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Log-GPIS-MOP: A Unified Representation for
Mapping, Odometry and Planning
Lan Wu, Ki Myung Brian Lee, Cedric Le Gentil, and Teresa Vidal-Calleja

Abstract—Whereas dedicated scene representations are re-
quired for each different task in conventional robotic systems,
this paper demonstrates that a unified representation can be
used directly for multiple key tasks. We propose the Log-
Gaussian Process Implicit Surface for Mapping, Odometry
and Planning (Log-GPIS-MOP): a probabilistic framework for
surface reconstruction, localisation and navigation based on a
unified representation. Our framework applies a logarithmic
transformation to a Gaussian Process Implicit Surface (GPIS)
formulation to recover a global representation that accurately
captures the Euclidean distance field with gradients and, at
the same time, the implicit surface. By directly estimating the
distance field and its gradient through Log-GPIS inference,
the proposed incremental odometry technique computes the
optimal alignment of an incoming frame and fuses it globally
to produce a map. Concurrently, an optimisation-based planner
computes a safe collision-free path using the same Log-GPIS
surface representation. We validate the proposed framework on
simulated and real datasets in 2D and 3D and benchmark against
the state-of-the-art approaches. Our experiments show that Log-
GPIS-MOP produces competitive results in sequential odometry,
surface mapping and obstacle avoidance.

Index Terms—Gaussian Process Implicit Surfaces, Euclidean
Distance Field, Mapping, Localisation, Planning, SLAM.

I. INTRODUCTION

S IMULTANEOUS localisation and mapping (SLAM) is
a well-known problem in robotics [1], which concerns

reconstructing or building a map of an unknown environ-
ment while simultaneously tracking the location of a robot-
sensor system within the map. Using the built map and the
estimated location, a path planner may produce collision-free
paths for the robot to navigate safely. Each different task
raises varying requirements leading to dedicated environment
representations. The choice of scene representation strongly
affects the performance of the localisation, mapping, and path
planning tasks.

For instance, motion estimation favours sparse representa-
tions such as the locations of features in the environment,
which allows consistent estimation of the robot’s location. A
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Fig. 1. The proposed framework Log-GPIS-MOP incrementally builds the
distance field (yellow to blue colour map) and estimates the implicit surface
(red) of the first loop around the Intel Lab [2]. Our incremental odometry and
planning use the distance and gradients of the Log-GPIS as input to compute
the current alignment and the white optimal trajectory for the robot to avoid
colliding with the surfaces respectively.

key objective of the mapping task is to reconstruct an accurate,
dense and high-resolution map of the scene for, e.g., inspection
purposes. Path planning similarly requires dense information
such as obstacle occupancy or closest distance to collision
in order to avoid obstacles. As a unified representation for
multiple purposes, a feature-based representation such as a set
of landmarks [3], [4] is able to reconstruct a sparse map along
with self-localisation and path planning in an unknown envi-
ronment. Although sparse feature-based representations have
been widely used for representing geometric structures and
have proven advantageous for localisation [3], [5], they are not
suitable for an accurate depiction of the environment or path
planning, where dense maps are more appropriate, although
difficult to recover from sparse features. As an alternative,
several approaches [6], [7] employ signed distance functions
(SDF) as a representation for path planning and dense map-
ping. SDF can be used directly by a planner and the implicit
surfaces can be used to recover the dense map. However,
without matching sparse features to identify correspondences,
it is difficult to perform a consistent alignment for motion
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estimation for localisation using the SDF representation [8].
In this work, we propose a unified representation so-

called Log-GPIS suitable for localisation, mapping, and path
planning (see Fig. 1), inspired by recent work on SDF rep-
resentations with Gaussian process implicit surfaces (GPIS).
GPIS [9], [10], [11] is a continuous and probabilistic represen-
tation that exploits the implicit surfaces. Whereas conventional
GPIS representations [12], [13] can only infer accurately the
Euclidean distance field (EDF) close to the measurements
(noisy points on the surface), Log-GPIS, proposed in our
previous work [14], faithfully models the EDF and gradients
by enforcing an approximation of the Eikonal equation [15]
through a simple log transformation on the standard GPIS.
This representation allows us to use Log-GPIS as a single
unified representation for localisation, mapping and planning
multiple robotics tasks, which is the focus of this paper. The
smooth and probabilistic nature of Log-GPIS provides an
accurate dense surface for mapping given noisy measurements.
The extrapolative power of Log-GPIS provides information
not only near but also far away from the measurements,
and hence enables estimation of the full EDF with gradients.
This allows motion estimation via direct optimisation of the
alignment between the global map representation and a new
set of measurements. Furthermore, the EDF and its gradients
are suitable for trajectory optimisation-based planners.

The contributions of this paper are as follows:

• The Log-GPIS-MOP framework, which achieves incre-
mental localisation, mapping and planning based on a
single continuous and probabilistic representation through
accurate prediction of the EDF and the implicit surface
with gradients.

• A sound formulation for 2D/3D point cloud alignment
for odometry estimation, where the Log-GPIS is used to
minimise the point cloud distance to the implicit surface
from a set of newly arrived observations following the
gradients.

• A generic mapping approach for organised and unorgan-
ised point clouds that consists in probabilistically fusing
new measurements into a global Log-GPIS representation
and is ready for a modified version of marching cubes to
recover dense surface reconstruction.

• A path planning approach that uses Log-GPIS to avoid
collisions with the mapped surfaces following the EDF
and gradient information.

Moreover, we present a thorough evaluation of the overall
Log-GPIS-MOP framework and individual tasks on public
benchmarks, and qualitative and quantitative benchmarking
with the state-of-the-art. Our work enables sequential and
concurrent localisation, mapping and planning, focusing on
accurate performance as opposed to real-time operations.

The paper structure is organised as follows. The related
work is presented in Sec. II. Sec. III explains the background
knowledge. Our Log-GPIS representation is discussed in
Sec. IV. The methodology of the Log-GPIS-MOP framework
is presented in Sec. V , with odometry in VI, mapping VII, and
planning VIII. In Sec. IX, we present a thorough evaluation
of the framework on public benchmarks and compare the

performance to existing solutions. Finally, the conclusion and
suggestions on future work are given in Sec. X.

II. RELATED WORK

For visual SLAM, several successful frameworks process
the input data into a set of sparse features as the representation
for odometry and mapping. Recent feature-based SLAM sys-
tems [3], [16], [5] have demonstrated accurate pose estimation,
consistency throughout long-term operations, and real-time
performance. Due to the difficulties of extracting continuous
surfaces from a sparse set of points, most of them are not
suitable for applications other than localisation. In addition,
dedicated and sophisticated algorithms are required to recover
a dense and accurate reconstruction from sparse points [17].

As an alternative representation to achieve sensor track-
ing and mapping, the seminal work of KinectFusion [6]
demonstrates high-performance camera motion estimation and
dense reconstruction in real-time. To represent the geome-
try, KinectFusion uses the truncated signed distance function
(TSDF) [18] and a coarse-to-fine ICP algorithm [19] to per-
form an alignment. TSDF, originally proposed in computer
graphics literature, has become a widely used representation
in odometry and mapping approaches. However, KinectFusion
has some drawbacks. First, the algorithm implementation re-
lies on GPU. Second, the distance of the TSDF is truncated and
generally overestimates the distance within limited viewpoints.
Third, the representation can not be directly used for planning.

Another relevant representation for mapping and odometry
tracking is from RGB-D SLAM [20]. Such as in the framework
recently proposed in [21], ElasticFusion represents the map
as a collection of surfels, which are small surface elements
with normals and colours. Given a surfel-based representation,
ElasticFusion incrementally estimates the sensor pose through
dense frame-to-map tracking. No pose-graph optimisation or
post-processing is required. Such representation generally as-
sists in computing accurate pose estimation, along with high-
quality reconstruction and a rich understanding of the occupied
space. However, the representation does not differentiate free
space from unknown space explicitly, which is of limited
applicability for autonomous navigation tasks.

Semantic combined with geometric representations are a
recent development gaining popularity for mapping [22] and
localisation [23]. The application has since been further ex-
tended for navigation [24]. It provides competitive efficiency,
accuracy and robustness for metric-semantic SLAM and per-
ception. However, the mesh representation used in these works
does not provide inherently distance and direction to the
collision which has to be computed separately for navigation.

Other representations based on explicit occupancy [25]
efficiently compute and store information, such as free space,
occupied space, and unknown. Occupancy maps are commonly
used for mapping and path-planning applications. Many op-
tions for occupancy maps have been presented in the literature
varying from discrete representations [25] [26] [27] to prob-
abilistic and continuous ones [28], [29]. Discrete occupancy
maps comprise a set of grid cells with occupancy information
regarding the environment. Planning algorithms frequently
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take such discrete occupancy grids as input [30]. As for
the probabilistic and continuous options, the authors in [31]
propose continuous occupancy mapping by viewing Gaussian
processes as implicit functions of occupancy. Doing so, it is
capable of building the representation with both occupancy
information and implicit surfaces. Extension of occupancy
grids from 2D to 3D is, however, challenging, due to large
memory usage. It is often difficult to perform fast ray-casting
and look-up tabling for any space larger than a room. To this
end, an online solution commonly used in 3D is Octomap [26].
This approach uses an octree-based structure to represent the
occupancy probabilities of cells. The octree structure allows
handling large spaces by immensely decreasing the amount of
memory required to represent unknown or free space.

However, the representation with occupancy information
alone is often insufficient for planning approaches. For
instance, trajectory optimisation-based planners including
CHOMP [7] and TrajOpt [32], require information on distance
and direction to obstacles. In addition, having a distance map
speeds up collision checking of complex environments. For
example, robot arms are commonly represented as a set of
overlapping spheres, in which case, it is much more convenient
to query the distance field at the centre of each sphere for
collision checking [7].

Such optimisation-based planners require a complete dis-
tance field that is not truncated further from the surface.
For this reason, a Euclidean signed distance field (ESDF)
containing distance values over the entire space is necessary.
An ESDF can be naturally passed to a collision-checking algo-
rithm to produce collision-free trajectories [7] [32]. Gradients
can be computed using the distance values of the neighbouring
cells, which allows CHOMP and other planners to follow the
gradient direction of the distance to push the trajectory away
from collision [33].

Following the above requirements, Oleynikova et al [34]
proposed the Voxblox framework to incrementally generate a
representation for mapping and planning. It adopts the advan-
tages of TSDF to generate an implicit surface, as its denseness
is ideal for human visualisation. When using TSDF, the
distance within the truncated threshold is relatively accurate.
Then, an ESDF representation is numerically approximated
from the TSDF to cover the observations’ fields of view. The
basic unit for ESDF is a voxel grid, which contains the distance
to the nearest obstacles and the gradient thereof. The ESDF
can be used with trajectory optimisation methods for online
navigation, such as the one in [35] proposed by the same
authors. Similarly, FIESTA [36] proposes a discrete voxel grid
representation with SDF for mapping and planning, which
reported comparable results to [37].

Compared to KinectFusion, Voxblox does not use the
distance information from the TSDF or ESDF to perform
motion estimation. The system still requires ground truth
poses as input from a motion-capturing system or estimated
poses from a visual-inertial odometry framework [38]. To
make the distance play a role in the trajectory estimation,
the same authors extended their work to tackle the long-term
consistent mapping problem in Voxgraph [8]. It introduces
submap-based ESDF and TSDF representations for mapping

and navigation. Voxgraph adopts the distance information to
generate correspondence-free constraints between submaps.
Then, through optimising a pose graph, the relative pose
given submaps in a closed loop is computed to mitigate long-
term drifts. However, Voxgraph still requires external visual
odometry to produce submaps from the incoming sensor data
for further optimisation and localisation.

An interesting recent development is the use of neural net-
works for continuous implicit representation for reconstruction
and mapping [39], [40], [41], [42]. Neural representations
can be trained to model radiance fields [41], signed distance
functions [39], [40], [43] or occupancy maps [42]. Most
prominent is the neural radiance field (NeRF) [41], which
represents the 3D environment with a continuous volumetric
density function in tandem with view-dependent colours, both
modelled by a neural network. Such neural representations
have shown great promise for SLAM and localisation [44],
[45], [46] as well as path planning [37], [47], [48], [49].
iMAP [44] first proposed to embed NeRF within a SLAM
framework, followed by NICE-SLAM [46], which uses multi-
ple NeRFs organised into a voxel grid. Using the constructed
NeRF, trajectory planners have been proposed to optimise the
path to avoid obstacles, which can be identified in NeRFs
as regions of high density [48], [49]. Of those, [49] shows
that planning performance can be improved by using an
approximate ESDF derived from a NeRF. Our work learns
an EDF, an unsigned variant of ESDF, which facilitates all
of localisation, mapping and planning. Further, although these
neural representations also serve as a sound representation for
multiple tasks, we achieve similar functionalities with GPs,
which we believe is significantly more ‘white-box’ than a
neural network, and hence easier to understand and diagnose
for practitioners. This comes with the added benefit of explicit
uncertainty representation, which is not readily available with
neural network models.

Furthermore, learning SDFs directly with neural network
models has also gained popularity in recent years [39], [40],
[43], which has been also extended to mapping and naviga-
tion [37]. A recent work closely related to ours is [39], which
reports improvement in model performance through the use of
a penalty to account for the Eikonal equation. The penalty is
incorporated into the loss function, and the Eikonal equation
is thus enforced via multiple gradient updates. In contrast,
our framework elegantly incorporates a regularised version of
the Eikonal equation through a single log transformation to
accurately approximate the true EDF.

As mentioned above our representation is based on Gaussian
Process implicit surfaces (GPIS), a continuous and probabilis-
tic representation that was initially proposed to reconstruct
surfaces given noisy surface observations [9]. Later in [12]
and [50], the authors used the GPIS as an approximate signed
distance function (GPIS-SDF) that infers the distance to the
nearest surfaces. Based on the distance values, a localisation
solution is formulated to find consecutive poses in [50].
However, it only keeps track of the distance information close
to the surface as there is a lack of observations further away.
The localisation requires the Kalman filter to provide the
initial guess and odometry is performed with frame-to-map
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registration but does not leverage a pose graph post-processing
step as proposed in here to further improve the estimates’
accuracy. Based on the Varadhan’s approach [51], our previous
work in [14] applies the logarithmic transformation to a GPIS
with a specific covariance function to recover the distance field
in the space. This method provides the extra potential for GPIS
to accomplish accurate distance field mapping even further
away from the surface. However, our previous work does not
consider solving the localisation problem as it assumes the
sensor poses are known and do not actually propose a planning
approach that leverages such a representation.

Through the related works, catering for the various require-
ments to have a representation for multiple purposes is still
an open research problem. Thus, in the paper, we present the
unified environment representation that can be used for dense
reconstruction, collision avoidance, while providing additional
information needed for the sensor’s odometry estimation.

III. BACKGROUND

In this section, we introduce the Eikonal equation, the
derivation of the distance approximation used in this work and
a brief description of the Gaussian Process Implicit Surfaces.

A. Euclidean Distance Field

We assume that a robot’s given environment can be mod-
elled as a bounded manifold denoted as S ⊂ RD with a
suitably smooth boundary ∂S. The boundary ∂S is assumed
to be orientable, which means it has a continuously varying
surface normal at every point. We seek to represent the
boundary ∂S in terms of its EDF d(x), which is the nearest
distance between a given point x ∈ RD and points on the
boundary w ∈ ∂S:

d(x) = min
w∈∂S

|x−w| . (1)

The EDF (1) represents the boundary ∂S implicitly as its zero-
level set.

A definitive property of EDFs is that it satisfies the Eikonal
equation almost everywhere1, which states that the gradient is
of unit norm:

|∇d(x)| = 1. (2)

The intuition behind the Eikonal equation is that the fastest
increase in the EDF d(x) with a unit change in x is a unit
change in distance, which occurs when moving in the normal
direction to the surface. Since the gradient ∇d(x) represents
the direction and rate of fastest increase in d(x), it has a unit
magnitude and is directed normally to the surface. Our frame-
work represents the EDF faithfully by closely approximating
the Eikonal equation (2) through a simple log transformation.

1Unsigned EDFs are not differentiable at the boundary ∂S, and hence the
Eikonal equation does not hold at ∂S.

B. Heat-based distance function

In the robotics literature, recently proposed methods such
as [34] [52] adopted the concept of wavefront propagation
to estimate the distance field efficiently. This approach in-
crementally propagates the distance field to the neighbours
directly from TSDF or from the occupancy map through a
voxel grid. In this way, a compromise has to be made to not
obtain the EDF directly as further post-processing algorithm is
required. To recover the distance field exactly, one option is to
solve or approximate the Eikonal equation. However, the main
restriction in exploiting the Eikonal equation (2) is that the
equation is hyperbolic and non-linear, which makes it difficult
to directly solve and recover the accurate distance values.

Inspired by the idea proposed in the computer graphics
literature [15], we motivate our work based on the physical
phenomenon of heat propagation in space. The main idea is
that the amount of heat propagated from a heated surface for
infinitesimal time reflects the closest distance to the surface.

Let us consider the surface ∂S to be heated at an arbitrary
temperature of one. Formally, the heat equation, the boundary
conditions, and initial conditions are as follows:

∂v(x, t)

∂t
= ∆v(x, t) with

{
v(x, t) = 1 when x ∈ ∂S

v(x, 0) = 0 when x /∈ ∂S,
(3)

where ∆ is the Laplacian
∑D

i=0
∂2

∂x2
i

, and v(x, t) is the heat at
location x ∈ RD and time t. For a small time period around
t = 0, the heat equation (3) can be approximated as a screened
Poisson equation2:

v(x, t) = t∆v(x, t). (4)

The celebrated result of Varadhan [51, Theorem 2.3] is that
the solution to (4) is related to the EDF as follows:3

d(x) = lim
t→0
{−
√
t ln (v(x, t))}. (5)

Intuitively, (5) states that the negative logarithm of the heat
propagated from a surface after a small quantum of time is
proportional to the distance to the surface.

Importantly, Varadhan’s formula (5) enables approximating
the EDF as d(x) ≈ −

√
t ln (v(x, t)) for a sufficiently small

t. The Eikonal equation (2) remains approximately satisfied
by this approximate EDF [53]. Namely, substituting v(x, t) ≈
exp

(
−d(x)√

t

)
into (4) recovers a regularised form of Eikonal

equation (2):

1 = |∇d(x)|2 −
√
t∆d(x), (6)

where
√
t∆d(x) is the regulariser. Accordingly, it is clear

that the heat-based approximation (5) improves as the time
t decreases.

2This is by discretising the temporal differentiation using the fact that
∂v(x,t)

∂t
|t=0 = limt→0

v(x,t)-v(x,0)
t

and v(x, 0) = 0, which leads to
∂v(x,t)

∂t
|t=0 = limt→0

v(x,t)
t

.
3Varadhan’s original theorem only applies to points in S [51], but we

proposed to extend it to all points in RD by applying the theorem again
to the complement Sc (i.e. outside S) [14].
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C. Gaussian Process Implicit Surfaces

Gaussian Process (GP) [54] is a non-parametric stochastic
method ideal for solving non-linear regression problems. GPIS
techniques [9], [10], [11], [55] use a GP approach to estimate
a probabilistic and continuous representation of the implicit
surface given noisy measurements. Further proposed in [56],
[12], [13], GPIS representation can be used for distance field
estimation, which provides approximate distance values only
near the surface.

The following provides the background knowledge of GPIS
formulation for implicit surface and distance estimation. GP
is capable of modelling the unknown function with gradients
because the derivative of a GP is another GP [54], [11].
In the GPIS formulation, considering the unknown function,
d represents the distance to a surface and ∇d denotes the
corresponding gradient of d. Then d with ∇d can be modelled
by the joint GP with zero mean:[

d
∇d

]
∼ GP(0, k̃(x,x′)). (7)

and covariance matrix

k̃ (x,x′) =

[
k (x,x′) k (x,x′)∇⊤

x′

∇xk (x,x
′) ∇xk (x,x

′)∇⊤
x′

]
, (8)

where k(x,x′) is the covariance function of the function d.
∇x and ∇x′ are the partial derivatives of k(x,x′) at x and
x′ [11] [54].

Let us consider a set of points and the measurements of
points corrupted by noise. The distance measurements y =
{yj = d(xj) + ϵj}Jj=0 ⊂ R and the corresponding gradients
∇y ⊂ RD are taken at locations xj ∈ RD and affected
by additive Gaussian noise ϵj ∼ N (0, σ2

d). The set of point
positions, the measurements and the corresponding gradients
are the input training data. The posterior distribution of d at an
arbitrary testing point x∗ is given by d(x∗) ∼ N (d̄∗,V [d∗])
with the predictive mean and variance with derivatives are
expressed as follows:[

d̄∗
∇d̄∗

]
= k̃⊤

∗ (K̃ + σ2
dI)

−1

[
y
∇y

]
(9)[

V [d∗]
V [∇d∗]

]
= k̃(x∗,x∗)− k̃⊤

∗ (K̃ + σ2
dI)

−1k̃∗. (10)

Note that I represents the identity matrix of size J(D+1)×
J(D + 1). k̃∗ represents the covariance vector between the
training points and the testing point x∗. K̃ is the covariance
matrix of the training points J with gradients. Furthermore,
k̃(x∗,x∗) is the covariance function between the testing point.

Most GPIS techniques ensure the accuracy of the recon-
structed surfaces, but only a few of them directly model the
distance field [12], [13]. However, one of the disadvantages
of standard GPIS applying inference of the distance field
is that only accurately infers the distance near the surface.
Given the limited training data, it is hard to keep the high
precision and continuity of the distance field further from the
measurements. To overcome this shortcoming, we introduce
the Log-GPIS representation in Sec. IV. Based on the physics
of heat propagation, Log-GPIS leverages both the well-known

GPIS formulation and Varadhan’s results to approximate the
Euclidean distance field over the full space RD given minimal
and sparse observations close to the surface. With accurate
distance predicted, we unlock the potential of Log-GPIS to
accomplish multiple robotic tasks. Other than mapping in
Sec. VII, we will discuss the Log-GPIS based odometry in
Sec. VI and path planning in Sec. VIII.

IV. LOG-GAUSSIAN PROCESS IMPLICIT SURFACES

In this section, we introduce the derivation of the Log-GPIS
representation and the choice of covariance function suitable
for Log-GPIS with gradient inferences.

A. Derivation

Our Log-GPIS representation is built upon the heat-based
distance approximation presented in Section III-B. We use a
GP to represent the heat v(x) and its gradient ∇v(x) after a
quantum of time t:[

v
∇v

]
∼ GP(0, k̃(x,x′)) . (11)

The function v(x) must be a solution of the screened Poisson
PDE (4). This solution can be enforced by choosing a spe-
cific kernel function k̃. We discuss the kernel choice in the
following subsection.

Assuming that the choice of the covariance function respects
the screened Poisson equation, we estimate v̄(x), ∇v̄ and
the corresponding variances by simply using the regression
equations (9) and (10). By applying (5), we recover the
distance field d(x) as:

d̄∗ = −
√
t ln v̄∗. (12)

This logarithm transformation gave its name to our method,
Log-GPIS. To ensure that v̄∗ is positive, we use its absolute
value in our implementation. The set of surface observations y
in (9) corresponds to virtual heat observations on the surface S.
In other words, the vector y is equal to 1 (cf. boundary
conditions in (3)). We also use the surface normals, equivalent
to the normalised gradient of the implicit distance function to
compute the gradient observations ∇y.

Despite its simplicity, the log transformation has a non-
trivial benefit as the predicted distance will approach infinity
when querying points further away from the surface unlike
the standard GPIS, which will predict a distance value of zero
(falling back to the mean far away from the measurements). In
other words, Log-GPIS avoids the undesirable artifacts further
away from the predicted surface. One shortcoming of the
proposed method is that it does not predict whether x is inside
or outside the surface while standard GPIS does (i.e., Log-
GPIS predicts EDF instead of SDF). 4 In our perspective,
given the advantage of using (4) to approximate the distance
field everywhere on RD, losing the sign is a small price to

4This follows from the extension of Varadhan’s formula (5) from S to RD

(see footnote 3). Applying Varadhan’s formula on both S and the complement
Sc implies ‘stitching’ the EDFs of S and Sc, and hence whether a point
belongs to S is no longer distinguishable.
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pay for the convenience of the simplicity and accuracy of the
proposed distance estimation.

We also observe that the log transformation affects the
gradient. Taking the partial derivative of (12) with respect to
the query point x∗ leads to:

∇d̄∗ =
−
√
t

v̄∗
∇v̄∗, (13)

where we can find that the main difference between ∇d̄∗ and
∇v̄∗ is the direction and the scaling factor

√
t/v̄∗. Typically,

for a standard GPIS, the magnitude of the gradients at the
surface does not have to be fixed. However, the Eikonal
equation (2) requires that the magnitude of the gradient is
normalised to 1. Since the gradient of d̄∗ and v̄∗ have opposite
directions, we simply normalise the gradient of v̄∗, and invert
the sign to obtain ∇d̄∗.

Based on (13), the predictive variance V [d∗] can be directly
recovered in terms of V [v∗] using a first-order approximation,

V [d∗] =

(
−
√
t

v̄∗

)
V [v∗]

(
−
√
t

v̄∗

)⊤

. (14)

B. Choice of Covariance Function

As presented in our previous work [14], we derived a
covariance function that satisfies the screened Poisson (4)
which is a linear PDE. Based on work presented in [57],
it is possible to reformulate linear stochastic PDEs into GP
regression models. The method relies on matching the power
spectral density of the covariance kernel and the PDE’s finite-
dimension Markov process. Accordingly, using the so-called
Whittle kernel [58], from the Matérn family, allows to recover
a solution for the screened Poisson equation (4) as a GP
regression model,

k (x,x′) =
|x− x′|

2λ
Kν (λ |x− x′|) , (15)

where λ = 1/
√
t and Kν is the modified Bessel function

of the second kind of order ν = 1. From the GP regression
viewpoint, λ is the inverse of the length scale hyperparameter
of the covariance function. It controls the smoothness and in-
terpolation ability of the model. In this paper, hyperparameter
optimisation is not considered. Nevertheless, from (6) we show
that when t gets closer to zero, corresponding to a larger λ, the
proposed model will produce a more accurate EDF. However,
a λ too large would lead to the loss of the GP’s interpolation
ability and cause numerical issues [14]. On the other hand,
a small λ value, corresponding to a large length scale, will
introduce inaccuracies to the distance field through the loss of
details in the infered distance field. As the datasets used in this
paper are indoor scenarios, we address this trade-off between
interpolation and distance accuracy by setting λ as 20.

Unfortunately, the Whittle covariance kernel is not dif-
ferentiable as Matérn kernel functions are |ν − 1| times
differentiable. Therefore, the Whittle kernel cannot be used for
gradient inference. Given that the standard Whittle covariance
is a special case of the Matérn family of covariance functions
(with ν = 1), we proposed in [14] to use the Matérn ν = 3/2
kernel function as it is the closest Matérn functions that is

at least once differentiable. The Matérn family of covariance
functions are given by:

k(x,x′) = σ2 2
1−ν

Γ(ν)

(√
2ν

l
|x− x′|

)ν

Kν

(√
2ν

l
|x− x′|

)
(16)

where l the characteristic length scale and σ2 the signal’s
variance are the hyperparameters controlling the generalisation
information of GP models, and ν manages the degree of
smoothness. We empirically observed in [14] that the Matérn
3/2 function with l =

√
2ν/λ is a good approximation of

Whittle covariance.
Exploiting the accurate EDF with gradients in the space, not

only around the boundary but also further away, establishes the
mathematical foundation to solve the pose estimation problem.
Furthermore, faithfully modelling the EDF with gradients is
sufficient for a trajectory optimisation-based planner, which
requires the distance and gradients to the nearest obstacles to
explore complex surroundings. Moreover, the GPIS provides
continuous and probabilistic representation for mapping and
surface reconstruction. Our Log-GPIS unlocks the potential
to provide a unified solution for sensor odometry, surface
reconstruction, and safe navigation.

V. LOG-GPIS-MOP OVERVIEW

Let us consider the Log-GPIS as a unified representation
for simultaneous mapping, odometry and planning (MOP) with
depth sensors. Log-GPIS-MOP aims to incrementally estimate
the EDF, while at the same time localising the sensor, and
with this information plan its path to avoid colliding into the
surfaces implicitly described by the EDF. Fig. 2 shows an
overview of the full approach, with data flows and notations
later explained in the Sec. VI, VII, and VIII. Given the
input data from any type of depth sensor, e.g. LiDAR and
depth cameras, the pose estimation problem for incremental
odometry is formulated as iterative alignment where the Log-
GPIS incremental map is used to minimise the distance
from a newly arrived point cloud to the existing surface
following the gradients. The incremental mapping consists in
fusing the current point cloud into the existing Log-GPIS that
probabilistically represents the EDF and its gradient. After
a post-processing optimisation for a batch of poses, a post-
processing mapping is applied based on the structured kernel
interpolation framework with derivatives (D-SKI) [59]. Finally,
a path planning approach uses the Log-GPIS incremental
mapping to avoid the surfaces of the mapped environment
using the EDF and gradient information. Note that Log-GPIS-
MOP is based on the assumption that the environment has
sufficient curvature to unequivocally recover the pose of the
sensor at any given sensor frame.

VI. ODOMETRY

Let us consider a depth sensor moving in a static envi-
ronment. The sensor captures a sequence of organised or
unorganised point clouds as measurements of the environment.
Let us assume that the measurement noise is independent and
Gaussian distributed. The sensor frame at time ti is denoted as
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Fig. 2. Block Diagram of Log-GPIS-MOP framework. Depth sensors capture raw measurements as a sequence of point clouds CiPi. Incremental odometry
computes the frame-to-frame poses Ci−1TCi

and frame-to-map poses WTCi
based on the local Log-GPIS representation d̄

Ci−1
i and the global Log-

GPIS representation d̄Wi . Applying the estimated frame-to-map pose, the current point cloud WPi in the global frame then fuses with the existing points
WP{0,...,i−1} into WP{0,...,i} to update the global Log-GPIS representation d̄Wi . The full updated representation d̄W with gradients ∇d̄W is used for
optimisation-based path planning. The post-processing odometry optimises a batch of poses and then the post-processing mapping uses a sequence of point
clouds and optimised poses as input to create the map.

FCi
, where i = (0, ..., L). The world reference FW is given

by the sensor frame FC0 at initial the timestamp. The pose
of FCi in world reference FW is given by the rotation matrix
WRCi

∈ SO(3) and the translation vector W tCi
, combined

into the 4 × 4 homogeneous transformation matrix ∈ SE(3)
as,

WTCi =

[
WRCi

WpCi

0⊤ 1

]
. (17)

We denote the point cloud measurement of the sensor frame
FCi

at time ti as CiPi and Cipi,j ∈ R3 the j-th point of CiPi

with j = 0, ..., Ji. This 3D point cloud CiPi can be projected
from FCi to FW using WTCi ,[

WPi

1

]
= WTCi

[
CiPi

1

]
. (18)

Also, let us express WTCi through the concatenation of
WTCi−1 and Ci−1TCi as:

WTCi
= WTCi−1

Ci−1TCi
, (19)

where WTCi−1 is given by the odometry computation at time
ti−1. We aim to find the WTCi

such that the newly arrived
CiPi can be projected to the world frame.

We present first the incremental formulation that leverages
directly the Log-GPIS. This incremental odometry formulation
is the one used by the incremental mapping and planning
approaches all tightly integrated through the Log-GPIS. Fur-
thermore, we also present the batch optimisation odometry
formulation that can be used as a post-processing step to refine
the trajectory estimation. Note that the batch formulation uses
the sequential poses only and not directly the Log-GPIS.

A. Incremental Formulation

In this work, we propose an iterative approach to estimate
the odometry based on the Log-GPIS representation. Our
odometry estimation approach follows an iterative optimisa-
tion to estimate the frame transformations. This is performed
in a similar way to the Iterative Closest Point (ICP)[19] but
without looking for the closest points.

Our work proposes instead, a direct query of the distance
to the surface based on Log-GPIS to find the alignment
efficiently and accurately without the need for the closest

points search. Given a fused global representation with the
information of all previous frames, the minimum distance
to the surface can be obtained directly from the Log-GPIS,
which saves us from doing the correspondences search. With
the assumption that the difference between two consecutive
frames is relatively small, the transformation is computed via
a non-linear least-square optimisation involving the distances
queried from the Log-GPIS effectively corresponding to point-
to-plane constraints. After the transformation of the current
frame is applied, the current point cloud is fused to the global
representation using a fusion update method, which will be
discussed in Sec. VII-A.

More formally, let us consider a local Log-GPIS representa-
tion d̄

Ci−1

i obtained using the previous frame only and a global
Log-GPIS representation d̄Wi , which is the result of fusing all
the previous frames into the world frame. Let us assume the
initial WTC0

is identity and define Xi = {WTC1
, ...,WTCi

}
with i = (0, ..., L) as the state to be estimated. The odometry
is then formulated incrementally to estimate WTCi through
a frame-to-frame alignment Fig. 3, with the possibility to
compute the frame-to-map alignment as shown in Fig. 4.

The iterative alignment in both cases, frame-to-map and
frame-to-frame, is performed by minimising a cost function
eidis,

X̌i = argmin
Xi

eidis, (20)

where eidis is a scalar and corresponds to the sum of the
squared distances from each points in the current point cloud
CiPi to the surface representation Log-GPIS. Frame-to-frame
case uses the local surface representation and frame-to-map
case uses the global surface representation. X̌i is the sequential
estimation of the current pose.

a) Frame-to-frame: This alignment is computed through
the current frame i querying the distance from the representa-
tion built from the previous sensor frame Ci−1 only (the local
Log-GPIS d̄

Ci−1

i ).
Particularising (20) for this case (Fig. 3), let us write eidis

as:

eidis
(
Ci−1TCi

)
=

Ji∑
j=0

∥∥∥d̄Ci−1

i

(
Ci−1TCi

Cipi,j

)∥∥∥2
σi
dis

, (21)
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X0 X1 X2 Xi−1 Xi
...

Fig. 3. Factor graph representation of the frame-to-frame odometry. Xi =
{WTC1

, ...,WTCi
} with i = (0, ..., L). Low opacity nodes are used for

those nodes that are not used for current alignment. Black factors are the local
Log-GPIS distance constraints.

where σi
dis is the distance variance from the Log-GPIS in-

ference. Given the local Log-GPIS for an arbitrary testing
point Ci−1pi,j , the predictive mean v̄

Ci−1

i with derivatives are
obtained from (9). Also, as per (12), d̄Ci−1

i can be computed
by applying the logarithm transformation to v̄

Ci−1

i ,[
v̄
Ci−1

i

∇v̄Ci−1

i

]
= (k̃Ci−1)⊤(K̃Ci−1 + σ2I)−1

[
yCi−1

∇yCi−1

]
(22)

d̄
Ci−1

i = −
√
t ln v̄

Ci−1

i . (23)

K̃Ci−1 is the covariance matrix of the input points Ci−1Pi−1

and k̃Ci−1 represents the covariance vector between the input
points and the testing point Ci−1pi,j . yCi−1 are the measure-
ments of Ci−1Pi−1 of frame FCi−1 at ti−1 and ∇yCi−1 are the
noisy surface normals computed from the pointcloud (normal
computation is further explained in Sec. VII-A).

X0 X1 X2 Xi−1 Xi

...

Fig. 4. Factor graph for the frame-to-map odometry. Black factors represent
the global Log-GPIS distance constraints.

As in any frame-to-frame odometry, it can easily drift.
The other downside of this simple alignment is that the
local log-GPIS has to be created at every step and discarded
afterwards. This motivates the use of a more robust frame-to-
map alignment, which uses the fused global Log-GPIS.

b) Frame-to-Map: Let us consider a sequentially com-
puted global Log-GPIS d̄Wi , which uses frame-to-map align-
ment to compute the poses as the sensor moves through the
environment. The global Log-GPIS representation is the result
of fusing all the previous frames into a single representation
in the world coordinate frame. Particularising eidis for frame-
to-map odometry (Fig. 4), we have:

eidis
(
WTCi

)
=

Ji∑
j=0

∥∥d̄Wi (
WTCi

Cipi,j

)∥∥2
σi
dis

, (24)

where the global Log-GPIS d̄Wi is computed from,

[
v̄Wi
∇v̄Wi

]
= (k̃W )⊤(K̃W + σ2I)−1

[
yW

∇yW

]
(25)

d̄Wi = −
√
t ln v̄Wi , (26)

with K̃W the covariance matrix of all the fused point clouds
from 0 to i−1 in world reference frame WP{0,...,i−1} and k̃W

the covariance vector between WP{0,...,i−1} and the testing
point Wpi,j . yW and ∇yW are the transformed implicit
surface value and the normal computed from the pointcloud
of WP{0,...,i−1}.

Further, to solve the optimisation of the alignment problem,
the derivative of the distance with respect to WTCi

is desired.
Based on the chain rule, the Jacobian function is as follows,

∂d̄Wi
(
WTCi

Cipi,j

)
∂ (WTCi)

=
∂d̄Wi

(
WTCi

Cipi,j

)
∂ (WTCi

Cipi,j)

∂
(
WTCi

Cipi,j

)
∂ (WTCi)

(27)
The first term is one of the valuable byproducts of the global

Log-GPIS, which is the gradient of query point WTCi
Cipi,j :

∂d̄Wi
(
WTCi

Cipi,j

)
∂ (WTCi

Cipi,j)
= ∇d̄Wi (WTCi

Cipi,j). (28)

The second term is the derivative of WTCi
with respect to the

point Cipi,j . It is equivalent to

∂
(
WTCi

Cipi,j

)
∂ (WTCi)

=

[
I −

(
WTCi

Cipi,j

)∧
0T 0T

]
, (29)

where ∧ is the skew-symmetric operator for the non-
homogeneous 3D point p,

p∧ =

 p1
p2
p3

∧

=

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 . (30)

Using the querying distance and analytical Jacobian func-
tion, we implement our proposed odometry in Ceres 5.

B. Post Process Batch Optimisation

X0 X1 X2 Xi−1 Xi

...

...

Fig. 5. Factor graph representation of the pose SLAM problem. Green factors
represent the frame-to-map constraints and red factors are the frame-to-frame
constraints.

Given the incremental pose estimation with frame-to-frame
and frame-to-map transformations, it is possible to optimise a
batch of poses through a pose graph optimisation (PGO) [1],
[60], [61]. Note that the batch optimisation presented is an
offline process to refine the map, and it is not used during
incremental mapping and planning. As shown in Fig. 5, blue
circles are the vertices representing poses. Green and red
factors are the constrained edges, which represent the relations
between poses. The edges are computed from the frame-to-
map and frame-to-frame odometry respectively. We employ
the standard PGO formulation as a Maximum Likelihood
Estimation (MLE) [1], [60], [61]:

X̂ = argmin
X

− log(p(X | X̌ )) = argmin
X

epgo, (31)

5https://ceres-solver.org

https://ceres-solver.org
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where X̂ is the state of poses and, epgo is the error of the
poses. Here, the PGO takes the frame-to-map constraints (in
green measurements) and frame-to-frame constraints (in red
measurements) to formulate the epgo [1], [61]:

epgo
(
WTCi

)
=
∑

i∈0,.,L

∥∥log (W Ť−1
Ci

WTCi

)∥∥2
Σi

gpo

, (32)

where W Ť−1
Ci

is the noisy estimation of WTCi
. Σi

pgo is the
covariance of poses.

VII. MAPPING

We present two different pipelines, one online and one of-
fline. The incremental mapping aims to sequentially fuse new
incoming point clouds into the global Log-GPIS representation
for odometry and planning. The post-processing mapping uses
the output of the post-processing odometry and the raw point
clouds to recover the full reconstruction for visualisation.

A. Incremental Mapping

After the pose is estimated and applied as described in
Sec. VI, the current frame needs to be fused/appended with
the global Log-GPIS representation for incremental mapping.
To do so, we adopt the approach proposed in [12] for GPIS-
SDF. This approach uses an Octree-based Gaussian Process
regressor and Bayesian fusion to merge old measurements and
new observations.

We briefly summarise the process here, which has been
generalised for organised and unorganised point clouds. To
initially remove outliers, we follow the neighbourhood filtering
technique in [62] reducing excessive noise without penalising
important details. Moreover, we set a minimum and maximum
range for the sensor data. Points beyond the maximum range
and closer than the minimum range are considered invalid.
Let us then consider the current point cloud WPi and all fused
global points WP{0,...,i−1}. The objective of incremental map-
ping is to have the new fused global point cloud WP{0,...,i}.
The full point cloud WP{0,...,i−1} is stored in an Octree-
based structure to reduce the computational complexity, which
divides the complete data into many overlapping clusters. The
clusters within the same region as WPi are set as active
clusters and needs to be fused with WPi. In order to fuse
WPi with active clusters in WP{0,...,i−1}, let us model a GP
regressor using WPi in terms of the bearing angles α and
ε of each point Wp ∈ WPi and its inverse range for either
unorganised or organised point clouds as,

ρ−1 ∼ GP{0, k((α, ε), (α′, ε′))}. (33)

The Ornsten-Uhlenbeck covariance [54] is used in this case
as it captures more details without strong smoothing. Note
that for organised point clouds the conversion from pixel
coordinates to bearing angles given the camera calibration is
straightforward. Then GP regressor can infer smoothly and
probabilistically the reciprocal range value at any given point
with values α and ε. Each active point Wp′ in the Octree
of the existing representation WP{0,...,i−1} needs to be fused
with WPi using the above GP regressor.

The regressor accepts the bearings of Wp′ to infer the range
value ρ̄−1 as in (33). Then, we test the occupancy function Φ
for Wp′ below,

Φ =
2

1 + exp (−η (ρ′−1 − ρ̄−1))
, (34)

where ρ′ is the given range of the point and ρ̄ is the range
inference. η is a slope parameter. The point is free with ρ′ > ρ̄,
and occupied with ρ′ < ρ̄.

If the occupancy value is larger than a threshold, then the
target point moving procedure is performed. With a negative
occupancy value beyond the surface, it moves one step along
the direction of the surface normal. On the contrary, with a
positive value, it moves in the opposite direction of normal.
Iteratively, using the regressor, the algorithm ends up with a
new point Wp′′ very close to the surface. The normal of Wp′′

is computed using (Φ
(
Wp′′ + δev

)
− Φ

(
Wp′′ − δev

)
)/2δ,

where δ is a small positive value and ev is unit vector along
each normal axis.

Given Wp′ with variance σ′ (in the existing global Log-
GPIS) and the inferred point Wp′′ with variance σ′′ (in the
current frame) both in the overlapping part, the Bayesian
fusion directly updates the surface point Wp′′ with variance
σ′′ that implicitly will update each points in active clusters for
the global Log-GPIS representation using:

Wp′′ ← σ′′Wp′ + σ′Wp′′

σ′′ + σ′

(σ′′)−1 ← (σ′′)−1 + (σ′)−1 .

(35)

B. Post Processing Mapping
Given the final estimated transformations WTCi for the

sequence of point clouds CiPi, which can be naively merged
into one point cloud in the world reference frame, we aim
to build a globally consistent continuous and probabilistic
reconstruction. However, a well-known disadvantage of gen-
eral GPs lies in the memory allocation and the computational
complexity to invert the covariance matrix of size J the
number of training points. Moreover, as pointed out above,
we model the joint GPIS with gradients, which improves the
accuracy of the predicted surfaces. However, considering the
gradients as the input increases the size of the covariance
matrix by a factor of four. This significantly worsens the
computational cost of the plain GPIS.

To reduce the general computational complexity, and
thereby improve scalability, in our previous work [10], we
adopted the idea of the Structured Kernel Interpolation al-
gorithm (SKI) [63] to approximate the exact kernel matrix
through interpolation weights and inducing points, and extend
to D-SKI when considering the derivatives with SKI [59],
[64]. The input dataset is reprojected onto a grid generated by
inducing points, which significantly reduces the requirement
to compute GPIS. The interpolated covariance function of
k (x,x′) is formulated as,

K ≈ V K(U,U)V T , (36)

where U is a uniform grid of inducing points m. V is
a J × m sparse matrix of weights used for interpolation,
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which intuitively represents the relative distances from input
points to inducing points [63]. Formally, we use quintic [65]
interpolation to obtain V. When considering gradients and
preserving the positive definiteness of the approximate kernel,
D-SKI differentiates the combined covariance matrix. The
approximate covariance matrix with derivatives of k̃(x,x′) is:

K̃ ≈
[

V
∇V

]
K(U,U)

[
V
∇V

]T
=[

V K(U,U)V T V K(U,U)(∇V )T

(∇V )K(U,U)V T (∇V )K(U,U)(∇V )T

]
, (37)

where ∂V is the derivative of V .

C. Marching Cubes for Log-GPIS

As we mentioned in Sec. IV-A, the surface is no longer
at the zero crossing and the sign information is lost. Thus, to
obtain the mesh for dense reconstruction, it requires a modified
version of the marching cubes algorithm [66]. Given a set
of query points for Log-GPIS to infer the implicit surface
values, the marching cubes compute and extracts the surface
by connecting points of a constant value (iso-value) within a
volume of space:

FV = fiso(M, viso), (38)

whereM specifies a set of points for querying. viso is the iso-
value at which to compute the surface, specified as a scalar.
FV contains the computed faces and vertices of the surface.
Note that since the sign is lost, instead of going through
exactly zero crossing, our marching cubes sets the iso-value
as a constant value (0.1m for 2D cases and 0.001m for 3D in
our experiments). Then, the computed vertices in FV move
towards the implicit surface and iteratively query the Log-
GPIS until the local minimum is found (iso-values are smaller
than a threshold. We set 0.0001m in our experiments).

VIII. PLANNING

The differentiable nature of Log-GPIS permits straightfor-
ward integration with existing optimisation-based planners. In
this section, we present how Log-GPIS can be used together
with the covariant Hamiltonian optimisation-based motion
planner (CHOMP) [7] for obstacle avoidance planning.

Let xr : t 7→ xr(t) be the robot’s trajectory. For simplicity,
we consider the robot’s position in the workspace over time,
excluding orientation, so that xr(t) ∈ RD. However, the
framework can be easily extended to cases with orientation
or with multiple joints.

CHOMP minimises an objective functional defined over a
space of trajectories. We consider the conventional objective
function as introduced in [7] for smooth obstacle avoidance:

C[xr] ≡
∫ T

0

1

2
||ẋr(t)||2 + λc(xr(t))||ẋr(t)||dt. (39)

Here, the first term encourages smoothness by regularising
the velocity. The second term is responsible for obstacle

avoidance, which is enforced by the collision penalty term
c(xr(t)) set as:

c(xr(t)) =


−d(xr(t)) + 1

2ϵ, if d(xr(t)) < 0
1
2ϵ (d(x

r(t))− ϵ)2, if 0 < d(xr(t)) ≤ ϵ

0, otherwise.
(40)

CHOMP incrementally minimises the objective functional
C[xr] using its functional gradient6. With the objective set
as (39), the functional gradient is given by:

∇C[xr] = −ẍr + ||ẋr||
((
I − ẋrẋrT

)
∇c(xr)− c(xr)κ

)
.

(41)
Here, κ = ||ẋr||−2

(
I − ẋrẋrT

)
ẍr is the curvature vector.

The gradient of the collision penalty term c(xr) is given by

∇c(xr) =


−∇d(xr), if d(xr) < 0

(d(xr)− ϵ)∇d(xr) if 0 < d(xr) ≤ ϵ

0, otherwise.
(42)

The merit of our framework is that we can use the Log-GPIS
gradient inference equation (13) to efficiently and accurately
compute the gradient ∇d(xr), and, in turn, (41), (42). This is
because our formulation produces the gradients analytically,
whereas conventional approaches rely on discrete grid-based
approximation [7], [35].

IX. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of the proposed
framework both qualitatively and quantitatively. The frame-
work is implemented in C++ and Matlab. All experiments were
run on an 8-core i7 CPU at 2.5GHz.

A. Effects of Log Transformation

In [14], we showed that our Log-GPIS has the advantage
of both mapping and distance accurate estimation. In this
section, we examine the effects of the log transformation
on mapping, odometry and planning. We first illustrate the
nominal behaviour of the full Log-GPIS-MOP framework. To
do so, we first use a 20 × 16m simulated 2D LiDAR dataset
from [12], [28], the second simulated dataset in [67], and
the real-world Intel Research Lab dataset [2]. To emulate
online planning with incremental mapping, we generate the
plan from the robot’s current pose to its future pose in the
dataset, 50 time-steps ahead. Although the robot does not
strictly follow the generated plan, this serves as a useful proxy
for performance in online scenarios.

The result for the first simulated dataset is shown in Fig. 6,
with the travelled trajectory in red, the planned trajectory in
white, and the underlying colourmap representing the EDF
built so far. Most notably, in Fig. 6c), it can be seen that
the white planned trajectory avoids the obstacles even when
they are not yet seen. The same behaviour is observed in
the more challenging scenario of the Intel Research Lab
dataset [2] illustrated in Fig. 1, where the white planned
trajectories are smooth and stay a fixed distance away from the

6We focus only on gradient computation and omit the exact update process.
Interested readers are referred to [7].
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(a) (b) (c) (d) (e)

Fig. 6. The Log-GPIS-MOP on a simulated 2D dataset. The reconstructed surfaces are red lines. The colourmap represents the distance field varying from -4
to 4 meters. Red line with an arrow is the estimated trajectory where the robot travelled. The white line is the suggested path computed by the path planner
using the global Log-GPIS.

obstacles as intended. This is because Log-GPIS extrapolates
well to areas with missing data. Moreover, in both cases,
Log-GPIS-MOP produces accurate odometry and EDF, as was
observed in Sec. IX-B. We attribute such extrapolation to the
log transformation, as it implicitly approximates the Eikonal
equation across the entire space.

We now interrogate this hypothesis through comparison
against GPIS-SDF [12] on the second simulated dataset. For
fairness, we implemented the same odometry and planning
algorithms using GPIS-SDF. In particular, we use the same
weights for trajectory smoothness and collision avoidance
when planning the trajectories.

The results are shown in Fig. 7. We observed that odometry
based on GPIS-SDF fails with a moderately large motion
because GPIS-SDF produces increasingly inaccurate EDF
predictions further away from previous measurements, unlike
Log-GPIS. Thus, we present a portion of the results before
GPIS-SDF fails, in order to compare the planned trajectories.

The planned trajectories are shown in white in Fig. 7. In
Figs. 7(a-b), It can be seen that trajectory planning using
GPIS-SDF results in nearly a straight line, with a near miss
in Fig. 7b. On the other hand, with the same weighting
for collision avoidance, Log-GPIS-MOP produces a plan
strongly biased towards the medial axis of the environment
(i.e. equidistant from obstacles). These observations illustrate
that the log transformation in Log-GPIS-MOP represents a
critical improvement in prediction accuracy that is necessary
for practical use in odometry and planning.

B. Robustness to Noise

We first illustrate the robustness of the proposed Log-GPIS-
MOP framework against noise. To do so, we use the same
simulated 2D LiDAR dataset [12], [28] in Sec. IX-A, and
add varying magnitudes of Gaussian noise from 0.01m to
0.3m to the sensor measurements. Note that this dataset is
captured by a Turtlebot with a Hokuyo range sensor in Gazebo.
The original standard deviation of the measurement noise is
σ = 0.01m [12]. In this simulation, we only use the sensor
measurements, the sensor poses from the sensor frame at
each timestamp to the world frame are estimated with our
framework.

The result for odometry is shown in Fig. 8a. It can be
seen that, with a realistic noise (σ = 0.01m, cyan), the
result is almost identical to the ground truth trajectory (black).

(a) (b)

(c) (d)

Fig. 7. Mapping and planning results of GPIS-SDF (a-b) and Log-GPIS-
MOP (c-d). Red arrows show the robot’s current pose. With the same collision
avoidance weight, the planned trajectories (white) from Log-GPIS-MOP in c-
d) are strongly biased towards the medial axis, whereas that of GPIS-SDF in
a-b) are nearly straight lines, with a near-hit in b).

Even with a significantly large noise of σ = 0.3m (blue),
the estimated trajectory robustly has acceptable drift. For
comparison, we plot the trajectory of Generalised-ICP (G-
ICP) [68] in green. The odometry of G-ICP is frame-to-
map and the sensor measurements are with Gaussian noise of
σ = 0.01m. As we can see, the green line drifts quickly even
with the smallest noise. Figs. 8b and 8c illustrate the root mean
squared error (RMSE) over 50 Monte Carlo runs in translation
and rotation respectively. It can be seen that the overall error of
Log-GPIS odometry remains small, demonstrating robustness
against noise. In particular, even with a large sensor noise of
σ = 0.3m, the maximum translation RMSE is less than 0.25m
over a 30m length trajectory.

In Fig. 9, we compare the reconstructed EDF (Fig. 9b)
against the ground truth (Fig. 9a). We visualise the EDF
in 3D, with the z-axis being the distance field value. The
colourmap varies from blue to yellow, corresponding to the
distance field value from 0 to 4 meters. It can be seen that the
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(a) Trajectory comparison with different noise

(b) Translation RMSE (c) Rotation RMSE

Fig. 8. Comparison of ground truth and estimated trajectories using Log-
GPIS with varying levels of simulated measurement noise. The estimated
trajectories in a) closely resemble the ground truth for all noise magnitudes.
The translational and rotational RMSE in b) and c) exhibits acceptable
increase with noise.

EDF reconstructed using our method is close to identical to
the ground truth, sharing the same peaks and valleys.

The RMSE plot in Fig. 9c further shows that the recon-
structed EDF is accurate across the entire space even with
increasing noise values, with a median RMSE is 0.07629m
given reasonable sensor noise of 0.01m. In particular, a linear
trend is observed between the noise and the distance field
RMSE. This illustrates that the Log-GPIS technique can
accurately predict the EDF far away from measurements even
though the measurements are only available near the surface.

C. Comparison to SLAM Frameworks

1) 2D SLAM: We compare the performance of Log-GPIS
MOP for 2D SLAM against Cartographer [27], a popular
open-source 2D SLAM framework. Cartographer produces
an occupancy grid as opposed to an EDF produced by our
framework. We thus qualitatively examine the similarity of
the produced maps. Nonetheless, we quantitatively compare
the odometry performance. In doing so, Cartographer has the
advantage that it additionally uses IMU readings for short-term
odometry, as well as loop closure detection and pose-graph
optimisation for long-term drift compensation. Meanwhile, our
incremental Log-GPIS odometry and mapping approach solely
uses LiDAR measurements. IMU fusion and loop closure
remain avenues for future work.

We use two real-world datasets for this comparison, namely
the Deutsches Museum [27] and the Intel Research Lab [2]
datasets. The Deutsches Museum dataset was collected using

a 2D LiDAR backpack. The Intel Research Lab dataset also
consists of 2D LiDAR measurements (13631 frames) collected
from a robot. The dataset comprises multiple loops, with
two loops in the corridor followed by detailed scans of each
room. Since the Deutsches Museum dataset was collected
in a relatively large real-world indoor environment, there is
no ground truth trajectory. On the other hand, we adopt the
evaluation method suggested in [69], which computes relative
poses between frames for the Intel Research Lab dataset,
which we use to derive the ground truth poses.

The comparison using the Deutsches Museum dataset is
shown in Fig. 10. Due to the lack of ground truth poses,
we qualitatively compare the trajectory from Log-GPIS-MOP
against that from Cartographer [27] as shown in Fig. 10a.
Even without explicit loop closure or IMU preintegration, our
incremental Log-GPIS trajectory (red line) produces a close
to identical result to Cartographer (blue line). Similarly, we
compare the mapping results in Figs. 10c and 10b. In Fig. 10c,
the colourmap shows the distance field values from 0 (blue)
to 4 (yellow) meters. The reconstructed surface (i.e. minimum
absolute distance) is shown in white. We truncated the colour
map at 4 meters for better visualisation of the building
structures, although Log-GPIS remains accurate further away.
It can be seen that the reconstructed surface closely aligns with
the occupancy map from Cartographer shown in Fig. 10b.

TABLE I
QUANTITATIVE COMPARISON OF ERRORS ON INTEL LAB DATASET

Absolute translation[m] Absolute rotation[deg]
Scan matching 0.220±0.296 1.7±4.8

Log-GPIS 0.0336±0.0253 1.4904±4.5507
Graph Mapping 0.031±0.026 1.3±4.7

Cartographer 0.0229±0.0239 0.453±1.335

We conduct a more quantitative analysis using the Intel
Research Lab dataset [2]. We present a comparison against the
Scan Matching [70] (SM), Graph Mapping [71] (GM) in addi-
tion to Cartographer, using the values reported in [27].Table. I
presents the absolute translational and rotational errors with
standard deviation. Overall, Cartographer exhibits the lowest
error owing to loop closure detection. Our framework out-
performs the SM approach and demonstrates similar results
to the GM and Cartographer approaches. The mapping result
in Fig. 11 shows that the framework performs as expected,
providing an accurate reconstruction of the wall surface, rooms
and corridors.

2) 3D SLAM: To evaluate the performance of Log-GPIS-
MOP in the 3D setting, we compare it against ORB-
SLAM2 [3], a state-of-the-art feature-based SLAM frame-
work. ORB-SLAM2 uses sparse keypoint features from the
RGB images for odometry, whereas Log-GPIS-MOP does not
use the RGB component. As ORB-SLAM2 does not produce a
dense map, we only compare the odometry performance. The
quality of the estimated camera trajectory is evaluated using
the tool from [72].

We use a real-world RGB-D dataset called the Freiburg3
Teddy from TUM [72], illustrated in Figs. 12a and 12b.
The dataset consists of RGB-D images collected using a
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(a) Ground Truth (b) Log-GPIS (σ = 0.01m) (c) RMSE

Fig. 9. Comparison of ground truth and estimated EDF with varying levels of noise. z-axes in b) and c) correspond to the distance value. The estimated EDF
with a realistic noise σ = 0.01m in c) is accurate and closely resembles the ground truth in b). The RMSE in d) exhibits a linear increase with noise.

(a) Estimated Trajectory (b) Cartographer (c) Log-GPIS

Fig. 10. a) Cartographer map using 2D LiDAR dataset. The resolution of the occupancy grid is 0.05 meters. The odometry and global optimisation are
enabled. The rest of the parameters are set as default. b) As a comparison, the mapping result of our proposed method is shown. We can clearly see the wall
and hallways. c) The surface modelling with distance field is demonstrated on the Intel dataset. The local minimum of iso-surfaces is in white colour.

Fig. 11. Reconstructed Log-GPIS map on the Intel Research Lab dataset.

TABLE II
QUANTITATIVE COMPARISON OF ERRORS WITH ORB-SLAM2 ON A

SEGMENT OF THE TEDDY BEAR DATASET

ORB-SLAM2 Log-GPIS
Translational error RMSE [m] 0.020317 0.017197
Translational error mean [m] 0.017291 0.014583

Translational error median [m] 0.015385 0.013027
Translational error std [m] 0.010668 0.009114

Translational error max [m] 0.050399 0.044593
Rotational error RMSE [deg] 1.225683 1.452126
Rotational error mean [deg] 1.096656 1.289137

Rotational error median [deg] 0.018657 0.021269
Rotational error std [deg] 0.547399 0.668427

Rotational error max [deg] 2.582371 3.734151

Kinect sensor, along a ground-truth trajectory recorded using a
motion-capture system with eight tracking cameras. The image
resolution is 640 × 480 at a frequency of 30 Hz. We use the
first 100 frames for evaluation.

The result is shown in Table. II. As can be seen, Log-
GPIS-MOP outperforms ORB-SLAM in translational error,
although ORB-SLAM2 shows lower rotational error. In other
words, Log-GPIS-MOP exhibits comparable performance to
ORB-SLAM2, even though it does not use RGB features for
alignment as ORB-SLAM2 does.

D. Comparison to Distance Field Mapping Frameworks
We compare the performance of Log-GPIS-MOP in surface

reconstruction against Voxblox [34], a state-of-the-art distance
field mapping and surface reconstruction framework. Since
Voxblox is a mapping-only framework that requires external
odometry, we allow Voxblox to use the ground truth trajectory
from the dataset. Given the point cloud data and ground truth
trajectory, Voxblox generates similar outputs as ours including
the surface mesh, and the EDF. This is achieved by building
a TSDF first, followed by wavefront propagation from some
initial voxels for a certain distance to compute the EDF values.
A dense mesh is reconstructed from the TSDF. The resolution
and TSDF are set at 0.01m and 0.03m respectively. For a
fair comparison, Log-GPIS-MOP uses a grid with the same
resolution as testing points. The rest of the parameters of
Voxblox are set as default.

We use two datasets, the Freiburg3 Teddy [72] used in
Sec. IX-C and the Cow and Lady dataset 7. For this com-
parison, we use the first 600 frames of the dataset, which
corresponds to the first loop around the teddy bear.

The Cow and Lady dataset includes fibreglass models of
a large cow and a lady standing side by side in a room, as

7https://projects.asl.ethz.ch/datasets/doku.php?id=iros2017
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(a) Image of Teddy’s front (b) Image of Teddy’s back

(c) Voxblox + GT trajectory
(front)

(d) Voxblox + GT trajectory
(back)

(e) Log-GPIS-MOP (front) (f) Log-GPIS-MOP (back)

Fig. 12. Qualitative evaluation on Freiburg3 Teddy dataset. a) and b) show
the raw images roughly at the same angle as the reconstructed mesh. Voxblox
uses the ground truth poses for the reconstruction. In contrast, our method
has no prior for the localisation.

illustrated in Fig. 14a. The dataset consists of RGB-D point
clouds collected using a Kinect RGB-D camera, with camera
trajectory captured using a Vicon motion system. We use the
first 450 frames of the dataset. This dataset is much more
challenging than the Freiburg3 Teddy dataset, as the camera
motion is relatively fast, with large changes in orientation.
Furthermore, the Vicon trajectory is occasionally misaligned.
We use Log-GPIS-MOP to refine such misalignment by using
the Vicon trajectory as a prior for odometry.

The results for the Freiburg3 Teddy dataset are shown in
Fig. 12. Figs. 12 c-d) and e-f) show the reconstructed map
using Voxblox and Log-GPIS-MOP respectively. Most notably,
it can be seen that there is a gap in the Voxblox result (Figs. 12
c-d)) between the hind paws due to missing data, whereas no
such gap exists in the Log-GPIS-MOP result (Figs. 12 e-f)).
This is because Log-GPIS-MOP naturally allows dealing with
incomplete and sparse data, as GPIS allows extrapolation at
unseen points.

Fig. 13. A histogram of the angle distribution of the normals in degrees. The
top figure is Log-GPIS and the bottom figure is Voxblox.

Qualitatively, our reconstruction is closer to the image than
Voxblox, especially the head and hind paws. Some colour
differences are apparent due to light source variations. Voxblox
fuses the colour of each frame. In contrast, our method obtains
the colour directly from the global merged point cloud, which
clearly produces the three black stripes on the sleeve of the
yellow shirt.

It is challenging to quantitatively evaluate the surface recon-
struction performance since no ground truth is available for
the Teddy bear’s geometry. Instead, we examine the surface
smoothness by computing the difference between the estimated
normal vectors and the smoothed normal over the ten nearest
neighbours. Fig. 13 shows that Log-GPIS-MOP produces a
smoother surface since GPIS has the ability to filter out noisy
measurements.

The reconstruction results on the Cow and Lady dataset
using Log-GPIS-MOP and Voxblox are shown in Figs. 14. It
can be seen that there is a gap at the top of the mattresses on
the left-hand side in the Voxblox result due to missing data,
whereas Log-GPIS-MOP does not have the same gap. This
is because Log-GPIS-MOP has the advantage of extrapolating
the gaps in data, as we saw in the Freiburg3 Teddy dataset.
Fig. 14a shows the raw RGB image of the scene. Log-
GPIS and Voxblox both produce similar reconstructed meshes
shown in Fig. 14b and Fig. 14c respectively. To compare the
reconstructed surfaces quantitatively, we use the RMSE and
Chamfer distance metrics against Voxblox. As demonstrated
in Fig. 14b, our surface quality has comparable results as
Voxblox in Fig. 14c.

To further examine the behaviour of the two frameworks, we
compare 2D slices of the ground-truth and estimated distance
fields in Fig. 15. We choose a horizontal slice 0.8m above
the ground. As shown in Fig. 15c, Voxblox only computes
the EDF within the sensor’s field of view, whereas Log-GPIS-
MOP naturally predicts the EDF value at all points as can be
seen in Fig. 15b. For a quantitative evaluation, we compare
against a ground-truth distance field computed using the global
point cloud from a Leica scanner. We compute the RMSE for
Voxblox only within the sensor field of view, as Voxblox does
not compute the EDF outside this region. Fig. 15d shows that
our RMSE for the full region (Ours-all) and our prediction in
observed regions (Ours-obs) clearly outperform Voxblox. The
RMSE of the unobserved area (Ours-nonobs) has a similar
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(a) Raw image of the scene (b) Log-GPIS mesh (c) Voxblox mesh

Fig. 14. 3D odometry and mapping evaluation on the cow and lady dataset. a) shows the raw image of the scene. b) and c) show the reconstructed meshes
of our framework and Voxblox respectively. Note that Voxblox fuses the colour for the final reconstruction. In contrast, we directly take the colour from the
global merged point cloud. b) and c) have the RMSE and Chamfer distance values on the right bottom as the comparison of reconstruction quality.

(a) Ground truth distance (b) Log-GPIS distance (c) Voxblox distance (d)

Fig. 15. A horizontal slice (5m× 3m) shows the distance accuracy given Log-GPIS odometry and mapping on the cow and lady dataset. The slice is 0.8m
above the ground. a), b), and c) show from the top view with scales in meters. For the distance RMSE in d), note that Voxblox estimates the distance for
the observed area only. Our method is able to predict not only in the observed area (Ours-obs) but also extrapolate the distance field to un-observed regions
(Ours-nonobs). The RMSE shows that our method outperforms Voxblox, in the observed regions, which is the one that is fair to compare with Voxblox. It
also shows that the prediction of the unobserved area from our method has similar errors than Voxblox in observed areas.

performance to Voxblox in the observed regions.

Regarding the computation time, the full Log-GPIS-MOP,
using for example the simulated dataset [67] (angular range
from 0◦ to 360◦ with 1◦ resolution) consumes a median
computational time of 3.63s. Individually, the frame-to-map
odometry consumes 1.98s. Incremental mapping takes 0.03s
and path planning uses 2.29s. The final map reconstruction
including post-processing takes an additional 29.12s with
190376 querying points. For the 3D odometry and mapping
on the cow and lady dataset, the median computational time
for each frame is 20.38s, individually 16.59s for the frame-to-
map odometry, and 3.79s for incremental mapping. We use
13517926 querying points to perform marching cube. The
final dense reconstruction takes an additional 26.94 minutes.
When the framework runs incrementally, the odometry is the
most computationally expensive due to each frame requiring
inverting the covariance matrix of the size of the training
points. In the future, we will investigate the use of inducing
points to make it more efficient.

To summarise, Log-GPIS-MOP has been evaluated qualita-
tively and quantitatively on both simulated datasets [12], [28]
and public real-word datasets [2], [27], [72], [34]. Based on
Log-GPIS representation, Log-GPIS-MOP provides compet-
itive results against state-of-the-art frameworks in odometry,
surface reconstruction, and obstacle avoidance. One limitation
of our proposed odometry is the difficulty of finding the correct
alignment in scenes lacking curvatures. This is because the
distance error is the same along flat surfaces with no features.
Another limitation that is present in most scan matching-based
approaches is that the difference between the consecutive
observations has to be relatively small in order to make sure

there is sufficient overlap between consecutive measurements.
Time complexity is also an issue in particular for odometry
estimation that we are aiming to address in future work.

X. CONCLUSION

We proposed Log-GPIS-MOP, a unified probabilistic frame-
work for mapping, odometry and planning based on Log-
GPIS. The main ingredient is the Log-GPIS representation,
which allows accurate prediction of the EDF and its gradients.
By exploiting the global and local Log-GPIS, we presented a
sequential odometry formulation for the incremental mapping
and planning approaches, and a batch optimisation as post-
processing to refine a sequence of poses. For Log-GPIS
mapping, two different pipelines were proposed: the incre-
mental mapping that appends the Log-GPIS with incoming
point clouds and the post-processing mapping, which simply
uses the output of the odometry and the raw point clouds
altogether to recover a global GPIS. Concurrently, a path
planning approach uses the reconstructed map to compute an
optimal collision-free trajectory in the environment. Extensive
analysis has been conducted to evaluate the proposed method
on simulated and real datasets in both 2D and 3D against state-
of-the-art frameworks. Our experiments showed that Log-
GPIS-MOP exhibits comparable results to the state-of-the-
art frameworks for localisation, surface mapping and obstacle
avoidance, even without using IMU data or loop closure
detection. Future work lies in loop closure detection to develop
a full SLAM solution that will improve long-term robustness
in large-scale environments. Combining the dynamic module
from [55] with the proposed Log-GPIS-MOP is an interesting
and promising avenue for future work that can expand the
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applications to more complicated scenarios. The predictive
variance can be used in interesting planning problems such as
information gathering [73] or planning under uncertainty [74].
Further, we would like to recover the sign of EDF and develop
an efficient implementation that will allow online operation.
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