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AKVSR: Audio Knowledge Empowered Visual
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Abstract—Visual Speech Recognition (VSR) is the task of
predicting spoken words from silent lip movements. VSR is
regarded as a challenging task because of the insufficient in-
formation on lip movements. In this paper, we propose an Audio
Knowledge empowered Visual Speech Recognition framework
(AKVSR) to complement the insufficient speech information of
visual modality by using audio modality. Different from the
previous methods, the proposed AKVSR 1) utilizes rich audio
knowledge encoded by a large-scale pretrained audio model, 2)
saves the linguistic information of audio knowledge in compact
audio memory by discarding the non-linguistic information from
the audio through quantization, and 3) includes Audio Bridging
Module which can find the best-matched audio features from
the compact audio memory, which makes our training possible
without audio inputs, once after the compact audio memory is
composed. We validate the effectiveness of the proposed method
through extensive experiments, and achieve new state-of-the-art
performances on the widely-used LRS3 dataset.

Index Terms—Audio Knowledge via memory, Audio Knowl-
edge Quantization, Audio Empowered Visual Speech Recognition,
Audio Pretrained Model, VSR

I. INTRODUCTION

V ISUAL Speech Recognition (VSR) is a task of predicting
speech content from lip movement without sound. VSR

has received a lot of attention due to its practical applications.
It can be used as a subtitling tool for silent movies, an
auxiliary tool for speech recognition in noisy environments,
and a conversation tool for the hearing impaired.

VSR has significantly improved in its performance along
with the development of Deep Learning [1]–[9]. Many efforts
have been made to improve the network architecture of the
VSR systems. A visual encoder based on the combination of a
3D convolution layer and a 2D Convolutional Neural Network
(CNN) is suggested by [10] to encode spatio-temporal visual
features from lip movements. To capture the context informa-
tion from the encoded visual features, prior works [10]–[12]
adopted Recurrent Neural Network (RNN) [13] after the visual
encoder. Recently, inspired by the success of the Transformer
[2] in Natural Language Processing (NLP), the VSR model
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augmented with the Transformer achieved significant speech
recognition performances [14]–[17]. Unlike the RNN, the self-
attention mechanism of the Transformer enables it to capture
dependencies between any two positions in the lip sequence,
facilitating a more comprehensive understanding of linguistic
content from lip movement. Despite the development of VSR
architectures, VSR is still regarded as a challenging task
due to the characteristics of visual speech. Different from
audio speech, visual speech inherently contains insufficient
information to fully represent speech content, as speech is not
only produced with the parts that are visible (i.e., lips) but
also with diverse internal human organs [18]. Hence, another
research stream focuses on complementing insufficient visual
information by augmenting the VSR model with additional
information.

To complement the insufficient visual information, several
prior works proposed to provide audio knowledge into the
VSR model. Knowledge Distillation (KD) [19] is one of the
most popular schemes for transferring superior knowledge of
a teacher model to a student model. [20]–[25] tried to transfer
the audio knowledge of the teacher model into the visual
student model. These approaches supervised the student model
to follow the soft-label or audio features generated from the
teacher model. However, because of the differences in inherent
properties between audio and visual modalities called het-
erogeneity gap [26]–[28], some knowledge can be discarded
during knowledge distillation [21]. To bypass the heterogeneity
gap, [29]–[31] proposed audio-visual multimodal bridging
frameworks based on a memory network [32]. They built a
visual-to-audio mapping function using a visual key memory
and an audio value memory. Through the learned mapping
function, the VSR model can utilize the saved audio knowl-
edge. All of the aforementioned methods showed that the VSR
systems can better model speech by complementing visual
information with audio knowledge. Nevertheless these suc-
cesses, the previous methods utilizing audio [20]–[25], [29]–
[31] do not focus only on transferring linguistic information of
audio. For example, prior works [20]–[25] utilized Knowledge
Distillation (KD) to make the visual feature to be close to the
audio feature without considering the characteristics of audio.
An aim of the other works based on memory [29]–[31] also
save audio features and reconstruct audio features using visual
features without focusing on linguistic information. However,
the audio contains not only linguistic information but also
contains diverse information such as speaker characteristics,
background noises, etc. If we do not consider these diverse
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factors of audio when using it for VSR training, the comple-
mentary effects of audio can be degraded.

Recently, Large-scale pretrained models from raw audio
data such as wav2vec2.0 [33] and Hidden-Unit BERT (Hu-
BERT) [34] achieved significant performance improvement in
Audio-based Automatic Speech Recognition (ASR) [35]–[39].
Especially, HuBERT which is pretrained by masked prediction
like BERT [40], [41] to capture context information from
unmasked audio features achieved state-of-the-art performance
in ASR after finetuned on paired audio-text dataset. Motivated
by the recent success of 1) complementing visual modality
with audio modality through audio memory in VSR and 2)
self-supervised pretraining in ASR, we try to empower VSR
models with audio knowledge extracted from a pretrained
model.

In this paper, we propose a novel Audio Knowledge em-
powered Visual Speech Recognition framework (AKVSR),
where the audio knowledge of a large-scale audio pretrained
model is extracted with compact representation discarding
non-linguistic factors like speaker and noise, and utilized to
empower the VSR model. Different from previous approaches
complementing visual modality with audio modality [20]–
[25], [29]–[31], the proposed method is the first work to
adopt the large-scale pretrained audio model in VSR and
transfer the linguistic information of audio by considering the
properties of audio modality. We would like to highlight that
directly utilizing the large-scale pretrained audio model for
VSR without considering the characteristics lying in audio
such as speaker, and noise may reduce the beneficial effects of
using the large-scale pretrained model in VSR. Therefore, we
complement the insufficient visual information by using only
linguistic information of audio except for other characteristics
of audio (i.e., speaker characteristics and noise). To achieve
this, the audio knowledge of pretrained HuBERT is vector
quantized [42]–[44] with a fixed size of clusters which are
learned to contain only linguistic information through ASR.R.
Therefore, the most representative knowledge in predicting
speech can be extracted. The extracted audio knowledge of the
pretrained audio model composes the knowledge in compact
audio memory, which will be incorporated in VSR models. To
employ the audio knowledge in training VSR models without
input audio, we build an Audio Bridging Module (ABM).
ABM is for finding the best-matched audio knowledge with
input visual representation from the memory through cross-
modal attention. Then, the best-matched audio knowledge
is added with encoded visual features to empower speech
representations.

Our proposed method has three differences compared to
the existing methods based on memory networks [29]–[31].
1) We utilize rich audio knowledge encoded by a large-scale
pretrained audio model and transform the audio knowledge
into a compact representation to store only the linguistic
information (e.g., phoneme content). 2) The proposed method
does not require additional audio input and audio model to
supplement insufficient visual representation due to the exis-
tence of the ABM when we train the VSR model in contrast
to the existing VSR methods. 3) The compact audio memory
can be utilized to furnish audio information to any VSR model

as the representative knowledge needed for speech prediction,
such as phoneme information, does not vary between datasets
in speech recognition tasks.

In summary, our key contributions are as follows:
• We introduce a novel Audio Knowledge empowered

Visual Speech Recognition (AKVSR) framework. To the
best of our knowledge, this is the first work to refine non-
linguistic factors of audio and transfer the knowledge of
a large-scale pretrained audio model into the VSR model.

• We do not need an additional audio model when we train
the VSR model utilizing audio knowledge.

• We validate through ASR that the representative knowl-
edge of predicting speech is stored in compact audio
memory. Moreover, we verify that the compact audio
memory can be adapted to any VSR model.

• The proposed AKVSR outperforms the current state-of-
the-art VSR model on the most popular sentence-level
LRS3 dataset.

II. RELATED WORKS

A. Visual Speech Recognition

With the great development of deep learning, many research
contributions have been made to VSR, especially in terms of
architecture and data. Chung et al. [45] proposed an English
word-level VSR data, LRW, and proposed a VGG-based VSR
model. Stafylakis et al. [10] improved the architecture of the
VSR model by using ResNet-34 [46] with one 3D convolution
layer and Bi-LSTM. Some works [11], [47] proposed an end-
to-end Audio-Visual Speech Recognition (AVSR) model, and
Petridis et al. [11] set a strong baseline in word-level VSR.
Some works [48], [49] tried to capture the lip movements
in detail by using two-stream networks which utilize both
RGB frames and optical flows. Zhao et al. [12] introduced
mutual information maximization-based method to enhance
the relations of the features with the speech content. Zhang
et al. [50] proved that using face region instead of using
lip region only, is beneficial to VSR. Martinez et al. [51]
improved the temporal encoding of the back-end by proposing
Multi-Scale Temporal Convolutional Network (MS-TCN). Ma
et al. [52] proposed a distillation-based method of [53] in
VSR. They repeatedly trained new models through born-
again distillation, where the trained model becomes the new
teacher. With the distillation, the VSR model can be lightened
without loss of performance. Kim et al. [54] explored speaker
dependency of pretrained VSR models and proposed a speaker
adaptation method. For the sentence-level VSR, Assael et al.
[55] proposed an end-to-end VSR framework using Connec-
tionist Temporal Classification (CTC) [56]. Chung et al. [57]
improved it to unconstrained sentence-level VSR by proposing
LRS2 dataset and sequence-to-sequence architecture [3]. Re-
cently, Transformer-based [2] architectures became the basics
for visual speech modeling as they achieved significant VSR
performances [14]–[16], [58], [59]. The transformer-based
encoder-decoder structure [2] that utilizes attention mecha-
nisms enables the handling of input and output sequences
with varying lengths. This adaptable characteristic empowers
the model to accurately transcribe and generate variable-length
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outputs in the domain of Visual Speech Recognition (VSR).
The proposed method also exploits this useful characteristic
to effectively predict different output lengths regardless of the
input lengths.

In this paper, we try to improve VSR systems by com-
plementing the limited information of lip movements by
proposing a compact audio memory, instead of improving the
network architecture. In the next section, we will delve into
the recent advancements in incorporating audio information to
enhance visual information in the field of VSR.

B. Complementing Visual using Audio in VSR

There are other efforts trying to augment the VSR model
with audio modal knowledge. Afouras et al. [22] proposed a
method of utilizing a large number of unlabeled audio data.
By distilling the predicted logits of a pretrained ASR model
into the VSR model, the VSR model can be learned from
large-scale unlabelled audio-visual data. On a similar line,
[20], [21] proposed knowledge distillation methods [19] by
using pretrained ASR models from large-scale audio corpus
datasets. By guiding the VSR model to follow the audio
features at different levels encoded from the ASR model,
the VSR model is expected to extract more discriminative
visual features. Another research stream is utilizing memory
network [32], [60] for saving audio knowledge, Kim et al.
[29], [61] proposed Visual-Audio Memory which can save
the audio features during training and read the saved audio
knowledge from the learned memory with just visual inputs
during inference. They improved the memory network to
be able to consider the one-to-many mapping of viseme-to-
phoneme by proposing multi-head memory architectures [30].

Existing methods for VSR utilize the audio modality to
complement the visual modality. In this perspective, the KD
[20]–[22] and memory-based [29], [31], [61] approaches im-
prove the VSR system through multi-modal learning. How-
ever, the audio modality contains many characteristics such
as speaker, noise, and linguistic content. Transferring audio
knowledge without considering non-linguistic factors such as
speaker and noise may reduce the complementing effect of the
VSR system. Different from the previous approaches, this is
the first work to utilize a large-scale pretrained audio model
and transfer the audio knowledge to a VSR system considering
the linguistic factor of audio modality. Namely, we aim to
transfer the audio knowledge focused on only the linguistic
factor.

C. Pretraining on Large-scale Databases

Pretraining neural networks (e.g., BERT [40]) on large-scale
datasets achieved significant performances when the pretrained
model is adapted to the downstream tasks, in diverse research
areas [62]–[69].

It has also achieved promising results in Automatic Speech
Recognition (ASR). Prior works, wav2vec2.0 [33] and Hu-
BERT [34], proposed to learn the speech representation from
raw audio in a self-supervised manner. Since the methods
do not need text annotations, they can be trained via large-
scale audio databases. In visual speech modeling, [70], [71]

proposed self-supervised pretraining methods using audio-
visual correspondences. They showed that finetuning the pre-
trained model on the VSR task can achieve better performance
than learning the VSR model from scratch. Recently, AV-
HuBERT [17] which proposed to pretrain the model with
masked predictions using audio-visual databases achieved
state-of-the-art performance and showed the powerful speech
representation power of the model. Moreover, Zhang et al.
[24] produces online target features by self-distillation during
masked prediction training and then reduces the training cost
of self-supervised speech representation learning.

The advantage of utilizing a large-scale pretrained audio
model for complementing a visual using audio is that we
can acquire improved quality audio knowledge. However,
audio knowledge generated by a large-scale pretrained audio
model contains a wide range of information, including speech
content, speaker characteristics, and noise, as stated in [44],
[72]. In this paper, our focus is to store only linguistic audio
knowledge in the compact audio memory. Moreover, we inject
the audio knowledge from the memory into the visual modality
through ABM when we train the VSR model without the audio
model.

III. METHODS

A. Overview

The Audio Knowledge empowered Visual Speech Recogni-
tion (AKVSR) framework is proposed to improve the comple-
mentary effect of audio information in visual speech recog-
nition. Unlike traditional methods, AKVSR obtains improved
audio knowledge by adopting a large-scale pretrained audio
model and extracts linguistic information by eliminating non-
linguistic factors, such as speaker information, through vector
quantization. We then store the obtained linguistic information
in compact audio memory. This allows us to provide linguistic
information of audio knowledge to the VSR model without
the additional audio model and inputs. The Audio Bridging
Module (ABM) is employed to find the most appropriate audio
knowledge from the compact audio memory matched with
the visual feature. Therefore, it is possible to complement
insufficient visual information by injecting the found linguistic
information of the audio knowledge into the VSR model. In
the following subsections, we will provide details of each
proposed method.

B. Compressing Linguistic Audio knowledge into Compact
Audio Memory

Recent studies [44], [73], [74] report that the vector quan-
tized self-supervised speech representation can disentangle
linguistic content from speaker characteristics and noise. They
show that the same linguistic content can be obtained at
least the content is the same, even if the speaker is changed.
The rationale behind this lies in the application of vector
quantization to speech features at each time step. This process
compels the resulting quantized speech feature to exhibit the
most discriminative representations of self-supervised speech
feature. Here, the most discriminative representation of self-
supervised speech feature indicates the linguistic information
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Fig. 1. Overview of building the compact audio memory to store linguistic information of large-scale pretrained audio model. The audio features are generated
by the large-scale pretrained audio model, and the features are transformed into discrete representations in compact audio memory. Sentence Prediction is
conducted so as to store linguistic information in the compact audio memory. Note that trained compact audio memory is used in the proposed AKVSR.

which is the phonetic information, which is described in [75].
Motivated by evidence of the prior works, we separately train
the K-means clustering and compact audio memory module,
and extract the linguistic information from the self-supervised
speech representation model through vector quantization.

To this end, as shown in Fig 1, from a given speech utterance
xa ∈ RT , where T is the length of the speech utterance, we
encode the audio features fa = {fa,i}Ta

i=1 ∈ RTa×da using
a large-scale pretrained audio model Ea, where Ta is the
frame length of the audio feature, and da is the embedding
dimension of the audio feature. This process can be expressed
as fa = Ea(xa). Since we utilize pretrained audio model on
large audio data, the extracted features can be regarded as
containing rich speech knowledge.

Next, we aim to store linguistic information at the phoneme
level by refining the audio features. To achieve this, we
first create a k-means clustering model using an audio cor-
pus dataset consisting of a single speaker to minimize non-
linguistic factors about speakers inspired by [44]. Then, we
cluster the audio features fa into N clusters, C = [1, 2, ..., N ],
through the k-means clustering model. The cluster labels of
each audio feature are determined by the frame-wise quanti-
zation, q(·), as follows:

cfa = q(fa) = {cfa,i}
Ta
i=1 (1)

where cfa,i ∈ C is the cluster label of the each audio feature.
After the clustering step, we introduce a trainable compact

audio memory to store linguistic information (i.e., represen-
tative speech feature) for each cluster group. The compact
audio memory Ma = {mn}Nn=1 is comprised of N discrete
representations equal to the number of cluster groups. Each
representation denoted mn has an embedding dimension of
d. By utilizing the cluster labels generated from the audio
features, we are able to access each slot of the compact
audio memory. The process of accessing the memory can be
generalized as follows:

mcfa
= M(cfa) = {mcfa,i

}Ta
i=1 (2)

where M is the frame-wise memory accessing function. For
instance, M(cfa,i

= 1) = m1 represents that the discrete
representation has been extracted from the first slot of the
compact audio memory.

Finally, to store representative knowledge (i.e., linguistic in-

formation only) in predicting speech at compact audio memory
while discarding non-linguistic information, we perform ASR
using the memory through paired audio-text data. To conduct
ASR, we employ a context encoder Ec and a decoder D. When
the discrete representations are extracted from the compact
audio memory, the context encoder captures the context in-
formation between these representations. The contextualized
representations are then used to predict the speech content ŷ
through the decoder as follows: ŷ = D(Ec(mcfa

)). To train
all components of our model, we use a hybrid CTC/attention
loss [76], which is a commonly used loss function for the
speech recognition task. Further details about the losses are
provided in subsection III-D. By performing ASR with the
compact audio memory, we can extract and store the linguistic
knowledge of pretrained audio model in compact audio mem-
ory while disentangling the non-linguistic information which
is not important in predicting speech.

C. Injecting Audio Knowledge into VSR with Audio Bridging
Module

Our prior discussion addressed the methods for storing
linguistic information within a compact audio memory. This
section describes how the saved linguistic audio knowledge
can be employed for VSR. To this end, we propose Audio
Bridging Module (ABM), which aims to inject the best-
matched audio knowledge saved in the memory with visual
features into the VSR model to complement insufficient visual
modality.

The ABM is trained to identify the most relevant audio
knowledge stored in the compact audio memory. Once training
is completed, the most suitable audio can be injected into
the VSR model through the ABM to enhance the limited
lip movement information during inference, even without the
presence of audio input data. Therefore, the proposed method
uses only visual input for extracting audio knowledge from
the compact audio memory and training the VSR model.
This is different from the existing VSR methods that require
both modal inputs during training for Knowledge Distillation
(KD) or contrastive learning. The entire pipeline for finding
audio knowledge and complementing the visual information
is illustrated in Fig. 2.

Given the lip video xv ∈ RTv×C×H×W , where Tv is the
number of frames of video, C is the channel dimension,
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Fig. 2. The overall framework of a proposed AKVSR for complementing visual modality with audio modality. The AKVSR mainly consists of 2 parts: 1)
The compact audio memory provides linguistic information from audio knowledge generated by a large-scale pretrained audio model. The meaning of N in
compact audio memory is the number of discrete representations in the memory. Moreover, the number of discrete representations is the same as the number
of clustering groups of audio features. 2) The proposed ABM finds best-matched information in compact audio memory and injects the linguistic information
into the visual feature to complement the insufficient information of lip movements.

H is the height of lip video, and W is the width of lip
video. We encode the lip video to visual features through
the video encoder and visual context encoder. The video
encoder captures compact spatio-temporal information from
lip movements [1]. Next, the visual context encoder can
consider the context information of neighboring words via a
self-attention mechanism [2]. The encoding process can be
formulated as: fv = Ev(xv) = {fv,i}Tv

i=1 where Ev indicate
both the video encoder and visual context encoder, fv,i ∈ Rd

is visual feature, and d represents the embedding dimension.
We construct the ABM to find the best-matched audio

knowledge with visual features fv from the compact audio
memory utilizing a cross-attention mechanism. The primary
motivation behind employing cross-attention in our model is
to receive the linguistic information from unaligned compact
audio memory for complementing visual features. While com-
pact audio memory is comprised of a fixed number of N
discrete representations, the number of visual features varies
when the input video changes. Recent study [77] shows that
cross-attention can be used for aligning multi-modal language
sequences, and receiving information from another modality
to supplement one modality. Motivated by the success of these
works, we utilize attention scores based on cross-attention
to complement the visual features through compact audio
memory. Moreover, through this approach, the correlation be-
tween unaligned visual features and discrete representations of
compact audio memory can be calculated. In cross-attention,

the attention score measures how much the given visual feature
correlates to the discrete representation of compact audio
memory.

To calculate the attention scores, we define the visual query
of i-th visual feature as Qfv,i

= fv,iWQv
, and audio keys

of j-th linguistic information in compact audio memory as
Ka,j = mjWKa

, where WQv
∈ Rd×dk , and WKa

∈ Rd×dk

are weight matrices. Then, to find appropriate linguistic in-
formation through visual features, we calculate the attention
score A

(0)
i,j between a i-th visual feature fv,i and each audio

feature stored in compact audio memory as follows:

A
(0)
i,j = Softmax(

Qfv,iK
T
a,j

τ
)

=
exp(fv,iWQvW

T
Ka

mT
j /τ)

ΣN
n=1exp(fv,iWQv

WT
Ka

mT
n/τ)

,

(3)

where the τ is a scaling parameter. Intuitively, the attention
score provides how much linguistic information in the j-th slot
in compact audio memory is related to i-th visual feature. For
example, the higher attention score can load more audio infor-
mation from one of the N discrete representations in compact
audio memory. Moreover, we would like to emphasize that
the proposed method uses only visual input to recall the audio
information inputs because N discrete units of compact audio
memory can represent all audio features.

The linguistic audio knowledge in the compact audio mem-
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ory for complementing i-th visual feature can be reconstructed
by using the attention score, which can be denoted as:

m
′(0)
fv,i

= ΣN
j=1A

(0)
i,j (mjWVa

), (4)

where WVa
∈ Rd×dv is a weight matrix. Then, we employ a

weight matrix Wo ∈ Rdv×d to match the dimensions of the
reconstructed audio knowledge and visual feature. Moreover,
since one linguistic audio knowledge is reconstructed for each
visual feature, an alignment process between visual and audio
features is not required. Therefore, we utilize the reconstructed
audio knowledge for the i-th visual feature as follows:

f
(1)
v,i = LN(fv,i +m

′(0)
fv,i

Wo), (5)

where f
(1)
v,i ∈ Rdv is the visual feature complemented once

by the information of compact audio memory, and the LN
denotes the Layer Normalization [78].

We can generalize the above processes as consisting of two
parts. 1) We bring the linguistic information from compact
audio memory via a cross-attention mechanism, and 2) we
inject the information into the visual feature sequence. To
this end, we define the visual feature sequence complemented
k − 1 times as f

(k−1)
v ∈ RTv×d and denote the query of

visual feature sequence Q
(k−1)
fv

= f
(k−1)
v W

(k−1)
Qv

, the entire
audio keys K

(k−1)
a = MaW

(k−1)
Ka

, and the audio values of
entire compact audio memory as V (k−1)

a = MaW
(k−1)
Va

. Then,
we can formulate the first process of getting linguistic audio
knowledge from compact audio memory as follows:

m
′(k−1)
fv

= A(k−1)V (k−1)
a

= Softmax(
Q

(k−1)
fv

K
(k−1)
a

T

τ
)V (k−1)

a

(6)

where A(k−1) = {A(k−1)
i }Tv

i=1 is attention scores between
visual features sequence and every slot in compact audio
memory. We then complement the visual feature sequence with
knowledge brought by attention scores from compact audio
memory as follows: f (k)

v = LN(f
(k−1)
v +m

′(k−1)
fv

W
(k−1)
o )

D. Lip-To-Text Translation
In the previous section, the proposed ABM complements

the visual feature through the linguistic information stored
in compact audio memory. In this section, we introduce the
process of lip-to-text translation through the complemented
visual feature.

For the decoder, we use transformer, following the previous
methods, to predict sentences. Different from previous works,
our proposed method can provide additional linguistic audio
knowledge to the visual feature sequence. Therefore, the
complemented visual feature is fed into the decoder as input,
and the decoder predicted L subwords through the features. We
then employ the hybrid CTC/attention [76] loss to supervise
the proposed model through the predicted sentence and target
sentence.

CTC [56] loss is widely used to guide the VSR model
through frame-wise prediction based on conditional indepen-
dence. The frame-wise posterior distribution p(st|x), where

the st is the target subword corresponding to t-th frame and
x is a visual input. The CTC probability and CTC loss can be
formulated as follows:

pctc(s|x) ≈
∑
s

T∏
t=1

p(st|x) (7)

Lctc = log pctc(s|x) (8)

where the s is a target subwords containing blank symbols.
Attention loss is employed to learn an implicit language model.
The decoder infers the next target subword conditioned on the
previous prediction. The attention loss can be formulated as:

patt(s|x) =
L∏

l=1

p(sl|s1, ..., sl−1, x) (9)

Latt = log patt(s|x) (10)

where sl is the predicted subword at time step l. Finally, the
hybrid CTC/Attention loss can be formulated by weighted
summation of the two loss functions:

Ltot = (1− λ)Latt + λLctc, (11)

where λ is the balancing weight.

IV. EXPERIMENTAL SETUP

A. Dataset.

LRS2 & LRS3 are two of the most popular publicly avail-
able sentence-level VSR datasets. LRS2 [57] and LRS3 [79]
datasets are extracted from BBC television and TED & TEDx
talks, respectively. The LRS2 consists of 28 hours of video for
training and 195 hours of video for pretraining. The difference
between the training dataset and the pretraining dataset is
the duration of each video clip. The duration of pretraining
videos is longer than the trainset. In the same way, the LRS3
comprised 30 hours of video for training and 403 hours of
video for pretraining. We divide the LRS3 dataset into 30
hours of video for low-resource settings and 433 hours of
video for high-resource settings to verify the effectiveness
according to the amount the labeled data like AV-HuBERT
[17]. In addition, The LRS2 dataset is divided into 28 hours
of video for low-resource settings and 223 hours of video for
high-resource settings.

We follow the preprocessing pipeline of AV-HuBERT [17].
Firstly, we extract the landmarks from each video clip using
dlib [80], and employ affine transformation to align each frame
to the reference face frame. Next, we crop the video into 96
× 96 corresponding to the lip region. For data augmentation
at train time, the random crop and random horizontal flip are
used.

B. Implementation Details.

For the VSR model, we employ a state-of-the-art architec-
ture based on transformer encoder-decoder models detailed
in [17]. The video encoder network consists of a 3D CNN,
ResNet-18, and the visual context encoder based on the trans-
former encoder. We employ a Transformer BASE (12 layers)
and a Transformer LARGE (24 layers) same as AV-HuBERT
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TABLE I
VSR PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS MODELS ON THE LRS3 DATASET. † INDICATES THAT THE

NON-PUBLIC VIDEO-TEXT DATA IS USED FOR TRAINING THE VSR MODEL. ‡ INDICATES THAT THE SYNTHVSR USES AN ADDITIONAL 3,652 HOURS OF
SYNTHETIC VIDEO-TEXT DATA TO TRAIN THE CONFORMER-BASE MODEL. (+α) INDICATES THE AMOUNT OF PSEUDO-TEXT LABELS GENERATED BY

THE PRETRAINED ASR MODEL.

Method Backbone
Labeled

word
data (hrs)

Labeled
sentence
data (hrs)

Unlabeled
sentence
data (hrs)

WER(%)

Afouras et al. [22] CNN 157 433 - 68.8
Zhang et al. [81] CNN 157 698 - 60.1

Afouras et al. [79] Transformer 157 1362 - 58.9
Xu et al. [82] RNN 157 433 - 57.8

Shillingford et al. [83] RNN - 3.886 - 55.1
Ma et al. [15] Conformer - 433 - 46.9
Ma et al. [15] Conformer 157 433 - 43.3

Prajwal et al. [84] Transformer - 698 - 40.6
Ma et al. [16] Conformer - 433 - 37.9
Ma et al. [16] Conformer 157 433 - 35.1

Makino et al.† [85] RNN - 31,000 - 33.6
Serdyuk et al.† [86] Conformer - 90,000 - 17.0

SynthVSR [87]
Conformer-BASE - 30 3652‡ 43.3
Conformer-BASE - 433 3652‡ 27.9

AV-HuBERT [17]

Transformer-BASE - 30 1759 46.1
Transformer-BASE - 433 1759 34.8

Transformer-LARGE - 30 1759 32.5
Transformer-LARGE - 433 1759 28.6
Transformer-LARGE - 433(+1,326) 1759 26.8

Lohrenz. et al. [88]
Transformer-LARGE - 30 1326 44.0
Transformer-LARGE - 433 1326 28.8
Transformer-LARGE - 433(+1,326) 1326 26.3

RAVEn [89]
Transformer-LARGE - 30 1759 32.5
Transformer-LARGE - 433 1759 27.8
Transformer-LARGE - 433(+1,326) 1759 24.4

Proposed Method

Transformer-BASE - 30 1759 41.6
Transformer-BASE - 433 1759 34.2

Transformer-LARGE - 30 1759 29.1
Transformer-LARGE - 433 1759 27.6
Transformer-LARGE - 433(+1,326) 1759 23.6

[17], which models have 103M and 325M of the number
of parameters, respectively. We initialize the parameters of
both the video encoder and visual context encoder from
the BASE model and the LARGE model of AV-HuBERT,
respectively. Similar to the transformer encoder, there are two
versions of the decoder. transformer decoders have 6 layers
for the BASE and 9 layers for the LARGE. We then utilize a
unigram-based subword unit [90] composed of 1000 subwords
like Av-HuBERT to decode the features produced by the
encoder into subword units. We initialize the parameters of the
transformer decoders fine-tuned on the audio corpus of LRS2
and LRS3, respectively. The proposed compact audio memory
is constructed of 200 discrete units. The embedding dimension
of the memory for BASE and LARGE are 768 and 1024, and
the number of parameters are 0.15M and 0.2M, respectively.
To train the compact audio memory with both context encoder
and decoder through the ASR task, we use four transformer
layers for context encoder, and transformer decoders (BASE)

such as the VSR model decoder. We then use 2 cross-attention
layers with 8 multi-head attention mechanisms for ABM. The
ABM has 4.7M parameters. The balancing weight 0.1 is used
at the proposed method.

V. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of the AKVSR
framework utilizing both compact audio memory and ABM
through a comparison of the proposed method with the pre-
vious VSR methods. Then, to demonstrate the availability
of each component, we provide various experimental results.
Firstly, we examine how the linguistic information constructed
by different pretrained audio model affects the VSR models
when we inject the information into the visual modality. Next,
we investigate the impact on VSR according to the amount
of injected audio information through the proposed ABM.
Finally, we demonstrate that the AKVSR can complement
visual information of the other VSR models.
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TABLE II
VSR PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS MODELS ON LRS2 DATASET.

Method Backbone
Labeled

word
data (hrs)

Labeled
sentence
data (hrs)

Unlabeled
sentence
data (hrs)

WER(%)

Afouras et al. [22] CNN 157 223 - 58.5
Zhang et al. [81] CNN 157 698 - 51.7

Afouras et al. [79] Transformer 157 1362 - 48.3
Kim et al. [29] Transformer 157 656 - 46.2
Kim et al. [30] Transformer 157 656 - 44.5
Ma et al. [15] Conformer - 223 - 39.1
Ma et al. [15] Conformer 157 223 - 37.9
Ma et al. [16] Conformer - 223 - 32.9

K R Prajwal et al. [84] Transformer - 698 - 28.9
Ma et al. [16] Conformer 157 223 - 28.7

AV-HuBERT [17]

Transformer-BASE - 28 1759 43.3
Transformer-BASE - 223 1759 31.2

Transformer-LARGE - 28 1759 32.2
Transformer-LARGE - 223 1759 25.5

Proposed Method

Transformer-BASE - 28 1759 40.5
Transformer-BASE - 223 1759 30.1

Transformer-LARGE - 28 1759 28.7
Transformer-LARGE - 223 1759 24.1

A. Comparisons with the State-of-the-art

To verify the effectiveness of the AKVSR, we first com-
pared it to AV-HuBERT on the LRS3 dataset. We adopt
the AKVSR to both the Transformer BASE and Transformer
LARGE models. To compare performance based on the
amount of video-text label data, we perform fine-tuning using
both low-resource (30 hours) and high-resource (433 hours)
settings. Thus, we conduct experiments with four different
settings on the LRS3 dataset.

Table I presents the results of the AVKSR method on the
LRS3 dataset. In the [86], the state-of-the-art model using a
conformer encoder as a visual front-end shows a best WER of
17.0%. However, we would like to emphasize that the state-
of-the-art performance model is trained on 90,000 hours of
non-public video-text data. On the other hand, we use publicly
available video-text data for training. Therefore, we would like
to note that a direct comparison between the method [86]
(trained on 90,000 hours of data) and the proposed method
is not fair in terms of state-of-the-art (SOTA) comparison.
Instead, to expand the experimental dataset, we utilize an
additional VoxCeleb2 dataset, which datasets comprise 1,326
hours of video. Similar to recent works [17], [89], we gener-
ate pseudo-text labels from the VoxCeleb2 Dataset.

In the LRS3 dataset, the detailed comparison of our pro-
posed methods’ performances with recent state-of-the-art per-
formances is shown in Table I. We would like to emphasize the
proposed methods consistently outperform the AV-HuBERT
model across various training data sizes. When trained on a 30-
hour dataset, the proposed model achieves a WER of 29.1%,
which is notably lower than the 32.5% WER of AV-HuBERT.
Similarly, with a larger dataset of 433 hours, the proposed
method shows an improved WER of 27.6% compared to

AV-HuBERT’s 28.6%. This trend of enhanced performance
continues with the most extensive dataset of 433(+1,326)
hours, where the proposed method attains a WER of 23.6%,
surpassing AV-HuBERT’s 26.8%. Moreover, we compare this
performance of the proposed model with the recent state-
of-the-art methods [88], [89]. Our methods achieve a WER
of 23.6%, surpassing the recent Raven [89] method, which
records a WER of 24.4%. Additionally, it outperforms the
previous approach [88] relaxed attention, which has 26.3%
WER. Please note that these reported WERs of [17], [87]–
[89] are based on not using the language model during the
inference stage for fair comparison.

Regarding correlated results to the model parameters, the
LARGE model surpasses 12.5% WER compared to the BASE
model since the LARGE model has 122M more parameters.
On the other hand, the baseline method achieves a WER
of 46.1% and 32.5%. We would like to emphasize that the
compact audio memory and ABM utilize only around 5M
additional parameters compared to the baseline.

To validate the effectiveness of the proposed method in
another dataset, we additionally conduct experiments on the
LRS2 dataset. The AV-HuBERT method does not provide
results for the LRS2 dataset, because the video data of LRS2
is open for academic research. In our comparative analysis
showcased in Table II, the performance of the AV-HuBERT
model and our proposed method across different configurations
is detailed. For the Transformer-BASE configuration, AV-
HuBERT achieves a WER of 43.3% with 28 hours of training
data and 31.2% with 223 hours, while our proposed method
shows improved results with a WER of 40.5% and 30.1%.
In addition, the proposed methods also outperform the AV-
HUBERT by achieving a WER of 24.1%, in the Transformer-
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TABLE III
VSR PERFORMANCE OF THE PROPOSED AKVSR WHEN DIFFERENT

PRETRAINED AUDIO MODELS (CPC, WAV2VEC2.0, AND HUBERT) ARE
UTILIZED TO CONSTRUCT COMPACT AUDIO MEMORY

Methods WER(%)
Baseline 46.1

AKVSR (CPC [91]) 42.7
AKVSR (Wav2vec2.0 [33]) 42.4

AKVSR (HuBERT [34]) 41.6

TABLE IV
IMPACT OF REFINING NON-LINGUISTIC FACTORS SUCH AS SPEAKERS AND

NOISE OF AUDIO KNOWLEDGE WHEN COMPLEMENTING VISUAL
MODALITY WITH AUDIO MODALITY

Method WER(%)

AV-HuBERT [17] + KD [19] 43.6

AV-HuBERT [17] + Auxiliary task [16] 43.4

AV-HuBERT [17] + AKVSR 41.6

LARGE configuration.

B. Effect of different pretrained audio models on constructing
compact audio memory

In the previous section, the proposed AKVSR injects lin-
guistic information into the VSR model and shows promising
results outperforming the current state-of-the-art VSR model.
In this section, to assess the effectiveness of different large-
scale pretrained audio models, we create compact audio mem-
ory using CPC, Wav2vec2.0, and HuBERT and apply the com-
pact audio memory to the VSR model, respectively. The results
are shown in Table III. While the baseline model (i.e.without
compact audio memory and ABM) achieves 46.1% WER,
our proposed method adopted by CPC, Wav2vec2.0, and
HuBERT accomplishes a WER of 42.7%, 42.4%, and 41.6%,
respectively. The results show that the proposed compact audio
memory can store the linguistic information of any large-scale
pretrained audio model and improves the performance of the
existing VSR methods by supplementing visual modality with
the information. We utilize the HuBERT audio model in other
experiments as it achieves the best performance.

C. Effect of refining non-linguistic factors when transferring
the audio knowledge.

In this section, we verify the effect of refining non-linguistic
factors. To verify this, we experiment with two methods [16],
[19] utilizing KD and compare them to the proposed method.
The results are shown in Table IV. Following the method
[19], we use pretraind ASR model as a teacher network and
utilize the AV-HuBERT as a student network. From guiding
the pretrained ASR model, we achieve a WER of 43.6%.
The other experiment is transferring the knowledge between
intermediate layers. The effectiveness of this method called
auxiliary task recently is more effective than [19] and verified
in multiple languages VSR in [16]. Through this approach, we

TABLE V
VSR PERFORMANCES ACCORDING TO THE NUMBER OF

CROSS-ATTENTION LAYERS IN ABM

# Cross-attention layer WER(%)
1 41.8
2 41.6
3 41.9
4 41.8

TABLE VI
IMPROVING PERFORMANCES OF EXISTING VSR METHODS BY APPLYING

THE PROPOSED AKVSR

Method WER(%)
TM-seq2seq [14] 59.9

TM-seq2seq [14] + AKVSR 54.5
AV-HuBERT [17] 46.1

AV-HuBERT [17] + AKVSR 41.6

accomplish 43.4% WER. At this time, our proposed method
achieve a 41.6% WER by using the same training data by
refining the non-linguistic factors such as speakers and noise
of audio knowledge and transferring via ABM.

D. Effect of according to different number of layers in Audio
Bridging Module

The proposed ABM can be composed of different numbers
of cross-attention layers. In order to evaluate the effect of the
number of layers, we build 4 variants of ABM by differing
the number of layers from 1 to 4 and perform VSR on LRS3.
The ablation result is shown in Table V. By using ABM
consisting of a single cross-attention layer, we can achieve
a significant performance improvement, 4.3% WER from the
baseline. This result confirms that utilizing compact audio
knowledge through the proposed memory is effective in VSR
by complementing insufficient visual information with audio
information provided by a large-scale pretrained audio model.
The best result is obtained when 2 cross-attention layers are
utilized for ABM and we found that increasing the number
of layers to more than 2 does not give more performance
gain. Therefore, we employ 2 cross-attention layers for ABM
in other experiments. Moreover, by comparing the number
of parameters of ABM with the baseline model, adding one
cross-attention layer increases 2.4M parameters, which is 1.5%
of that of the baseline model. Therefore, the best-performed
model (i.e., 2 cross-attention layers) just requires only 3%
additional parameters of the baseline while improving 9.76%
relative performance from the baseline.

E. Effect of AKVSR on different VSR methods

We conducted experiments to demonstrate that our proposed
method, which incorporates compact audio memory and ABM,
can be applied to other VSR methods. To validate this, we
apply the proposed method to another popular VSR method,
TM-seq2seq [14]. This model is originally designed to apply
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TABLE VII
IMPACT OF THE NUMBER OF CLUSTERS ON THE RESULTS OF SENTENCE
PREDICTION. ”A” DENOTES THE ASR PERFORMANCE OF USING ONLY

DISCRETE UNITS OF THE MEMORY. ”V” REPRESENTS THE VSR
PERFORMANCE OF THE BASELINE MODEL WHEN IT ADAPTS COMPACT

AUDIO MEMORY USING THE ABM.

Methods # of clusters
WER(%)

A V
AKVSR (HuBERT [34]) 200 9.4 41.6
AKVSR (HuBERT [34]) 500 8.1 42.0
AKVSR (HuBERT [34]) 1000 6.2 41.8

VSR in wild videos. We re-implemented the TM-seq2seq and
trained it using the curriculum learning approach detailed in
[14]. The results are shown in VI. We can achieve a WER of
54.1% by applying the proposed AKVSR at TM-seq2seq. In
addition, when we adopt our proposed method to the state-of-
the-art AV-HuBERT VSR model. Our implementation resulted
in a 4.5% WER improvement. As a result, the proposed
method injects the linguistic information of a large-scale
pretrained audio model into visual modality at the feature level
and can brings improvements to various VSR methods.

F. Effect of varying the number of clusters

We evaluate how storing linguistic information in compact
audio memory is affected by varying the number of distinct
clusters used to organize the information. The results are
shown in Table VII. We conduct three experiments using
200, 500, and 1000 clusters referring to that utilizing audio
feature clustering [17], [44]. In these experiments, we employ
HuBERT to extract and cluster the audio features. After storing
the linguistic information in trainable compact audio memory
via ASR task on the LRS3 dataset, we achieve a WER of 9.4%
a WER of 8.1% WER, and a WER of 6.2%, respectively.
The results show that if the number of clusters increases,
the WER of ASR decrease. However, when we apply the
compact audio memories to the baseline models, we observe
that the memory using 200 clusters obtains the most 41.6%
WER of performance. We analyze these results as that using
the 200 discrete units in the compact audio memory is more
appropriate to find the best-matched audio representation via
ABM from the visual feature than employing other compact
audio memories consisting of 500 and 1000 discrete units.

G. Effect of varying dimension of compact audio memory

We evaluate how the discrete representation dimension in
compact audio memory affects the VSR performance of the
proposed method. To this end, we conduct three experiments,
varying the dimensions of the compact audio memory to
512, 768, and 1024, when constructing the memory to store
linguistic information from audio. Then, these memories are
applied to the baseline VSR model. The results are shown
in Table VIII. When the compact audio memory of 768
dimensions is used, we obtain the best performance, a WER
of 41.5%. The other settings using 512 and 1024 dimensions
achieve 42.0% and 41.7% WERs, respectively. Please note that

TABLE VIII
ABLATION STUDY ON THE PROPOSED METHOD PERFORMANCE WITH

VARYING DIMENSION OF COMPACT AUDIO MEMORY.

Dimension WER(%)
512 41.7
768 41.5
1024 42.0

TABLE IX
ABLATION STUDIES ON THE EFFECTS OF VARYING TRAINING DATASETS

IN THE CONSTRUCTION OF COMPACT AUDIO MEMORY

Training Datasets Duration (hrs) WER(%)
LRS2 223 44.7
LRS3 433 43.3

LRS2, LRS3 656 41.5

all experiments improve the performance of the baseline VSR
model achieving a WER of 46.1%.

H. Effect of varying training dataset when constructing the
compact audio memory

We verify how the varying datasets for training the compact
audio memory affect the performance of the baseline. For
this, LRS2, LRS3, and merging LRS2 with LRS3 are used
for building compact audio memories. The results are shown
in Table IX. In these settings, we obtain 44.7%, 43.3%,
and 41.5% WERs, respectively. Based on these results, the
compact audio memory trained on merging LRS2 with LRS3
datasets is applied to the VSR model in other experiments.

VI. CONCLUSION

This paper has presented the Audio Knowledge empowered
Visual Speech Recognition (AKVSR) framework to enhance
the complementary effect of audio knowledge for visual
modality, by removing the non-linguistic factors. This pro-
posed framework consists of three components: (1) Unlike
previous methods, the proposed approach utilizes a large-
scale pretrained audio model to acquire audio knowledge,
and the non-linguistic factors, such as speaker and noise,
are then removed through vector quantization from the audio
knowledge. (2) The resulting audio knowledge, focusing on
linguistic information, has been stored in a compact audio
memory to allow for the utilization of audio information. (3)
The Audio Bridging Module has been devised to match the
best audio knowledge with the visual features in the compact
audio memory to complement the insufficient visual informa-
tion and inject linguistic information into the VSR model. We
have demonstrated the effectiveness of the proposed method
by outperforming the state-of-the-art VSR models on the LRS3
dataset.

VII. DISCUSSION

Although the proposed AKVSR can improve the VSR sys-
tems using the audio knowledge of large-scale pretrained audio
models, there is some limitation and future research: (1) In this
paper, the compact audio memory needs to be constructed
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before training the VSR model. It requires additional time
consumption. In future research, we are going to further
investigate a time-efficient training method. (3) Compared
with the ASR systems, the performance of the VSR system
(including the proposed method) is still inferior. To bridge the
thin gap between VSR and ASR, in future research, how to
utilize the audio model needs to be continually investigated.
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and M. Pietikäinen, “Importance-aware information bottleneck learning
paradigm for lip reading,” IEEE Transactions on Multimedia, 2022.

[6] C. Sheng, X. Zhu, H. Xu, M. Pietikäinen, and L. Liu, “Adaptive
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