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Resilient Consensus for Robust Multiplex Networks
with Asymmetric Confidence Intervals

Yilun Shang

Abstract—The consensus problem with asymmetric confidence
intervals considered in this paper is characterized by the fact that
each agent can have optimistic and/or pessimistic interactions
with its neighbors. To deal with the asymmetric confidence sce-
narios, we introduce a novel multiplex network presentation for
directed graphs and its associated connectivity concepts including
the pseudo-strongly connectivity and graph robustness, which
provide a resilience characterization in the presence of malicious
nodes. We develop distributed resilient consensus strategies for a
group of dynamical agents with locally bounded Byzantine agents
in both continuous-time and discrete-time multi-agent systems.
Drawing on our multiplex network framework, much milder
connectivity conditions compared to existing works are proposed
to ensure resilient consensus. The results are further extended
to cope with resilient scaled consensus problems which allow
both cooperative and antagonistic agreements among agents.
Numerical examples are also exhibited to confirm the theoretical
results and reveal the factors that affect the speed of convergence
in our multiplex network framework.

Index Terms—Consensus, robust multiplex network, multi-
agent system, asymmetric interaction.

I. INTRODUCTION

OVER the past decade, consensus algorithms have at-
tracted an ongoing attention and become a significant

building block of various distributed systems and control
protocols. In a standard consensus problem, all agents seek
to reach an agreement by updating their states based on local
interactions with their neighbors in continuous and discrete
time [1]. Connectivity of the underlying communication topol-
ogy arguably is central to the coordination of multi-agent
systems, where agent interactions form an interconnected
network. A variety of consensus conditions, such as strongly
connectedness and jointly connectivity, have been reported for
multi-agent systems under undirected or directed as well as
fixed or time-dependent topologies etc. [2]–[4].

In many consensus-based applications, agents do not always
operate in a benign environment. It is likely that one or
more agents are compromised due to faults like hardware
failures or malicious attacks in cyber-physical systems and
social networks [5]–[7]. Such misbehaving agent requires
additional connectivity of the network to cope with consensus
reaching objective. A notion of r-robustness is introduced
in [8], [9] to facilitate asymptotic distributed consensus in
discrete-time multi-agent systems. In particular, based upon
the Weighted-Mean Subsequence Reduced (W-MSR) protocol,
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a (2r + 1)-robust network is able to withstand r malicious
agents presenting in the neighborhood of any agent while still
achieve consensus among the normal cooperative agents. The
scheme has been later extended to tackle more complicated
agent dynamics such as higher-order [10], hybrid dynamics
[11], [12], and switching dynamics with heterogeneous agents
[13]. Resilient quantized consensus problem has been solved
in [14] for discrete-time multi-agent systems, where the states
of agents are confined to integers. Resilient interval consensus
and resilient group consensus problems have been initiated
in [15] and [16], respectively, taking into consideration of
state constraints as well as topological clustering. W-MSR
algorithms have also been applied in [17] to tackle distributed
state estimation for linear time-invariant systems over directed
acyclic graphs.

Despite remarkable merits (such as low complexity and
distributed update rule) of the W-MSR strategies, the high con-
nectivity requirement on the communication topology limits
their applications as a dense network may be costly. To achieve
structural robustness without adding extra links, trusted nodes
are introduced in [18]. These nodes will be protected from
attack at all times so that resilient consensus can be achieved
under milder connectivity. A similar edge-oriented version is
examined in [19], where trusted links are proposed to improve
network robustness and achieve convergence in finite time.
Another effort along this line is to endow agents with diverse
vulnerabilities or weaknesses [20], where a malicious agent
can only attack a particular type of weakness, and hence
consensus may be achieved in a relatively sparse network.

In the above mentioned literature on resilient consensus, all
agents are assumed to take in neighbors’ state values which are
both larger and smaller than its own value, or with symmetric
confidence intervals in the language of opinion dynamics [21].
However, in some real-life scenarios, agents interaction is not
entirely two-sided. Examples include optimistic/pessimistic
agents in opinion models [22], where optimistic one only
accepts higher opinions while pessimistic one lower opinions,
and unilateral gossip-based algorithms for distributed systems
[23]. The idea of asymmetric confidence intervals has been
explored in studying consensus for cooperative monotone
systems of continuous-time agents [24].

Here, we develop a novel distributed coordination frame-
work to reduce structural robustness requirement in resilient
consensus problems [8]. Our approach builds on the asym-
metric confidence intervals and provides resilience against
locally bounded malicious agents in both continuous-time and
discrete-time multi-agent systems. The contributions of the
work are as follows. Firstly, we introduce a new topology
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property of network robustness over a multiplex network,
which is induced by the agent dynamics with asymmetric con-
fidence intervals. This multiplex network robustness bridges
the key gap between resilient consensus over simplex network
and multiplex network, and extends the notion of robustness
for simplex graphs underpinning existing W-MSR algorithms
[9], [11]–[13]. Secondly, based on the above graph-theoretic
property we introduce a connectivity concept, referred to as
pseudo-strong connectivity, which unifies strong connectivity
and spanning tree condition in directed graphs. This connec-
tivity notion is tailored for consensus-reaching over multiplex
network structure induced by asymmetric confidence intervals
and provides a means for graph-theoretic study of multiplex
networks. Thirdly, we develop resilient consensus strategies
for both continuous-time and discrete-time cooperative agents
in the presence of Byzantine agents, who are anonymous and
have complete knowledge of the network. Leveraging on the
pseudo-strong connectivity, weak conditions are established
to guarantee consensus when the number of Byzantine agents
remain locally bounded. Unlike the previous works [18]–[20],
no extra assumptions like trusted nodes or diverse vulnerabil-
ities are imposed. Finally, we extend our resilient consensus
framework to encompass resilient scaled consensus problems,
where an agent may reach individual value positive/negative-
proportionally associated with other agents offering further
flexibility. Our numerical simulations unravel the factors that
play a role on convergence speed and underscore the effec-
tiveness of the multiplex framework, which facilitates resilient
consensus under milder connectivity conditions.

The rest of the paper is organized as follows. Section II
presents some graph theoretical preliminaries and sets up the
resilient consensus models. Convergence analysis is carried out
for continuous-time and discrete-time dynamics in Sections
III and IV, respectively. Numerical examples are provided in
Section V. Finally, concluding remarks are given in Section VI
with discussions regarding alternative solutions to cope with
asymmetric confidence scenarios.

II. PROBLEM FORMULATION

A. Graph theory

A directed multiplex network G(V,Eo, Ep) consists of a
node set V = {1, 2, · · · , n} and two layers: the optimistic
layer Go(V,Eo) and the pessimistic layer Gp(V,Ep) [25],
[36]. An edge (i, j) in Eo (or Ep) is an edge from i to j in the
optimistic (or pessimistic) layer. Denote the overall edge set
of G by E = Eo∪Ep and the corresponding adjacency matrix
by A = (aij) ∈ Rn×n, where aij > 0 when (j, i) ∈ E and
aij = 0 otherwise. We will also write G(V,E) = Go ∪Gp as
a single network combining the two types of edges. Nodes in
V = C∪B can be divided into cooperative nodes in C, which
adopt our resilient consensus strategies detailed in Section II.A
and Byzantine nodes in B defined in Definition 6 below. The
(in-degree) neighborhood of a node i can be defined as Ni =
No

i ∪ Np
i , where No

i = No
i (G) := {j ∈ V : (j, i) ∈ Eo}

contains optimistic neighbors and Np
i = Np

i (G) := {j ∈ V :
(j, i) ∈ Ep} contains pessimistic neighbors. For a node j ∈ V ,
it is possible that j ∈ No

i ∩Np
i ; see Definition 5 for a precise

definition of these two layers. A finite sequence i1, i2, · · · , ik
of different nodes with (il, il+1) ∈ E for 1 ≤ l ≤ k − 1 is
called a directed path with length n in G(V,E). G(V,E) is
said to contain a spanning tree if there is a node v (called root
node), from which any other node in V can be reached via a
directed path. If every node can be a root, then the graph is
called strongly connected.

Multiplex networks as an important example of multi-layer
complex networks [26] have become a prominent research
field in network science in recent years. They are a major tool
for the analysis of interacting components in real networked
systems with different types of interactions. A diverse range of
applications have been found in, for example, synchronization
problems [27], interbank market [28], social contagions [29],
cognitive psychology [30], molecular biology [31], and com-
munity detection [32], to name just a few. Structural properties
of multiplex networks, including core [33], communicability
[34], and isomorphism [35], have attracted much attention
from the perspective of network theory and often represent
an essential extension to their counterparts in classical graph
theory.

Let | · | be the size of a given set. We next introduce the
reachability and robustness notions for our multiplex network
G(V,Eo, Ep).
Definition 1 (r-reachable set). A set S ⊆ V is called r-
reachable in G(V,Eo, Ep) if there exist i, j ∈ S (possibly
i = j) such that |No

i \S| ≥ r − 1, |Np
j \S| ≥ r − 1, and

max{|No
i \S|, |N

p
j \S|} ≥ r.

Definition 2 (r-robust multiplex graph). G(V,Eo, Ep) is
called r-robust if for any nonempty and disjoint S1, S2 ⊆ V
at least one of them is r-reachable.

It is easy to see if Eo = Ep then r-robustness of
G(V,Eo, Ep) is equivalent to r-robustness of G(V,E) [8].
The following result shows that robustness is a monotone
property with respect to edge deletion.
Lemma 1. If G(V,Eo, Ep) is r-robust and G′ is obtained
from G by each node removing up to s < r incoming edges
in Eo and up to s < r incoming edges in Ep, then G′ is
(r − s)-robust.
Proof. For any nonempty subsets S1 ∩ S2 = ∅, there must
be one of them, say S1, being r-reachable. Therefore, we
have some nodes i, j ∈ S1 satisfying |No

i (G)\S1| ≥ r − 1,
|Np

j (G)\S1| ≥ r−1, and max{|No
i (G)\S1|, |Np

j (G)\S1|} ≥
r. In light of the edge removal procedure, we conclude
|No

i (G′)\S1| ≥ r − s − 1, |Np
j (G′)\S1| ≥ r − s − 1, and

max{|No
i (G′)\S1|, |Np

j (G′)\S1|} ≥ r − s. This means G′ is
(r − s)-robust. 2

Albeit varied connectivity concepts in graph and network
science, we propose the following novel connectivity property
for multiplex networks.
Definition 3 (pseudo-strong connectivity). G(V,Eo, Ep) is
called pseudo-strongly connected if for any pair (i, j) ∈ V ×V
(with i 6= j), there exists a node kij ∈ V (possibly kij = i
or kij = j) with a directed path from kij to i and another
directed path from kij to j in G(V,E).

Given a pair of nodes i and j, if there is a directed path
from i to j, we can choose kij = i to satisfy Definition 3.
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Here, kij = i is thought of as having a path of length “zero”
from kij to i.
Lemma 2. G(V,Eo, Ep) is 1-robust if and only if it is pseudo-
strongly connected.
Proof. (Sufficiency) We will prove by contradiction. Suppose
G(V,Eo, Ep) is not 1-robust but it is pseudo-strongly con-
nected. There must exist two nonempty subsets with S1∩S2 =
∅ such that none of them have any in-degree neighbors outside
of themselves in Go(V,Eo) or Gp(V,Ep). We take i ∈ S1 and
j ∈ S2 so that the node kij in Definition 3 cannot be found.
This contradicts pseudo-strong connectivity.

(Necessity) We first show that G(V,E) has a spanning
tree. In fact, if this does not hold, then we consider the
decomposition of its strongly connected components. Since
G(V,E) has no spanning tree, there are two strongly con-
nected components S1 and S2 having no incoming edges
from outside of themselves in G(V,E). This contradicts 1-
robustness. Hence, we proved that G(V,E) admits a spanning
tree.

Next, we show G(V,Eo, Ep) is pseudo-strongly connected.
Since G(V,E) has a spanning tree, for any pair (i, j) ∈ V ×V
with i 6= j we take kij as the root node of the spanning tree.
Thus, there is a directed path from kij to i and another directed
path from kij to j following the spanning tree. 2

Remark 1. The pseudo-strong connectivity concept can be
viewed as a generalization of strongly connectivity and span-
ning tree condition in classical graph theory (i.e., simplex
graphs). (1) It is not difficult to see when Eo = ∅ (or Ep = ∅),
G(V,Eo, Ep) is pseudo-strongly connected if and only if
Gp(V,Ep) (or Go(V,Eo)) is strongly connected. (2) When
Eo = Ep = E, G(V,Eo, Ep) is pseudo-strongly connected if
and only if G(V,E) has a spanning tree. In fact, if G(V,E)
contains a spanning tree, by the proof of Lemma 2 we see
that G(V,Eo, Ep) is pseudo-strongly connected. The other
direction can be shown by contradiction. Suppose that G(V,E)
has no spanning tree but G(V,Eo, Ep) is pseudo-strongly
connected. Hence, in the decomposition of strongly connected
components of G(V,E), there must be two components S1 and
S2 having no incoming edges from outside of themselves. We
choose i ∈ S1 and j ∈ S2. These two nodes have no common
ancestor in G(V,E). This contradicts Definition 3.

B. Resilient consensus strategies

In our resilient consensus model, we start by describing the
definition of consensus over the node set V = {1, 2, · · · , n} =
C ∪ B. The state of each agent i ∈ V at time t ≥ 0 is given
by xi(t) ∈ R. We are interested in reaching consensus among
the cooperative agents in C.
Definition 4 (resilient consensus). The cooperative agents in
G(V,E) are said to achieve resilient consensus if, for any
initial configuration {xi(0)}i∈V , there exists y ∈ R such that
limt→∞ xi(t) = y for all i ∈ C.

When B = ∅, resilient consensus problems become the
standard consensus problems with only cooperative agents [1].
Any cooperative agent i in C follows a general dynamical
system given by

ẋi(t) = fi

(
{t, xi

j(t) : j ∈ Ni ∪ {i}}
)

(1)

in continuous time, or

xi(t + 1) = fi

(
{t, xi

j(t) : j ∈ Ni ∪ {i}}
)

(2)

in discrete time. Here, the notation xi
j(t) ∈ R represents the

value sent from node j to node i. If j ∈ C, we assume xi
j(t) =

xj(t), i.e., cooperative agents always transmit their true states.
To specify the multiplex structure of G(V,Eo, Ep) induced

by the asymmetric confidence intervals, we define the opti-
mistic layer Go(V,Eo) and pessimistic layer Gp(V,Ep) as
follows.
Definition 5 (optimistic and pessimistic edges). Given i ∈ C
and j ∈ Ni, the edge (j, i) ∈ Eo if for any bj > bi there is
ε > 0 such that

fi

(
{t, xj = bj , xl = bi : l ∈ (Ni ∪ {i})\{j}}

)
≥ ε(bj − bi), ∀t ≥ 0.

Similarly, the edge (j, i) ∈ Ep if for any bj < bi there is
ε > 0 such that

fi

(
{t, xj = bj , xl = bi : l ∈ (Ni ∪ {i})\{j}}

)
≤ ε(bj − bi), ∀t ≥ 0.

Clearly, for a cooperative node i if (j, i) is an optimistic (or
pessimistic) edge, i is willing to update its states on the basis
of the input from j, which has a higher (or lower) value. The
idea is similar to the bicolored graph examined in [22] but the
multiplex topology was not explicitly defined like this. Next,
we consider the Byzantine agents in B, which can apply totally
different update rules with the aim to corrupt the multi-agent
system.
Definition 6 (Byzantine agents). An agent i ∈ B is called
Byzantine if it exerts a different update strategy f̂i from those
of cooperative agents in (1)-(2), or it sends different values to
different neighbors at some time t > 0.

Byzantine nodes are assumed to be able to collude with
other Byzantine nodes and potentially have complete knowl-
edge of the whole network [11], [12], [18], [20]. Therefore,
a Byzantine node i can apply arbitrary control strategies and
freely assign an edge (j, i) with j ∈ Ni to Eo or Ep. While
cooperative agents have no knowledge about the identity and
number of Byzantine ones, it is not unreasonable to assume
that the number of Byzantine agents has an upper bound
in an in-degree neighborhood. Specifically, we assume that
|Ni ∩ B| ≤ r for any i ∈ C. This condition is often referred
to as the locally bounded assumption; see e.g. [8]. In other
words, a cooperative agent is not required to have the capacity
to determine which neighbor is Byzantine or not; all that it
knows is an upper bound r.

Given the parameter r, we propose the following resilient
consensus strategy for continuous-time dynamical agents (1)
as follows. At time t, each cooperative agent i ∈ C receives
the state values {xi

j(t)}j∈Ni from its neighbors and determines
the Eo and Ep layers for its incoming edges. Sort respectively
the two lists {xi

j(t)}j∈No
i

and {xi
j(t)}j∈Np

i
in a descending

manner. Remove up to r highest values in {xi
j(t)}j∈No

i
which

are strictly larger than xi(t), and up to r lowest values
in {xi

j(t)}j∈Np
i

which are strictly smaller than xi(t). All
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removed indices are recorded in a set Ri(t) (see the Removal
Algorithm 1 given below). We instantiate fi in (1) for t ≥ 0
as

ẋi(t) =
∑

j∈(Ni∪{i})\Ri(t)

aijρij(t)fij

(
xi

j(t), xi(t)
)
, (3)

where ρij(t) > 0, fij(bi, bj) is assumed to be a locally
Lipschitz continuous function, fij(bi, bj) = 0 ⇔ bi = bj ,
and (bi − bj)fij(bi, bj) > 0 when bi 6= bj . Moreover,
limt→∞ ρij(t) = 0 if (i) (j, i) ∈ Eo\Ep and bi < bj or
(ii) (j, i) ∈ Ep\Eo and bi > bj ; ρij(t) ≡ 1 otherwise.

Similarly, for discrete-time dynamical agents (2) we adopt
an analogous censoring procedure and instantiate fi in (2) for
t ≥ 0 as

xi(t + 1) =
∑

j∈(Ni∪{i})\Ri(t)

wij(t)xi
j(t), (4)

where wij(t) = 0 when j 6∈ (Ni ∪{i})\Ri(t); wij(t) > 0 but
limt→∞ wij(t) = 0 if j ∈ Θi1(t)∪Θi2(t) with Θi1(t) := {j :
(j, i) ∈ Eo\Ep, xi

j(t) < xi(t)} and Θi2(t) := {j : (j, i) ∈
Ep\Eo, xi

j(t) > xi(t)}; and wij(t) ≥ w > 0 for some con-
stant w > 0 when j ∈ ((Ni ∪ {i})\Ri(t))\(Θi1(t) ∪ Θi2(t)).
Moreover, we assume

∑
j∈(Ni∪{i})\Ri(t)

wij(t) = 1.

Removal Algorithm 1 for a cooperative agent i ∈ C
Input: xi(t), {xi

j(t)}j∈No
i

, {xi
j(t)}j∈Np

i

Output: Ri(t)
01: sort {xi

j(t)}j∈No
i

decreasingly as
Lo := {xi

j1
(t), xi

j2
(t), · · · , xi

j|No
i
|
(t)}

02: let Ri(t) = ∅, ¯̀= max{1 ≤ l ≤ |No
i | : xi

jl
(t) > xi(t)}

03: if ¯̀> r
04: ¯̀= r
05: end if
06: for l = 1 till l = ¯̀
07: add vjl

into Ri(t)
08: end for
09: sort {xi

j(t)}j∈Np
i

decreasingly as
Lp := {xi

j1
(t), xi

j2
(t), · · · , xi

j|Np
i
|
(t)}

10: let ` = min{1 ≤ l ≤ |Np
i | : xi

jl
(t) < xi(t)}

11: if |Np
i | − ` + 1 > r

12: ` = |Np
i | − r + 1

13: end if
14: for l = ` till l = |Np

i |
15: add vjl

into Ri(t)
16: end for

Remark 2. The proposed strategies can be viewed as gen-
eralizations of classical W-MSR algorithms [8]–[11] by ac-
commodating asymmetric confidence intervals as well as non-
autonomous dynamics. A common choice of fij in continuous
time in (3) can be fij(bi, bj) = bi − bj [1]. The assumption
on ρij(t) implies that if the edge (j, i) is optimistic (but not
pessimistic) then lower states of node j will not be able
to influence node i in the long run. Likewise, if (j, i) is
pessimistic (but not optimistic) then higher states of node j
will not influence node i in the long run. For a discrete-time
system, the adaptive weight wij(t) in (4) can be typically taken

as wij(t) = (|(Ni ∪ {i})\Ri(t)| − |Θi1(t) ∪ Θi2(t)|)−1−δ(t)
for j ∈ ((Ni ∪ {i})\Ri(t))\(Θi1(t) ∪ Θi2(t)), and wij(t) =
δ(t)/|Θi1(t) ∪ Θi2(t)| for j ∈ Θi1(t) ∪ Θi2(t), where δ(t)
can be any decreasing sequence with limit being zero. This
scenario is an approximation of taking arithmetic mean of
neighbors used in many discrete-time consensus-based systems
[2].
Remark 3. Our algorithms are purely distributed and have
high flexibility as well as low complexity. The time complexity
of the above strategies is dominated by the sorting task,
which is effectively done by for instance Quicksort having
complexity O(n lnn). Moreover, compared to the consensus
seeking over bicolored graphs [22], [24], our systems (3) and
(4) are not confined to be only continuous-time monotone
systems.

III. CONVERGENCE ANALYSIS FOR CONTINUOUS-TIME
SYSTEMS

Denote by x(t) = mini∈C xi(t) the minimum state of
cooperative nodes and x(t) = maxi∈C xi(t) the maximum
state of cooperative nodes at time t. The following lemma
says that [x(0), x(0)] is a safety interval for all cooperative
nodes under the proposed resilient consensus strategy.
Lemma 3. Consider the system (1) over G(V,Eo, Ep) fol-
lowing the resilient consensus strategy (3) with parameter r.
If the number of Byzantine nodes is locally bounded by r, then
xi(t) ∈ [x(0), x(0)] for all i ∈ C and t ≥ 0.
Proof. We will only prove xi(t) ≤ x(0) for any i ∈ C and
t ≥ 0. The other part of the lemma can be shown likewise. If
the proposition is not true, then there must exist i ∈ C and
some time t̂ such that (i) xj(t′) ≤ x(0) for all t′ ≤ t̂ and
j ∈ C, and (ii) xi(t̂) = x(0) and ẋi(t̂) > 0. In view of (3),

0 < ẋi(t̂) =
∑

j∈(Ni∪{i})\Ri(t̂)

aijρij(t̂)fij

(
xi

j(t̂), xi(t̂)
)
.

If j ∈ C, we have xi(t̂) = x(0) ≥ xi
j(t̂) by the above

comment. If j ∈ B, the same estimate applies since node
i has no more than r Byzantine neighbors and the algorithm
ensures xi

j(t̂) is upper bounded by the value of a node in
((C ∩ Ni) ∪ {i})\Ri(t̂). Noting that aij > 0, ρij(t̂) > 0 and
fij

(
xi

j(t̂), xi(t̂)
)
≤ 0 by the assumptions of fij , the right-

hand side of the above inequality is less than or equal to zero,
which is a contradiction. Hence, we proved xi(t) ≤ x(0) for
any t ≥ 0. 2

The network G(V,Eo, Ep) is fixed. However, as nodes
are adjusted as the system evolves according to the resilient
consensus strategies, the network topology is essentially time-
dependent. This can be seen in Equations (3) and (4), where
Ri(t) is a set dependent on time t. The following assumption
captures the essential nature of time-varying topology due to
dynamical censoring of values.
Assumption 1. Denote by {τl}l≥1 the ordered time sequence
at which the set Ri(t) alters for some i ∈ C. We assume there
is τ > 0 such that τl+1 − τl ≥ τ for all l ≥ 1.
Theorem 1. Consider the system (1) over G(V,Eo, Ep)
following the resilient consensus strategy (3) with parameter
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r. Suppose Assumption 1 holds and G(V,Eo, Ep) is (r + 1)-
robust. If the number of Byzantine nodes is locally bounded
by r, then resilient consensus can be achieved.
Proof. The upper Dini derivative of a continuous function f
is given by

d+f(t) = lim sup
s→0+

f(t + s) − f(t)
s

.

In light of the property of upper Dini derivative [37], the
derivatives of x(t) and x(t) along the solution of (3) are
described as

d+x(t) = ẋi(t)

=
∑

j∈(Ni∪{i})\Ri(t)

aijρij(t)fij

(
xi

j(t), xi(t)
)

(5)

and

d+x(t) = ẋi(t)

=
∑

j∈(Ni∪{i})\Ri(t)

aijρij(t)fij

(
x

i
j(t), xi(t)

)
, (6)

where ẋi(t) := maxi∈I(t) ẋi(t) and ẋi(t) := maxi∈I(t) ẋi(t),
and the index sets are given by I(t) = {i ∈ C : xi(t) =
x(t)} and I(t) = {i ∈ C : xi(t) = x(t)}. Define the gap
between the maximum and minimum of states as ∆(t) :=
x(t)− x(t). Consider the right-hand side of (5). If j ∈ C, by
definition we obtain xi

j(t) ≤ xi(t). If j ∈ B, we examine two
cases: (i) (j, i) ∈ Ep\Eo and xi

j(t) ≥ xi(t) (ii) otherwise. For

(i), aijρij(t)fij

(
xi

j(t), xi(t)
)

tends to zero. For (ii), xi
j(t) is

upper bounded by the value of a node in ((C∩Ni)∪{i})\Ri(t)
and hence upper bounded by xi(t). Involving the assumptions
of ρij(t) and fij , we know the right-hand side of (5) is at most
zero when t is sufficiently large. By an analogous reasoning,
the right-hand side of (6) is at least zero. Therefore,

d+∆(t) = d+x(t) − d+x(t) ≤ 0

for sufficiently large t.
Next we claim that d+∆(t) tends to zero as t goes to

infinity. We use a contradiction argument. There are two
constants ε < 0 and δ > 0 as well as an ordered time sequence
{σl}l≥1 with liml→∞ σl = ∞ satisfying d+∆(σl) ≤ 2ε and
σl+1 − σl > δ for all l ≥ 1. Consider an interval I satisfying
I∩{τl}l≥1 = ∅, where {τl}l≥1 is defined in Assumption 1. As
ẋi(t) is bounded for any node i ∈ C and d+∆(t) is continuous
on I , d+∆(t) must be uniformly continuous on I . Hence, we
can find δ̂ > 0 such that for t2 > t1 in I with t2 − t1 < δ̂, we
obtain |d+∆(t1)− d+∆(t2)| < −ε. In light of Assumption 1,
we can choose δ̂ > 0 small enough so that for any l > 1, we
have [σl − δ̂, σl + δ̂] ⊆ I for some I defined as above. For
t ∈ [σl − δ̂, σl + δ̂], the following estimate holds:

d+∆(t) = − |d+∆(σl) − (d+∆(σl) − d+∆(t))|
≤ − (|d+∆(σl)| − |d+∆(σl) − d+∆(t)|)
≤2ε − ε = ε. (7)

Note that we can choose δ̂ sufficiently small so that {[σl −
δ̂, σl + δ̂]}l≥1 are mutually exclusive. It follows from the fact
d+∆(t) ≤ 0 for some sufficiently large T > 0 and (7) that∫ ∞

T

d+∆(t)dt ≤ lim
`→∞

∑̀
l=1

∫ σl+δ̂

σl−δ̂

d+∆(t)dt

≤2εδ̂ · lim
`→∞

`

= −∞,

which provides contradiction with ∆(t) ≥ 0 for all t ≥ 0. We
have proved d+∆(t) tends to zero as t → ∞.

This together with the analysis built on (5) and (6) implies
that there are two constants y ≥ y satisfying limt→∞ x(t) =
limt→∞ xi(t) = y and limt→∞ x(t) = limt→∞ xi(t) = y.
Assume that y > y. Therefore, there exists time t̂ > 0
so that for any t > t̂, xi(t) > y − δ > y + δ > xi(t)
for some δ > 0. By assumption G(V,Eo, Ep) is (r + 1)-
robust, invoking Lemma 1 and Lemma 2 we know that
G(V,Eo, Ep) is pseudo-strongly connected. It follows from
(3) and limt→∞ ẋi(t) = 0 that limt→∞ xi

j(t) − xi(t) = 0 for
any j ∈ (Ni∪{i})\Ri(t). Analogously, limt→∞ ẋi(t) = 0 im-
plies limt→∞ x

i
j(t)−xi(t) = 0 for any j ∈ (Ni ∪{i})\Ri(t).

As V contains only a finite number of nodes, there exists
t′ > t̂ such that in the communication topology at t′, there is
a directed path from kii to i and a directed path from kii to
i, and xkii

(t′) < y + δ and xkii
(t′) > y − δ. Clearly, this is a

contradiction. Hence, we must have y = y. 2

Remark 4. From the perspective of graph topology, previous
works typically assumes that G(V,E) is (2r+1)-robust in the
presence of r-locally bounded Byzantine nodes; c.f. [8], [11],
[12]. This condition is obviously stronger than our assumption
of (r + 1)-robustness.

The above proposed algorithm can be modified to deal with
scaled consensus problems [11], [38] defined as below.
Definition 7 (resilient scaled consensus). Given γi 6= 0 for
i ∈ V . The cooperative agents in G(V,E) are said to achieve
resilient scaled consensus with respect to (γ1, · · · , γn) if, for
any initial configuration {xi(0)}i∈V ,

lim
t→∞

γixi(t) − γjxj(t) = 0

for all i, j ∈ C.
When γi ≡ 1 for all i ∈ V , we readily reproduce the

consensus problem. In general, scaled consensus requires the
ratio of cooperative agents converges to a pre-assigned (possi-
bly negative) value, naturally delineating the cooperative and
antagonistic interactions between individuals. For agents with
continuous-time dynamics, the resilient consensus protocol
proposed in Section II.A can be modified as follows.

Given the parameter r, at time t each cooperative agent
i ∈ C receives the state values {γjx

i
j(t)}j∈Ni from its

neighbors and determines the Eo and Ep layers for its
incoming edges. Sort respectively the two lists {γjx

i
j(t)}j∈No

i

and {γjx
i
j(t)}j∈Np

i
in a descending manner. Remove up to r

highest values in {γjx
i
j(t)}j∈No

i
which are strictly larger than

γixi(t), and up to r lowest values in {γjx
i
j(t)}j∈Np

i
which are

strictly smaller than γixi(t). All removed indices are recorded
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in a set Ri(t) (see the Removal Algorithm 2 given below). We
instantiate fi in (1) for t ≥ 0 as

ẋi(t) =

sgn(γi)
∑

j∈(Ni∪{i})\Ri(t)

aijρij(t)fij

(
γjx

i
j(t), γixi(t)

)
,

where the signum function sgn(b) = 1 if b > 0 and sgn(b) =
−1 if b < 0, and ρij and fij are as defined before. We can
prove the following result with a similar proof as in Theorem
1.

Removal Algorithm 2 for a cooperative agent i ∈ C
Input: γixi(t), {γjx

i
j(t)}j∈No

i
, {γjx

i
j(t)}j∈Np

i

Output: Ri(t)
01: sort {γjx

i
j(t)}j∈No

i
decreasingly as

Lo := {γj1x
i
j1

(t), γj2x
i
j2

(t), · · · , γj|No
i
|x

i
j|No

i
|
(t)}

02: let Ri(t) = ∅ and
¯̀= max{1 ≤ l ≤ |No

i | : γjl
xi

jl
(t) > γixi(t)}

03: if ¯̀> r
04: ¯̀= r
05: end if
06: for l = 1 till l = ¯̀
07: add vjl

into Ri(t)
08: end for
09: sort {γjx

i
j(t)}j∈Np

i
decreasingly as

Lp := {γj1x
i
j1

(t), γj2x
i
j2

(t), · · · , γj|Np
i
|
xi

j|Np
i
|
(t)}

10: let ` = min{1 ≤ l ≤ |Np
i | : γjl

xi
jl

(t) < γixi(t)}
11: if |Np

i | − ` + 1 > r
12: ` = |Np

i | − r + 1
13: end if
14: for l = ` till l = |Np

i |
15: add vjl

into Ri(t)
16: end for

Corollary 1. Consider the system (1) over G(V,Eo, Ep)
following the above resilient scaled consensus strategy with
parameter r. Suppose Assumption 1 holds and G(V,Eo, Ep)
is (r + 1)-robust. If the number of Byzantine nodes is locally
bounded by r, then resilient scaled consensus with respect to
(γ1, · · · , γn) can be achieved.

IV. CONVERGENCE ANALYSIS FOR DISCRETE-TIME
SYSTEMS

Recall that x(t) = mini∈C xi(t) and x(t) = maxi∈C xi(t)
are, respectively, the minimum state and maximum state of
cooperative nodes at t. The following lemma indicates that
{[x(t), x(t)]}t≥1 is a nested sequence with respect to time
under the proposed resilient consensus strategy.
Lemma 4. Consider the system (2) over G(V,Eo, Ep) fol-
lowing the resilient consensus strategy (4) with parameter r.
If the number of Byzantine nodes is locally bounded by r, then
xi(t + 1) ∈ [x(t), x(t)] for all i ∈ C and t ≥ 0.
Proof. The proposed resilient consensus strategy implies that
xi(t + 1) is a convex combination of values xi

j(t) with j ∈
(Ni ∪ {i})\Ri(t). In view of the locally bounded Byzantine
nodes and the choice of wij(t), it is clear that all non-zero

constitutes of the convex combination in (4) are within the
interval [x(t), x(t)]. Hence, xi(t + 1) ∈ [x(t), x(t)]. 2

Theorem 2. Consider the system (2) over G(V,Eo, Ep)
following the resilient consensus strategy (4) with parameter
r. Suppose G(V,Eo, Ep) is (r + 1)-robust. If the number
of Byzantine nodes is locally bounded by r, then resilient
consensus can be achieved.
Proof. Thanks to Lemma 4, we can define y := limt→∞ x(t)
and y := limt→∞ x(t). Obviously, y ≥ y. We will show the
equality holds by method of contradiction. Suppose y > y. We
choose δ0 > 0 with y − δ0/2 > y + δ0/2. We consider two
sequences of subsets of cooperative nodes B(t, δl) := {i ∈ C :
xi(t) > y − δl/2} and B(t, δl) := {i ∈ C : xi(t) < y + δl/2}
for given t, δl > 0 with l ≥ 0. Note that B(t, δ0) and
B(t, δ0) are mutually exclusive by our definition. We choose
δ ∈ (0, δ0/2) such that δ < wn−2rδ0/(2(1 − wn−2r)), where
w > 0 defined in Section II.A can be taken as w ∈ (0, 1).
For this δ, we take time tδ > 0 such that x(t) < y + δ
and x(t) > y − δ for any t ≥ tδ by using the convergence.
Let Ĝ(tδ) := G(V,Eo(tδ), Ep(tδ)) be the communication
topology at time tδ , which according to our algorithm is
obtained by each cooperative node removing up to r incoming
edges in Eo as well as removing up to r incoming edges in
Ep. By Lemma 1, Ĝ(tδ) is 1-robust.

Consider the two nonempty mutually exclusive sets
B(tδ, δ0) and B(tδ, δ0). There exists a cooperative agent in
B(tδ, δ0) or in B(tδ, δ0), which has at least one neighbor in
Eo(tδ) or in Ep(tδ) outside its set. Without loss of generality,
we assume i ∈ B(tδ, δ0). If i has one neighbor in Ep(tδ)
outside its set B(tδ, δ0), the value of this neighbor is upper
bounded by y − δ0/2 and it is used by node i in the update.
[Notice that i has no neighbor in Eo(tδ) outside its set.
Otherwise, by the definition of Ĝ(tδ) this value will be used
by node i, but on the other hand this value cannot be used by
node i due to (4), which leads to a contradiction.] Therefore,
using the resilient consensus strategy we derive the following
estimate

xi(tδ + 1) ≤(1 − w)x(tδ) + w(y − δ0/2)
≤(1 − w)(y + δ) + w(y − δ0/2)
=y − δ0w/2 + (1 − w)δ. (8)

It is easily see that (8) still applies to any cooperative agent
outside B(tδ, δ0) since such nodes will leverage their own
value in (4), which is again upper bounded by y − δ0/2. In a
similar manner, if i ∈ B(tδ, δ0), we can obtain the estimate

xi(tδ + 1) ≥ y + δ0w/2 − (1 − w)δ. (9)

This is also satisfied by cooperative agents outside B(tδ, δ0).
We take δ1 = wδ0 − 2(1 − w)δ and 0 < δ < δ1/2 <

δ0/2 holds. Since the two sets B(tδ +1, δ1) and B(tδ +1, δ1)
are mutually exclusive (by (8) and (9)), we arrive at |B(tδ +
1, δ1)| < |B(tδ, δ0)| or |B(tδ + 1, δ1)| < |B(tδ, δ0)| based on
the above arguments. For l ≥ 1, set δl = wδl−1−2(1−w)δ and
we have δl−1 > δl. Repeatedly applying the above comments,
we know that there must exist some T ≤ n − 2r such that
B(tδ+T, δT ) or B(tδ+T, δT ) is an empty set. This is because
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Ĝ(tδ + T ) has at most n − 2r nodes. Using our definition of
δ, we estimate

δT =wδT−1 − 2(1 − w)δ

=wT δ0 − 2(1 − w)(1 + w + · · · + wT−1)δ

=wT δ0 − 2(1 − wT )δ

≥wn−2rδ0 − 2(1 − wn−2r)δ
>0.

Therefore, either all cooperative agents at time tδ + T have
values no more than y − δT /2 < y or all of them have values
no less than y + δT /2 > y. This contradicts the definition of
y or y. Hence, we must have y = y. 2

Given γi 6= 0 for i ∈ V , we modify the resilient consensus
strategy for discrete-time dynamical agents similarly as in
Section III, and we instantiate fi in (2) for t ≥ 0 as

xi(t + 1) = sgn(γi)
∑

j∈(Ni∪{i})\Ri(t)

wij(t)γjx
i
j(t),

where sgn(·) is the signum function, the weights
wij(t) are defined as before. Here, we assume∑

j∈(Ni∪{i})\Ri(t)
|γi|wij(t) = 1.

By a similar proof as in Theorem 2, we can show the
following result for resilient scaled consensus.
Corollary 2. Consider the system (2) over G(V,Eo, Ep)
following the above resilient scaled consensus strategy with
parameter r. Suppose G(V,Eo, Ep) is (r + 1)-robust. If the
number of Byzantine nodes is locally bounded by r, then
resilient scaled consensus with respect to (γ1, · · · , γn) can
be achieved.

V. NUMERICAL EXAMPLES

Fig. 1. Left: A multiplex network G(V, Eo, Ep) with B = {1} and C =
{2, 3, · · · , 6} for Example 1. Green and red arrows represent optimistic and
pessimistic edges respectively. Right: The one-mode version G(V, E) with
E = Eo ∪ Ep.

Example 1. Here, we consider a multiplex network
G(V,Eo, Ep) over V = {1, 2, · · · , 6}, where 1 is a Byzantine
node and the other nodes are cooperative; see Fig. 1 for
an illustration. The one-mode version G(V,E) has a binary
adjacency matrix A. To combat the malicious agent, we are
interested in the implementation of our resilient consensus
strategies having parameter r + 1 with r = 1. It is direct
to check that G(V,Eo, Ep) is 2-robust. However, since for

example N5 = {4, 6} and N6 = {4, 5}, G(V,E) is not 3-
robust. As a result, neither Go(V,Eo) nor Gp(V,Ep) is 3-
robust. Therefore, we cannot conclude that resilient consensus
will be reached over G(V,E) with any previously known
consensus results. In fact, these networks are sparser than
the previous requirement over robustness, namely, (2r + 1)-
robustness; c.f. [6], [8]–[12].
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Fig. 2. Resilient consensus over directed network G(V, Eo, Ep) of Example
1 in the presence of Byzantine node 1 for (a) continuous-time multi-agent
system (1) with ρij(t) = t−2 and (b) discrete-time multi-agent system (2)
with δ(t) = t−1.

In Fig. 2(a) we show the state evolution of the multi-
agent system having continuous-time agents with initial con-
ditions x1(0) = 4, x2(0) = 3, x3(0) = 1, x4(0) = 6,
x5(0) = 5, x6(0) = 2. The Byzantine node 1 follows its
own dynamics ẋ1(t) = (x6(t) − x1(t))/50 − t/400 while
cooperative nodes follow the strategy described in Remark
2 with fij(bi, bj) = 0.1 · (bi − bj) and ρij(t) = αt−2 with
α = 1 for appropriate nodes. We observe from Fig. 2(a) that
all cooperative agents are able to achieve consensus as one
would expect from Theorem 1.

The trajectories of discrete-time dynamical agents with
initial conditions x1(0) = 2, x2(0) = 4, x3(0) = 6, x4(0) = 3,
x5(0) = 5, x6(0) = 1 are shown in Fig. 2(b). The Byzantine
node 1 follows the update rule x1(t + 1) = (x2(t) + x3(t) +
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x6(t))/3 + t/20 and cooperative nodes follow the adaptive
strategy described in Remark 2 with δ(t) = βt−1 and β = 1.
The consensus result shown in Fig. 2(b) is consistent with the
theoretical prediction of Theorem 2.

α = 1 α = 5 α = 10 α = t
t∗0.0001 71.36 73.01 75.22 106.95

β = 1 β = 2 β = 3 β =
√

t
t∗0.0001 28 28 29 34

TABLE I
CONSENSUS TIME t∗0.001 FOR EXAMPLE 1 WITH ρij(t) = αt−2 IN

CONTINUOUS-TIME SYSTEM (1) AND δ(t) = βt−1 IN DISCRETE-TIME
SYSTEM (2).

Next, we consider the influence of choices of α and β on
the convergence speed of the proposed protocols. To this end,
we define the consensus time for the multi-agent system (1)
or (2) as

t∗ε := min
{

t ≥ 0 : max
i,j∈C

|xi(t) − xj(t)| ≤ ε

}
(10)

for a small ε > 0. In Table 1 we summarize the consensus
time t∗ε with ε = 10−3 for different values of α and β in both
the continuous-time and discrete-time protocols as described
as above. The consensus time is seen to be increasing with
respect to α and β in general. This is consistent with the
analysis in our main results, where the convergence of ρij

and δ is essential in containing the unwanted perturbation.

Fig. 3. Left: A multiplex network G(V, Eo, Ep) with B = {1} and C =
{2, 3, · · · , 6} for Example 2. Green and red arrows represent optimistic and
pessimistic edges respectively. Right: The one-mode version G(V, E) with
E = Eo ∪ Ep.

Example 2. In the following, we consider a sparser multiplex
network G(V,Eo, Ep) over V = {1, 2, · · · , 6} (see Fig.
3), where 1 is a Byzantine node and the other nodes are
cooperative. We assume a binary adjacency matrix A for the
one-mode version G(V,E). As before, it is straightforward to
check that G(V,Eo, Ep) is 2-robust while G(V,E) is not 3-
robust. This is because N6 = {1, 5} and hence the two disjoint
subsets {1, 5} and {2, 3, 4, 6} do not satisfy the 3-robustness
condition in [8]. Moreover, with slightly more effort we know
that G(V,E) even fails to be 2-robust (for example by scoping
the two subsets {1, 6} and {3, 4}). Therefore, this network
satisfies the assumptions in our Theorems 1 and 2 with the
parameter r = 1, but it does not meet the requirement of the

typical fault-tolerant filtering strategies with r = 1 Byzantine
node in [8].

We take initial conditions x1(0) = 4, x2(0) = 3, x3(0) = 1,
x4(0) = 6, x5(0) = 5, x6(0) = 2 as in Example 1. For
continuous-time multi-agent system, we make Byzantine node
1 follows its own dynamics ẋ1(t) = (x6(t) − x1(t))/50 −
t/400 while cooperative nodes follow the strategy described
in Remark 2 with fij(bi, bj) = 0.1 · (bi− bj) and ρij(t) = t−2

for appropriate nodes. The state evolution is shown in Fig.
4(a). For discrete-time multi-agent system, we take x1(0) = 2,
x2(0) = 4, x3(0) = 6, x4(0) = 3, x5(0) = 5, x6(0) = 1 as
in Example 1 and assume that the Byzantine node 1 follows
the update rule x1(t + 1) = (x2(t) + x6(t))/2 + t/20 and
cooperative nodes follow the adaptive strategy described in
Remark 2 with δ(t) = t−1. The result is shown in Fig. 4(b).
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Fig. 4. Resilient consensus over directed network G(V, Eo, Ep) of Example
2 in the presence of Byzantine node 1 for (a) continuous-time multi-agent
system (1) with ρij(t) = t−2 and (b) discrete-time multi-agent system (2)
with δ(t) = t−1.

We observe that the cooperative nodes 2-6 are able to reach
consensus in spite of the presence of the Byzantine node 1
as predicted by Theorem 1 and Theorem 2, respectively. The
network G(V,E) here has 13 directed edges, which is obvi-
ously sparser than that in Example 1 containing 17 directed
edges. Comparing Fig. 4(a) with Fig. 2(a), and Fig. 4(b) with
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Fig. 2(b), we draw two interesting observations. Firstly, denser
communication graph in one-mode (i.e., aggregated) version
does not necessarily lead to faster convergence speed. The
rate of reaching consensus depends in general on the specific
connection architecture in the separate layers of the multiplex
network. For instance, in Fig. 4(a) the system converges at
around t = 100 while it converges at around t = 70 in
Fig. 2(a); in Fig. 4(b) the convergence time is at around
t = 15 while it is at around t = 25 in Fig. 2(b). We have
done more simulations with different initial conditions and
dynamics, which confirm this non-monotonicity in general.
Secondly, when we compare the final consensus values as well
as the trajectories (for both cooperative and Byzantine agents)
in Fig. 2 and Fig. 4, we notice that they are different in both
continuous-time and discrete-time cases. This phenomenon
reveals that the network structure mutation, under our resilient
consensus strategies, has an impact not only on the transient
trajectories of the agents but also on their ultimate equilibrium
state.
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Fig. 5. State evolution over directed network G(V, E) in Fig. 3 in the
presence of Byzantine node 1 with the resilient consensus strategy given in
[9, Theorem 2].

Finally, we consider a classical resilient consensus algorithm
proposed in the work [9] for discrete-time agent dynamics with
the same Byzantine node behavior as before. The underlying
communication network is taken as the one-mode graph in Fig.
3. The system state evolution is shown in Fig. 5. According to
the discussion in the beginning of Example 2, G(V,E) is not
2-robust. Therefore, Theorem 2 in [9] is no longer a sufficient
condition for resilient consensus in this case. Our Fig. 5 depicts
such a counter example. This again highlights the usefulness
of our multiplex network framework, which allows resilient
consensus in a weaker connectivity condition.

VI. CONCLUDING REMARKS

In this paper, we have considered consensus problems
in the presence of locally bounded Byzantine nodes featur-
ing asymmetric confidence intervals. We introduce a novel
multiplex network presentation and associated concepts of

robustness and pseudo-strongly connectivity. Adaptive dis-
tributed resilient protocols are designed and applied to both
continuous-time and discrete-time multi-agent systems to en-
sure consensus among cooperative agents over directed net-
works. Capitalizing on the multiplex network framework,
we are able to establish much milder robustness conditions
than the existing works. The results have been extended
to accommodate resilient scaled consensus problems, where
both cooperative consensus and antagonistic consensus are
permitted. Numerical examples have been worked out to
confirm our theoretical findings and demonstrate the flexibility
of the multiplex consensus framework. An interesting future
direction is to consider vector states [39], [40], which offer
an opportunity to generate the current multiplex network
framework from two layers to more layers.

To accommodate the phenomenon of asymmetric confidence
intervals, we in this paper scopes a solution by using multiplex
networks. Another possible framework would be to consider a
time-varying simplex network with the two sub-networks Go

and Gp periodically appearing. If at some time t an edge, for
(j, i) ∈ Eo\Ep (i ∈ C) appears, the node j will be put into
Ri(t) whenever xi

j(t) < xi(t). Compared to the ordinary W-
MSR algorithms, more edges will be sieved in general. Poten-
tial fix include considering a stronger connectivity condition,
restricting the occurrence of edges in Eo\Ep and Ep\Eo,
allowing certain fraction of trusted edges within Ni for all
i ∈ C.

Finally, we mention that in many realistic applications,
there are some other important aspects (such as delay, finite-
time convergence, limited data rate [41], or packet dropout
[42]) should be taken into consideration when designing
resilient consensus algorithms. A very recent effort in finite-
time resilient consensus is made by [43], where discontinuous
system theory is applied to reach consensus in the symmetric
confidence scenario.
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