗ ˙̄x)TP(y − 1N ⊗ x̄)

+ (y − 1N ⊗ x̄)TP(ẏ − 1N ⊗ ˙̄x)

=− k3(y − 1N ⊗ x̄)T(L ⊗ IN×N +A0)P(y − 1N ⊗ x̄)

− k3(y − 1N ⊗ x̄)TP(L ⊗ IN×N +A0)(y − 1N ⊗ x̄)

− 2(y − 1N ⊗ x)TP1N ⊗ ˙̄x

≤− k3λmin(Q)‖y − 1N ⊗ x̄‖2

+ 2k2(y − 1N ⊗ x̄)TP1N ⊗ [∇ifi(yi)]N

− 2(y − 1N ⊗ x̄)TP1N ⊗ [0T
n , v̄

T
s ]

T

≤− k3λmin(Q)‖y − 1N ⊗ x̄‖2

+ 2k2
√
N max

i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖2

+ 2k2N max
i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖‖x̄− x∗‖

+ 2
√
N‖P‖‖y− 1N ⊗ x̄‖‖v̄s‖,

(32)

where the notation λmin(Q) denotes the minimum eigenvalue

of Q. Hence,

V̇ ≤ −k2m‖x̄− x∗‖2 − k1‖xf − zf‖2 − k4‖v̄s‖2

− (k3λmin(Q)− 2k2
√
N max

i∈N

{l̄i}‖P‖)‖y− 1N ⊗ x̄‖2

+ (1 +
√
N − nmax

i∈Ns

{ηi})‖x̄− x∗‖‖v̄s‖+ as‖v̄s‖

+ (2k2N max
i∈N

{l̄i}‖P‖+ k2 max
i∈N

{l̄i})

× ‖y− 1N ⊗ x̄‖‖x̄− x∗‖
+ (2

√
N‖P‖+ k2k3b)‖y − 1N ⊗ x̄‖‖v̄s‖

+ (k2
√
N max

i∈N

{l̄i}+
√
nmax

i∈Nf

{ηi})‖xf − zf‖‖x̄− x∗‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y− 1N ⊗ x̄‖

+ af‖xf − zf‖+
√
N − nmax

i∈Ns

{ηi}||v̄s||||xf − zf ||

+
√
nmax

i∈Nf

{ηi}||xf − zf ||2.
(33)

Therefore,

V̇ ≤− Ψ̄1||x̄− x∗||2 − Ψ̄2||xf − zf ||2 − Ψ̄3||v̄s||2

− Ψ̄4||y − 1N ⊗ x̄||2 + af ||xf − zf ||+ as||v̄s||,
(34)

where Ψ̄1 = k2m − 1+
√
N−nmaxi∈Ns{ηi}

2 − 1, Ψ̄2 =

k1−
√
nmaxi∈Nf

{ηi}−
(k2

√
N maxi∈N{l̄i}+

√
nmaxi∈Nf

{ηi})2

2 −
(k2 maxi∈N{l̄i})2

2 −
√
N−nmaxi∈Ns{ηi}

2 , Ψ̄3 = k4 −
1+

√
N−nmaxi∈Ns{ηi}

2 − (2
√
N‖P‖+k2k3b)

2

2 −
√
N−nmaxi∈Ns{ηi}

2

and Ψ̄4 = k3λmin(Q) − 2k2
√
N maxi∈N{l̄i}‖P‖ − 1 −

(2k2N maxi∈N{l̄i}‖P‖+k2 maxi∈N{l̄i})2
2 .

Hence, by choosing k2 to be sufficiently large, Ψ̄1 > 0.

Then, for fixed k2, we can choose k1 and k3 to be sufficiently

large such that Ψ̄2 > 0 and Ψ̄4 > 0. Then, for fixed k1, k2, k3,

we can choose k4 to be sufficiently large such that Ψ̄3 > 0.

By such a tuning rule,

V̇ ≤ −min{Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4}
max{λmax(P), 1

2}
V + af ||xf − zf ||+ as||v̄s||,

(35)

i.e.,

V̇ ≤ −min{Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4}
2max{λmax(P), 1

2}
V, (36)

for
√
V ≥ 2(af+as)max{λmax(P), 12}

min{Ψ̄1,Ψ̄2,Ψ̄3,Ψ̄4} from which the conclu-

sion can be easily derived.

From Lemma 4, it can be concluded that yi for i ∈ N would

stay bounded given that the control gains are suitably chosen

and the initial values of the variables are bounded. If this is

the case, it is clear that for any positive constant ε̄, there exist

W ∗
i and qi that satisfy

gi(yi) = W ∗
i
T
Si(yi) + εi, (37)

where εi < ε̄ as yi belongs to a compact set.

Therefore, by (22)-(24) and (37), it is derived that for first-

order integrators,

ẋf =− k1(xf − zf )− [W̃T
i Si(yi)]Nf

− [φi]Nf
+ [gi(x)− gi(yi)]Nf

+ [di(t) + εi]Nf
,

żf =− k2[∇ifi(yi)]Nf
,

(38)

and for second-order players,

ẋs =vs,

v̇s =− k4vs − k2k4[∇ifi(yi)]Ns
− [W̃T

i Si(yi)]Ns

− [φi]Ns
+ [gi(x)− gi(yi)]Ns

+ [di(t) + εi]Ns
.

(39)

In addition,

ẏ = −k3(L ⊗ IN×N +A0)(y − 1N ⊗ x̄). (40)

The subsequent supportive lemmas are given before we

provide the convergence results.

Lemma 5: Suppose that W ∗T
i W ∗

i ≤ Wmax for i ∈ N. Then,

for i ∈ Nf ,

W̃T
i

(

˙̂
Wi

β
− Si(yi)(xi − zi)

)

≤ 0, (41)

and for i ∈ Ns,

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

≤ 0, (42)

in which W̃i = Ŵi −W ∗
i for i ∈ N.

Proof: See Section VII-B.

Lemma 6: Let δ ≥ |εi|+ |di(t)| for i ∈ N and t ≥ 0. Then,

for each i ∈ Nf ,

(xi − zi)(di(t) + εi − φi) ≤ ǫ, (43)

and for each i ∈ Ns,

v̄i(di(t) + εi − φi) ≤ ǫ. (44)

Proof: See Section VII-C.



We are now well prepared to provide the convergence

analysis for the system in (38)-(40).

Theorem 1: Assume that Assumptions 1-5 hold and δ ≥
|εi| + |di(t)|, W ∗T

i W ∗
i ≤ Wmax for i ∈ N, t ≥ 0.

Then, for any pair of positive constants Λ and Ξ, there

exist positive constants β∗ and k∗2 so that for β > β∗ and

k2 > k∗2 , there exist positive constants k∗1 and k∗3 so that for

k1 > k∗1(k2), k3 > k∗3(k2), there exists a positive constant

k∗4(k2, k3) so that for k4 > k∗4 ,

‖x(t)− x∗‖ ≤ Ξ, ∀t > T, (45)

for some T ≥ 0 given that ‖[(x̄(0)−x∗)T ,vT
s (0), (y(0)−1N⊗

x̄(0))T , (xf (0)− zf (0))
T ]T ‖+∑N

i=1 W̃i(0)
T
W̃i(0) ≤ Λ.

Proof: Let V =
∑5

i=1 Vi, where

V1 =
1

2
(x̄ − x∗)T (x̄− x∗), V2 =

1

2
v̄T
s v̄s,

V3 =
1

2
(xf − zf )

T (xf − zf ),

V4 =(y − 1N ⊗ x̄)TP(y − 1N ⊗ x̄),

V5 =
1

2β

N
∑

i=1

W̃T
i W̃i.

(46)

Then, following the analysis in Lemma 4, we get that

V̇1 ≤− k2m‖x̄− x∗‖2 + ‖x̄− x∗‖‖v̄s‖
+ k2 max

i∈N

{l̄i}‖x̄− x∗‖‖y− 1N ⊗ x̄‖, (47)

and

V̇2 =v̄T
s
˙̄vs

=v̄T
s (−k4v̄s + k2H1[ẏi]Ns

)

+ v̄T
s (−[W̃T

i Si(yi)]Ns
− [φi]Ns

+ [di(t) + εi]Ns
)

+ v̄T
s [gi(x) − gi(yi)]Ns

=− k4‖v̄s‖2 + k2v̄
T
s H1[ẏi]Ns

+ v̄T
s (−[W̃T

i Si(yi)]Ns
− [φi]Ns

+ [di(t) + εi]Ns
)

+ v̄T
s [gi(x) − gi(yi)]Ns

≤− k4‖v̄s‖2 + k2k3b‖y− 1N ⊗ x̄‖‖v̄s‖
− v̄T

s [W̃
T
i Si(yi)]Ns

+ (N − n)ǫ

+ v̄T
s [gi(x) − gi(yi)]Ns

,

(48)

where the result in Lemma 6 has been utilized.

Moreover,

V̇3 =(xf − zf )
T (ẋf − żf )

=(xf − zf )
T (−k1(xf − zf ) + k2[∇ifi(yi)]Nf

)

+ (xf − zf )
T (−[W̃T

i Si(yi)]Nf
− [φi]Nf

)

+ (xf − zf )
T [di(t) + εi]Nf

)

+ (xf − zf )
T [gi(x)− gi(yi)]Nf

≤− k1‖xf − zf‖2 + nǫ

+ k2
√
N max

i∈N

{l̄i}‖xf − zf‖‖x̄− x∗‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y − 1N ⊗ x̄‖

− (xf − zf )
T [W̃T

i Si(yi)]Nf

+ (xf − zf )
T [gi(x)− gi(yi)]Nf

,

(49)

where the result in Lemma 6 has been utilized and

V̇4 ≤− k3λmin(Q)‖y − 1N ⊗ x̄‖2

+ 2k2
√
N max

i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖2

+ 2k2N max
i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖‖x̄− x∗‖

+ 2
√
N‖P‖‖y− 1N ⊗ x̄‖‖v̄s‖.

(50)

Furthermore,

V̇5 =

N
∑

i=1

W̃T
i

˙̃
Wi

β

=
n
∑

i=1

W̃T
i

˙̂
Wi

β
+

N
∑

i=n+1

W̃T
i

˙̂
Wi

β
.

(51)

Hence,

V̇ ≤ −k2m‖x̄− x∗‖2 − k1‖xf − zf‖2 − k4‖v̄s‖2

− (k3λmin(Q)− 2k2
√
N max

i∈N

{l̄i}‖P‖)‖y− 1N ⊗ x̄‖2

+ ‖x̄− x∗‖‖v̄s‖+Nǫ+ (2k2N max
i∈N

{l̄i}‖P‖

+ k2 max
i∈N

{l̄i})‖y − 1N ⊗ x̄‖‖x̄− x∗‖

+ (2
√
N‖P‖+ k2k3b)‖y − 1N ⊗ x̄‖‖v̄s‖

+ k2
√
N max

i∈N

{l̄i}‖xf − zf‖‖x̄− x∗‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y− 1N ⊗ x̄‖

+

n
∑

i=1

W̃T
i

(

˙̂
Wi

β
− Si(yi)(xi − zi)

)

+

N
∑

i=n+1

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

+ (xf − zf )
T [gi(x) − gi(yi)]Nf

+ v̄T
s [gi(x)− gi(yi)]Ns

.
(52)

As ||W̃i|| = ||Ŵi − W ∗
i || ≤ ||W ∗

i || + ||Ŵi|| ≤ 2
√
Wmax,

we get that 4NWmax −
∑N

i=1 W̃
T
i W̃i ≥ 0. Hence, by further

utilizing the results in Lemma 5,

V̇ ≤ −k2m‖x̄− x∗‖2 − k1‖xf − zf‖2 − k4‖v̄s‖2

− (k3λmin(Q)− 2k2
√
N max

i∈N

{l̄i}‖P‖)‖y− 1N ⊗ x̄‖2

+ (2k2N max
i∈N

{l̄i}‖P‖+ k2 max
i∈N

{l̄i})

× ‖y− 1N ⊗ x̄‖‖x̄− x∗‖
+ (2

√
N‖P‖+ k2k3b)‖y − 1N ⊗ x̄‖‖v̄s‖

+ k2
√
N max

i∈N

{l̄i}‖xf − zf‖‖x̄− x∗‖+ ‖x̄− x∗‖‖v̄s‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y− 1N ⊗ x̄‖

−
N
∑

i=1

W̃T
i W̃i +Nǫ+ 4NWmax

+ (xf − zf )
T [gi(x) − gi(yi)]Nf

+ v̄T
s [gi(x)− gi(yi)]Ns

.
(53)



Noticing that

‖x̄− x∗‖‖v̄s‖ ≤ 1

2
||x̄− x∗||2 + 1

2
||v̄s||2, (54)

and

k2 max
i∈N

{l̄i}(2N ||P||+ 1)||y − 1N ⊗ x̄||||x̄− x∗||

≤ (2N maxi∈N{l̄i}||P||+maxi∈N{l̄i})2
2

||x̄− x∗||2

+
k22
2
||y − 1N ⊗ x̄||2.

(55)

In addition,

(2
√
N ||P||+ k2k3b)||y − 1N ⊗ x̄||||v̄s||

≤
(√

N ||P||+ k23b

2

)

||v̄s||2

+

(√
N ||P||+ k22b

2

)

||y − 1N ⊗ x̄||2.

(56)

Furthermore,

k2
√
N max

i∈N

{l̄i}||xf − zf ||||x̄− x∗||

≤
√
N maxi∈N{l̄i}

2
||x̄− x∗||2

+

√
N maxi∈N{l̄i}k22

2
||xf − zf ||2,

(57)

and

k2
√
N max

i∈N

{l̄i}||xf − zf ||||y − 1N ⊗ x̄||

≤
√
N maxi∈N{l̄i}

2
||y − 1N ⊗ x̄||2

+

√
N maxi∈N{l̄i}k22

2
||xf − zf ||2.

(58)

Hence,

V̇ ≤− Φ̄1||x̄− x∗||2

− (k4 −
1

2
−
√
N ||P|| − k23b

2
)||v̄s||2

−
(

k1 −
√
N maxi∈N{l̄i}k22

2

−k22
√
N maxi∈N{l̄i}

2

)

||xf − zf ||2

−
(

k3λmin(Q)− 2k2
√
N max

i∈N

{l̄i}||P|| −
√
N ||P||

−k22
2

− k22b

2
−

√
N maxi∈N{l̄i}

2

)

||y − 1N ⊗ x̄||2

−
N
∑

i=1

W̃T
i W̃i + (xf − zf )

T [gi(x) − gi(yi)]Nf

+ v̄T
s [gi(x)− gi(yi)]Ns

+Nǫ+ 4NWmax.
(59)

where Φ̄1 = k2m − 1
2 − (2N maxi∈N{l̄i}||P||+maxi∈N{l̄i})2

2 −√
N maxi∈N{l̄i}

2 . Furthermore,

(xf − zf )
T [gi(x) − gi(yi)]Nf

≤
√
nmax

i∈Nf

{ηi}||xf − zf ||2

+max
i∈Nf

{ηi}||xf − zf ||||y − 1N ⊗ x̄||,
(60)

and similarly,

v̄T
s [gi(x) − gi(yi)]Ns

≤
√
N − nmax

i∈Ns

{ηi}||v̄s||||xf − zf ||

+max
i∈Ns

{ηi}||v̄s||||y − 1N ⊗ x̄||.
(61)

Let Φ̄2 = k4 − 1
2 −

√
N ||P|| − k2

3b

2 −
√
N−nmaxi∈Ns{ηi}

2 −
maxi∈Ns{ηi}

2 , Φ̄3 = k1 −
√
N maxi∈N{l̄i}k2

2

2 − k2
2

√
N maxi∈N{l̄i}

2 −
√
nmaxi∈Nf

{ηi} − maxi∈Nf
{ηi}

2 −
√
N−nmaxi∈Ns{ηi}

2 , and

Φ̄4 = k3λmin(Q) − 2k2
√
N maxi∈N{l̄i}||P|| − k2

2

2 −√
N ||P||− k2

2b

2 −
√
N maxi∈N{l̄i}

2 − maxi∈Nf
{ηi}

2 − maxi∈Ns{ηi}
2 ,

then,

V̇ ≤ −KV +Nǫ+ 4NWmax, (62)

where K = min{2Φ̄1, 2Φ̄2, 2Φ̄3,
Φ̄4

λmax(P) , 2β}.
Hence, by Lemma 1,

V (t) ≤ V (0)e−Kt +
Nǫ+ 4NWmax

K
, (63)

where K can be arbitrarily large by the following tuning rule:

choose k2 to be large enough so that Φ̄1 is sufficiently large.

Then, for fixed k2, choose k1, k3 such that Φ̄3 and Φ̄4 are

sufficiently large. Then, for fixed k3, choose k4 to be large

enough so that Φ̄2 is sufficiently large. If this is the case, K

is sufficiently large with sufficiently large β, indicating that

V (t) is decaying to be arbitrarily close to zero. Recalling the

definitions of the Lyapunov candidate function and v̄s, the

conclusion can be obtained. �

Remark 4: As Λ and Ξ can be any positive constants,

Theorem 1 indicates that for any bounded initialization, the

reported method (38)-(40) can drive x(t) to an arbitrary small

neighborhood of x∗. The main content of this paper focuses

on distributed Nash equilibrium seeking for games involving

mixed-order players. Note that when all players are first-order

integrators, i.e., n = N (second-order integrators, i.e., n = 0),

Theorem 1 illustrates that the method in (11)-(16) ((17)-(21))

steers players’ actions to an arbitrarily small neighborhood

of x∗ as well. Therefore, the presented analysis actually

provides a unified viewpoint for the analysis of both first-

and second-order players.

If there exist no unknown nonlinear and disturbance mod-

ulations (i.e., gi(x) + di(t)) in the players’ dynamics, the

corresponding estimation module can be removed from the

proposed algorithm. If this is the case, we get that for first-

order players,

ẋf =− k1(xf − zf ),

żf =− k2[∇ifi(yi)]Nf
,

(64)



and for second-order players,

ẋs =vs,

v̇s =− k4vs − k2k4[∇ifi(yi)]Ns
,

(65)

with

ẏ = −k3(L ⊗ IN×N +A0)(y − 1N ⊗ x̄), (66)

where the definitions for the variables and gains follow those

in (11)-(21). In this case, the subsequent result can be derived.

Theorem 2: Under Assumptions 1-5, there exists a positive

constant k∗2 so that for k2 > k∗2 , there exist positive constants

k∗1 and k∗3 so that for k1 > k∗1(k2), k3 > k∗3(k2), there

exists a positive constant k∗4(k2, k3) so that for k4 > k∗4 , the

Nash equilibrium x∗ is globally exponentially stable with the

strategy in (64)-(66).

Proof: Define

V =
1

2
(x̄ − x∗)T (x̄− x∗) +

1

2
v̄T
s v̄s

+
1

2
(xf − zf )

T (xf − zf )

+ (y − 1N ⊗ x̄)TP(y − 1N ⊗ x̄).

(67)

Then, following the proof of Theorem 1,

V̇ ≤− k2m‖x̄− x∗‖2 + ‖x̄− x∗‖‖v̄s‖
+ k2 max

i∈N

{l̄i}‖x̄− x∗‖‖y− 1N ⊗ x̄‖

− k4‖v̄s‖2 + k2k3b‖y− 1N ⊗ x̄‖‖v̄s‖
− k1‖xf − zf‖2

+ k2
√
N max

i∈N

{l̄i}‖xf − zf‖‖x̄− x∗‖

+ k2 max
i∈N

{l̄i}‖xf − zf‖‖y− 1N ⊗ x̄‖

− k3λmin(Q)‖y − 1N ⊗ x̄‖2

+ 2k2
√
N max

i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖2

+ 2k2N max
i∈N

{l̄i}‖P‖‖y− 1N ⊗ x̄‖‖x̄− x∗‖

+ 2
√
N‖P‖‖y− 1N ⊗ x̄‖‖v̄s‖.

(68)

Let Φ̄1 = k2m − 5
2 , Φ̄2 = k4 − 1

2 − (k2k3b)
2

2 −
√
N ||P||,

Φ̄3 = k3λmin(Q) − (k2 maxi∈N{l̄i})2
2 − 1

2 − maxi∈N{l̄i}k2

2 −
2k2

√
N maxi∈N{l̄i}‖P‖ − (k2N maxi∈N{l̄i}‖P‖)2 −√

N‖P‖, and Φ̄4 = k1 − (k2 maxi∈N{l̄i})2N
2 − k2 maxi∈N{l̄i}

2 .

Then, by choosing k2 > 5
2m , we get that Φ̄1 > 0 and then,

for fixed k2, we can choose k1 and k3 to be sufficiently large

such that Φ̄3 > 0, Φ̄4 > 0. Moreover, for fixed k2, k3, we can

choose k4 such that Φ̄2 > 0. By such a tuning rule, we get

that

V̇ ≤ −min{Φ̄1, Φ̄2, Φ̄3, Φ̄4}||E||2, (69)

in which E = [(x̄− x∗)T , v̄T
s , (xf − zf )

T , (y− 1N ⊗ x̄)T ]T .

Recalling the definition of V , the conclusion is drawn.

Compared with Theorem 1, it can be seen that Theorem

2 improves the semi-global results in Theorem 1 to global

versions without unknown dynamics and disturbances. In

addition, Assumption 4 can be further relaxed in this case

and the corresponding result is stated below.

Corollary 1: Assume that Assumptions 1-3 and 5 hold and

∇ijfi(x) for i ∈ N, j ∈ Ns are bounded if x is bounded.

1 2

4

3

5

Fig. 1: G among the vehicles.

Then, for any bounded initial condition, there exists a positive

constant k∗2 so that for k2 > k∗2 , there exist positive constants

k∗1 and k∗3 so that for k1 > k∗1(k2), k3 > k∗3(k2), there

exists a positive constant k∗4(k2, k3) so that for k4 > k∗4 , x(t)
exponentially converges to x∗ under (64)-(66).

Compared with Theorem 2, Corollary 1 illustrates that if

Assumption 4 is not satisfied, the corresponding result is

degraded to a semi-global counterpart by supposing that the

initial values of the variables are bounded.

V. NUMERICAL VERIFICATION

This section offers numerical verification of the reported

methods by a connectivity control game involving 5 vehicles

concerned in [34]. In the game, the cost function of vehicle i

is

fi(x) = hi(xi) + li(x), (70)

where xi = [xi1, xi2]
T ∈ R

2 and

hi(xi) = xT
i miixi + xT

i mi + i, (71)

in which mii =

[

i 0
0 i

]

,mi = [i, i]T . Moreover, l1(x) =

‖x1 − x2‖2, l2(x) = ‖x2 − x3‖2, l3(x) = ‖x3 − x2‖2,
l4(x) = ‖x4 − x2‖2+‖x4 − x5‖2 and l5(x) = ‖x5 − x1‖2. In

the presented example, x∗
i = [− 1

2 ,− 1
2 ]

T for i ∈ {1, 2, 3, 4, 5}
[34]. In the upcoming simulations, it is assumed that vehicles

1-3 are first-order integrators and vehicles 4-5 are second-order

integrators.

To be more specific, for i ∈ {1, 2, 3},

ẋi = ui + gi(x) + di(t), (72)

in which g1(x)+d1(t) = [x21+sin(t), x22+sin(t)]T , g2(x)+
d2(t) = [x2

21+x31+2sin(2t), x22+2sin(2t)]T , g3(x)+d3(t) =
[3x31+3sin(3t), 3x32+3sin(3t)]T . In addition, for i ∈ {4, 5},

ẋi =vi,

v̇i =ui + gi(x) + di(t),
(73)

where g4(x)+d4(t) = [4x41+4sin(4t), 4x42+4sin(4t)]T and

g5(x) + d5(t) = [5x51 + 5sin(5t), 5x52 + 5sin(5t)]T .
In the simulation, the numbers of the neurons of the

RBFNN are chosen as 11 and the centers of RBFNN activation

functions are −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5
for all vehicles. Furthermore, the variances are all set as 5

√
2.

In addition Wmax = 500, β = 100, δ = 10, ǫ = 0.01 and

Ŵi(0) is set as a zero matrix.

With x(0) = [−5, 8,−4,−6, 1, 8, 0,−8,−1, 10]T ,vs(0) =
[0, 0, 0, 0]T , the numerical results produced by (22)-(24) are

plotted in Figs. 2-3 by utilizing the communication graph in
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Fig. 2: The evolutions of vehicles’ positions generated by (22)-

(24).
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Fig. 3: vs(t) generated by (22)-(24).

Fig. 1. Fig. 2 plots players’ actions from which it is clear

that they would evolve to a small neighborhood of the Nash

equilibrium. In addition, Fig. 3 illustrates the evolution of

vs(t), from which it can be seen that velocities of the second-

order players would be driven to be sufficiently small. Hence,

the result in Theorem 1 is numerically testified.

Moreover, when there are no nonlinear dynamics and

disturbances, the strategy in (64)-(66) is testified with the

corresponding numerical results plotted in Figs. 4-5. Figs.

4-5 illustrate vehicles’ positions and velocities of the force-

actuated vehicles, respectively. From these figures, it is seen

that vehicles’ positions evolve to be close to x∗ and velocities

of the second-order ones evolve to be close to zero. To this

end, Theorem 2 is testified.

VI. CONCLUSIONS

This paper accommodates distributed Nash equilibrium

seeking for mixed-order games with both first-order integrator-

type participants and second-order integrator-type participants.

In particular, players’ dynamics are considered to be influ-

enced by unknown but Lipschitz nonlinear dynamics and

time-varying disturbances. To address unknown dynamics and

achieve disturbance rejection, an adaptive neural network

based approach, i.e., RBFNN, is adapted. Through suitably

Fig. 4: The evolutions of vehicles’ positions produced by (64)-

(66).
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Fig. 5: vs(t) generated by (64)-(66).

designing control inputs and choosing control parameters,

it is proven that the reported methods are able to steer

players’ actions and velocities of second-order integrators to

be arbitrarily close to Nash equilibrium and zero, respectively.
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VII. APPENDIX

A. Proof of Lemma 3

For each i = Nf , Ŵi is generated by (13)-(14). For

notational clarity, define Yi = ŴT
i Ŵi. Then, if Yi < Wmax,

ŴT
i (t)Ŵi(t) ≤ Wmax, ∀i ∈ N holds. Moreover, if Yi = Wmax

and (xi − zi)Ŵ
T
i Si(yi) < 0,

Ẏi = 2ŴT
i

˙̂
Wi = 2β(xi − zi)Ŵ

T
i Si(yi) < 0,

indicating that Yi deceases and hence ŴT
i (t)Ŵi(t) ≤

Wmax, ∀i ∈ N holds. In addition, if Yi = Wmax and (xi −
zi)Ŵ

T
i Si(yi) ≥ 0,

Ẏi = 2ŴT
i

˙̂
Wi

= 2β(xi − zi)Ŵ
T
i Si(yi)− 2β(xi − zi)Ŵ

T
i Si(yi)

= 0,

indicating that ŴT
i (t)Ŵi(t) ≤ Wmax, ∀i ∈ N holds.

Summarizing the above cases, we get that for each i ∈ Nf ,

ŴT
i (t)Ŵi(t) ≤ Wmax holds.

By similar arguments, it can be derived that for each i ∈
Ns, ŴT

i (t)Ŵi(t) ≤ Wmax holds as well, thus drawing the

conclusion.

B. Proof of Lemma 5

For each i ∈ Ns, if
˙̂
Wi = βSi(yi)v̄i

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

= 0.

Moreover, if
˙̂
Wi = βSi(yi)v̄i − β

v̄iŴ
T
i Si(yi)

ŴT
i
Ŵi

Ŵi, we know

that ŴT
i Ŵi = Wmax and v̄iŴ

T
i Si(yi) ≥ 0. If this is the case,

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

= − v̄iŴ
T
i Si(yi)

ŴT
i Ŵi

(W̃T
i Ŵi),

in which

W̃T
i Ŵi = (Ŵi −W ∗

i )
T Ŵi

= ŴT
i Ŵi −W ∗T

i (W̃i +W ∗
i )

= ŴT
i Ŵi −W ∗T

i W ∗
i − (Ŵi − W̃i)

T W̃i

= ŴT
i Ŵi −W ∗T

i W ∗
i + W̃T

i W̃i − W̃T
i Ŵi.

Hence, it can be obtained that

W̃T
i Ŵi =

1

2
(ŴT

i Ŵi −W ∗T
i W ∗

i + W̃T
i W̃i) ≥ 0, (74)



in which we have utilized the conclusions that ŴT
i Ŵi =

Wmax ≥ W ∗T
i W ∗

i and W̃T
i W̃i ≥ 0.

Therefore,

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

≤ 0 (75)

for i ∈ Ns.

Summarizing the above two cases, it can be obtained that

for each i ∈ Ns,

W̃T
i

(

˙̂
Wi

β
− Si(yi)v̄i

)

≤ 0. (76)

By similar arguments, it can be easily obtained that

W̃T
i

(

˙̂
Wi

β
− Si(yi)(xi − zi)

)

≤ 0, (77)

for i ∈ Nf .

C. Proof of Lemma 6

For each i ∈ Nf , we have

(xi − zi)(di(t) + εi − φi)

≤|xi − zi||di(t) + εi| − (xi − zi)
Tφi

≤δ|xi − zi| − δ(xi − zi)tanh

(Kδ(xi − zi)

ǫ

)

≤ǫ,

(78)

by Lemma 2. By similar arguments, (44) can be obtained.
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