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LIAF-Net: Leaky Integrate and Analog Fire
Network for Lightweight and Efficient
Spatiotemporal Information Processing

Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang

Abstract—Spiking neural networks (SNNs) based on Leaky
Integrate and Fire (LIF) model have been applied to energy-
efficient temporal and spatiotemporal processing tasks. Thanks
to the bio-plausible neuronal dynamics and simplicity, LIF-SNN
benefits from event-driven processing, however, usually faces the
embarrassment of reduced performance. This may because in
LIF-SNN the neurons transmit information via spikes. To address
this issue, in this work, we propose a Leaky Integrate and
Analog Fire (LIAF) neuron model, so that analog values can
be transmitted among neurons, and a deep network termed as
LIAF-Net is built on it for efficient spatiotemporal processing. In
the temporal domain, LIAF follows the traditional LIF dynamics
to maintain its temporal processing capability. In the spatial
domain, LIAF is able to integrate spatial information through
convolutional integration or fully-connected integration. As a
spatiotemporal layer, LIAF can also be used with traditional
artificial neural network (ANN) layers jointly. Experiment results
indicate that LIAF-Net achieves comparable performance to
Gated Recurrent Unit (GRU) and Long short-term memory
(LSTM) on bAbI Question Answering (QA) tasks, and achieves
state-of-the-art performance on spatiotemporal Dynamic Vision
Sensor (DVS) datasets, including MNIST-DVS, CIFAR10-DVS
and DVS128 Gesture, with much less number of synaptic weights
and computational overhead compared with traditional networks
built by LSTM, GRU, Convolutional LSTM (ConvLSTM) or
3D convolution (Conv3D). Compared with traditional LIF-SNN,
LIAF-Net also shows dramatic accuracy gain on all these experi-
ments. In conclusion, LIAF-Net provides a framework combining
the advantages of both ANNs and SNNs for lightweight and
efficient spatiotemporal information processing.

Index Terms—Spiking neural networks, LIF model, Spatiotem-
poral information, Bio-plausible neuronal dynamics.

I. INTRODUCTION

IN recent years, Leaky Integrate and Fire (LIF) neuron
models have been investigated deeply [1] [2] [3]. Bene-

fited from its bio-plausible neuronal dynamics and simplicity,
LIF has been employed to simulate spiking neural networks
(SNNs) and applied in scenarios of energy efficient temporal
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and spatiotemporal processing [3] [4] [5] [6] [7]. A large
range of applications have been demonstrated including image
classification [8], video processing [9] [10], posture and ges-
ture recognition [11], [12], voice recognition [13], etc. Many
neuromorphic chips are specifically designed for implementing
LIF model based SNNs (termed as LIF-SNN) with high energy
efficiency [14] [15] [16]. In LIF-SNN, however, for each time
step the information transmitted between two neurons can only
be spike or nothing, and it is usually denoted as a binary value
for simplicity. Since a binary value has less accuracy compared
with an analog value, LIF-SNNs deployed on neuromorphic
chips usually face the embarrassment of drop in performance.

Note that, although the communication scheme in LIF
models with spike works efficiently in biological SNNs, it
is not difficult to transmit an analog value instead of a binary
spike for neuromorphic chips, just like the artificial neurons in
deep Artificial Neural Networks (ANNs). On the other hand,
the structure and neuronal dynamics in artificial neurons in
ANNs are greatly simplified, resulting in a lack of ability
in capturing the effects of membrane potential accumulating,
action potential generation and membrane resetting, and these
dynamic procedures are essential for temporal information
processing. Some artificial neural networks such as Long
Short-Term Memory (LSTM) [17] and Gated Recurrent Unit
(GRU) [18] are skill at processing temporal information, which
use recurrent connections and hidden state updates. These
networks rely on gating instead of threshold firing. These gate
signals require extra neuronal connections and weights than
biology threshold-oriented mechanism.

Thus, the key motivation is as follows: Is there any solution
available that enables lightweight spatiotemporal processing
to benefit from bio-plausible temporal processing mechanism,
whereas keeps rich communication capability through analog
values among neurons? In such case, how the spatiotemporal
capability and efficiency can be attained?

To address these problems, two fundamental issues have to
be solved. The first issue is that it is not always convenient to
use spike trains as input and output for a neural network layer.
On the one hand, most of the images and videos in current dig-
ital devices are represented as analog or multi-valued pixels.
When process input data by LIF, a spike generator [19] or edge
detector [20] has to be applied. Extra modules may be required
for color processing [21]. These modules introduce additional
cost if SNN being applied in computer vision applications. On
the other hand, in recent years, many newly introduced ANN
layers are applied for building deep neural networks. Such as
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pooling [22], residual connection [23], varieties of activations
(ReLU [22], PReLU [24]), and normalization alternatives
(Batch normalization [25], Layer normalization [26]). It is
a pity that current SNNs rarely use these mechanisms for
network construction, mostly due to the activation format
difference (spike versus analog), therefore a coding format
converter is necessary [15]. These converters make building
a mixed network with LIF layer and ANN layers not efficient.
Regarding this issue, including the redundancy of introducing
sensor data converter and inconvenience of using ANN layer,
we are motivated to design a more friendly interface for LIF.

The second issue is how to avoid performance degradation
when implementing simple and bio-plausible LIF-SNNs [27].
For example, the performance of LIF-SNN is not as good as
the ANN counterparts either through ANN-SNN conversion
[28] or training directly [29], mostly due to the spiking (binary
activation) [30]. Although it can be compensated by a temporal
coding scheme and using longer temporal time steps (more
than 100 [29]). To increase the accuracy, more time steps are
required [31] whereas more synaptic integration computation
would be consumed. For instance, a time interval higher than
ten is necessary for a counterbalanced performance on recog-
nizing a CIFAR-10 image compared with pure ANN with the
same network topology [32], which makes the computational
complexity one or several orders of magnitude higher when
event-driven is not enabled. For event-driven case, it still not
easy to reach the equivalent computation workload as ANN
when the spike is not sparse enough (reach 1% sparsity for
100 time steps, then SNN has equivalent dendritic workload
to ANN).

Motivated by the above-mentioned issues, in this work,
we try to overcome the shortcomings of traditional LIF and
propose a refined LIF model, which enhances the information
transmission capability, maintains the LIF temporal dynamics,
enables the friendly integration with ANNs and vision sensors,
and maintains the spatial performance with limited time inter-
vals. We propose a Leaky Integrate and Analog Fire (LIAF)
neuron model and build a deep neural network based on LIAF,
termed as LIAF-Net, for efficient spatiotemporal processing.
To allow more information transmitted among neurons, LIAF-
Net uses analog values to represent neural activations instead
of the traditional binary values in LIF-SNN. In the temporal
domain, LIAF keeps traditional LIF dynamics and this enables
its temporal processing capability. In the spatial domain, since
the LIAF data format is fully compatible with traditional
ANNs, LIAF-Net can be built with LIAF and other ANN
layers together easily. Thus, deep learning designers can use
training framework like Tensorflow to build such network,
just considering LIAF as a spatiotemporal layer like 3D
Convolution (Conv3D) or Convolutional LSTM (ConvLSTM).

For verifying the performance of LIAF-Nets, we have con-
ducted several experiments on various temporal and spatiotem-
poral datasets and compared them with traditional networks.
The experimental results show that LIAF-Net reaches compa-
rable performance to the networks built by GRU, LSTM on the
bAbI Question Answering (QA) tasks with much less storage
and computational cost than GRU or LSTM network. LIAF-
Nets also reach state-of-the-art performance on several spa-

tiotemporal Dynamic Vision Sensor (DVS) datasets, including
MNIST-DVS, CIFAR10-DVS and DVS128 Gesture with much
less number of synaptic weights and computational overhead
compared to ConvLSTM network or Conv3D network. We
compared the network structure of LIAF and several recurrent
models and reveals that neither input gate nor output gate
is used in LIAF, and therefore huge power for storage and
computation can be avoided. In conclusion, LIAF-Net provides
a framework combining the advantages of both ANNs and
SNNs for lightweight and efficient spatiotemporal information
processing.

The paper is organized as follows. In Section II, the model
description of the proposed LIAF is introduced. The relation-
ships of LIAF with Perceptron, Convolution, RNN model and
LIF are discussed. Also, the way for integrating LIAF layer
with other ANN layers is proposed. In Section III, the training
algorithm is discussed. In Section IV and Section V LIAF
is compared with traditional models to show its lightweight
characteristic. In Section VI, the performance of LIAF-Net
is evaluated and compared with other traditional networks,
which reveals the computational efficiency and outstanding
spatiotemporal processing capability of LIAF-Net. In Section
VII, the bio-plausibility of LIAF and analog valued neural
models are discussed. Finally, Section VIII concludes the
paper.

II. MODEL DESCRIPTION

A. Evolution from ANN and SNN models

The proposed LIAF model is quiet similar to the LIF
model. It has a similar dendritic integration process, temporal
dynamics including threshold compare and fire, and membrane
potential reset. However, it receives analog input and outputs
analog activations, illustrated in Fig.1. Different from LIF, the
fire signal in LIAF is only used for resetting the membrane
potential, therefore the membrane potential updates like the
LIF model, whereas the output activations are calculated from
the membrane potential through an activation function.

B. Mathematical description of the LIAF model

The original LIF model is described in a differential func-
tion [33] [30] to reveal the neuronal dynamic, following
equation

τ
dV (t)

dt
= −(V (t)− Vreset) +

n∑
i=1

Wi ·Xi(t). (1)

where τ is the timing factor of the neuron, Vreset is the reset
potential. Xi(t) is the input signal (spike or none) from the
ith neuron connecting to the current neuron through a synapse
with strength Wi. When V (t) reaches a certain threshold Vth,
a spike is emitted, and the V (t) is reset to its initial value
Vreset. We use an iterative representation in discrete-time [34]
[35] for easily inference and training. We present LIF and
LIAF neuron model together for comparing as follows.

a). Synaptic Integration
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Fig. 1. The comparison of traditional perceptron, LIF and proposed LIAF
neuron models. The proposed LIAF keeps analog input and analog output
like perceptron neuron, whereas maintains temporal dynamics similar to LIF
neuron.

It =


Xt ·W , for dense;
Conv(Xt,W ), for convolution;
Xt, for integration-free.

(2)

where Xt stands for the activations from the pre-synaptic
neuron, W refers to the synaptic weights. The synaptic inte-
gration can be exist in fully connected format or convolutional
format.

b). Accumulates with previous membrane potential

U t
m = It + V t−1

m (3)

where V t−1
m and U t

m refer to the previous and current
membrane potential respectively.

c). Compare with the threshold and fire

F t = U t
m ≥ Vth (4)

where F t is the fire signal. For each F t
j in F t, F t

j = 1
indicates a firing event, otherwise F t

j = 0.
d). Reset the membrane potential when fired

Rt
m = F t · Vreset + (1− F t) ·U t

m (5)

e). Perform leakage

V t
m = α ·Rt

m + β (6)

where α and β represent the multiplicative decay and
additive decay respectively.

f). Output

Y t =

{
F t, for LIF;
f(U t

m,Vth), for LIAF.
(7)

f(x, Vth) is the analog activation function. It can be thresh-
old related (TR mode) or not (NTR mode), which follows

f(x, Vth) =

{
Act(x− Vth), for TR mode;
Act(x), for NTR mode.

(8)

In the following illustrations, we term LIAF/LIF with
dense integration, convolutional integration, and integration-
free as DenseLIAF/DenseLIF, ConvLIAF/ConvLIF and Di-
rectLIAF/DirectLIF respectively. The ’Conv’ mentioned here
is the 2D Convolution (Conv2D). In addition, units in Vth,
Vreset, α and β may vary for each convolutional channel
(the neurons within a channel share a unique value), or vary
for each neuron, or the same for all neurons, are termed as
Channel-Sharing mode, Non-Sharing mode and All-Sharing
mode, respectively. We avoid using Non-Sharing mode in
ConvLIAF/ConvLIF in our experiments for saving parameter
storage. We also would like to note that the term ’model’ is
equivalent to a ’layer’ using the model in a network.

C. Model degradation

In this part, we compare LIAF to LIF, perceptron, convolu-
tion, and traditional recurrent neural network (RNN) models.

(1). Relationship to LIF: If Act(x) is a Heaviside step
function (Act(x) = V ≥ Vth), then LIAF will degrade to LIF.

(2). Relationship to perceptron or convolution: If we set
α = 0 and β = 0, then all the temporal information is missing
and LIAF will degrade to perceptron or Conv2D.

(3). Relationship to RNN model: We rewrite the LIAF as

U l,t
m = It +α · S(U l,t−1

m − Vth) · Vreset+

α · [1− S(U l,t−1
m − Vth)] ·U l,t−1

m + β
(9)

which can be viewed as a high order recurrent neural network
because of the term S(U l,t−1

m − Vth) · U l,t−1
m . Therefore it

consists of more non-linear features compared with traditional
RNNs. The comparison with traditional RNN models (LSTM
and GRU) is discussed in Section IV. In conclusion, the
proposed model has the equivalent expressional capability to
both ANN perceptron/convolution model and the LIF model.

D. Easily integration with ANN layers

Compared to LIF, a LIAF layer can be more easily in-
tegrated with traditional ANN layers easily. As depicted in
Fig.2. For video or frame sequence processing, the inter-layer
interface of ConvLIAF/Conv3D/ConvLSTM is a 5D tensor
in size (B, T,H,W,L), representing batch size, time steps,
height, width, and feature maps respectively. The interface of
LIAF/LSTM/GRU is a 3D tensor in size (B, T, L), where L
is the number of neurons (hidden size). Therefore LIAF and
other ANN layers share the same data format and interface
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Fig. 2. LIAF layer integrated with ANN layers. LIF usually requires a spike
train other than a single spike to compensate for the accuracy loss. Therefore,
when communicates with ANN layers with analog values, a converter between
spike train and the analog value is required. Otherwise, only binary input
is acceptable and the output accuracy is limited. For LIAF, no spike/analog
conversion is required, and a mixed network construction approach with LIAF
and traditional ANN layers is supported. (Note that the LIAF layer here only
includes the processing steps mentioned in Section II-B, excluding other layers
like pooling, batch normalization.)

format, which makes their integration easily, just consider-
ing LIAF as a spatiotemporal layer similar to Conv3D or
ConvLSTM. On the contrary, LIF requires a spike train to
represent a multi-valued pixel or an analog activation in a
single time step, otherwise only binary value is allowed.
Therefore, when accepting analog values from ANN layers
or from image/video sensor, a converter from analog value to
spike train is necessary. In addition, the spike train fired by LIF
may need to be converted to an analog value to communicate
with the subsequent ANN layer.

III. TRAINING THE LIAF-NET

The LIAF-Net can be trained with Back Propagation
Through Time (BPTT), which has been widely applied for the
training of temporal RNNs. Since training an RNN and LIF-
SNN with BPTT are well discussed in many literatures [36]
[35] [37] [38], and implemented in mainstream deep learning
frameworks, here we just discuss the difference between
training RNN and LIAF-Net using BPTT. Both RNN and
LIAF-Net are recurrent networks, therefore we unfold the time
domain and form a 2D grid, shown in Fig.3 (a). Each of the
node represents a Node Function (NF) which is defined as

(V l,t
m ,X l+1,t) = NF (V l,t−1

m ,X l,t) (10)

where l is the layer index, and t is the current time step, V l,t
m

represents the membrane potential of neurons (hidden state),
and X l,t denotes the activations.

Since recurrent networks follow the same graph as Fig.3
(a). They are trained with the same back propagation rule
above NF level. The difference is inside the node. Following
the definition in Section II-B, we can detail the LIAF node
function in Fig. 3 (b). For LIAF, the relationship between U l,t

m

and V l,t
m can be described as a τ(·) function

τ(U l,t
m ) = α · S(U l,t

m − Vth) · Vreset

+α · [1− S(U l,t
m − Vth)] ·U l,t

m + β
(11)

where S(x) is the Heaviside step function. Following the
BPTT algorithm, the derivative chain is applied, when per-
forming the partial derivative of V l,t

m over U l,t
m , we have

∂τ(U l,t
m )

U l,t
m

= α · δ(U l,t
m − Vth) · (Vreset −U l,t

m )

+α · (1− S(U l,t
m − Vth))

(12)

where in δ(x) is the Dirac Delta function, which is not friendly
with the backpropagation, therefore we introduce a rectangle
window approximation for the δ(x) function, defined as

δ̄(x) =

{
1, when |x| < µ

0, otherwise
(13)

where µ is a small positive number. The partial derivatives of
other operations in the LIAF-Net are easy to obtain and can be
easily handled by the deep learning frameworks automatically.

IV. LIAF AS A LIGHTWEIGHT SPATIOTEMPORAL MODEL

In this section, the proposed LIAF is compared with several
temporal/spatiotemporal models including RNN, GRU, LSTM,
ConvLSTM, Conv3D, which shows the reason why LIAF can
be viewed as a lightweight spatiotemporal model. The formal
representation of these models are listed in reference [17] [18]
[39], and depicted in Fig.4. Formal definitions are provided
in Appendix A. Here the hidden state (cells) c in each sub
figure in Fig.4 is a vector with size L or a tensor with size
H · W · L. FC refers to a fully connected operator, named
y = σ(Wx + b), where the activation function σ and bias
b are optional. gFC is used for gate calculation, defined as
g = σ([Wx,Wh] · [x,h]T + b), which indicates that all the
cells are participating the calculation of a gate g.

The traditional RNN model (shown in Fig.4 (a)) contains a
recurrent FC for hidden state information exchange, which is
not applied in LIAF/LIF. LSTM and GRU shown Fig.4 (b) (c)
are widely applied recurrent models. These models consist of
gating units which are controlled by the input of current step
Xt and the output of previous time step ht−1. In LSTM, the
gating functions are used for input, output and hidden state
update which requires introducing three gFCs. In GRU the
input and hidden state update share one gate calculated by a
gFC.

For DenseLIAF/DenseLIF, the fire, reset, and leak can be
viewed as ‘gates’, which control how much previous state
information can be kept in the current state. Different from
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Fig. 3. The spatiotemporal structure of LIAF-Net. LIAF-Net shares the same node-level 2D connections with RNN depicted in (a), whereas differs inside a
node shown in (b). When training with Back Propagation Through Time (BPTT), LIAF follows similar back propagation chain as RNN.

LSTM and GRU, the gate is only controlled by the cell neuron
itself, and only hidden state information is considered. Neither
the input gate nor the output gate is used in LIAF, therefore
no gFC is used for the overall network. Since gFC contains a
large number of weights, it requires huge computational power
for storage and calculation (multiplication-addition operation).
Reducing gFC will lead to the reduction of implementation
cost to a large extend.

For spatiotemporal models, such as ConvLSTM, the
gFCs are changed to convolutional operations, denoted as
gConv(x,h) = σ(Conv2D(Wx,x)+Conv2D(Wh,h)+b).
Similar saving from ConvLSTM to ConvLIAF on parameter
and computation are still sustainable due to the saving of
these convolutions. In addition, for ConvLSTM, an additional
convolution for input ht−1 is required which consumes more
computation and storage. For Conv3D, the convolution oper-
ations are performed in a 3D block, which requires several
times of mulplication-addition calculation compared to LIAF
which only requires Conv2D.

In conclusion, LIAF can be viewed as a lightweight spa-
tiotemporal model. In addition, for a network, LIAF can be
used together with these classical models to reach a balance
of performance and complexity.

V. EFFICIENCY EVALUATION

We summarized the computational overhead and number
of parameters of LIF, LIAF, RNN, GRU [40] , and LSTM
[17], according to equations (2)-(8), and equations defined in
Appendix A. The result is shown in Table I. The calculation
is based on a single time step since there is no difference
among all time steps. The batch size is set to one. We denote
the size of the input vector and cell vector as K and L.
Note that the activation functions can be realized by look-up
tables. The computational overhead of look-up table, selection
and comparison operation is much lower than multiplication
and addition, so we do not list them in Table I. It can
be concluded that LIAF consumes the same addition and

weights to LIF, while due to the presence of analog signals,
the multiplications of LIAF are slightly higher than that of
LIF. There are two reasons as follows. Firstly, since the data
received by LIF is binary, the matrix multiplication of equation
(2) can be replaced by a selection operation. Secondly, for LIF,
the multiplication of reset membrane potential in equation (5)
can also be reduced to a selection operation. The event-driven
property of LIF is not counted in since LIAF can also benefit
from similar event-driven when using appropriate activation
function (such as ReLU with a bias), and the activation sparsity
is highly data-dependent. Importantly, both LIAF and LIF
consume far less computational overhead and the number of
parameters than GRU and LSTM.

In Table II, we calculated the computational overhead and
the number of parameters of spatiotemporal layers. We fix the
batch size to one. The hidden state and output have the same
tensor size (T,H,W,L), where T represents the temporal
dimension, H and W denote the height and width of the
feature map respectively, and L represents output channel
size. (I, J) denotes the convolution kernel size of Conv2D,
ConvLIF, ConvLIAF, and ConvLSTM, (U, I, J) denotes the
convolution kernel size of Conv3D, and K denotes input
channels size. To facilitate the comparison of formulas, in
Table II, we use R and Q to represent T · H · W · L and
I ·J ·K. As shown in Table II, the computational overhead of
ConvLIAF is not significantly different from that of Conv2D
(time-distributed). ConvLIAF shares the same additions and
parameters with ConvLIF. Compared with Conv3D and Con-
vLSTM, ConvLIAF can save a mass of calculation quantity
and storage overhead.

Note that in our following experiments, we may split
ConvLIAF into Conv2D and DirectLIAF, and insert additional
layers (such as normalization) between them. In such case the
overhead of ConvLIAF is used to evaluate the combination
of Conv2D layer and DirectLIAF layer. Similarly, metrics for
ConvLIF are used for evaluating Conv2D + DirectLIF.

In short, we concluded that LIAF has advantages in terms



6 UNDER REVIEW: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
FORMULAS FOR CALCULATING THE COMPUTATIONAL COMPLEXITY AND

THE WEIGHTS OF DIFFERENT TEMPORAL LAYERS.

layer MULs ADDs Weights
DenseLIAF L · (K + 1) L · (K + 2) L · (K + 1)
DenseLIF L L · (K + 2) L · (K + 1)
RNN L · (L+K) L · (L+K) L · (L+K + 1)
GRU L ·3 ·(L+K+1) L·(3·(L+K)+1) L ·3 ·(L+K+1)
LSTM L·(4·(L+K)+3) L·(4·(L+K)+1) L ·4 ·(L+K+1)
Note: MULs, ADDs, and Weights refer to the number of multiplication
operations, addition operations and weights (including bias), respectively.

TABLE II
FORMULAS FOR CALCULATING THE COMPUTATIONAL COMPLEXITY AND

THE WEIGHTS OF DIFFERENT SPATIOTEMPORAL LAYERS.

layer MULs ADDs Weights
ConvLIAF (Q+ 1) ·R (Q+ 2) ·R (Q+ 1) · L
ConvLIF R (Q+ 2) ·R (Q+ 1) · L
Conv2D (TD) Q ·R Q ·R (Q+ 1) · L
Conv3D U ·Q ·R U ·Q ·R (U ·Q+ 1) · L
ConvLSTM (4 · (Q+ I ·J ·

L) + 3) ·R
(4 · (Q+ I ·J ·
L) + 1) ·R

(Q + I · J · L +
1) · 4 · L

Note: TD refers to the time-distributed operation, i.e. duplicate over time.

of computational complexity and storage capacity. We will
provide numerical results in the subsequent experiments to
more intuitively reflect the efficiency advantages of LIAF.

In another aspect, the communication overhead is an im-
portant factor for building energy efficient neuromorphic im-
plementations. In these devices, the activations are transmitted
via Network on Chip using packets. Take TrueNorth [41] as a
reference implementation, wherein each spike is transmitted by
a 32-bit packet. If an 8-bit analog value is appended, then the
additional bandwidth is 20%. A similar strategy is adopted in
Tianjic chip [15], wherein each packet can transmit either 8-bit
analog value or spike. For LSTM, although the size of output
activations is the same, it requires much more communication
or memory access resources on internal components, which
may lead to much higher overhead when mapping to the
neuromorphic devices.

VI. PERFORMANCE EVALUATION

In this section, we compare the performance and compu-
tational cost of LIAF-Net with traditional networks. Firstly,
the temporal processing capability of LIAF-Net is evaluated
and compared with candidate networks through the Question
Answering (QA) tasks. Then we evaluate the spatiotemporal
classification accuracy among networks by DVS datasets.

A. Experiment: LIAF-Net on bAbI QA tasks

This evaluation measures the performance disparity among
the temporal models on simple Natural Language Processing
(NLP) tasks. We adopt bAbI dataset [42] which is a QA
dataset, containing 20 tasks. Each task contains a group of
QAs. In each QA there are several statements and questions.
A temporal network is required to analyze the statements and
memorize the key information (such as a supporting fact, or a
relative position relationship), and then answers the question
by yes/no or by a word from the statement. In this work,

we introduced a network shown in Fig.5. For the temporal
network, one of DenseLIF/DenseLIAF/GRU/LSTM/RNN is
applied. For DenseLIAF, NTR mode is applied with no
activation function (expect for QA8 where RELU activation
is applied for easy convergence), for GRU and LSTM, the
selected activations are shown in Appendix A. The Statements
and Questions are firstly encoded into vectors, then processed
by the network. A vocabulary is generated from all the vectors,
and the results are denoted by a one-hot coding on the dictio-
nary of the vocabulary. Embedding hidden size (HS) of 50 and
Statement/Query HS of 100 is configured. In this experiment,
all the temporal layers share the same input/output and training
parameters. We adopt Adam optimizer with categorical cross-
entropy as the loss function. For the Equivalent Condition (EC)
case, we adopt a learning rate of 0.001 and trained for 60
epochs for all networks. The results are listed in Table III.

We evaluated the average scores of all tasks with the tempo-
ral models. It shows that LSTM and GRU based network reach
similar performance on accuracy. LIAF (EC) reaches slightly
weak performance (-3.3%) to LSTM/GRU and -0.5% to RNN.
In addition, LIAF still obtains an obvious performance gain to
LIF (3.9%) with the same number of weight parameters. Note
that RNN contains an additional internal FC which resulting
in much higher storage and computation than LIAF.

It shows in Table III that LIAF performs weaker than
LSTM especially in task QA4 and QA8, which motivates
us to find out the reason. Further experiments reveal that
if we train LIAF with more epochs and lower learning rate
(0.0005), it achieves dramatic performance gain, shown in
LIAF (FC). With finetuning, LIF achieves higher accuracy on
QA4/7/14 shown in LIF (FC). We also found that under this
configuration, LSTM and GRU obtain limited performance
gain. In conclusion, after finetuning the configuration, LIAF
obtains comparable performance to LSTM and GRU, and still
outperforms LIF for 4.6%.

We further investigated the characteristic of these tasks,
the results revealed that for limited support facts and simple
reasoning logic, LIAF / LIF (EC case) may perform better
than LSTM / GRU, which happens in QA11 and QA12.
On the contrary, for complicated relationships and multi-hop
reasoning, LSTM / GRU may perform better than LIAF / LIF
(EC case) revealed in QA8 and QA14, which may be caused
by the absence of gating in LIAF / LIF.

We revealed that LIAF-Net can be treated as a lightweight
temporal network model, therefore we also measured the
number of parameters and computational operations in these
networks. The results are shown in Table IV which reveals
that with the same number of hidden units (size = 100), a
LIAF layer consumes 63.5% / 90.8% / 87.7% fewer weight
parameters over an RNN / LSTM / GRU layer respectively.
In addition, LIAF also has lower computational overhead. A
LIAF layer has 91.5% less computational overhead than an
LSTM layer and 88.8% than a GRU layer.

B. Experiment: MNIST-DVS and CIFAR10-DVS

1) Datasets and preparation: For spatiotemporal tasks,
two neuromorphic datasets, MNIST-DVS [43] and CIFAR10-
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Fig. 4. Comparison of LIAF with other temporal and spatiotemporal models. The nodes for hidden state updates are denoted as green nodes, the output nodes
are shown in yellow, and the input nodes are colored in blue. The fully connected operations and convolutional opertions for calculating the gates are drawn
in orange color. For simplicity, the time step delays for all variables are not drawn. It shows that LIAF and LIF update the hidden state by neuronal dynamics
(membrane potential accumulation, leak and action potential generation, potential resetting), without the need of gating. Therefore, several gating (gFC)
operators are saved compared to LSTM and GRU, and several convolutional gating operators (gConv) are saved compared to ConvLSTM. Each gFC/gConv
requires a large amount of computation and weight storage. In addition, RNN requires additional recurrent weights that do not exist in DenseLIF/DenseLIAF.
The main computational and storage overhead in ConvLIAF is the 2D convolution which is much resource-saving than Conv3D. Therefore DenseLIAF and
DenseLIF can be viewed as lightweight temporal models compared to RNN, LSTM, and GRU. ConvLIAF and ConvLIF are lightweight spatiotemporal models
compared to ConvLSTM and Conv3D.

DVS [44], are used to verify the performance of LIAF-
Net. Compared to image-based datasets, these event-based
datasets contain abundant temporal information. The captured
event-based data is typically spike train, where each spike is
triggered by a light intensity change at each pixel. Spike is
represented by a quad such as (x, y, ts, pol), where x and y
are the spatial coordinates of the spike, ts is the time-stamp
of the event (unit of 1µs), and pol represents the type of light
intensity change (lighten to 1 or darken to -1).

For data pre-processing, we generated a single event-frame
by accumulating the spike train within every 5ms. Specifically,

we set up different channels for diverse light intensity changes,
and adjacent T event frames in chronological order are used,
then a sample is derived in size (T , 128, 128, 2). In this
case, a larger T indicates that the sample has more temporal
information. We set T = 20 for a MNIST-DVS sample and
T = 10 for a CIFAR10-DVS sample. For CIFAR10-DVS
we used the full DVS 128×128 pixel resolution, while for
MNIST-DVS we cropped the event-frame from 128×128 to
the size of 40×40 according to the position of the handwritten
digits. MNIST-DVS has three scales (scale4, scale8, scale16),
and we chose scale8 by default.
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TABLE III
PERFORMANCE COMPARISON OF TEMPORAL LAYERS ON BABI QA TASKS.

Task RNN EC LSTM EC GRU EC LIF EC (FC) LIAF EC (FC)
QA1 - Single Supporting Fact 47.8% 46.8% 49.0% 52.7% 51.8%
QA2 - Two Supporting Facts 27.5% 33.6% 29.4% 27.5% 30.7%
QA3 - Three Supporting Facts 22.4% 22.8% 27.4% 20.2% 20.8%
QA4 - Two Arg. Relations 71.3% 70.5% 52.9% 31.1% (72.2%) 42.8% (73.5%)
QA5 - Three Arg. Relations 39.3% 73.5% 73.0% 32.2% 68.5%
QA6 - yes/No Questions 49.5% 50.8% 51.2% 52.6% 50.2%
QA7 - Counting 79.3% 79.0% 76.4% 48.8% (72.8%) 75.2%
QA8 - Lists/Sets 53.8% 75.7% 73.4% 33.6% 41.3% (73.3%)
QA9 - Simple Negation 61.0% 63.8% 62.4% 61.2% 56.2% (60.1%)
QA10 - Indefinite Knowledge 45.1% 46.8% 46.7% 46.4% 48.2%
QA11 - Basic Coreference 69.7% 65.5% 67.1% 75.1% 75.1%
QA12 - Conjunction 64.8% 64.5% 62.7% 77.2% 77.2%
QA13 - Compound Coreference 93.6% 92.0% 91.4% 94.4% 94.4%
QA14 - Time Reasoning 27.4% 38.4% 39.7% 29.1%(34.1%) 29.1%
QA15 - Basic Deduction 45.3% 24.2% 45.9% 25.7% 23.3% (38.4%)
QA16 - Basic Induction 44.9% 46.7% 44.4% 45.4% 45.3%
QA17 - Positional Reasoning 48.0% 48.0% 48.8% 49.6% 51.6%
QA18 - Size Reasoning 90.4% 90.3% 91.2% 90.6% 90.1%
QA19 - Path Finding 10.2% 9.6% 8.8% 8.6% 8.1%
QA20 - Agent’s Motivations 93.4% 97.1% 96.7% 92.6% 93.5%
Average performance over all tasks 54.2% 57.0% 56.9% 49.7% (53.2%) 53.7% (57.8%)
Note: EC means Equivalent Learning Condition (all networks are configured with lr=0.001, and train in 60 epochs), FC indicates Finetune Learning
Condition (lr = 0.0005, 200 epochs for QA8, lr = 0.0005, 500 epochs for LIAF-QA4/9/15 LIF-QA4/7/14, other tasks are the same with EC).
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Fig. 5. Proposed evaluation network architecture for the bAbI QA tasks. In
order to clearly compare the capability of these temporal layers, we keep the
network rather simple. Only one single temporal layer selected from LSTM,
GRU, LIF, LIAF is applied for processing the temporal information.

TABLE IV
EFFICIENCY AND COST COMPARISON FOR THE CANDIDATE TEMPORAL

MODELS ON BABI DATASET.

Temporal
layer

ADDs
(layer)

MULs
(layer)

Weights
(layer)

Weights
(network)

DenseLIAF 3.4× 105 3.3× 105 5.5× 103 1.7× 104

DenseLIF 3.4× 105 6.6× 103 5.5× 103 1.7× 104

RNN 9.9× 105 9.9× 105 1.5× 104 3.6× 104

GRU 2.9× 106 3.0× 106 4.5× 104 9.7× 104

LSTM 3.9× 106 4.0× 106 6.0× 104 1.2× 105

2) Network structure: We proposed a flexible network
structure for these classification tasks. The proposed network
structures are VGG-like [45] illustrated in Fig.6, where the
letter N denotes that the LIAF Blocks are connected end to
end for N times and similarly the letter M represents that
the Dense Blocks are connected end to end for M times.
LIAF Block in Fig.6 has a sequential structure, consisting
of ConvLIAF, TD-layer-normalization, TD-activation (ReLU)
and TD-AvgPooling, where TD refers to the time-distributed
operation. Dense Block consists of a dropout layer and a
dense layer. In particular, the kernel size of layer ConvLIAF
is set to (3, 3), and the padding is always 1. Among LIAF
configurations, the one with TR mode activation and Channel-

TABLE V
PARAMETER SETTINGS FOR MNIST-DVS AND CIFAR10-DVS .

Task N M Block
name

Filters or
units

Parameter

MNIST-DVS

LIAF 32 Pooling (2, 2)
LIAF 64 Pooling (2, 2)

3 2 LIAF 128 Pooling (2, 2)
Dense 512 -
Dense 128 -

CIFAR10-DVS

LIAF 32 Pooling (2, 2)
LIAF 64 Pooling (2, 2)

5 1 LIAF 128 Pooling (2, 2)
LIAF 256 Pooling (2, 2)
LIAF 512 Pooling (4, 4)
Dense 512 -

Sharing is adopted, with the activation Act(x) = x. Vth,
Vreset, α and β are all trained by BPTT. The parameter
settings are listed in Table V. For LIF-SNN, the LIAF Block
is replaced by LIF Block consisting of sequentially connected
layers including TD-Conv2D, TD-layer-normalization, TD-
AvgPooling and DirectLIF.

Since Layer normalization [26] is very effective at stabi-
lizing the hidden state dynamics in recurrent networks, we
adopt it to accelerate the inference and training of the network
and prevent overfitting. It is noteworthy that the feature still
has temporal dimension after passing through the N LIAF
blocks. For integrating the temporal information, we designed
Sumlayer, which reduces the dimension of the activation
neuron shape from (T,H,W,L) to (H,W,L) by element-wise
addition of the activations over all time steps and divided by
T . Finally, the network ends with a softmax layer with 10
units for classification.

3) Training setup: We trained the network shown in Fig.6
and Table V on MNIST-DVS and CIFAR10-DVS datasets
respectively using the optimizer Adam and learning rate of
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Fig. 6. Illustration of network structure used for classification tasks. Networks for different tasks have different N and M. N denotes that N LIAF Blocks are
connected end to end. M means that M Dense Blocks are connected end to end. Both MNIST-DVS and CIFAR10-DVS experiments share the same network
structure which indicates the generality of the structure.

TABLE VI
COMPARISON WITH STATE-OF-THE-ART RESULTS ON MNIST-DVS AND

CIFAR10-DVS.

Proposals Methods MNIST-
DVS

CIFAR10-
DVS

Zhao et al. 2014 [11] Convolutional SNN 88.14% -
Stromatias et al. 2017
[46] Composite system 97.95% -

Lagorce et al., 2017
[47] HOTS - 27.10%

Shi et al., 2018 [48] Lightweight Statisti-
cal 78.08% 31.20%

Paulun et al.2018
[49] NeuCube 92.03% -

Cannici et al., 2018
[50]

Attention
Mechanisms - 44.10%

Sironi et al., 2018
[51] HATS 98.40% 52.40%

Wu et al., 2019 [32] - - 60.50%
This work LIF 97.51% 63.53%
This work LIAF 99.13% 70.40%

5e-5. Necessarily, we used a learning rate fine-tuning strategy,
which is to divide the learning rate by 5 when the loss of
validation has stopped improving for the latest 5 epochs.

4) Performance analysis: We tested the proposed networks
on corresponding test datasets occupying 20% of the entire
dataset and compare the results with existing state-of-the-art
methods summarized in Table VI. On one hand, we have
achieved extremely high accuracy on both the MNIST-DVS
and CIFAR10-DVS datasets, in special on the CIFAR10-DVS
dataset, we achieved the best accuracy, 70.4%, which is 9.9%
higher than the best result of the previous work. On the other
hand, by comparing the results of LIAF-Net and LIF-SNN,
we have demonstrated that LIAF-Net can better analyze event-
based data than LIF-SNN. It is shown in Fig. 7 that the curve
for LIAF-Net are smoother than the LIF-SNN and receives
less overfitting, which may be caused by the fact that the
differential function over continuous activation in LIAF is
smoother than the Heaviside step function for the threshold
firing in LIF.

5) Evaluating the efficiency of LIAF-Net with other spa-
tiotemporal networks: We further compared the performance

TABLE VII
PERFORMANCE AND RESOURCE CONSUMPTION COMPARISON AMONG

SPATIOTEMPORAL MODELS ON CIFAR10-DVS.

Network MULs ADDs Weights* Train
acc.

Test acc.

Conv2D 3.3× 109 3.8× 109 1.5× 106 97.8% 67.8%
Conv3D 9.5× 109 1.0× 1010 4.7× 106 99.8% 71.7%
ConvLSTM 4.2× 1010 4.3× 1010 1.8× 107 100% 70.8%
ConvLIAF 3.3× 109 3.8× 109 1.5× 106 98.4% 70.4%
ConvLIF 2.1× 108 3.8× 109 1.5× 106 97.5% 63.5%
Note*: LIF and LIAF contain additional trainable parameters including
Vreset, Vth, α, β, which are counted in weights.

and the costs of LIAF-Net with traditional spatiotemporal net-
works built by ConvLIAF, time-distributed Conv2D, Conv3D,
and ConvLSTM on the CIFAR10-DVS dataset. The network
structure is shown in Fig. 6 and parameter settings of all
networks are listed in Table V. The spatiotemporal layers
are compared on the basis that all models share the same
input and output. We set the kernel size of the Conv3D
to (3, 3, 3) similar to (3, 3) in Conv2D. All models are
trained with Adam optimizer and binary cross-entropy loss
function. The initial learning rate are slightly different (settings
for Conv2D, Conv3D, and ConvLSTM are 5e-4, 5e-5, 5e-5
respectively) for achieving better performance. For promoting
the convergence of ConvLSTM, the learning rate fine-tuning
strategy is adopted, in which the reduction factor is 0.2, but
the number of monitoring epochs is reduced from 5 to 2.

The result shown in Table VII indicates that LIAF-Net
receives the best performance/cost balance compared with
other spatiotemporal models. The accuracy and loss curves
of all models over 50 training epochs are illustrated in Fig.
7. We observe that although Conv3D and ConvLSTM based
networks have higher training accuracy than LIAF-Net, both
suffer severe overfitting, which may due to the redundancy
of weights. Besides, although Conv2D network and LIAF-
Net converge at a similar speed, the Conv2D based network
performance is still lower than LIAF-Net after 30 epochs,
which may be caused by the absent of temporal processing
capability in the Conv2D based network.

In another aspect, LIAF-Net can still achieve better perfor-
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Fig. 7. The comparison of LIAF-Net and LIF-SNN in terms of accuracy and loss for all the training epochs on the MNIST-DVS Dataset and CIFAR10-DVS
Dataset.

Fig. 8. The comparison of LIAF-Net and other traditional spatiotemporal networks in terms of accuracy (left) and loss (right) for all the training epochs on
the CIFAR10-DVS Dataset.

mance meanwhile saving storage and computational workload.
The results show in Table VII verify that LIAF-Net achieves
approximate performance with 68% and 92% fewer weight
parameters than Conv3D based network and ConvLSTM based
network respectively. Table VII also shows that the compu-
tational overhead of ConvLIAF is 64% and 92% less than
that of Conv3D and ConvLSTM, respectively under the same

activation tensor size.

C. Experiment: DVS128 gesture recognition

1) Dataset and preparation: DVS128 Gesture Dataset [53]
is directly recorded by DVS camera from real scene. This
dataset contains 1,342 instances of a set of 11 hand and arm
gestures under three different illumination conditions. The data
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Fig. 9. The event stream of a hand-clap gesture is shown in the time-width-height space, where green dots denote that polarity of an event is positive and blue
ones denote negative polarity. The camera only records the changing pixel so we can only recognize the edge of the moving objects. Four frames generated
by accumulating a period of events are shown above, which tells that a person is clapping his hands. [52]

sample is also event-based, and the event is represented as a
quad (ts, x, y, pol). It has a raw spatial pixel resolution of
128×128 and the 1/4 down-sampled resolution is applied, to
save the graphics memory. To use the network structure for
training, we generated event-frames with the size of (32, 32)
by accumulating the spike trains within every 25ms. Each
frame is then expanded into two channels according to whether
the illumination in each pixel is weakened or strengthened. A
sample of hand-clapping gesture is visualized in Fig. 9. Finally,
multiple adjacent event frames are stacked in a chronological
order to obtain a sample with the dimension (2, 32, 32, T ).
We chose T = 60 frames for the three networks we used for
comparison. After the pre-processing, the data is organized
with the form of (Batchsize, Channels, Width, Height, T ) =
(36, 2, 32, 32, 60). Notes that in DVS128 Gesture Dataset there
are two testing tasks including classification of 10 classes and
11 classes. We chose the latter one for the experiment.

2) Network structure and training setup: The network
structure used here is slightly different from the one in Fig. 6.
Here all layers in the network are built using LIAF model
while in Fig. 6 pooling layers and dense layers are still
classical artificial neuron models. LIAF-Net is mainly built
with ConvLIAF blocks and DenseLIAF blocks. A ConvLIAF
block contains layers including Conv2D, BatchNorm, acti-
vation, PoolingLIAF (optional). DenseLIAF block contains
layers including Fully connection, BatchNorm, and activation.
PoolingLIAF is formed by a pooling layer followed by a
DirectLIAF layer. The parameter N now denotes that the N
ConvLIAF Blocks are connected end to end, similarly, the
letter M represents that M DenseLIAF Blocks are connected

TABLE VIII
PARAMETER SETTINGS FOR THE DVS128 GESTURE RECOGNITION

EXPERIMENT.

Task N M Block
name

Output
filters or

units

Parameter

ConvLIAF 64 No pooling
ConvLIAF 128 PoolingLIAF (2, 2)

DVS- 3 2 ConvLIAF 128 PoolingLIAF (2, 2)
Gesture DenseLIAF 256 -

DenseLIAF 11 -

end to end. The network settings are listed in Table VIII.
There are also some parameters specific to LIAF, wherein

NTR and All-Sharing configurations are adopted. We set
Vth = 0.5 in equation (4), α = 0.3 and β = 0 in equation
(6). The scaled exponential linear unit (SELU) [54] is applied
as the activation function in DirectLIAF, which induces a
self-normalizing property. For LIF-SNN, all LIAF layers in
the network are replaced by LIF layers. For ConvLSTM
network, all LIAF layers are replaced by ConvLSTM layers.
All convolutional kernels in these networks are in the size of
3× 3.

We trained the three networks via Adam optimizer with a
learning rate of 1e-4 and the weight decay of 1e-4. Neces-
sarily, we used learning rate fine-tuning strategies for each
experiment.

3) Performance analysis: We tested the proposed networks
on the corresponding test set which includes 288 instances
of arm and hand gestures. The test set accuracy result shows
that we have achieved a new record on DVS gesture using
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TABLE IX
COMPARISON WITH THE ACCURACY RESULTS AND RESOURCE

CONSUMPTION ON THE DVS128 GESTURE DATASET.

Network Test acc. Neurons ADDs MULs Weights
ConvLIAF 97.56% 2.3× 105 6.8× 109 6.8× 109 2.2× 105

ConvLIF 94.10% 2.3× 105 6.8× 109 1.3× 107 2.2× 105

ConvLSTM 94.10% 2.3× 105 8.1×1010 8.1×1010 2.2× 106

TABLE X
TOP1 ACCURAY OF SOLUTIONS FOR THE DVS128 GESTURE DATASET

(11 CLASSES).

Proposals Methods Act. Acc.
Massa, et al., 2020

[55]
SNN converted from

CNN on Loihi
spike 89.64%

Amir et al., 2017
[56]

CNN on TrueNorth spike 94.59%

Kugele et al., 2020
[57]

SNN Converted form
ANN

spike 95.56%

This work SNN (ConvLIF) spike 94.10%
Khoei et al.,

SpArNet 2020 [58]
Converted CNN analog 95.1%

Wang et.al. 2019
[59]

PointNet++ analog 95.32%

Bi et al., 2019 [60] Residual graph CNN +
Res. 3D

analog 97.2%

This work LIAF-Net (ConvLIAF) analog 97.56%

LIAF-Net with an accuracy of 97.56%, which is 3.46% higher
than the result of the LIF-SNN and also 3.46% higher than
the result of ConvLSTM based network. We also compared
our solution with related works and the top 1 accuracy of
all solutions is listed in Table X. It also shows that analog
networks achieve better accuracy than spiking networks on
average, and our proposal achieves the best accuracy among
them, which reveals the spatiotemporal processing capability
of LIAF.

In addition, the efficiency advantage of LIAF-Net in terms
of less convolutional parameters and computational overhead
required than ConvLSTM based network is illustrated in Table
IX. We only list the computational overhead and weights
of all convolutional layers in the network to more purely
reflect the difference in efficiency between LIAF and LSTM,
which reveals that ConvLIAF saves 91.6% of the computation
overhead and 90.0% of the storage compared to ConvLSTM.

VII. DISCUSSIONS

A. Rethinking of the bio-plausibility of LIAF

There is also evidence on the existence of analog action
potentials (spikes) in vivo [61], where a multi-valued calcium-
mediated dendritic action potentials is discovered in the L2/3
pyramidal neurons of the human cerebral cortex. The ampli-
tude varies with different stimuli levels. It is possible to model
such dendritic behavior using a LIAF-like model whose action
potentials are analog. Such discovery also indicates the bio-
plausibility of LIAF.

B. Artificial neuron models using analog value

Beyond the neuron models in ANNs where analog value
is the basic format for the activations, there are more spiking
neuron models using analog value. In several Spiking Neural

Network models, analog values are derived from the traces
of the spike trains [62] [63] which also reveals biological
consistency [64]. In another aspect, for modeling a compli-
cated dendrite, multi-compartment model [64] is necessary,
where the current is transmitted from one compartment to
another through a conductance. The current between these
compartments is an analog value other than spike. In addition,
it is admissible to accept analog-valued batch normalization or
layer normalization operations in a bio-plausible neural net-
work since it can be viewed as a type of intrinsic homeostasis
[65] of a neuron cell. To reduce the computational overhead,
SpArNet [58] is proposed where network layers communicate
with analog spikes. Only above threshold activations are
transmitted for dramatically reducing the synaptic operations.
Different from LIAF-Net which is trained on spatiotemporal
data directly, the network is converted from pretrained CNN.

C. From LIAF to SNN
It is possible to build pure SNN through LIAF by in-

troducing rate or temporal coding. The model in previous
sections assume that the neuron dynamic of LIAF is based
on a basic unit called ‘time step’, and each time step has a
single analog value on either dendrite (input) or axon (output).
If we introduce sub temporal intervals for a time step, more
coding schemes can be realized. Then an analog value can be
represented by a train of spikes within the time step, wherein
the firing rate or the firing time represents the analog value.
Although many sub-intervals are required for approximating
an accurate analog value, limited sub-intervals can represent
a quantized analog activation. It is interesting that LIAF can
also be used as an intermediate representation for converting
rate and temporal coding spike trains from one to another.

VIII. CONCLUSION

In this work, we proposed a Leaky Integrate and Analog
Fire (LIAF) neuron model and several LIAF-Nets built on
it for efficient spatiotemporal processing. LIAF-Net makes
it easier for the back propagation to be applied and main-
tains the spatiotemporal processing capability through the LIF
model dynamics. It also benefits from ANN layers, training
techniques, and network building frameworks. By introducing
LIAF, SNNs and ANNs can communicate with each other
more easily without coding format conversion. Therefore
LIAF-Net provides a framework that can be used to friendly
build large scale networks. In the performance evaluation
section, it is demonstrated that LIAF-Net can be applied for
solving various real temporal and spatiotemporal tasks with
higher accuracy while consumes lower computational and
storage costs compared with existing traditional networks.

A common viewpoint is that current ANN is the 2nd
generation neural network, and SNN is the 3rd generation [30]
because of its event-driven advantages and bio-plausibility.
However, SNN encounters training difficulty with back propa-
gation (BP) algorithm due to the spiking format, which makes
the evolution not easy. Since LIAF introduces a more flexible
activation function to LIF, and LIF is a special case of LIAF,
LIAF can be viewed as a 3.5th generation evolving technology
for LIF SNN upgrading.
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IX. APPENDIX

A. Formal definitions for the referenced models

1) RNN: We use Elman RNN [39] as a reference, following

ct = σc(Wcxt + Ucct−1 + bc);

ht = σh(Whct + bh).
(14)

where xt is the input vector; ct is the hidden state vector; ht
is the output vector; Wc,Wh, Uc, bc, bh are trainable parame-
ters; σc and σh are activation functions, we use σc = tanh by
default.

Note that we exclude the second equation from our RNN
model since it can be realized by a fully connected layer
outside, and the remaining part is more similar to LIF/LIAF.

2) LSTM and ConvLSTM:

ft = σg(Wf ∗ xt + Uf ∗ ht−1 + bf );

it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi);

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo);

c̃t = σc(Wc ∗ xt + Uc ∗ ht−1 + bc);

ct = ft ◦ ct−1 + it ◦ c̃t;
ht = ot ◦ σh(ct).

(15)

where xt is the input vector; ft is the forget gate; it
is the input/update gate; ot is the output gate; ht is the
output vector; c̃t is the cell input vector; ct is the hidden
state vector; Wf ,Wi,Wo,Wc, Uf , Ui, Uo, Uc, bf , bi, bo, bc are
trainable parameters.
σg , σc and σh are configurable activation functions, and we

use sigmoid, tanh, tanh by default.
where the operator ◦ denotes the Hadamard product

(element-wise product). Operator ∗ denotes convolution for
ConvLSTM [66], and denotes matrix multiplication for LSTM
[17].

3) GRU [18]:

zt = σg(Wzxt + Uzht−1 + bz);

rt = σg(Wrxt + Urht−1 + br);

h̃t = σh(Whxt + Uh(rt ◦ ht−1) + bh);

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t.

(16)

where xt is the input vector; ht is the output vector; ĥt is
the candidate activation vector; zt is the update gate vector;
rt is the reset gate vector; Wz,Wr,Wh, Uz, Ur, Uh, bz, br, bh
are trainable parameters; σg , σh are activations, and we use
sigmoid and tanh by default.
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