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Constructing Limited Scale-Free Topologies
Over Peer-to-Peer Networks
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Abstract—Overlay network topology together with peer/data organization and search algorithm are the crucial components of
unstructured peer-to-peer (P2P) networks as they directly affect the efficiency of search on such networks. Scale-free (power-
law) overlay network topologies are among structures that offer high performance for these networks. A key problem for these
topologies is the existence of hubs, nodes with high connectivity. Yet, the peers in a typical unstructured P2P network may not
be willing or able to cope with such high connectivity and its associated load. Therefore, some hard cutoffs are often imposed
on the number of edges that each peer can have, restricting feasible overlays to limited or truncated scale-free networks. In this
paper, we analyze the growth of such limited scale-free networks and propose two different algorithms for constructing perfect
scale-free overlay network topologies at each instance of such growth. Our algorithms allow the user to define the desired scale-
free exponent (γ). They also induce low communication overhead when network grows from one size to another. Using extensive
simulations, we demonstrate that these algorithms indeed generate perfect scale free networks (at each step of network growth)
that provide better search efficiency in various search algorithms than the networks generated by the existing solutions.

Index Terms—Peer-to-peer networks, hard cut-off, scale-free, overlay networks, search efficiency.

✦

1 INTRODUCTION

One of the significant properties of decentralized
P2P networks is the topological characteristics of the
formed overlay network topology. In addition to the
distribution of data to peers and the type of search
algorithm used, performance of search queries issued
by peers is profoundly affected by overlay topology
(i.e. logical connectivity graph). It has been shown [1]
that the performance is among the highest when the
overlay topology is scale-free or has power-law degree
distribution. This is because the network diameter of
such topologies is small as it scales logarithmically
(from O(lnN) to O(ln lnN)) with network size [19].

Even though small-world or scale-free topologies
offer efficient search, preserving these properties in
growing distributed P2P environments is challenging.
There have been many efforts to build such scale-free
overlay structures for P2P networks in a centralized
manner. However such centralized solutions are not
scalable due to the difficulty of obtaining and main-
taining global knowledge in a central node. Therefore,
recently some algorithms using only the locally avail-
able information (i.e. neighbor peer’s information)
have been proposed. However, as expected, this has
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caused the loss of scale-freeness in the generated
overlay structures, resulting in degradation of search
efficiency.

A key difficulty in implementing scale-free net-
works is the existence of hubs. Nodes may not be
willing or able to host such hubs because of exces-
sive bandwidth and processing requirements result-
ing from high connectivity. Therefore, to promote fair-
ness and topology acceptability [2], some hard cutoffs
are often imposed on the degree of each peer, making
the topology a limited scale-free network. Clearly, these
hard cutoffs might limit the scale-freeness of the entire
topology. When the hard cutoff limit is lowered, the
diameter of the network increases, reducing the search
efficiency.

The construction of scale-free topologies with hard
cutoffs and the effects of hard cutoffs on the search
efficiency was first studied by Guclu et al. in [2]. How-
ever, the algorithm HAPA proposed by them has some
deficiencies. It is only a limited version of the well-
known Barabasi-Albert (BA) [3] or preferential attach-
ment algorithm and with fully localized information,
it does not produce a perfect scale-free distribution
of node degrees. Moreover, its time to converge and
messaging overhead grow as the number of peers
in the network increase. Even though it does not
require global topology information at the time when
nodes join, it needs total node count in the network
available at each node, incurring some maintenance
cost. Furthermore, it does not allow the user to set
the desired scale-free exponent (γ), which significantly
affects performance of search algorithms.

In this paper, we address the challenges of growing
scale-free overlay topologies with hard cutoffs. We
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first analyze the growth of limited scale-free networks.
Then, based on this analysis, we propose two different
algorithms that construct scale-free overlay network
topologies having the following properties:

• High adherence to scale-freeness: Since the perfor-
mance of the applications depends on the char-
acteristics (i.e. diameter) of the overlay network
on which they are built, the closer these networks
adhere to the scale-free property, the more benefit
the applications get from scale-free features.

• Parametrized: Desired post-construction parame-
ters (i.e. γ that defines the search performance)
of the scale-free network can be defined by the
user.

• Practical: Proposed models work on the growth
of limited scale-free networks even if there is a
limit on the number edges that a node can have
in practice.

• Cost-Efficient: An effective communication be-
tween newly joining nodes and existing ones
during the construction of overlay topology with
low communication overhead decreases traffic
intensity and increases construction efficiency.

The rest of the paper is organized as follows. In
Section 2, we overview the related work. In Section 3,
we present our analysis on the growth of limited
scale-free networks, and in Section 4 we continue with
the details of the proposed growth models. Section 5
presents the simulation results. Finally, we conclude
and outline future work in Section 6.

2 BACKGROUND

2.1 Scale-free networks

Since the discovery of the scale-free property, scale-
free networks have attracted a great deal of research
interest in many natural and artificial systems such
as the Internet [6] and scientific collaboration net-
works [7]. In these networks, nodes are connected
according to the power-law of node degree distribu-
tion. That is, the degree distribution of nodes does not
depend on the number of nodes in the network. The
probability that a node has degree i is proportional
to P (i) ≈ i−γ , where the exponent is often limited to
the range 2 ≤ γ ≤ 3. However, in limited scale-free
networks, only nodes with degrees smaller than the
achievable maximum degree comply with this rule.
We will elaborate on this later.

The growth models for scale-free networks have
been extensively studied in the last decade in net-
work science. The notion of ‘preferential attachment’
is usually the core of these proposed models. It is
equivalent to Yule process [9], which is used to model
the distribution of sizes of biological taxa. Price [10]
first applied this idea to growth of networks un-
der a mechanism called ‘cumulative advantage’. The
concept ‘preferential attachment’ and its popularity
as scale-free network models is after Barabasi and

Albert’s work [3] which independently rediscovered
the same growth model on the web.

In the Barabasi-Albert (BA) model [3], each joining
node selects and connects to an existing node j with a
probability (p(j) = (dj/

∑n

i=1
di)) that is proportional

to the existing node’s current degree, dj . Each joining
node computes p(j) for each existing node in the
network and randomly selects k of them to connect
to. The network formed by the BA model produces
a power-law degree distribution with γ = 3, thus
P (i) ≈ i−3. There are also other models that com-
pute p(j) differently than BA model does. However,
they all use ‘preferential attachment’ rule. A complete
review of such models is given in [11].

In practical applications of scale-free networks,
there is often a hard cutoff on the degree of nodes.
Therefore, in this paper we focus on the limited scale-
free networks and study the growth models on such
networks1. This is different than most of the previous
works which study the growth of scale-free networks
with no hard cutoff limit.

Moreover, in previously proposed growth models,
there is only one way of computing connection prob-
ability for each node, resulting in one, predefined γ
value. In this paper, we propose growth models which
define the connection probability of new joining nodes
to existing nodes according to the network parameters
(e.g. γ) desired in the final network.

In the construction of a network topology, it is
also important to do the construction efficiently. Even
though the growth of scale-free topologies has been
extensively studied, less focus has been given to the
applicability and construction overhead of growth
models. In a real network application (such as peer-to-
peer networks), the growth of such scale-free overlay
topologies may cause high communication overhead
between nodes. Whenever a new node joins the net-
work, it needs the current degree information of all
nodes (global topology information) to compute p(j)
for each existing node j to select nodes to which it
will connect. Different than this working principle,
computing with time [17] proposes a mechanism in
which nodes self-select themselves according to their
fitness to the task at hand. Each node computes
maximum time delay, td, proportional to the inverse
of its fitness. It responds to the request in a time
uniformly randomly selected from interval (0, td). The
benefit of this scheme is that the communication
needed for selection is constant in the number of
candidates [17]. In [8], Bent et al. used this mechanism
to select connections in a scale-free graph using the
degree of nodes as fitness. When a new node joins the
network, it sends a network-wide broadcast message
(using flooding) to announce its presence. Once the
new node starts receiving the responses from existing

1. Yet, by setting a cutoff threshold equal to the number of nodes
in the network, our algorithms are able to grow scale-free networks
without cutoff.
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nodes, it connects to the first k responders (since each
new node connects only to k of the existing nodes
at its joining time). To reduce communication, each
existing node that has already sent or forwarded k
different responses (of other nodes or its own) to the
newly joining node can stop forwarding any other
responses, since they will not have any chance to be
selected for connection.

2.2 Scale-free P2P Overlay Networks
One of the first algorithms offering scale-free overlay
network topology for unstructured peer-to-peer net-
works is the LLR algorithm [13]. It is a variant of
the BA model where only the nodes in the vicinity
of a new node try to connect to it. Even though
this algorithm helps in decreasing the construction
overhead and relaxes the necessity of whole topology
information, it causes divergence from scale-free net-
work topology. Other similar approaches include [5],
where a self organizing scale free topology is pro-
posed, and [14], where robustness and fragility of
such networks have been studied.

The above studies either require the availability
of global network information or cannot construct
limited scale-free overlay networks. To the best of our
knowledge, the study [2] by Guclu et al. is the first
work that studies the construction of limited scale-
free overlay topologies for unstructured peer-to-peer
networks as well as the the impact of hard cutoff on
the efficiency of search algorithms. The authors pro-
pose algorithms for building limited scale-free over-
lay structures for peer-to-peer networks considering
the locality in the preferential edge assignment. For
example, in the Hop-and-Attempt preferential attach-
ment (HAPA) algorithm, each new node joining the
network first selects a random node and then attempts
to connect to it. If it can not achieve connection (due
to hard cutoff and preferential selection probability)
or it needs more nodes to connect (to fill all its
k stubs), it selects a random neighbor of currently
selected but ineligible node and again attempts to
connect to it. This continues until the new node fills
all its stubs. Even though this algorithm works locally,
it still assumes that the nodes know the total node
count (n) in the network. The new node selects a
random number between 0 and 1 and connects to
a visited node j if that random number is less than
p(j) = dj/

∑n

i=1
di, where the denominator is indeed

equal to 2nk. Moreover, since p(j)s get smaller as n
increases, as we will show in the simulation section,
this algorithm may cause a new node to send a
connection attempt message to many nodes in the
network before succeeding to fill all its stubs. As a
result, it may sometimes incur cost higher than the
cost of a network-wide broadcast message. In a similar
work [4], Guclu et al. also studied the impact of ad-
hocness (mobility of peers) on the network topology
and search efficiency.

3 ANALYSIS

In this section, we analyze the growth of limited scale-
free networks with n nodes, each with the minimum
degree k, the average degree of all nodes 2k, and the
maximum degree (hard cutoff) m, with the degrees
distributed according to the power law with exponent
γ. By definition, the nodes with maximum degree
form a separate group from other nodes in terms of
degree distribution:

P (i) = ci−γ for nodes with degree k ≤ i < m

P (i) = 1−

m−1
∑

i=k

P (i) for i = m

where c is a constant. Note that, in this definition,
only the nodes that have not yet reached degree m
are guaranteed to comply with the power-law degree
distribution. However, as we show later in this sec-
tion, whenever m ≥ 3k, there exists a unique value
of γ with which all node degrees have frequencies in
agreement with the power law.

Our goal is to construct a topology that shows
perfect adherence to scale-free property. Moreover,
we want to achieve this without using any global
information. We characterize such a graph by its
parameters: n, m, k and γ, defined above. It is easy
to show that the following inequalities must hold:
m > 2k (we excluded here the trivial case of m = 2k in
which all nodes of the graph are of degree m, trivially
satisfying the definition of power law distribution of
node degrees), γ > 0, and n > 2k. We are interested
in generated graphs with the number of nodes in the
range 2k < n ≤ nmax and we assume that nmax >> k.

In this paper, we assume a constant integer k for
the number of edges added by each joining node.
However, it is a matter of simple extension to have
instead a vector [ki] of expected frequencies with
which i edges are added with the newly added node,
such that k =

∑m

i=1
iki.

The three constants, k, m, γ are independent of each
other except that for certain values of m, and k, there
is a lower bound for γ’s.

Let ni denote the number of nodes with degree i
in the network with n nodes. By enumeration of all
nodes and edges:

n =

m
∑

i=k

ni and 2kn =

m
∑

i=k

ini (1)

Substituting n in the above equations, and taking
nm out, we get:

nm =
1

m− 2k

m−1
∑

i=k

(2k − i)ni (2)

The power law degree distribution yields:

ni =
cn

iγ
for i < m (3)
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Using Eq. 3 to substitute ni in Eq. 2, we get:

nm =
cn

m− 2k

m−1
∑

i=k

2k − i

iγ
(4)

Using enumeration of nodes (nm +
∑m−1

i=k ni = n)
with different node degrees, we can compute the
constant c as:

c =
m− 2k

∑m−1

i=k
m−i
iγ

(5)

Note that in limited scale-free networks we can-
not enforce the power-law distribution for the nodes
with maximum degree m because their frequency is
defined by Eq. 4. However, for a given m and k,
nodes with maximum degree will also have frequency
defined by the power-law (nm = cn/mγ) if γ satisfies:

m− 2k

mγ
=

m−1
∑

i=k

2k − i

iγ
(6)

Since m > 2k, the left hand side of Eq. 6 is always
positive, its derivative for γ is − ln(m)(m − 2k)/mγ

while its value approaches (1− 2k/m)m−γ+1 when γ
tends to infinity. The right hand side of this inequality
can be initially negative, but for large γ it must be
positive. Its value approaches k−γ+1 when γ tends to
infinity and it has the derivative −

∑m−1

i=k ln(i)2k−i
iγ

.
It is easy to show that the right hand side decreases
slower than the left hand side and therefore at most
one unique value of γ can satisfy Eq. 6. The unique
solution exists if and only if for γ=0, the right hand
side is smaller than the left hand side, m−2k ≥ 2k(m−
k)− (m− 1)m/2 + k(k − 1)/2 which reduces to (m−
2k+1/2)2 ≥ k2+k−1/2 and since k2 < k2+k−1/4 <
(k + 1/2)2 then we get m ≥ 3k. Thus, only for m
greater or equal to 3k, there exists a unique value of γ
for which the constructed graph will have power-law
distribution of all node degrees (including the nodes
with maximum degree m).

Now, we will work on the general case in which
the frequency of nodes with maximum degree does
not need to comply with the power-law distribution.
To be independent of the graph size n, we will use
frequency fi = ni/n of nodes with degree i. Then,
substituting c in ni definition with Eq. 5, we get:

fi =
m− 2k

iγ
∑m−1

j=k
m−j

jγ

for i < m (7)

and

fm = 1−

m−1
∑

i=k

fi (8)

Eq. 7 and Eq. 8 express frequencies, fi’s, as simple
functions of m, k and γ.

Let’s consider now a growth of the graph from
its size of n nodes to the size of n + 1 nodes. The
added node has k edges originating from it which are
then connected to the existing nodes, so on average
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Fig. 1. Maximum cut off (m) values for different k’s in
perfectly growing scale-free graph.

it increases by 1 the number of nodes with degree k,
i.e. n′

k=nk + 1.

Let ai denote the average number of nodes that
increase their degree from i to i + 1 in one step of
growth (so the number of nodes of degree i decreases
by ai while the number of nodes with degree i + 1
increases by ai) by connecting to a newly added node.
Of course, each existing node can add at most one
connection to a newly added node. Hence, we have:

fk(n+ 1) = fkn+ 1− ak (9)

which yields:

ak = 1− fk (10)

Similarly, fi = ai−1 − ai for k < i < m − 1, so by
induction:

ai = 1−

i
∑

j=k

fj for k ≤ i < m− 1 (11)

Finally:

am−1 = fm (12)

All frequencies must be positive. For that to
hold2, it is necessary and sufficient that nm≥ 0 or
∑m−1

i=k
2k−i
iγ

≥ 0, which can be rewritten as:

2k

m−1
∑

i=k

i−γ ≥

m−1
∑

i=k

i−γ+1 (13)

If this condition is not satisfied, it is always suffi-
cient either to appropriately increase γ or k or to suffi-
ciently decrease m. Other changes to these parameters
may or may not, depending on the particular values
of the parameters, also cause the inequality of Eq. 13
to be satisfied. It is easy to notice that for γ ≥ 3 this
inequality is satisfied for arbitrary m and k. Fig. 1
plots the maximum values of m for given γ and k
values. It confirms that the maximum value of m goes
to infinity for γ ≥ 3.

2. Extended details and proofs are presented in our technical
report [12].
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Algorithm 1 AddNode(algoType, k, m)

1: n++
2: if algoType = SRA then
3: numOfEdges = 0
4: while (numOfEdges < k) do
5: Pick a random number r in [0,1)
6: d[numOfEdges]= { d| vd−1 ≤ r < vd in Eq. 14}

7: numOfEdges++
8: end while
9: Broadcast a message with d

10: Add edge to the first k responders
11: else if algoType = SDA then
12: Broadcast a presence message
13: All existing nodes receiving broadcast message

increase total node count information by 1
14: Nodes with degrees in SDA degList[n×k] . . .

SDA degList[n×k+k-1] respond with their id
and the total node count information

15: Add edge to first responder from each degree
16: Store the total node count information received

from responders
17: end if

4 PROPOSED GROWTH MODELS

We propose two different algorithms; (i) SRA and (ii)
SDA. Algorithm 1, which is run at each node as the
new nodes join the network, shows the steps of each
algorithm. The first algorithm (SRA) needs one-time
precomputation of v[] array using the formulations
in previous section and the second algorithm needs
SDA degList[] array which is also computed one-
time in Algorithm 2 before node joins start.

4.1 Semi-Randomized Growth Algorithm (SRA)

The rationale behind SRA (lines 2-10 in Algorithm 1)
is to define the probability ranges (i.e., expected
frequencies) for the selection of degrees of existing
nodes to whom the new joining nodes will connect
such that the final degree distribution of all nodes in
the network will fit to the desired scale-free degree
distribution. The algorithm starts with an initial con-
figuration of a fully connected graph of 2k+1 nodes.
When a new node joins the network, it randomly
decides the degrees of nodes that it will connect by
generating k random numbers, r1 . . . rk, each in range
[0,1] and finding the degree that each random number
corresponds to. We define vi’s (probability ranges) as:

vi =
(

vi−1 +
ai
k

)

∀ k ≤ i ≤ m− 1 (14)

where vk−1 = 0 and vi’s are computed at each node
one time only at the beginning (before node joins)
using the ai formulas in the previous section. The ran-
dom number ri corresponds to the degree l such that
vl−1 ≤ ri < vl is satisfied. Having computed all k node

degrees to which it wants to connect, the new node
then broadcasts a message with these degree values.
Once the existing nodes in the network receive such a
message, the nodes of the desired degrees respond to
the new node to establish a connection to it. Then, the
new node selects the first k of the nodes with desired
degrees and connects to them. If the nodes with the
desired degrees do not exist yet, which is likely only at
the earlier stages of the network growth, until the first
node reaches the degree m, the new node broadcasts
a special request for the lower/higher degree nodes3,
after the period of response for the original broadcast
passes. Note that once v array is known in advance,
SRA will have the complexity of O(nmk) to grow a
network of n nodes.

4.2 Semi-Deterministic Growth Algorithm (SDA)

Algorithm 2 SDA ConnectionOrder(f[], k, m)

1: for (i=k-1;i<m;i++) do
2: freq[i] = f[i]/k
3: n[i]=0
4: score[i] = 2k × 2k × f[i]
5: end for
6: n[2k-1]=2k
7: for (cur=k;cur<maxNodeCount;cur++) do
8: for (c=0;c<k;c++) do
9: best = maxNodeCount

10: desired degree=k-1
11: for (i=k-1;i<m-1;i++) do
12: a1 = n[i-1]-score[i-1]-freq[i-1]
13: a2 = n[i]-score[i]-freq[i]
14: b1 = n[i-1]-1-score[i-1]-freq[i-1]
15: b2 = n[i]+1-score[i]-freq[i]
16: if i=k-1 then
17: a1++ a2++
18: end if
19: current = -|a1|-|a2|+|b1|+|b2|
20: if ((best > current) & (n[i]>0)) then
21: best = current
22: desired degree = i
23: end if
24: end for
25: SDA degList[cur×k+c] = desired degree+1
26: n[desired degree]−−
27: n[desired degree+1]++
28: for (i = k-1; i<m;i++) do
29: score[i] = score[i]+freq[i]
30: end for
31: end for
32: end for
33: return SDA degList

3. Such a broadcast will be run only a limited number of times
over initial small network, so its impact on communication over-
head is negligible. Since initially nodes with degree 2k exist, the
search will go in that direction.
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In the second algorithm, we aim to adhere as
closely as possible to the desired scale-free network
degree distribution at each step of the construction
(i.e., for each intermediate network created during the
construction). To this extend, SDA degList[] array is
precomputed one time using Algorithm 2 and used in
the run time of SDA (lines 11-16 in Algorithm 1). In a
network with n nodes, for each edge of new joining
node, Algorithm 2 decides which degree (of nodes)
accepting such edge will minimize the divergence of
the resulting degree distribution from the scale-free
distribution. Let n[i] denote current node count with
degree i+1. f [i] denotes the expected frequency of de-
gree i+1 nodes (in perfect scale-free topology) as cal-
culated in analysis section and freq[i] = f [i]/k is the
expected increment in degree-(i+1) node count with
only one edge addition to a new node. score[i] denotes
the current expected count of degree-(i + 1) nodes
at given node count, and score[i] + freq[i] denotes
the expected count of degree-(i + 1) nodes after one
new edge assignment to the new node. The algorithm
starts with a fully connected 2k + 1 node graph and
updates score[i] values with each edge addition (line
29 in Algorithm 2). With the score[i], freq[i] and n[i]
values known for the current network, the algorithm
computes the sum of absolute differences between the
current (n[i]) and expected (score[i] + freq[i]) counts
of nodes with each degree that adheres to power law
distribution. Let f(i) = n[i] − score[i] − freq[i] show
the difference of degree-(i+1) nodes’ expected count
and current count in the network. Then, the sum of
absolute differences for all degrees (

∑

k≤j<m f(j)) in
case of selecting degree i + 1 can be computed as:

d(i) = −|f(i− 1)| − |f(i)|+ |f(i− 1)− 1|+ |f(i) + 1|

Once the algorithm finds the degree that will de-
crease this sum the most (i.e., which provides the best
adherence to scale-free distribution), it connects an
edge from the new node to one of the nodes with
such degree and updates the node counts (line 26-27
Algorithm 2).

Note that the SDA algorithm deterministically finds
the degree to which the new joining node should
connect at each current total node count. However,
the new node can select any node with such de-
gree to connect (during run time), making the al-
gorithm ‘semi-deterministic’. Once each node runs
Algorithm 2 one time and gets ‘SDA degList[]’ as
output, they can decide their action (i.e., to respond
or not for connection) every time they receive a new
joining node’s broadcast message in run time. They
check the degree values in SDA degList[n × k] . . .
SDA degList[n× k+ k− 1] using current node count
n. If their degree is on the list, they respond to the
new node with their ID and the total node count

information in the network4 such that the new node
can also learn the current total node count in the
network. The complexity of SDA is O(nmk)+O(nk),
where the former is the cost of getting ‘SDA degList[]’
from Algorithm 2 and the latter is the complexity of
growing a network of n nodes, making the overall
SDA complexity O(nmk). Hence, the complexity of
proposed algorithms matches the complexity of Gaian
(O(nk)) with constant m and it is lower than the
complexity of HAPA5 and BA (O(n2k)).

5 SIMULATION

In this section, we compare the proposed algorithms
with well-known previous algorithms in terms of (i)
the goodness of scale-free distribution, (ii) the effect
of using global information vs. not using it, (iii) the
search efficiency in different search algorithms, and
(iv) the messaging overhead and complexity incurred
during the construction. To this end, we study three
different search algorithms: flooding (FL), normalized
flooding (NF), and random walk (RW). In FL, source
(i.e., query originating) node initiates the search by
sending a message to its first hop neighbors. If the
neighbor nodes receiving this message do not possess
the requested item, they forward this message to their
own neighbors, excluding the node from which they
received the message. This type of forwarding process
is repeated by each node that receives the message
and does not have the requested item. In NF [15], a
node receiving the query message only forwards it to
k (i.e., minimum degree of all nodes) of its neighbors
in case it does not have the item in its repository.
If a node has more than k neighbors, it randomly
selects only k of them and forwards the message to
them, excluding the one that sent the message to this
node. Finally, in RW [16], a node receiving the query
message and not possessing the requested item selects
a single random neighbor and forwards the message
to it. RW can also be considered as a special case of
NF with a virtual minimum degree of 1. In all search
algorithms, the forwarding of the message either stops
after a predefined forwarding limit, which is called
time-to-live (TTL), or the item is found at the current
node. We also assume that search items are uniformly
distributed among all nodes. Extensive details of these
search algorithms can be found in [2].

5.1 Simulation Results

To compare the proposed growth model with existing
algorithms, we generated different topologies (con-
sisting of n nodes) using different k, m and γ values.
We start with a fully connected network of 2k + 1

4. In current setting, we assume fault-free communication be-
tween nodes.

5. The complexity of HAPA is not assessed in [2], but the number
of steps required in HAPA to find the next node to connect to grows
with n, making the complexity higher than O(nk).
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Fig. 2. Degree distributions in different growth models (n = 5x104).

nodes and add a new node to the network following
the connection mechanisms of each growth model.
The new node selects k of the existing nodes (which
have not reached its maximum edge limit) according
to the algorithm in use and connects to them.

The algorithms we compare in the simulations are
listed in Table 1. As the table shows, BA algorithm
needs the global topology information (degrees of all
nodes). Even though the HAPA algorithm does not
need degrees of each node, it still needs the global
knowledge of total node or edge count in the network.
On the other hand, Gaian and our first algorithm,
SRA, do not use any global knowledge. Our second
algorithm, SDA, just uses the total node count, as does
HAPA. While all other algorithms can only generate
a network of fixed degree distribution exponent (γ)
due to their designs, both of our algorithms can create
topologies with desired exponent (so with desired
network properties, such as diameter).

In Fig. 2, we show the degree distribution in topolo-
gies constructed by the compared algorithms. Since
our algorithms can produce scale-free networks with
a desired γ exponent, we generated several network
topologies with different γ values. However, the other

Algorithm Global knowledge used Flexible exponent
(γ)

BA [3] Degrees of all nodes No
HAPA [2] Total node count No
Gaian [8] None No
SRA None Yes
SDA Total node count Yes

TABLE 1
Comparison of Growth Models

algorithms can yield a network only with a single γ
value. When we look at the degree distributions in
topologies created by SDA in Fig. 2a- 2c, we clearly
observe that the degree distributions perfectly match
with the desired degree distribution of used γ values
in the construction. Similarly, there is a quite good
match with the degree distributions of SRA algorithm
and the predefined γ value used in the construction.
We only see a slight curve towards the end of the
lines (high degree nodes) when m = 50 in Fig. 2e
and Fig. 2f. This is typically due to increasing impact
of randomness used in the SRA algorithm and the
insufficient number of nodes in the final network as
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Fig. 3. SRA search results

the value of γ increases. These minor curves disappear
if the number of nodes in the network increases or the
γ value decreases (there is no such a curve in Fig. 2d,
where γ=2.5).

On the other hand, when we look at the degree
distributions of the other algorithms, we can not see
a good scale-free distribution even though some use
global topology information during their construction
phase. The degree distribution line is either concave
or convex curve rather than a straight line. This result
is indeed expected due to their designs which are
originally proposed for general scale-free networks
without hard cutoffs and later adjusted to limited
scale-free networks. Thus, these figures clearly show
that these algorithms are not able to create perfect
limited scale-free topologies.

Method SDA
(γ=3.0)

SRA
(γ=3.0)

BA HAPA Gaian

γ (m=20) 2.99187 2.97974 2.32319 3.04869 2.322818
ChiSquare
(m=20)

0.00001 0.00064 0.00243 0.00435 0.00246

γ (m=50) 3.00057 2.97269 2.46555 3.31755 2.465575
ChiSquare
(m=50)

0.00007 0.00366 0.00494 0.01197 0.00498

TABLE 2
Results of fitness analysis

To quantify the fitting quality of distributions, we
followed [18] and used the maximum likelihood es-
timation (MLE) method to compute the best fitting γ
for results obtained from each algorithm. Then, using
ChiSquare statistics, we computed the probability that
the fit of data to power-law distribution with this γ
is random, so the smaller the value, the better the fit.
Table 2 shows the results for k = 2 and m ≥ 20 6.
The results show that SDA has superior performance,
with the maximum divergence from the desired γ of
at most 0.008 and the very low probability, 0.00007,
of the match being random. The next in performance
is SRA with a divergence that is three times larger
from γ (0.028) and about 50 times higher in probability
of a random match (0.00366). The compared methods

6. We used MLE for cases with m ≥ 20 since it does not work
well for small samples [18].

have at least 8 (BA7, Gaian) to 16 (HAPA) times larger
divergence, and probability of random fit from 70
to 170 times higher than SDA. The comparisons of
performance with k = 3, not shown for the sake of
brevity, yielded similar results.

Next, we look at the performance of proposed algo-
rithms in terms of the search efficiency and compare
their performance with other algorithms using differ-
ent types of searches (in a network with n = 10, 000
nodes). As Fig. 3a shows, the number of hits with
given TTL value increases in SRA algorithm as the
used γ value increases. Moreover, the improvement
becomes more visible as the limit on the degree of
nodes, m, increases. On the other hand, Fig. 3b-c show
that as m and γ decreases, the NF and RW search
efficiency increases, unlike the FL search performance.
The impacts of m and γ on SDA algorithm is similar
to the impacts of those parameters on SRA, thus, we
did not present them for brevity.

Fig. 4a-b show the comparison of FL search effi-
ciency in all algorithms with m=10 and m=50, respec-
tively. SRA algorithm with γ = 3.5 achieves the best
hit ratios with given TTL value in either case, while
SDA with γ=3.5 (and HAPA algorithm when m = 50)
achieves the second best. BA and Gaian algorithms
have much lower performance.

NF results in Fig. 4c-d reveal some interesting
trends. Since our algorithms show the best NF search
efficiency as γ decreases, we set γ = 1.53 (its lowest
possible) when m = 10 and γ = 2.46 when m = 50
(which also generates fully perfect scale-free topology
where nodes with degree m also comply the scale-
free distribution). SRA/SDA algorithms have similar
performance in both cases, and their performance is
up to 12% better than the performance of BA and
Gaian algorithms when m = 10 and similar to them
when m = 50. The reason why they cannot have
better performance when m = 50 is due to the larger
minimum possible γ (2.46) with given (k = 2, m = 50)
setting. Note that HAPA has the worst NF search
efficiency among all algorithms.

Fig. 4e-f show the RW based search results. Since
RW needs more TTL to reach the destination node

7. Using the γ = (3 − 2k/m) for limited BA derived from [2]
gives even much (around 50 times) larger divergence.
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Fig. 4. Search efficiency results: FL (a-b) NF (c-d) and RW (e-f)

than NF, we applied the same normalization as used
by previous work [2] to obtain the results of RW. That
is, for a fair comparison we set the TTL value of RW
search to the number of messages generated during
NF search in the same setting. For example, the results
in RW graphs with a TTL value of x show the number
of hits achieved by RW search with the same number
of messages used in NF search that uses the same x as
the TTL. The comparison of algorithms in terms of RW
based search efficiency leads to similar conclusions
as the comparison of NF based search efficiency. We
see that our algorithms perform better than all other
algorithms when m = 10 and similar to BA and Gaian
algorithms and better than HAPA when m = 50.

We also compared the algorithms in terms of the
communication overhead (e.g. number of messages)
during the construction of a scale-free network in
Fig. 5. In all algorithms except HAPA, when a node
wants to join the network it sends a broadcast mes-
sage to announce its presence. Then, in BA algorithm
every node sends its current degree count back to
the new joining node. In Gaian algorithm, each node
sends (or forwards) at most k messages (containing
degree of the corresponding node) towards the new
joining node. This is also true in our algorithms,
however, only nodes with desired degree respond, so
the communication overhead is lower than it is in
the Gaian algorithm. In HAPA algorithm, the new
joining node first selects a random node and then
attempts to connect to it. Next, it randomly walks in
the network through neighbors until all its stubs are
filled. Even though the HAPA algorithm is a localized
algorithm, since each connection attempt by a new
node becomes successful with probability p(j) and
only if the visited node has an edge count lower
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Fig. 5. Communication Overhead

than the hard cutoff value, the new node’s connection
attempt message needs to travel a lot (sometimes
a node is visited many times). Thus, it results in
a large messaging overhead8. Fig. 5 clearly shows
that the overhead of our algorithms is the smallest.
Considering this result with the almost perfect degree
distribution SRA achieves with a given exponent and
without any global information, we can clearly state
its superiority over other algorithms. The overhead
of SDA is same to SRA and it achieves a much
better fit to the scale-free property but it may not
be robust during communication failures due to the
requirement of total node count maintenance at every
node.

5.2 Summary of Contributions

As the simulation results show, with the introduction
of two new algorithms for P2P overlay networks, we
demonstrated that:

8. The overhead of HAPA algorithm in Fig. 5 does not include
the overhead that will be generated for maintenance of total node
count information at each node of the network. Its overhead will
be higher if that would also be included. We could not include that
cost since no detail is given about its implementation in [2].
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• Without using any global information (i.e., SRA),
we can construct a sequence of growing scale-free
overlay topologies with lower overhead than the
currently used algorithms. Each of these evolv-
ing topologies adheres nearly perfectly to the
scale-free degree distribution. This is contrary to
the statement in [2] indicating the necessity of
some global information to achieve close scale-
freeness. Moreover, the other algorithms can not
show good scale-freeness, including those that
use global information.

• The effect of scale-free exponent, γ, is signifi-
cant in achieving high search efficiency in dif-
ferent search algorithms (especially for weakly
connected networks (i.e. k=2)). While our algo-
rithms with γ=3.5 achieves the best hit ratios
in FL search, they achieve the best hit ratios in
NF and RW searches when γ is set to lowest
possible value (γ = 1.53 (m = 10) and γ = 2.46
(m = 50)). Since our algorithm can create a
scale-free network with a desired γ value, the
value that gives the best search efficiency for the
given search algorithm can be used to create the
scale-free overlay topology to increase the per-
formance. The other algorithms can only achieve
high search efficiency either in FL (HAPA) or
NF/RW (BA and Gaian).

• In limited scale-free networks, when m ≥ 3k,
there is a unique γ with which all node degrees in
the sequence (including the ones with degree m)
of networks of growing size comply with power
law distribution.

6 CONCLUSION

In this paper, we introduced two new algorithms
for growing limited scale-free overlay topologies for
unstructured P2P networks. In extensive simulations
we demonstrated clear superiority of our algorithms
with well known algorithms in literature. Our algo-
rithms provide almost perfect adherence to the scale-
free property using zero or limited global informa-
tion and require less communication during overlay
construction than others do. They also provide higher
search efficiency for different search methods when
a network is constructed with right parameters (i.e.,
γ). In future work, we plan to develop algorithms
which maintain the perfect scale-freeness without us-
ing global information while nodes join and leave the
graph at the same time.
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