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Privacy-Preserving Correlated Data Publication: Privacy
Analysis and Optimal Noise Design

Mingjing Sun, Chengcheng Zhao, Jianping He, Peng Cheng, and Daniel E. Quevedo

Abstract—The privacy issue in data publication is critical and
has been extensively studied. Correlation is unavoidable in data
publication, which universally manifests intrinsic correlations
owing to social, physical, behavioral, and genetic relationships.
However, most of the existing works assume that private data
is independent, i.e., the correlation among data is neglected. In
this paper, we investigate the privacy concern of data publication
where deterministic and probabilistic correlations are considered,
respectively. Specifically, (ε,δ )-multi-dimensional data-privacy
(MDDP) is proposed to quantify the correlated data privacy. It
characterizes the disclosure probability of the published data be-
ing jointly estimated with the correlation under a given accuracy.
Then, we explore the effects of deterministic and probabilistic
correlations on privacy disclosure, respectively. For both kinds
of correlations, it is shown that the privacy disclosure with
correlations increases compared to the one without correlation
knowledge. Meanwhile, a closed-form expression of disclosure
probability and a strict bound of privacy disclosure gain are
derived, respectively. To minimize the disclosure probability, we
provide the optimal noise distribution in the sense of (ε,δ )-
MDDP. Extensive simulations on a real dataset verify our
analytical results.

Index Terms—Data privacy, correlated data, multi-dimension,
optimal distribution, noise adding mechanism.

I. INTRODUCTION

With extensive personal data being generated on a daily
basis, data plays a key role in people’s lives in various
applications ranging from medical treatments to online-social
interactions [1]. Before using data for statistical analysis, users
need to publish data. For data publication, how to protect
individual privacy while obtaining accurate data analysis is
an increasingly crucial issue [2]. For example, when users
broadcast electrical usages to the data fusion center, the
exact individual’s data is fuzzy in the broadcasting process
for privacy concern, while the aggregated result should be
accurate.
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Many efforts have been devoted to investigating privacy-
preserving data publication. Existing works can be categorized
as follows: The first type of research focuses on quantitative
mechanisms analysis, e.g., differential privacy [3] and data
privacy [4]. The second one is protection mechanisms design,
e.g., encryption [5], anonymity [6] and noise adding [7].
The third type focuses on optimization, e.g., maximizing the
measure of privacy [8]. These representative methods need a
basic assumption, namely, that data is one-dimensional or in-
dependent [9]. However, real-world data often exhibits strong
coupling relations, e.g., medical data such as weight and blood
pressure are often assumed to be normally distributed [10].
Thus, considering correlated data publication [11], it raises
the following problem: Can the attacker use the correlation for
analysis? This seems intuitively feasible, but lacks theoretical
support. This work contributes to answering this question. For
that purpose, we first reveal that the attacker is capable of
using the correlation. Then, we provide theoretical tools for
privacy analysis and optimal noise design for situations where
data to be published is correlated.

There are two main challenges in studying privacy-
preserving data publication in correlated settings: 1) The first
challenge lies in (ε,δ )-multi-dimensional data privacy analysis
under the correlated data model. Some efforts have been
made to differential privacy analysis for the data publication
with side information [12]. For example, a typical method
to characterize the impact of the correlation on differential
privacy is to replace the global sensitivity with correlation-
based parameters [9]. However, these methods cannot be
applied in our setup since the privacy notion is different. Mean-
while, the variation of the disclosure probability, say δ , with
correlations compared to that without correlations is difficult
to characterize directly. This is due to the fact that δ is usually
only known in an integral form and thus too complicated to
conduct analysis directly. 2) The second challenge is how to
find the optimal distributed noise to maximize (ε,δ )-multi-
dimensional data privacy under correlated data constraints.
The challenge arises because the optimal noise analysis for
(ε,δ )-one-dimension data privacy cannot be applied directly,
since the optimization problem is different due to the existence
of correlated data constraints. Meanwhile, the existence of
correlated data constraints introduces a complex effective
integral domain for the disclosure probability and thus the
optimal noise analysis is hard to derive.

The proposed privacy notion, i.e., (ε,δ )-MDDP, character-
izes to what extent an attacker can infer the true data within
a given accuracy. In contrast, differential privacy has been
defined and applied for quantifying the degree of individual
privacy preservation in a statistical database [3]. It is proposed
to maximize query accuracy while maintaining the indistin-



guishability of each entry. Consequently, when considering
practical correlations among data, the existing differential
privacy analysis techniques cannot be applied to our problem.

Most importantly, the privacy guarantee by database query
problems is different from the privacy demand of data publish-
ers in practice. Data privacy is proposed in [4], where privacy
analysis for independent data publication is investigated. More
privacy definitions (e.g., identifiability, information-theoretic
metrics) have been discussed in [12]–[18]. However, for cor-
related settings, how to quantify the degree of the data privacy
protection in terms of the probability of estimation under a
given accuracy remains open.

The privacy analysis of data publication with deterministic
correlation has been tackled in our recent conference paper
[19], in which the probabilistic correlation was not taken
into consideration. In our current paper, we have further
studied more general and practical cases where probabilistic
correlation and noise dependency are considered. Meanwhile,
we have provided more details to enrich the motivation, related
works, problem formulation, and the simulation. We have also
found the optimal noise distribution by deriving the explicit
expression of privacy leakage and optimizing over functional
spaces. The main contributions of this paper are summarized
as follows.
• We extend the definition of data privacy [4] to multi-

dimensional correlated data privacy, i.e., ((ε,δ )-MDDP),
where both deterministic and probabilistic correlations
are considered. Our new notion quantifies disclosure
probability of the published correlated data being jointly
estimated with a given accuracy.

• We analyze the effects of both kinds of correlations
among data on the privacy disclosure. It is shown that
using the correlation, the privacy disclosure increases
compared to that without correlation knowledge. Further-
more, a closed-form solution of disclosure probability and
a strict bound of privacy gain are derived.

• We propose optimal noise adding strategies, in the sense
of (ε,δ )-MDDP, for cases with full couplings and with
probabilistic couplings.

The remainder of this paper is organized as follows: Related
works are revised in Section II. Section III introduces some
preliminaries and formulates the problem of interest. Section
IV and Section V present the theoretical results of privacy
analysis and optimal noise design for data publication with
two kinds of correlations, respectively. Section VI verifies the
main results through simulations. Conclusions are given in
Section VII.

II. RELATED WORKS

Many efforts have been devoted to investigating the privacy-
preserving data publication problem where the correlation is
considered. To solve this problem, a widely used approach
is adding random noises to the data to be published [3].
Especially, the differential-privacy-based approach has become
a hot research topic, due to its strict indistinguishability
guarantee. Three correlation models have been heavily inves-
tigated in the privacy analysis for correlated data publication,
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Fig. 1. An attacker attempts to infer the value of x1, x2 based on the joint
distribution of database x and the published result x+.

i.e., attribute correlations, temporal correlations, and spatial
correlations.

Specifically, attribute correlations are usually modeled by
degree-based methods and the Bayesian network-based meth-
ods [12], [20], [21]. For correlation degree-based methods,
the correlations among data are usually characterized as a low
dimension metric and then used in the important parameters of
differential privacy. For example, Zhu et al. utilized a correla-
tion coefficient matrix to describe the correlation of a series,
and the correlation coefficient was considered as the weight
to compute the global sensitivity [20]. In Bayesian network-
based methods, the correlations are modeled through Bayesian
network and then applied in privacy preservation analysis. In
particular, Zhang et al. constructed a Bayesian network to
model the attribute correlation in high-dimensional data and
then synthesized a privacy-preserving dataset in an ad hoc way
[21]. Temporal correlations are usually modeled by coupled
hidden Markov model-based methods (HMM) [22]–[24]. For
example, Xiao et al. used HMM to model the temporal
correlations between user’s locations [23]. Then, they showed
that the well known l1-norm sensitivity in differential privacy
fails to capture the geometric sensitivity in multidimensional
space and proposed a new notion called, sensitivity hull, based
on which the error of differential privacy is bounded.

Spatial correlations are often modeled by the Pearson Cor-
relation Coefficient (PCC). Within this framework, grouping
and perturbing the statistics over correlated regions is often
applied to avoid noise overdose. As a typical example, Wang
et al. adopted PCC to measure the similarity of the trend of
statistics change [25], and then regions with small statistics
and high similarity are grouped together and the same noises
are added to reduce errors.

Most of the existing works on noise adding mechanisms
are based on differential privacy. The privacy disclosure prob-
ability, which characterizes to what extent an attacker can
infer the true data within a given accuracy, is neglected. In
many application domains, the strict indistinguishability that
can be well quantified by differential privacy cannot meet
the requirement. For example, in many medical databases,
the presence of the record of an individual is not a secret.
Instead, the exact value of an individual’s disease record



TABLE I
IMPORTANT NOTATIONS

Symbol Definition
x the original data vector of N random attributes; variable
xi the i-th element of x; variable
χ the domain of x
χi the domain of xi

GX the full-coupling function of original data
X the corresponding random vector of N attributes
fX the probabilistic coupling among original data
Θ the domain of θ

Θi the domain of random variable θi
fθ the joint probability density function of θ

x+ the observed data vector; variable
ν the possible original data; variable
x̂∗ the optimal estimation of x; variable
ε the estimation accuracy of x; constant
δ the joint disclosure probability of x; variable

is. It is worth mentioning that data privacy preserving data
publication and its application in network systems have been
well studied [4], [26]. However, only one-dimension data
privacy preservation is taken into consideration. The key issue
on how the correlation affects data privacy and what kind of
noise distribution can achieve maximal privacy, remains open.
The present work aims to fill this knowledge gap.

III. PRELIMINARIES AND PROBLEM FORMULATION

Consider that one person needs to broadcast his/her real-
valued data, which describes N private attributes denoted by
random vector X . Hence, there exists a correlation among
different terms of the data. Let x = [x1, · · · ,xN ]

T be a real-
valued data vector, i.e., x ∈ RN , where N is the dimension of
the vector. In this paper, we consider the two common types of
correlations, i.e., full coupling and probabilistic coupling. Full
coupling is common among numeric data, e.g., the relation
between weight in kg (x1) and weight in lb (x2) of one person
is a classic example of full coupling (i.e., 0.453x1− x2 = 0),
the relation between personal income and personal income tax
[9], etc. Probabilistic coupling is usual among attribute data,
e.g., the weight and the blood pressure of people are often joint
normally distributed [10]. It models the fact that the attributes
corresponding to an individual entry are correlated in general
and consequently can reveal information about one another.
The specific definitions are given below by referring to [9],
[10].

Definition 1 (Full coupling): Full coupling means the orig-
inal data is correlated by an equation G(x1, · · · ,xN) = 0 (GX in
abbreviation). Specifically, G(x1, · · · ,xN) = 0 is a multivariate
explicit function, i.e., any variable can be expressed as an
explicit function of all other variables.

Definition 2 (Probabilistic coupling): Probabilistic coupling
means the original data is correlated by a joint probability
density function fX (x1, · · · ,xN) ( fX in abbreviation).

To preserve the privacy of the sensitive correlated data
vector, random noise is added, i.e.,

x+ = x+θ , (1)

where θ = [θ1, · · · ,θN ]
T is a random noise vector, and x+ is the

published data vector. Let fθ (z1, · · · ,zN) ( fθ in abbreviation)

be the joint probability density function (PDF) of N entries of
θ . Table I summarizes important notations for easy reference.

A. Attack Model

Suppose that there is an attacker outside the users’ data
publication group. The attacker is able to eavesdrop the
broadcast information x+ and knows the PDF of noises. The
attacker aims to infer the true data vector x, see Fig.1. Let
x̂ be an estimation of x, where x̂i represents i-th element of
x̂. The attacker can infer x using the difference between the
observed value and the estimated value of the added noise,
i.e., x̂ = x+− θ̂ , where θ̂ is the estimation of the added noises
θ . We define ε-accurate estimation as follows:

Definition 3 (ε-accurate estimation): Consider that the
attacker knows x+ and fθ . Let x̂ be an estimate of variable
x. If ||x̂− x||∞ ≤ ε , where ε ≥ 0 is a small constant, then we
say x̂ is an ε-accurate estimation.

Then, we have

Pr{||x̂− x||∞ ≤ ε}= Pr{||θ̂ −θ ||∞ ≤ ε}. (2)

Inspired by [4], we provide one important definition below:
Definition 4 (Optimal estimation): Considering the ε-

accurate estimation, given x+, GX or fX , and fθ , the optimal
estimation of x is defined as

x̂∗ = argmax
x̂∈χ

Pr{ν +θ = x+|GX/ fX , ||ν− x̂||∞ ≤ ε}, (3)

where the random vector ν = [ν1, · · · ,νN ]
T denotes the possi-

ble value of x, and χ is the domain of x.
Remark 1: In (3), ν is an arbitrary possible value in χ , and

the constraint ||ν− x̂||∞ ≤ ε limits the estimated value within
an ε-accuracy of the arbitrary possible value in χ , i.e., x̂ is
an ε-accurate estimation. Since the attacker only knows the
domain of the published data and the published information,
any value in that domain can be the true value from the
perspective of the attacker. As a result, the attacker should
estimate the true value such that the disclosure probability is
the largest, which means that that estimate is mostly like the
true one. Hence, we define the optimal estimation of x as (3)
to maximize the disclosure probability for the attacker. In (3),
the term GX/ fX (GX or fX ) is side information of the optimal
estimation, and we explore the effects of deterministic and
probabilistic correlations on privacy disclosure, respectively.
Both the distribution and the estimation range of θ are affected
by GX or fX , and the details will be discussed later.

When the correlation is unknown to the attacker, then (3)
is simplified to

x̂∗ = argmax
x̂∈χ

Pr{ν +θ = x+| ||ν− x̂||∞ ≤ ε}, (4)

which is consistent with that in [4].

B. Privacy Definition

To quantify the degree of privacy protection of correlated
data publication, the relationship between estimation accuracy
and privacy is constructed as follows.



Definition 5 ((ε,δ )-MDDP): A noise adding mechanism (1)
satisfies (ε,δ )-multi-dimensional data-privacy, iff,

δ = Pr{||x̂∗− x||∞ ≤ ε}, (5)

where ε is the estimation accuracy and δ is the disclosure
probability.

Remark 2: Definition 5 quantifies the probability that the
attacker can successfully estimate each entry of x in a given
interval [xi−ε,xi+ε],∀i∈ [1,N], using the optimal estimation.
A smaller value of ε offers higher accuracy, and a smaller
value of δ offers a smaller disclosure probability. Combining
(3) and (5), we can obtain δ as a function of GX and fX .

C. Problems of Interest

In this paper, we are mainly concerned about the following
issues:

1) How do the data correlations affect the disclosure proba-
bility compared to that the correlation is unknown? What
is the bound of privacy gain (if it exists)?

2) Does there exist a closed-form expression of the optimal
estimation and the disclosure probability considering dif-
ferent data correlations?

3) What is the optimal PDF fθ (z1, · · · ,zN) in the sense of
(ε,δ )-MDDP? This optimization problem can be formu-
lated as

min
fθ (z1,··· ,zN)

δ

s.t. E{θi}= 0,

Var{θi}= σ
2, i = 1, · · · ,N,

(6)

where σ2 > 0 is constant, E{θi} and Var{θi} take expec-
tation and variance, respectively. The constraints of zero
mean and finite variance aim to protect the utility of the
published data.

Note that problem (6) is difficult to solve directly, since
the explicit expression of δ is complex considering the data
correlation. Furthermore, finding the optimal distribution is
difficult, since one needs to optimize over functional spaces.

IV. MULTI-DIMENSIONAL FULL-COUPLED DATA
PUBLICATION

In this section, based on the definition of (ε,δ )-MDDP, we
reveal an analytical relationship between the full coupling and
the privacy disclosure and design the optimal noise adding
strategy. In order to make the problem solution explicit,
independent noise adding is considered in this section.

A. Privacy Analysis for the Full-coupled Case

In this subsection, we show that the relationship between δ

and GX is hard to describe directly, and reveal an analytical
relationship between full coupling and privacy disclosure by
an intuitive conversion.

We note that the attacker is able to infer the domain of θ

with the knowledge of GX and fθ . It turns out that when GX
is known to the attacker, the effective integral domain Θ will
become a subset of the original integral domain Θ̂ without

considering GX , i.e., Θ⊆ Θ̂. Then, a case showing that δ will
decrease is given below.

Example 1: Given noise distribution fθi(zi) and es-
timation accuracy ε approaching zero. Let Θi,1 and
Θi,0 be two noise domains of xi, and fθi|Θi,1(zi)max =
maxzi∈Θi,1 fθi(zi), fθi|Θi,0(zi)max = maxzi∈Θi,0 fθi(zi). Then, if
fθi|Θi,1(zi)max> fθi|Θi,0(zi)max, from Definitions 4 and 5, we
have,

lim
ε→0

δ |Θi,1

δ |Θi,0
= lim

ε→0

max
θ̂i∈Θi,1

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi

max
θ̂i∈Θi,0

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi

= lim
ε→0

2ε ∗ fθi|Θi,1(zi)max

2ε ∗ fθi|Θi,0(zi)max
> 1,

(7)

where Θi,0 ⊂ Θi,1. The reason that the first equality of (7)
holds is, based on x+i and fθi(zi), the attacker can take the
maximum probability over the noise domain Θi,1 to estimate
the value of the added noise, i.e.,

δ |Θi,1 = max
x̂i∈{x+i −Θi,1}

Pr{νi +θi = x+i | |νi− x̂i| ≤ ε}

= max
θ̂i∈Θi,1

∫
θ̂i+ε

θ̂i−ε

fθi(zi)dzi.

Example 1 shows that knowing GX means the attacker
knows more domain information (i.e., Θi,0 ⊂ Θi,1). However,
the disclosure probability δ , does not consider the effective
integral domain of the added noise as the prior knowledge.
Having a smaller integral domain explains the fact that δ

decreases when GX is known to the attacker. To further inves-
tigate the effect of domain change, we propose the successful
disclosure rate, i.e., γ , where the effective integral domain is
viewed as the prior knowledge when GX is available.

Definition 6 (Successful disclosure rate): With the knowl-
edge of effective integral domain Θi and x+i , the successful
disclosure rate of xi is defined as

γi =


∫ θ̂∗i +ε

θ̂∗i −ε
fθi (zi)dzi∫

zi∈Θi
fθi (zi)dzi

×100%, if θ̂ ∗i ∈Θi,

0, otherwise,
(8)

where Θi ⊆ Θ̂i is the effective integral domain of θi when GX
is available, and θ̂ ∗i is the optimal estimation of θi obtained
by using (3). If GX is unknown to the attacker, use original
noise domain Θ̂i as integral domain. The successful disclosure
rate of x is γ = ∏

N
i=1 γi.

Remark 3: Mathematically, the relation between γ and δ

satisfies Bayes theorem. Let A be the event that estimating
x with the ε-accuracy under the condition that GX is not
available, and B is the event that the noise is in the effective
integral domain. Thus, we have

Pr{A|B}= γ =
Pr{A}= δ

Pr{B}
,

where δ = Pr{A} can be viewed as the prior probability, γ =
Pr{A|B} is the posterior probability, and Pr{B} is the integral
of noise distribution function in the effective integral domain.
Moreover, from Definition 6, it is observed that if θ̂ ∗i ∈Θi, then
γi increases with Θ̂i being narrowed down, i.e., the attacker



can successfully estimate the real value with a higher rate
when Θ̂i is smaller. Note that ε should be constrained as ε <
sup{Θi}−inf{Θi}

2 , otherwise, γi = 1 may holds no matter what
kind of fθi(zi) is used.

Theorem 1: Consider the mechanism (1). If the original
data is full-coupled by GX , then the successful disclosure rate
increases, i.e.,

γ∅ ≤ γ, (9)

where γ∅ is the successful disclosure rate of x without corre-
lation knowledge.
Proof: By using the full coupling and other elements’ domain
information, if there exists an element in θ whose domain is
narrowed down, we denote such element by θi. Then we have
Θi ⊂ Θ̂i, where Θ̂i is the original integral domain of θi when
GX is unknown to the attacker, and Θi is the effective integral
domain of θi narrowed down by GX . Thus,∫

zi∈Θi

fθi(zi)dzi <
∫

zi∈Θ̂i

fθi(zi)dzi. (10)

Let θ̂ ∗i ∈ Θ̂i be the optimal estimation of θi obtained by using
(3). Then, we divide it into two cases as follows:

1) θ̂ ∗i ∈ Θi. This occurs when the optimal estimation of
θi without using the full coupling is also within Θi. It
follows that

max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi(zi)dzi = max
θ̂i∈Θ̂i

∫
θ̂i+ε

θ̂i−ε

fθi(zi)dzi.

From Definition 5, we directly obtain

γi =

∫ θ̂∗i +ε

θ̂∗i −ε
fθi(zi)dzi∫

zi∈Θi
fθi(zi)dzi

×100% >

∫ θ̂∗i +ε

θ̂∗i −ε
fθi(zi)dzi∫

zi∈Θ̂i
fθi(zi)dzi

×100%

> γi,∅,
(11)

where γi is the successful disclosure rate of xi using
the full coupling, γi,∅ is the successful disclosure rate
of xi without correlation knowledge. Since γ j = γ j,∅,
∀ j ∈ [1,N], j 6= i, and γ = ∏

N
k=1 γk, (9) holds.

2) θ̂ ∗i /∈ Θi. This occurs when the optimal estimation of
θi varies as Θi is smaller due to full coupling. Then,
we first consider the case max

θ̂i∈Θi

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi ≤

max
θ̂i∈Θ̂i

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi. This case occurs when the op-

timal estimation θ̂ ∗i without correlation knowledge is not
within Θi. From Definition 5, γi,∅ = 0 holds. Thus, we
have

γi > 0, γi,∅ = 0, (12)

and (9) holds. The second case is
max

θ̂i∈Θi

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi > max

θ̂i∈Θ̂i

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi.

This case is impossible when Θi ⊂ Θ̂i.
The equality of (9) holds when Θi can not be narrowed

down by GX , e.g., when Θ̂ =RN . The proof is completed. �
Remark 4: Theorem 1 implies that with the full coupling,

the attacker can obtain more information about the domain,
and the uncertainty of x is decreased. Thus, the rate that
the attacker can make an accurate estimation is higher. In

Theorem 1, γ is a transformation of δ and we have shown
that γ increases when GX is available. As a direct result of
Theorem 1, we have

δ = Pr{||x̂∗− x||∞ ≤ ε| x+,χ}
≥ Pr{||x̂∗− x||∞ ≤ ε| x+,GX ,χ}.

(13)

This inequality holds because even though GX narrows the
original integral domain down to a smaller integral domain,
δ is not an increasing function of a smaller integral domain.
Hence, the correlation GX will not increase δ .

B. Optimal Noise Design

In this subsection, a closed-form solution of optimal estima-
tion and a strict bound of privacy disclosure gain are derived.
The optimal noise adding strategy is proposed to minimize the
disclosure probability considering full coupling.

Here we first provide a lemma to show that when data
correlation is unknown to the attacker, the optimal noise
distribution is the uniform one. It gives the optimal solution
to problem (6) when N = 1.

Lemma 1: [26] If x+i is the only information available to
the attacker, then the optimal solution to problem (6) is

f ∗θi
(zi) =

{
1

2
√

3σ
, if zi ∈

[
−
√

3σ ,
√

3σ
]
,

0, otherwise.

Theorem 2: If the original data in (1) is coupled by
an explicit function GX , and independent noises are added,
then the attacker can obtain the N-dimensional joint optimal
estimationx̂∗j = x+j − arg max

θ̂ j∈Θ j

∫
θ̂ j+ε

θ̂ j−ε

fθ j(z j)dz j,∀ j 6= i

x̂∗i = {x̂i| G(x̂i, x̂∗−i) = 0, x̂i ∈ χi},
(14)

where i = argmin{k=1,··· ,N}
Pr{|x̂∗k−xk|≤ε|x̂k∈χk}∫ sup{Θk}

inf{Θk}
fθk

(zk)dzk
, and x̂∗−i are all

elements of x̂∗ except for x̂∗i . In the sense of (ε,δ )-MDDP,
∀k ∈ {1, · · · ,N}, the optimal noise distribution satisfies

f ∗θk
(zk) =

{
1

2
√

3σ
, if zk ∈

[
−
√

3σ ,
√

3σ
]
,

0, otherwise.
(15)

Proof: We prove it from two-dimensional coupled vector
[xi,x j]. Coupling function G(xi,x j) = 0 can be any explicit
function. With the dynamic but observable x+, the attacker
can use the fact that noises added by users satisfy:

xi = x+i −θi, x j = x+j −θ j. (16)

It directly follows that

G(xi,x j) = G(x+i −θi, x+j −θ j) = 0, (17)

which means the function value of all possible noises added on
x is known to the attacker, based on observation and correlation



knowledge. Let x̂∗ be the optimal estimation under x+ and
G(xi,x j) = 0. Using (3), we have

x̂∗ = argmax
x̂∈χ

Pr{ν +θ = x+|GX , ||ν− x̂||∞ ≤ ε}

= argmax
x̂∈χ

Pr{νi +θi = x+i ,ν j +θ j = x+j |G(xi,x j) = 0,

||ν− x̂||∞ ≤ ε}

= x+− arg max
θ̂∈{x+−χ}

GX

∫
θ̂ j+ε

θ̂ j−ε

∫
θ̂i+ε

θ̂i−ε

fθi,θ j(zi,z j)dzidz j

= x+− eθ |GX (x
+),

(18)

where eθ |GX (x
+) is an estimation of θ using x+ and GX . Recall

that the joint distribution of any two random variables M and
N satisfies

fM,N(m,n) = fM|N(m|n) fN(n). (19)

Using (17), we have∫
θ̂ j+ε

θ̂ j−ε

∫
θ̂i+ε

θ̂i−ε

fθi,θ j(zi,z j)dzidz j

=
∫

θ̂ j+ε

θ̂ j−ε

fθi|θ j=z j(θ̃i|θ j = z j) fθ j(z j)dz j.

(20)

Substituting (20) to the right hand side of (18), the 2-
dimensional joint optimal estimation is as follows:

x̂∗ = x+− arg max
θ̂ j∈Θ j

G(x+i −θ̃i, x+j −θ̂ j)=0

∫
θ̂ j+ε

θ̂ j−ε

fθi|θ j=z j(θ̃i) fθ j(z j)dz j,

(21)
which depends on the joint distribution of θi and θ j, the values
of x+, θ̃i and χ j. When θi and θ j are independent, it follows
from (20) that∫

θ̂ j+ε

θ̂ j−ε

fθi|θ j=z j(θ̃i|θ j = z j) fθ j(z j)dz j

= fθi(θ̃i)
∫

θ̂ j+ε

θ̂ j−ε

fθ j(z j)dz j,

(22)

where fθi|θ j=z j(·) is the conditional PDF of θi under the
condition θ j = z j (z j ∈Θ j), and the value of θi is fixed when
x+ is fixed.

Then, the multi-dimensional joint estimation (18) is reduced
to two-phase one-dimensional estimation as follows.
i) The attacker uses x+i ,x

+
j and full-coupling G(xi,x j) = 0.

From the analysis of Theorem 1, if there exists
Pr{|x̂∗j − x j| ≤ ε|x̂ j ∈ χ j}∫ sup{Θ j}

inf{Θ j} fθ j(z j)dz j

>
Pr{|x̂∗i − xi| ≤ ε|x̂i ∈ χi}∫ sup{Θi}

inf{Θi} fθi(zi)dzi

, (23)

then, to achieve an accurate estimation of x with a higher
possibility, there exists a higher priority for the attacker to
target x j. From (18) and (22), the optimal estimation of x j is

x̂∗j = arg max
x̂ j∈χ j

∫ x+j −x̂ j+ε

x+j −x̂ j−ε

fθi|θ j=z j(θ̃i|θ j = z j)

× fθ j(z j)dz j

= arg max
x̂ j∈χ j

∫ x+j −x̂ j+ε

x+j −x̂ j−ε

fθ j(z j)dz j.

(24)

ii) To minimize the error of |x̂∗i − xi|, the attacker infers xi by
using the full-coupling fact G(xi,x j) = 0 and the x̂∗j estimated
in (24), i.e.,

x̂∗i = {x̂i| G(x̂i, x̂∗j) = 0, x̂i ∈ χi}. (25)

Then, we investigate the optimal noise adding on data
vector x. Since independent noises are added, problem (6) is
decoupled as

min
fθk

(zk)
max
θ̂k∈Θk

∫
θ̂k+ε

θ̂k−ε

fθk(zk)dzk,∀k ∈ {1, · · · ,N}, (26)

and the solution to problem (26) is obtained in Lemma 1. �
Remark 5: Note that the optimal noise for the index i

in (14) is also uniformly distributed, because the optimal
noise in terms of MDDP is only determined by the local
noise domain. Furthermore, the index i is not only determined
by MDDP (Pr{|x̂∗k − xk| ≤ ε|x̂k ∈ χk}), but also relies on
the effective integral domain, which is influenced by GX .
Full coupling is identified to reduce the dimension of joint
estimation effectively. In Theorem 2, both the closed-form δ

and optimal noise adding strategy are derived. Meanwhile, the
term

√
3 comes from the uniform distribution shown in (15),

i.e., Var{θ j}= (
√

3σ−(−
√

3σ))2

12 = σ2. Furthermore, for (25), x̂i
must be selected to satisfy both the coupling function and
domain constraints, which are available to the attacker.

Theorem 3 (Bound of privacy gain): Consider (1), if K pairs
of original data are coupled by GX , given noise distribution
satisfying (15), and xk ∈ [−M

2 ,
M
2 ], ∀k ∈ [1,N]. Then,

γ− γ∅
γ∅

≤ ([
2ε

M
]−K−1)(M� ε), (27)

holds, where M is a positive number.
Proof: From Theorem 2, it follows that with GX , if the
attacker makes an accurate estimation of x−i, where x−i are
entries in x but xi, then, it is able to make an accurate
estimation of xi by using (14). Under the optimal noise derived
in (15) and given xk ∈ [−M

2 ,
M
2 ],∀k ∈ [1,N], the γ of x−i is

[ 2ε

M ]N−1, i.e., the γ of vector x is [ 2ε

M ]N−1. Without knowing
the correlation, the γ∅ of x based on x+ is [ 2ε

M ]N under the
optimal uniform noise. The upper bound of γ is [ 2ε

M ]N−K ,
which depends on the maximum number of dimensionality
reductions. �

Remark 6: Theorem 1 and Theorem 3 conclude that using
the full coupling, the successful disclosure rate γ increases
compared to that without correlation knowledge, and a strict
promotion bound is derived. To mitigate privacy leakage owing
to correlation, there are two protection strategies.

1) We can use the optimal noise adding strategy derived
in Theorem 2. Despite considering the privacy leakage
caused by correlation, both the disclosure probability
and the successful disclosure rate are minimized.

2) We can reselect the noise variance σ2. A larger σ2

means that the published data is more likely to deviate
from the true data, hence the privacy leakage δ is
smaller. Such a method will make the utility of the
published data decrease.



V. MULTI-DIMENSIONAL PROBABILISTIC-COUPLED DATA
PUBLICATION

In this section, we provide an information-theoretic ap-
proach to investigate the analytical relationship between prob-
abilistic coupling and (ε,δ )-MDDP. Then, it is shown that
joint uniform noise is optimal in the sense of (ε,δ )-MDDP.
It should be pointed out that only two attributes among N
attributes are coupled by f{Xi,X j} in this paper. This is a rather
simplified assumption. The resulting theoretical conclusion
of optimal noise will be of an explicit form. The analysis
of effects of probabilistic coupling for two attributes can be
applied directly for N attributes using Bayes theorem.

A. Data Inference based on Mutual Information

Considering that the effect of probabilistic coupling on
(ε,δ )-MDDP cannot be characterized by the preceding meth-
ods directly, we use mutual information to capture the change
of noise variance. In the following part, we suppose that xi
and x j are correlated and the corresponding random variables
are denoted by Xi and X j, respectively. We provide mutual
information definition before the details.

Definition 7 (Mutual information [27]): Consider two
random variables Xi ∈ χi and X j ∈ χ j. The mutual information
I(Xi;X j) is defined as a measure of dependency

I(Xi;X j) =
∫

x j∈χ j

∫
xi∈χi

f{Xi,X j}(xi,x j) log
f{Xi,X j}(xi,x j)

fXi(xi) fX j(x j)
dxidx j,

(28)
where f{Xi,X j}(xi,x j) is the joint probability density function,
fXi(xi) and fX j(x j) are the marginal probability density func-
tions.

With {x+i ,x
+
j } available only, from [4], the optimal estima-

tion of data {xi,x j} satisfies
x̂∗i = x+i − arg max

θ̂i∈Θi

∫ θ̂i+ε

θ̂i−ε
fθi(zi)dzi,

x̂∗j = x+j − arg max
θ̂ j∈Θ j

∫ θ̂ j+ε

θ̂ j−ε
fθ j(z j)dz j,

(29)

when {x+i ,x
+
j } are released, the values of added noises {θi,θ j}

are fixed. However, for the attacker, {θi,θ j} are still viewed as
random variables with PDF fθi(zi) and fθ j(z j), respectively.

With f{Xi,X j} known to the attacker, the mutual information
I(Xi;X j) is known. When x j is information available to the
inference of xi, the uncertainty of xi decreases due to the
correlation among them. Thus, a larger I(Xi;X j) indicates a
higher level privacy leakage of xi when x j is disclosed [27].
To make an accurate estimation, {x̂∗i , x̂∗j} should satisfy the
correlation fact. Combine it with (29), i.e., the uncertainty of
x̂∗i stems from the a new noise PDF fθi|I(Xi;X j)(zi) with less
uncertainty than fθi(zi), where fθi|I(Xi;X j)(zi) is the conditional
PDF of θi under the condition θ j = θ̃ j, and θ̃ j is obtained by
using (29). Then, we have

Pr{|x̂i− xi| ≤ ε| x+i , θ̃ j}=
∫

θ̂i+ε

θ̂i−ε

fθi|I(Xi;X j)(zi)dzi. (30)

Since fθi|I(Xi;X j)(zi) has less uncertainty than fθi(zi), and if
fθi|I(Xi;X j)(zi) and fθi(zi) have the same distribution (but the

mean and variance would not be the same), it follows that
fθi|I(Xi;X j)(zi) will have a smaller variance than fθi(zi). From
the property of PDF, one obtains that disclosure probability
increases, i.e.,

max
x̂i∈χi

Pr{|x̂i− xi| ≤ ε| x+i , θ̃ j}=max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi|I(Xi;X j)(zi)dzi

≥max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi(zi)dzi.

(31)

Note that if both θi and θ j are not fixed for joint estimation,
the probabilistic coupling cannot reduce the noise uncertainty.
Then, from (31), the disclosure probability of data {xi,x j}
generated from f{Xi,X j} satisfies

Pr{||x̂− x||∞ ≤ ε| {x+i ,x
+
j }, f{Xi,X j}}

≤ max
[θ̂i,θ̂ j ]∈Θ

∫
θ̂ j+ε

θ̂ j−ε

∫
θ̂i+ε

θ̂i−ε

fθi,θ j(zi,z j)dzidz j

≤ max
[θ̂i,θ̂ j ]∈Θ

∫
θ̂ j+ε

θ̂ j−ε

∫
θ̂i+ε

θ̂i−ε

fθ j(z j) fθi|θ j=z j(zi|z j)dzidz j

≤max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi(zi)dzi · max
θ̂ j∈Θ j

∫
θ̂ j+ε

θ̂ j−ε

fθ j(z j)dz j

≤max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi|I(Xi;X j)(zi)dzi · max
θ̂ j∈Θ j

∫
θ̂ j+ε

θ̂ j−ε

fθ j(z j)dz j.

(32)

The last inequality holds when θ̂ j → θ̂i forms an estimation
chain, i.e., the optimally estimated θ j is used to decrease the
uncertainty of θi.

Suppose that the probabilistic coupling of N attributes is
described by the probability density function fX . To disclose
the information of any dimension, e.g., X1, we can use Bayes
theorem to model all other dimension information X/X1 as
one dimension information, say X−1 , using the correlation
relationship [12], i.e.,

max
x̂∈χ

Pr{||x̂− x||∞ ≤ ε| x+, fX}

= max
θ̂1∈Θ1

∫
θ̂1+ε

θ̂1−ε

f
θ1|I(X1;X−1 )(z1)dz1 ·max

θ̂∈Θ

∫
θ̂2+ε

θ̂2−ε

· · ·
∫

θ̂N+ε

θ̂N−ε

fθ2,··· ,θN (zN , · · · ,z2)dzN · · ·dz2.

(33)

As a result, the analysis of the effect of probabilistic coupling
for two attributes can be applied directly for N attributes.

Remark 7: In (32), it is hard to obtain the analytical
expression directly. Luckily, we can use mutual information
to characterize the change of δ under fθi(zi)→ fθi|I(Xi;X j)(zi).
As I(Xi;X j) is known to the attacker, the uncertainty reduction
of PDF fθi(zi) is fixed and equivalent to I(Xi;X j). Then, if
fθi|I(Xi;X j)(zi), fθi(zi) have the same distribution, the uncertainty
reduction leads to variance reduction (computable). Thus, we
have the last inequality hold, which means that the disclosure
probability will not decrease with probabilistic coupling.

B. Privacy Analysis for the Probabilistic-coupled Case
In this subsection, we reveal an analytical relationship

involving probabilistic coupling, disclosure probability and a
bound of disclosure probability.



Theorem 4: Suppose that in (1) xi and x j are coupled by
f{Xi,X j}, and that fθi|I(Xi;X j)(zi), fθi(zi) have the same distribu-
tion. Then the disclosure probability increases, i.e.,

δ∅ ≤ δ , (34)

where δ∅ is the disclosure probability of x without correlation
knowledge. Further, δ is upper bounded by

max
θ̂i∈Θi

∫
θ̂i+ε

θ̂i−ε

fθi|I(Xi;X j)(zi)dzi · max
θ̂ j∈Θ j

∫
θ̂ j+ε

θ̂ j−ε

fθ j(z j)dz j, (35)

where θ̂ j→ θ̂i forms an estimation chain.
Proof: Given the estimation chain, where x j is to be inferred
first, the probability that the attacker can accurately infer the
value of x j from fθ j(z j),∀ j ∈ [1,N] is characterized by δ j.
Then, from the analysis (29), (30) and (31), we have δi ≥
δi,∅, where δi is the disclosure probability of xi using f{Xi,X j}
and δi,∅ is the disclosure probability of xi without correlation
knowledge. Then we conclude that (34) holds. The expression
(35) is obtained from (32), and the upper bound reaches when
θ̂ j→ θ̂i forms an estimation chain. �

Remark 8: In Theorem 4, since the disclosure probability
changes with the specific form of noise distribution, f{Xi,X j},
and ε , we cannot provide a more explicit form bound of dis-
closure probability here. However, once the above information
is given, then the expression of fθi|I(Xi;X j)(zi) is known, and
the bound value is easily obtained using (35).

C. Optimal Noise Distribution

In this subsection, we find the optimal joint distribution of
noises in the sense of achieving the highest (ε,δ )-MDDP.

The optimization problem is given below.

min
fθ (z1,··· ,zN)

δ

s.t. E{θi}= 0,

Var{θi}= σ
2, i = 1, · · · ,N,

(36)

and the covariance is unconstrained.
Theorem 5: If {x+i ,x

+
j } is the only information available to

the attacker, then the optimal solution of (36) is

f ∗θi,θ j
(zi,z j) =

{ 1
4πσ2 , if z2

i + z2
j ≤ 4σ2,

0, otherwise,
(37)

where the covariance matrix is
[

σ2 0
0 σ2

]
, i.e., given finite

noise variance, the joint uniform distribution is optimal in the
sense of (ε,δ )-MDDP.
Proof: We prove the optimality by contradiction. The mean
vector E{θ}= [0,0]T, and the covariance matrix

Σθ =

[
σ2 cov(θi,θ j)

cov(θ j,θi) σ2

]
.

Without loss of generality, we assume that σ2 = 1
4 . Let

f1(zi,z j) and f2(zi,z j) be the joint PDF of two random
variables both with mean 0 and variance σ2 = 1

4 . Suppose

they follow a joint uniform and non-uniform distribution,
respectively. From (37), we have

f1(zi,z j) =

{ 1
π
, if (zi,z j) ∈ G,

0, otherwise,
(38)

where G = {(zi,z j)|z2
i + z2

j ≤ 1}.
Suppose that the non-uniform distribution f2(zi,z j) is the

optimal distribution, i.e., there exists an ε1, such that

max
a,b∈R

∫ a+ε

a−ε

∫ b+ε

b−ε

f1(zi,z j)dzidz j

> max
a,b∈R

∫ a+ε

a−ε

∫ b+ε

b−ε

f2(zi,z j)dzidz j

(39)

holds for ∀ε ∈ (0,ε1]. As a result, it follows that

max
zi,z j∈R

f1(zi,z j)> max
zi,z j∈R

f2(zi,z j).

Since f1(zi,z j) is a joint uniform distribution satisfying (38),
we have

f1(zi,z j)− f2(zi,z j)> 0, z2
i + z2

j ≤ 1.

It follows that∫
G

f1(zi,z j)dzidz j−
∫
G

f2(zi,z j)dzidz j > 0. (40)

Using the PDF property that
∫
G

f1(zi,z j)dzidz j = 1, then, it

follows from (40) that∫
G

f2(zi,z j)dzidz j < 1. (41)

Since both f1(zi,z j) and f2(zi,z j) have mean 0 and variance
σ2 = 1

4 , we have
∫
R2

z2
i f1(zi,z j)dzidz j =

∫
R2

z2
i f2(zi,z j)dzidz j,∫

R2
z2

j f1(zi,z j)dzidz j =
∫
R2

z2
j f2(zi,z j)dzidz j.

(42)

This implies:∫
R2

(z2
i + z2

j) f1(zi,z j)dzidz j =
∫
R2

(z2
i + z2

j) f2(zi,z j)dzidz j, (43)

which means∫
G

(z2
i + z2

j)( f1(zi,z j)− f2(zi,z j))dzidz j

=
∫
Ω

(z2
i + z2

j) f2(zi,z j)dzidz j,
(44)

where Ω = R2−G. For the left hand side of (44), we have∫
G

(z2
i + z2

j)( f1(zi,z j)− f2(zi,z j))dzidz j

<
∫
G

( f1(zi,z j)− f2(zi,z j))dzidz j

=1−
∫
G

f2(zi,z j)dzidz j.

(45)
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Fig. 2. Privacy comparison on different data correlations and noise distributions

For the right hand side of (44), since
∫
R2

f2(zi,z j)dzidz j = 1

and (41), we have∫
Ω

(z2
i + z2

j) f2(zi,z j)dzidz j >
∫
Ω

f2(zi,z j)dzidz j

=1−
∫
G

f2(zi,z j)dzidz j.
(46)

Combine (44), (45) and (46), we achieve a contradiction:

1−
∫
G

f2(zi,z j)dzidz j

<
∫
G

(z2
i + z2

j)( f1(zi,z j)− f2(zi,z j))dzidz j

<1−
∫
G

f2(zi,z j)dzidz j.

(47)

Hence, we cannot find a joint noise distribution f2(zi,z j), such
that the value of δ is smaller than that under f1(zi,z j). We
conclude that, given the finite variance, the noise distribution
(37) is optimal in the sense of (ε,δ )-MDDP. �

Remark 9: It is pointed out that the conclusion of Lemma
1 can be viewed as a special case of Theorem 5. The reason
is that when the dimension of optimization problem solved
in Theorem 5 is equal to 1, the correlated data constraints
will no longer exist, and the disclosure probability δ will
not be in a coupled form. Thus, when N = 1, the problem
becomes the same one solved by Lemma 1. Moreover, the
optimal noise distribution derived in (37) provides (ε,δ )-
MDDP with δ = ε2

3σ2 , which is the minimal disclosure prob-
ability theoretically. As shown in (32), by adding the joint
distributed noises, the estimation chain cannot be applied in
the joint estimation, and the privacy disclosure gain under fX
is prevented. Thus, using (37), the disclosure probability for
the case with probabilistic coupling is minimized in the sense
of (ε,δ )-MDDP. Interestingly, Theorem 5 implies that all
non-diagonal elements of covariance matrix of optimal noises
are zero. This means given any upper-bounded constraints on
non-diagonal elements of the covariance matrix, this will not
change the optimal noise analysis result.

VI. SIMULATION RESULTS

A. Simulation Scenario

In this section, we conduct simulations to verify our theo-
retical results through a publicly available data set taken from

the Cardiovascular Disease Dataset of Kaggle platform [28].
For the full coupled case, the dataset for simulation is from
the height and weight information of 10,000 men aged 30-39.
GX is obtained by using the polynomial regression, that is,
Ŵeight= 261.88−7.35∗Height+0.083∗Height2 , i.e., weight
is a explicit function of height (and height is optimally esti-
mated with a higher priority since its smaller domain). For the
probabilistic coupled case, the dataset contains two continuous
attributes, the weight and blood pressure, which approximately
follow a joint normal distribution with correlation coefficient
ρ = 0.612. For the full coupled case, 10000 two-dimensional
data vectors x are generated from the dataset, and each vector
contains one paired weight and height data. For each run,
users indexed by 1,2 randomly generate a noise vector θ with
Laplacian noise distribution, Gaussian noise distribution and
the optimal noise distribution derived in (15), respectively. In
the simulation, 10000 runs are conducted. Laplacian noise
is popular because its mathematical property fits well with
differential privacy [3], [29].

The attacker uses the proposed optimal estimation approach
derived in (14) to estimate the value of x. Specifically, it
generates two sets of estimated value in each run, each set
contains 10000 random numbers with the same distribution
of users and uses them as the estimation of θ . Then, the
probability of ||θ̂−θ ||∞ ≤ ε is obtained in each run, the value
of δ is computed by using the maximum probability among
these probabilities in all runs. Since both the ranges of height
and weight are known, Θ is known. Thus, one can obtain γ

by dividing δ by the probability of the estimated θ̂ within Θ.
For the probabilistic coupled case, the simulation steps remain
the same, but the optimal estimation policy and optimal noise
distribution changes to (35) and (37), respectively.

B. Verification

1) Privacy Disclosure vs Data Correlation: We first com-
pare γ with γ∅ under the optimal noise adding strategy derived
in Theorem 2. From Fig. 2(a), one observes that using GX ,
the successful disclosure rate increases effectively compared
to that the correlation is unknown. It is because using GX , the
attacker is able to decrease the uncertainty of noise adding
effectively. Furthermore, in Fig. 2(a), the privacy gain is
consistent with the bound in Theorem 3. The value of γ

in simulation matches its theoretic result, which illustrates
the correctness of theoretical results. Then, in Fig. 2(c), we
compare δ with δ∅ under the independent uniform noise



added. Since the correlation among weight and blood pressure
is strongly positive, once the estimation of weight fixed, the
estimation on blood pressure will be consistent with the trend
of strongly positive correlation (e.g., if the Ŵeight > 100 kg, it
will infer Blood pressure> 130 mmHg with high possibility).
Thus, for the uniform noise added on blood pressure, the
noise variance is reduced by fX , and the disclosure probability
increases, which verifies Theorem 4.

2) Privacy Disclosure vs Noise Distribution: First, in Fig.
2(b), we compare the privacy of full-coupled data publication
for Laplacian noise distribution, Gaussian noise distribution
and the optimal noise distribution derived in (15). It is ob-
served from Fig. 2(b) that under the GX , the optimal noise dis-
tribution derived in (15) performs better than the extensively-
used Laplacian noise distribution or Gaussian noise distri-
bution in the sense of (ε,δ )-MDDP. Then, we compare the
privacy of probabilistic data publication with joint uniform
noise distribution derived in (37) and joint Gaussian noise
distribution. Comparing Fig. 2(c) with Fig. 2(d), we note that
the privacy disclosure gain under fX is prevented in the joint
estimation, which is consistent with (32). Further, the optimal
joint distribution of noises derived in Theorem 5 achieves a
higher (ε,δ )-MDDP than others.

VII. CONCLUSION

In this paper, we investigated the privacy-preserving cor-
related data publication problem. We proposed (ε,δ )-multi-
dimensional data privacy to characterize the probability of
the published data being restored with the correlation under
a given accuracy. We then quantified the privacy disclosure
variation of correlated data publication. We obtained a closed-
form expression of the optimal estimation for the correlated
data publication. It is shown that for deterministic and prob-
abilistic correlations, the original data can be restored with a
higher privacy disclosure. Moreover, a strict bound of privacy
gain is derived. We designed the optimal noise adding strategy
to minimize the disclosure probability in the sense of (ε,δ )-
MDDP. We showed that when original data is correlated,
uniform noise distribution achieves higher (ε,δ )-MDDP than
Laplacian or Gaussian noise distribution.

There are still many open issues worth further investi-
gation. For example, the tradeoff between privacy degree
and data utility. Meanwhile, the comparison with optimal
privacy-preserving policies when using mutual information as
a measure of privacy needs further investigation. In addition,
it has been pointed by [10] that adding noise is not suitable for
non-real-valued data publication, e.g., categorical data (social
security numbers, postal codes, etc.). How to characterize the
privacy analysis of multi-dimensional discrete data remains
open. Lastly, how to extend our result to data generated by
dynamical systems is also interesting.
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