
A ROBUST AND PRECISE METHOD FOR SOLVING THE PERMUTATION PROBLEM
OF FREQUENCY-DOMAIN BLIND SOURCE SEPARATION

Hiroshi Sawada Ryo Mukai Shoko Araki Shoji Makino

NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

{sawada,ryo,shoko,maki}@cslab.kecl.ntt.co.jp

ABSTRACT

This paper presents a robust and precise method for solving
the permutation problem of frequency-domain blind source
separation. It is based on two previous approaches: the di-
rection of arrival estimation and the inter-frequency corre-
lation. We discuss the advantages and disadvantages of the
two approaches, and integrate them to exploit their respec-
tive advantages. We also present a closed form formula to
estimate the directions of source signals from a separating
matrix obtained by ICA. Experimental results show that our
method solved permutation problems almost perfectly for
a situation that two sources were mixed in a room whose
reverberation time was 300 ms.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only sensor observations,
which consist of mixtures of the original signals. If the
mixture is instantaneous, we can directly employ indepen-
dent component analysis (ICA) [1, 2] to separate the mixed
signals. In a real room environment, however, signals are
mixed in a convolutive manner with reverberations. This
makes the BSS problem difficult since we need a set of fil-
ters, not just scalars, to separate the signals. One of the ma-
jor methods to obtain such separating filters is frequency-
domain BSS [3–10], where a convolutive mixture in the
time domain is converted into multiple instantaneous mix-
tures in the frequency domain. Thus, we can apply ICA to
instantaneous mixtures in every frequency bin.

The problem with frequency-domain BSS is the indeter-
minacy of permutation that is inherent to ICA. We need to
map a separated signal at each frequency to a target source
signal so that we properly reconstruct the separated signal
in the time domain. Various approaches have been proposed
to the permutation problem. Making separating matrices
smooth in the frequency domain is one solution. This has
been realized by averaging separating matrices with adja-
cent frequencies [3], limiting the filter length in the time
domain [4], or considering the coherency of separating ma-

trices at adjacent frequencies [5]. Another approach is based
on direction of arrival (DOA) estimation in array signal pro-
cessing. By analyzing the directivity patterns formed by a
separating matrix, source directions can be estimated and
therefore permutations can be aligned [6, 7]. If source sig-
nals are speech, we can employ the inter-frequency correla-
tions of signal envelopes to align permutations [8, 9]. Each
of these approaches has different characteristics. They may
perform well under certain specific conditions but not oth-
ers. Therefore, we believe that integrating some of these
approaches is one way of obtaining better performance.

In this paper, we propose a new method for solving the
permutation problem, which incorporates two of the previ-
ous approaches. The first is the DOA approach, which is
described in Sec. 3. The second is based on inter-frequency
correlations, and is discussed in Sec. 4. Our new method
is proposed in Sec. 5. The experimental results reported in
Sec. 6 are very promising.

As another contribution, we propose a new way of es-
timating the direction of sources in Sec. 3.2. Unlike con-
ventional methods [6, 7], it does not require the calculation
of directivity patterns. Instead, it calculates the directions
of target signals directly from an estimated mixing matrix,
which is the inverse of a separating matrix obtained by ICA.

2. FREQUENCY-DOMAIN BSS

Suppose that P source signals sp(t) are mixed and observed
at Q sensors xq(t) =

∑P
p=1

∑
k hqp(k)sp(t − k), where

hqp(k) represents the impulse response from source p to
sensor q. The goal of BSS is to obtain separated signals
y1(t), . . . , yP (t) that are estimates of the source signals s1(t),
. . . , sP (t). The separating system typically consists of a
set of FIR filters wrq(k) that produces separated signals
yr(t) =

∑Q
q=1

∑
k wrq(k)xq(t− k).

This paper employs a frequency-domain approach where
frequency responses Wrq(f) of the separating filter wrq(k)
are first calculated. ByL-point short time DFT, time-domain
signals xq(t) are converted into frequency-domain time-series
signals Xq(f,m), where f = 0, fs/L, . . . , fs(L−1)/L
(fs: sampling frequency), and m is the frame index. As-



sume that X(f,m) is a Q-dimensional vector X(f,m) =
[X1(f,m), . . . , XQ(f,m)]T. To obtain frequency responses
Wrq(f), we solve the ICA problem

Y(f,m) = W(f)X(f,m),

where Y(f,m) = [Y1(f,m), . . . , YP (f,m)]T and W(f)
is a P ×Q matrix whose elements are Wrq(f). Yr(f,m) is
a frequency-domain representation of y r(t).

The ICA algorithm we use is the information maximiza-
tion approach [1] combined with the natural gradient [2]. A
separating matrix W is improved by the learning rule

∆W = µ [I − 〈Φ(Y)YH 〉]W,

where µ is a step-size parameter, 〈·〉 denotes the averaging
operator, and Φ(·) is a nonlinear function for a complex sig-
nal Yr = |Yr| ej·angle(Yr). We use

Φ(Yr) = − ∂

∂|Yr| log p(|Yr|) ej·angle(Yr)

as a nonlinear function assuming that the density p(Yr) is
independent of the angle [10].

An ICA solution has permutation ambiguity: if we per-
mute the rows of W(f), it is still a solution. Thus, we have
to align the rows of W(f) so that Yr(f,m) at all frequen-
cies correspond to the same source sp(t). After solving this
permutation problem, we obtain separating filters wrq(k) by
applying inverse DFT to Wrq(f).

3. THE DIRECTION OF ARRIVAL APPROACH

In this section, we discuss how to estimate the directions
of source signals, and align permutations based on them. If
half the minimum wavelength of the source signals is longer
than the sensor spacing (e.g., conditions in Table 1), there
is no spatial aliasing. In most of such cases, each row of
W(f) forms spatial nulls in the directions of jammer sig-
nals and extracts a target signal in another direction. Once
we estimate the directions Θ(f) = [θ1(f), . . . , θP (f)]T of
target signals extracted by every row of W(f), we can align
the permutations according to Θ(f).

3.1. Directivity patterns and null directions

We first review the method [6, 7] that solves the permuta-
tion problem by plotting the directivity pattern of each out-
put Yr(f,m). Let dq be the position of sensor q (we assume
linearly arranged array sensors), and θp be the direction of
source sp (the direction orthogonal to the array is 90◦). In
beamforming theory [11], the frequency response of an im-
pulse response hqp(t) is approximated as

Hqp(f) = ej2πfc−1dq cos θp , (3.1)

where c is the propagation velocity. In this approximation,
we assume a plane wavefront and no reverberation. The
frequency response Brp(f) from a source sp to a separated
signal yr can be expressed as Brp(f) =

∑Q
q=1 Wrq(f) ·
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Fig. 1. Directivity patterns

Hqp(f) =
∑Q

q=1 Wrq(f) · ej2πfc−1dq cos θp . If we regard θp

as a variable θ, the formula is expressed as

Br(f, θ) =
∑Q

q=1 Wrq(f) · ej2πfc−1dq cos θ. (3.2)

It changes according to the direction θ, and thus is called a
directivity pattern.

Figure 1 shows directivity patterns for two sources. The
upper part (3156 Hz) shows that output Y1 extracts a source
signal originating from around 45◦ and suppresses the other
signal coming from around 125◦, which is called a null di-
rection. With a similar consideration regarding Y2, we es-
timate the directions Θ(3156) = [45, 125]T of the target
signals. A simple way to solve the permutation problem is
to permute W(f) at each frequency so that the elements of
Θ(f) are sorted. However, not every frequency bin gives us
such an ideal directivity pattern. The lower part of Fig. 1 is
the pattern at a low frequency (176 Hz). We see that the null
is not well formed for Y1 and the null of Y2 is in an obscure
direction. In fact, we cannot estimate Θ(176) or decide a
permutation for this frequency with confidence.

Now we state three problems with this method: 1) direc-
tions of arrival cannot be well estimated at some frequen-
cies, especially at low frequencies where the phase differ-
ence caused by a sensor spacing is very small, 2) the cal-
culation of null directions by plotting directivity patterns is
time consuming, and 3) estimating DOAs from null direc-
tions is difficult when there are more than two sources. The
first problem will be solved in Sec. 5, and the other two
problems will be solved in the next two subsections.

3.2. Novel way of estimating DOAs from W−1

Instead of plotting directivity patterns and searching for the
minimum as a null direction, we propose a new way of es-
timating the directions Θ(f) of source signals directly from
the inverse W−1 of separating matrix W.



After ICA is solved, we can estimate the frequency re-
sponse of the mixing system by H(f) = W−1(f). An
element Hqp(f) of the matrix H(f) may have an arbitrary
amplitude. Since the approximation (3.1) of the mixing sys-
tem does not suit this situation, we remodel the mixing sys-
tem with attenuation Aqp (real-valued) and phase modula-
tion ejϕp at the origin:

Hqp(f) = Aqp ejϕpej2πfc−1dq cos θp .

Here, we should take account of the scaling and permutation
ambiguities of ICA: the columns of H(f) can have arbitrary
scales, and be permuted arbitrarily. The scaling ambiguity
can be eliminated by taking the ratio between two elements
Hqp(f) and Hq′p(f) corresponding to the same source p:

Hqp/Hq′p = Aqp/Aq′p e
j2πfc−1(dq−dq′ ) cos θp .

Then, taking the angle yields a formula for estimating θp :

θp = cos−1 angle(Hqp/Hq′p)
2πfc−1(dq − dq′)

. (3.3)

Because of the permutation ambiguity, θp may not corre-
spond to sp but to another source signal. This formula does
not incur the computational cost to search a directivity pat-
tern for the minimum. Moreover, it can be applied even
when there are more than two sources.

3.3. Equivalence between θp and a null direction

For a two-source case, we prove that θp calculated by (3.3)
is the same as a null direction that is the minimum of a direc-
tivity pattern. When |Br(f, θ)| is minimized, θ corresponds
to a null direction. Let αq = 2πfc−1dq and f be omitted in
(3.2). The value to be minimized is

J(θ) = Br(θ) · Br(θ)∗

= (Wr1 e
jα1 cos θ +Wr2 e

jα2 cos θ) ·
(W ∗

r1 e
−jα1 cos θ +W ∗

r2 e
−jα2 cos θ).

Let α = α2−α1. The first and second derivatives are
dJ
dθ = −α sin θ ·2 im(Wr1W

∗
r2e

−jα cos θ),
d2J
dθ2 = −α cos θ ·2 im(Wr1W

∗
r2e

−jα cos θ)

−α2 sin2 θ ·2 re(Wr1W
∗
r2e

−jα cos θ)
where re and im extract the real and imaginary part of a
complex, respectively. If angle(Wr1W

∗
r2e

−jα cos θ) = π,
dJ
dθ is zero and d2J

dθ2 is positive, and J(θ) is minimized. Thus,
the null direction formed by the r-th row of W is given by

angle(−Wr1W
∗
r2) = α cos θnull

r ⇔
θnull

r = cos−1 angle(−Wr1/Wr2)
2πfc−1(d2 − d1)

.

ConsideringH21 =−W21/det(W) andH11 =W22/det(W),
we see that θ1 and θnull

2 are the same:

θ1 =cos−1angle(H21/H11)
2πfc−1(d2−d1)

=cos−1angle(−W21/W22)
2πfc−1(d2−d1)

=θnull
2 .

The derivation of θnull
r is based on derivatives. We have

another derivation of θnull
r based on the graphical interpre-

tation of a directivity pattern [12].
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Fig. 2. Envelopes at different frequencies

4. THE CORRELATION APPROACH

This section discusses an approach to permutation align-
ment based on inter-frequency correlations of speech sig-
nals [8, 9]. We use the envelope

vf
r (m) = |Yr(f,m)|

of a separated signal Yr(f,m) to measure correlations. Let
us define the correlation of two signals x(m) and y(m) as

cor(x, y) = [〈x · y〉 − 〈x〉 · 〈y〉]/(σx · σy),

where 〈·〉 is an averaging operator and σ is a standard devia-
tion. Based on this definition, cor(x, x) = 1, and cor(x, y) =
0 if x and y are uncorrelated. Envelopes have high correla-
tions at neighboring frequencies if separated signals corre-
spond to the same speech signal. Figure 2 shows an exam-
ple. Two envelopes v1562

1 and v1566
1 , as well as v1562

2 and
v1566
2 , are highly correlated. Thus, calculating such correla-

tions helps us to align permutations.
Henceforth let π denote a permutation: {1, . . . , P} →

{1, . . . , P}. A simple criterion for deciding the permutation
πf of frequency f is to maximize the sum of the correlations
between neighboring frequencies within distance D:

πf =argmaxπ

∑
|g−f |≤D

∑
pcor(vf

π(p), v
g
πg(p)), (4.1)

where πg is the permutation at frequency g. This criterion is
based on local information and has a drawback in that mis-
takes in a narrow range of frequencies may lead to the com-
plete misalignment of the frequencies beyond that point. To
avoid this problem, the method in [9] does not limit the fre-
quency range in which correlations are calculated. It de-
cides permutations one by one based on the criterion:

πf = argmaxπ

∑
p cor( vf

π(p),
∑

g∈F vg
πg(p) ), (4.2)

where F is a set of frequencies in which the permutation
is decided. This method assumes high correlations of en-
velopes even between frequencies that are not close neigh-



� ✏
/* Fix permutations by the DOA approach */
for ( ∀f ) {

Θ(f) = DOA(f,W(f))
Θs(f) = sort(Θ(f))

}
mΘ = 〈Θs(f)〉f /* averaged directions */
F = ∅ /* the set of fixed frequencies */
for ( ∀f ) {

if ( confident(Θ(f),mΘ,W(f)) ) {
πf = getPermutation(Θ(f))
F = F ∪ {f}

}
}
/* Fix permutations by neighboring correlations */
while ( ∃f 
∈ F ) {

for ( ∀f 
∈ F ) {
cf =maxπ

∑
|g−f |≤D,g∈F

∑
p cor(vf

π(p), v
g
πg(p))

πf =argmaxπ

∑
|g−f |≤D,g∈F

∑
pcor(vf

π(p), v
g
πg(p))

}
i = argmaxf cf

F = F ∪ {i}
ci = 0

}
✒ ✑

Fig. 3. Pseudo-code for the integrated method

bors. This assumption is not satisfied for all pairs of fre-
quencies, although a high correlation can be assumed for
a fundamental frequency and its harmonics. As shown in
Fig. 2, v1566

r and v3516
r do not have a high correlation.

Therefore, this method still has a drawback in that permuta-
tions may be misaligned at many frequencies.

5. NEW ROBUST AND PRECISE METHOD

In this section, we consider integrating the two approaches
discussed above to solve the permutation problem robustly
and precisely.

5.1. Integration of the two approaches

Let us begin by reviewing the characteristics of the two ap-
proaches.
robustness The direction of arrival (DOA) approach is ro-

bust since a misalignment at a frequency does not af-
fect other frequencies. The correlation approach is
not robust as discussed in Sec. 4.

preciseness The DOA approach is not precise since the eval-
uation is based on the approximation of a mixing sys-
tem as explained in Sec. 3. The correlation approach
is precise as long as signals are well separated by ICA
since the measurement is based on separated signals.

� ✏
/* Fix permutations by harmonic structure */
for ( ∀f 
∈ F ) {

Ha = setOfHarmonics(f);
cf = maxπ

∑
g∈Ha∩F

∑
p cor(vf

π(p), v
g
πg(p))

if ( cf ≥ threshold ) {
πf = argmaxπ

∑
g∈Ha∩F

∑
p cor(vf

π(p), v
g
πg(p))

F = F ∪ {f}
}

}
✒ ✑

Fig. 4. Pseudo-code for the harmonic method

Our method benefits from both advantages: the robustness
of the DOA approach and the preciseness of the correlation
approach. Figure 3 shows the pseudo-code.

We first fix permutations at some frequencies where the
confidence of the DOA approach is sufficiently high. The
procedure confident decides whether the confidence is high
enough. Our criteria for the decision are: 1) the number of
estimated directions is the same as the number of sources,
2) the directions Θ(f) do not differ greatly from the aver-
aged directions mΘ, 3) the SNR calculated by the frequency
responses Br(f, θp) for each direction is sufficiently large.

Then, we decide the permutations for the remaining fre-
quencies based on neighboring correlations without chang-
ing the permutations fixed by the DOA approach. The per-
mutations are decided in order of the sum of correlations
with fixed frequencies g ∈ F within distance |g − f | ≤ D.

This method does not result in a large misalignment as
long as the permutations fixed by the DOA approach are
correct. Moreover, the correlation part compensates for the
lack of preciseness of the DOA approach.

5.2. Exploiting the harmonic structure of signals

The method proposed above works very well in many cases.
However, there is a case where the DOA approach does not
provide any fixed permutation with confidence in a certain
range of frequencies. This occurs particularly at low fre-
quencies where it is hard to estimate DOAs as discussed in
Sec. 3. In such a case, the proposed method has to align per-
mutations for the range solely through the use of neighbor-
ing correlations, and may yield consecutive misalignments.

To cope with this problem, we exploit the harmonic struc-
ture of a speech signal. As alluded to in Sec. 4, there are
strong correlations among the envelopes of a fundamental
frequency f and its harmonics 2f, 3f and so forth. Sup-
pose that the permutation is not fixed at frequency f but
fixed at frequencies 2f and 3f . If the correlation

cf = maxπ

∑
g=2f,3f

∑
p cor(vf

π(p), v
g
πg(p))

is sufficiently large, we can fix the permutation at frequency



Table 1. Experimental conditions
Length of source signal 6 sec
Direction of sources 120◦ and 50◦ (2 sources)
Distance between 2 sensors d = 4 cm
Reverberation time TR = 300 ms
Sampling rate fs = 8 kHz
Frame size of DFT L = 2048
Frequency resolution ∆f = fs/L = 3.90625 Hz
Distance to take correlation D = 3 · ∆f

Nonlinear function Φ(Yr) = ej·angle(Yr)

f with confidence. Figure 4 shows the pseudo-code for the
harmonic method. The procedure setOfHarmonics provides
a set of harmonic frequencies of f , and threshold controls
the confidence.

To incorporate the above idea, the final version of our
method fixes all permutations with four steps:

1. By the DOA approach (the upper part of Fig. 3)

2. By neighboring correlations (the lower part of Fig. 3)
with the exception that the while loop terminates if
the maximum of cf is too small.

3. By the harmonic method (Fig. 4)

4. By neighboring correlations (the lower part of Fig. 3)
again without the exception.

There are two important points to note as regards the final
version. The first is that the method becomes more robust
because of the exception in step 2. We do not fix the permu-
tations for consecutive frequencies without high confidence.
The second point is that step 3 works well only if most of
the other permutations are fixed. This means that the har-
monic method alone does not work well and we need steps
1 and 2 to fix most of the permutations.

6. EXPERIMENTAL RESULTS

We performed experiments to separate speech signals in a
reverberant environment whose conditions are summarized
in Table 1. We generated mixed signals by convolving a
speech signal sp(t) and an impulse response hqp(t) so that
we could calculate signal-to-noise ratios (SNRs) by

10 log[
∑

r=p

∑
t yrp(t)2] − 10 log[

∑
r �=p

∑
t yrp(t)2],

where yrp(t) =
∑Q

q=1

∑
k wrq(k)xqp(t − k) and xqp(t) =

∑
k hqp(k)sp(t − k). Figure 5 shows the overall results of

the experiments. We separated 12 combinations of speech
signals with 6 different methods for the permutation prob-
lem: the DOA approach “D”, the correlation approach based
on (4.1) “C1”, the correlation approach based on (4.2) “C2”,
the first version of the integrated method (Fig. 3) “D+C1”,
the final version of the integrated method (Figs. 3 and 4)
“D+C1+Ha”, and the optimal permutation “Optimal” based
on maximizing the SNR at each frequency. Although “Op-
timal” is not a realistic solution, we used it to estimate the
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upper bounds of performance.
The performance with “D” is stable, but not sufficient.

The results with “C1” and “C2” are not stable and some-
times very poor, although most of the time they are very
good. Both integrated methods “D+C1” and “D+C1+Ha”
offer stable and good results. Especially, the method ex-
ploiting the harmonic structure “D+C1+Ha” offers almost
the same results as “Optimal”.

Now we examine the effectiveness of the integrated meth-
ods by looking at the 9th combination of speech signals in
detail. Figure 6 shows the SNRs at each frequency for “C1”,
“D+C1” and “D+C1+Ha”. We see a large region (from 450
Hz to 1400 Hz) of permutation misalignments for the “C1”
case, where permutations were decided only with neigh-
boring correlations. We see in Fig. 7 that the correlations
around 1400 Hz do not have a large absolute value, and the
criterion based on (4.1) does not provide a clear-cut deci-
sion. Therefore, there was a decent possibility that the per-
mutations were misaligned around 1400 Hz in this case.

With the “D+C1” method, the misalignments of the re-
gion (from 450 Hz to 1400 Hz) were corrected. This is be-
cause the DOA approach in the first step provided correct
permutations for some frequencies in the region. Figure 8
shows the DOA estimations for each frequency with confi-
dence. We see many estimations from 450 Hz to 1400 Hz.
However, there was no DOA estimation with confidence at
frequencies lower than 250 Hz. This is why consecutive
misalignments occurred even for “D+C1”. As shown at the
bottom of Fig. 6, the misalignments were corrected with the
“D+C1+Ha” method. This shows the effectiveness of ex-
ploiting the harmonic structure for low frequencies.

7. CONCLUSION

We proposed a robust and precise method for solving the
permutation problem. Our method integrates two previ-
ous approaches: the DOA approach and the correlation ap-
proach. The criterion of the DOA approach is directions
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which are absolute. This makes the approach robust. By
contrast, the criterion of the correlation approach is calcu-
lated from the separated signals themselves. This makes
the approach precise. Our proposed method benefits from
both advantages. In our experiments, the proposed method
solved permutation problems almost perfectly under condi-
tions whereby two sources were mixed in a room where TR

= 300 ms. Future work will focus on experiments for cases
with more than two sources.
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