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Abstract

In this work, we propose bag of adversarial features (BAF) for identifying mild traumatic brain 

injury (MTBI) patients from their diffusion magnetic resonance images (MRI) (obtained within 

one month of injury) by incorporating un-supervised feature learning techniques. MTBI is a 

growing public health problem with an estimated incidence of over 1.7 million people annually in 

US. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of 

injury are lacking. Unlike most of previous works, which use hand-crafted features extracted from 

different parts of brain for MTBI classification, we employ feature learning algorithms to learn 

more discriminative representation for this task. A major challenge in this field thus far is the 

relatively small number of subjects available for training. This makes it difficult to use an end-to-

end convolutional neural network to directly classify a subject from MR images. To overcome this 

challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-

level features, from overlapping image patches extracted from different brain regions. We then 

aggregate these features through a bag-of-word approach. We perform an extensive experimental 

study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex matched 

healthy controls), and compare the bag-of-deep-features with several previous approaches. Our 

experimental results show that the BAF significantly outperforms earlier works relying on the 

mean values of MR metrics in selected brain regions.

I. Introduction

Mild traumatic brain injury (MTBI) is a significant public health problem, which can lead to 

a variety of problems including persistent headache, memory and attention deficits, as well 

as behavioral symptoms. There is public concern not only regarding civilian head trauma, 

but sport-related, and military-related brain injuries [1]. Up to 20–30% of patients with 

MTBI develop persistent symptoms months to years after the initial injury [2], [3]. Good 

qualitative methods to detect MTBI are needed for early triage of patients, believed to 

improve outcome [4].

The exploration of non-invasive methodologies for the detection of brain injury using 

diffusion MRI is extremely promising in the study of MTBI: e.g., diffusion tensor imaging 

(DTI) shows areas of abnormal fractional anisotropy (FA) [6]-[7] and mean diffusivity (MD) 
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[8] in white matter (WM); and diffusion kurtosis imaging (DKI) shows altered mean kurtosis 

(MK) within the thalamus in MTBI [9]-[10]. In addition to these conventional 

measurements, more recently, white matter tract integrity (WMTI) metrics [11] derived from 

multi-shell diffusion imaging have been proposed to describe microstructural characteristics 

in intra- and extra-axonal environments of WM, showing reduced intra-axonal diffusivity 

(Daxon) in the splenium in MTBI [5]. Recently, there are new approaches incorporating 

machine learning algorithm on MR images for MTBI identification and prediction [12]-[15]. 

In spite of the encouraging results, the features used in those works are mainly hand-crafted 

and may not be the most discriminative features for this task (e.g., mean).

In this work, we propose a machine learning framework to classify MTBI patients from 

controls using features extracted from diffusion MRI, particularly in the thalamus, and the 

splenium of the corpus callosum (sCC), two areas that have been highly implicated in this 

disorder based on previous works [16]-[17]. The main challenge for using a machine 

learning approach is that, as many other medical image analysis tasks, we have a relatively 

small (in machine learning sense) dataset of 227 subjects, and each sample has a very high 

dimensional raw representation (multiple 3D volumes). Therefore, it is not feasible to 

directly train a classification network on such datasets. To overcome this issue, we propose 

to learn features from local patches extracted from thalamic and splenial regions-of-interest 

(ROIs) using a deep adversarial auto-encoder to learn patch level features in an unsupervised 

fashion, and then aggregate the features from different patches through a bag of word 

representation. Finally, feature selection followed by a classification algorithm is performed 

to identify MTBI patients. The block diagram of the overall algorithm is shown in Fig. 1. 

This approach provides a powerful scheme to learn a global representation by aggregating 

deep features from local regions, and will be a useful approach in cases where there may be 

a limited number of samples but high dimensional input data (e.g. MRI).

The remaining parts of the paper are organized as follows. Section II provides an overview 

of previous works on MTBI detection using MR imaging. Section III describes the details of 

the proposed framework. The experimental studies and comparison are provided in Section 

IV. Summary and conclusion are stated in Section V.

II. Previous Works

Diffusion MRI is one of the most promising imaging techniques to detect in vivo injury in 

patients with MTBI. While many of the studies performed over the past decade show group 

differences between control subjects and MTBI, the consensus report from the American 

College of Radiology in 2016, cited the utility of these techniques applied to individual 

subjects as remaining limited [18].

A small number of studies have used machine learning frameworks applied to imaging to 

identify patients with MTBI.

Lui et al [12] proposed a machine learning framework based on 15 features, including 2 

general demographic features, 3 global brain volumetric features, and 10 regional brain MRI 

metrics based on previously demonstrated differences between MTBI and control cohorts. 
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Mean value of various metrics in different regions are used as the imaging features in their 

work. They used Minimum Redundancy and Maximum Relevance (MRMR) for feature 

selection, followed by a classification algorithm to identify the patients. They evaluated their 

model on a dataset of 48 subjects, and showed they are able to identify the MTBI patients 

with reasonably good accuracy using cross-validation sense.

In [13], Vergara et al investigated the use of resting state functional network connectivity 

(rsFNC) for MTBI identification, and did a comparison with diffusion MRI results on the 

same cohort. Features based on rsFNC were obtained through group independent component 

analysis and correlation between pairs of resting state networks. Features from diffusion 

MRI were obtained using all voxels, the enhanced Z-score micro-structural assessment for 

pathology, and the distribution corrected Z-score. Linear support vector machine [19] was 

used for classification and leave-one-out cross validation was used to validate the 

performance. They achieved a classification accuracy of 84.1% with rsFNC features, 

compared to 75.5% with diffusion-MRI features, and 74.5% using both rsFNC and 

diffusion-MRI features.

In addition Mitra [20] proposed an approach for identifying MTBI based on FA-based 

altered structural connectivity patterns derived through the network based statistical analysis 

of structural connectomes generated from TBI and age-matched control groups. Higher 

order diffusion models were used to map white matter connections between 116 cortical and 

subcortical regions in this work. Then they performed network-based statistical analysis of 

the connectivity matrices to identify the network differences between a representative subset 

of the two groups. They evaluated the performance of their model on a dataset of 179 TBI 

patients and 146 controls participants, and were able to obtain a mean classification accuracy 

of 68.16%±1.81% for classifying the TBI patients evaluated on the subset of the participants 

that was not used for the statistical analysis, in a 10-fold cross-validation framework.

There are several other works using imaging features for MTBI identification. For a detailed 

explanations we refer the readers to [21]-[24]. While such previous works show promising 

results to identify MTBI based on various machine learning approaches, they are limited by 

the size of training data, and the usefulness of the hand-engineered features used in those 

works.

To overcome the limitation of previous works, we propose a new framework for identifying 

MTBI patients using imaging features. Instead of directly extracting features from the entire 

brain or selected regions, we propose to describe each selected region by the distribution of 

local patch patterns. Specifically, we learn patch level features in an unsupervised fashion 

and aggregate the features through a bag of words representation. Each patient is described 

by the bag of words representations derived for different MR metrics and region of interests. 

Compared to the prior works, we included some newly proposed diffusion features to be 

better able to identify MTBI.

The present work is a significant extension of our preliminary results presented in [25]-[26]. 

Firstly, the present work differs from those in [25]-[26] in the way the visual features are 

constructed to derive the visual words. In [25], we directly use the raw image patch as the 

Minaee et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



visual features; and in [26], we use an autoencoder to learn features for image patches. In 

this paper, we further improve beyond [26] by using an adversarial autoencoder and show 

that it can significantly improve the classification accuracy over those approaches in [25]-

[26]. Secondly, we have doubled the number of human subjects in our analysis, which 

enabled us to conduct more comprehensive performance evaluation, including evaluation on 

an independent held-out set. Finally, we proposed novel visualization of visual words in the 

brain (Figs. 11–12) to help the readers understand the bag of words representation.

III. The Proposed Framework

In this work we propose a machine learning framework for MTBI identification, which 

relies on the imaging and demographics features. Based on previous studies [5], [9], [27], 

showing abnormal or altered diffusion values in MTBI, 9 diffusion features were selected: 1) 

2 features (fractional anisotropy [FA], mean diffusivity [MD]) from diffusion tensor imaging 

(DTI) [28], 2) 3 features (mean kurtosis [MK], axial kurtosis [AK], radial kurtosis [RK]) 

from diffusion kurtosis imaging (DKI) [29], 3) 4 features (axonal water fraction [AWF], 

intra-axonal diffusivity [DA], extra-axonal axial diffusivity [De-par], extra-axonal radial 

diffusivity [De-perp]) from white matter tract integrity (WMTI) modeling. These metrics are 

summarized in Table I.

Specially, this work includes WMTI features that have been proposed to describe 

microstructural characteristics in intraand extra-axonal environments of white matter, 

derived from an white matter modeling [11]. Since the WMTI model is designed for single 

orientation fiber bundles (i.e, highly aligned white matter regions), WMTI features should be 

applied only for white matter regions, not for thalamus. Thus, for thalamus regions, we use 

only 5 diffusion features (DTI and DKI) in this study.

Now we need to extract some image descriptors (features) from the images above. Many of 

the previous works used hand-crafted features for image representation, but since it is not 

clear beforehand which imaging features are the best for MTBI identification, we propose to 

learn the feature representation from MR images using a deep learning framework. Because 

of the limitation of the number of samples, it is not possible to train a deep convolutional 

network to directly classify the an entire brain image volume. To tackle this problem, and 

also based on the assumption that MTBI may impact only certain regions in the brain, we 

propose to represent each brain region by a bag of words (BoW) representation, which is the 

histogram of different representative patch-level patterns. By looking at 16×16 patches from 

thalamus and sCC we get around 454 patches from each subject, which results in more than 

100k image patches. Since we cannot infer patch level labels from subject label, we should 

use unsupervised feature learning schemes. We use a recent kind of auto-encoder models, 

called adversarial auto-encoder, to learn discriminative patch level representations. The 

detail of feature extraction and bag of word approach are explained in Section III.A and 

III.B.

A. Adversarial Auto-Encoder for Patch Feature Learning

There have been a lot of studies in image processing and computer vision to design features 

for various applications. For patch level description, various ”hand-crafted” features have 
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been developed, such as scale invariant feature transform (SIFT), histogram of oriented 

gradients (HOG), and local binary pattern (LBP) [30]-[33]. Although these features perform 

well for some applications, there are not the best we could do in many cases. To derive a 

(more) optimum set of feature for any task, one can use machine learning techniques to learn 

the representation. Convolutional neural networks are one of the most successful models 

used for image classification and analysis that jointly learn features and perform 

classification, and have been used for a wide range of applications from image classification 

and segmentation, to automatic image captioning [34]-[37].

The challenge in our problem is that we do not have patch level classification labels, as we 

cannot assume all patches from a MTBI subject will be “abnormal”. In order to learn patch-

level features without having labels, we employ adversarial auto-encoder [38], an 

unsupervised feature learning approach. Adversarial auto-encoder is similar to the regular 

auto-encoder, in that they both receive an image as the input and perform multiple 

“convolution+nonlinearity+downsampling” layers to encode the image into some latent 

features, and then use these features to reconstruct the original image through deconvolution. 

By doing so, the network is forced to learn some representative information that is sufficient 

to recover the original image. The overall architecture of a regular auto-encoder is shown in 

Figure 2. It can be seen that the network consists of two main parts, an encoder and a 

decoder [39]-[40]. In our work we apply the auto-encoder at the patch level. After training 

this model, the latent representation in the mid-layer is used as patch feature representation.

Adversarial auto-encoder has one more component, by which it enforces some prior 

distribution on the latent representation. As a result, the decoder of the adversarial auto-

encoder learns a generative model which maps the imposed prior to the data distribution. 

The block diagram of an adversarial auto-encoder is shown in Fig 3.

As we can see, there is an discriminator network which classifies whether the latent 

representation of a given sample comes from a prior distribution (Gaussian in our work) or 

not. Adding this adversarial regularization guides the auto-encoder to generate latent 

features with a target distribution.

To train the adversarial auto-encoder, we minimize the loss function in Eq (1) over the 

training samples. Note that this loss function consists of two terms, one term describes the 

reconstruction error, and another one the discriminator loss. We use the mean square error 

for the reconstruction loss, and binary cross entropy for the adversarial loss. The parameter 

λ is a scalar which determines the relative importance of these two terms, and can be tuned 

over a validation set. Here X and W denote the training samples, and the model parameters 

respectively. One can train this model (find the parameters’ values, W) by stochastic 

gradient descent, which minimizes this loss function over different batches (a subset of the 

entire samples) of training samples.

ℒAAE(X; W) = ℒRec(X; W) + λℒAdv(X; W) (1)

In our study, we train one auto-encoder model for each metric (such as FA, MK, RK, etc.). 

Therefore we have multiple networks, where each one extracts the features from a specific 
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metric (and both regions). In a preliminary study, we also investigated on training a single 

model which can jointly learn the feature from all different metrics, but it turns out it 

performs slightly worse than the current scenario. We will provide the comparison between 

using adversarial auto-encoder for feature learning, with convolutional auto-encoder, and 

also with directly using raw voxel values.

B. Bag of Visual Words

After extraction of the patch-level features, we need to aggregate these features into a global 

representation for an entire brain volume. One simple way could be to get the average 

representation of patch features as the overall feature. But this simple approach can lose a lot 

of information. Instead, we use the bag of words (BoW) representation [41] to describe each 

brain region, which calculates the histogram of representative patterns (or visual words) over 

all patches in this region. Bag of visual words is a popular approach in computer vision, and 

is used for various applications [42]-[43]. The idea of bag of visual words in computer 

vision is inspired by bag of word representation in text analysis, where a document is 

represented as a histogram of words, and those histograms are used to analyze the text 

documents. Since there is no intrinsic words defined for images, we need to first create the 

visual words. To find the visual words, we can apply a clustering algorithm (e.g. k-means 

clustering) to the patch features obtained from all training patches. Given the MR images of 

a subject, we extract overlapping patches from two designated brain regions (thalamus and 

sCC). We then describe a brain region as a histogram of different visual words among all 

patches in this region. To be more specific about our work, we extract overlapping patches of 

16×16 (with stride of 3) from thalamus and sCC (which resulting in a total of 454 patches 

for each subject). Therefore in total we get around 103k patches. The block diagram of the 

BoW approach is shown in Figure 4.

C. Feature Selection and Classification

After deriving adversarial features for patches from diffusion MR images, we will get a 

feature vector per metric and region. We concatenate the features from different metrics and 

regions, with demographic features, to form the final feature vector. We then perform feature 

selection to minimize the risk of over-fitting before classification [44]-[45]. Various feature 

selection algorithms are tried, such as greedy forward selection, max-relevance and min-

redundancy (MRMR) [46] and max correlation, and it turns out that the greedy forward 

feature selection works best for our problem. This approach selects the best features one at a 

time with a given classifier, through a cross-validation approach. Assuming Sk denotes the 

best subset of features of size k, the (k + 1)-th feature is selected as the one which results in 

the highest cross-validation accuracy rate along with the features already chosen (in Sk). One 

can stop adding features, either by setting a maximum size for the feature set, or when 

adding more features does not increase the accuracy rate. For classification, support vector 

machine is used in this work (which was shown to perform slightly better than other options 

such as neural network, and random forest). SVM has two main parameters, C and gamma, 

where C denotes the penalty parameter for the error term, and gamma denotes the Kernel 

coefficient. These parameters are tuned by doing a grid search over validation set.

The summary of our validation approach for feature selection is provided here:
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• Divide the dataset into training and heldout.

• For each pair of C and gamma:

• Create 100 different training and validation split (using different shuffling) from 

the original training set.

• Apply the forward feature selection algorithm to select the best subset of features 

of size Nmax, based on average validation error on those 100 splits.

• Select the subset of features, and Copt and gammaopt associated with the highest 

validation accuracy among all possible choices of C and gamma.

• Train a model on the initial training set, using the selected subset of features, and 

Copt and gammaopt, and evaluate the accuracy on the heldout samples.

IV. Experimental Results

We evaluate the performance of the proposed approach on our dataset of 227 subjects. This 

dataset contains 109 MTBI subjects between 18 and 64 years old, within 1 month of MTBI 

as defined by the American College of Rehabilitation Medicine (ACRM) criteria for head 

injury, and 118 healthy age and sex-matched controls. The study is performed under 

institutional review board (IRB) compliance for human subjects research. Imaging was 

performed on a 3.0 Tesla Siemens Tim Trio and Skyra scanners including multi-shell 

diffusion MRI at b-values of 1000 and 2000 s/mm2 at isotropic 2.5mm image resolution.

In-house image processing software developed in MATLAB R2017b was used to calculate 

11 diffusion maps including DTI, DKI and WMTI metrics. All diffusion maps in subject 

space are registered to the Montreal Neurological Institute (MNI) standard template space, 

by using each subjects fractional anisotropy (FA) image. The regions of thalamus and sCC 

were extracted from the MNI template and were modified if needed.

We applied BoW approach on three sets of patch-level features, raw voxel values, features 

generated by a trained convolutional auto-encoder, and features generated by adversarial 

auto-encoder. The statistical features from each region for each MR metric consists of 5 

different statistics including mean, standard deviation, third and fourth moments, and finally 

entropy of voxel values in that region.

In order to have sense of how patches of different metrics look, some of the sample patches 

of 16×16 from various metrics are shown in Figure 5.

For the convolutional autoencoder, the encoder and decoder each have 4 layers, and the 

kernel size is always set to (3,3). The latent feature dimension is 32 for the networks which 

are trained on individual metrics. To train the model, we use one third of all patches, which 

is around 34k samples. The batch size is set to 500, and the model is trained for 10 epochs. 

We use ADAM optimizer to optimize the cost function, with a learning rate of 0.0003. The 

learnt auto-encoder is then used to generate latent features on each overlapping patch in the 

training images. The resulting features are further clustered to N words using K-means 

clustering. N was varied among 20, 30, and 40. Each MR metric in each region is 
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represented by a histogram of dimension N. We used Tensorflow package to train the 

convolutional-autoencoder model.

For the adversarial auto-encoder, both encoder and decoder networks contain 4 layers 

(2 ”convolution+nonlinearity+pooling” and 2 fully-connected layers), and the discriminator 

network contains three fully connected layers, to predict whether a latent representation is 

coming from a prior distribution or not. The dimension of the latent representation is set to 

32 in this case, and the prior distribution of the latent samples is set to be Gaussian. The 

learning rate during the update of generative and discriminative networks are set to 0.0006 

and 0.0008 respectively. Pytorch is used to train the adversarial auto-encoder.

For SVM, we use radial basis function (RBF) kernel. The hyper-parameters of SVM model 

(kernel width gamma, and the mis-classification penalty weight, C) are tuned based on a 

validation set of 45 subjects. It is worth to mention that, we normalize all features before 

feeding as the input to SVM, by making them zero-mean and unit-variance. The SVM 

module in Scikit-learn package in Python is used to implement SVM algorithm.

A. Classification Accuracies of Different Features

In the first experiment, we compare the performance of the proposed bag-of-adversarial-

features with global statistical features, BoW feature derived from convolutional auto-

encoder [26], and BoW derived from raw voxel values [25].

In each case (except for the case with statistical features), a histogram of 20-dimensional is 

derived for each metric in each of thalamus and sCC regions. Then these histograms are 

concatenated to form the initial image feature, resulting in a 280 dimensional vector, given 

that there are 9 MR metrics (AWF, DA, De_par, De_perp, FA, MD, AK, MK, RK) in sCC, 

and 5 MR metrics in thalamus (FA, MD, AK, MK, RK). Together with additional 2 

demographic features (age and sex), the total feature dimension is 282.

To perform feature selection and evaluate the model performance, we use a cross validation 

approach, where each time we randomly take 20% of the samples for validation, and the rest 

for training. We repeat this procedure 100 times (to decrease sampling bias), and report the 

average validation error as the model performance.

To have a better generalization accuracy analysis, once the features are chosen, we divide the 

dataset into three sets, training, validation, and heldout samples, where we train the model 

on the training set and find the optimum values of the SVM hyper-parameters using the 

validation set, and evaluate the model performance on the heldout set. In each run, we 

randomly pick 45 samples out of the entire 227 samples as the heldout set. We then run cross 

validations 100 times within the remaining data (using 137 samples for training and 45 

samples for validation), to generate 100 models, and use the ensemble of 100 models to 

make prediction on the held-out set and calculate the classification accuracy. We repeat this 

4 times, each time with a different set of 45 heldout samples chosen randomly and report the 

average accuracy. We also calculate the 95% confidence interval of different models 

accuracies to assess the statistical significance of the proposed model gain. The average 

accuracies, along with the 95% confidence interval, for the validation and heldout sets for 
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four different approaches are given in Table II. The results reported here use first 10 chosen 

features for each method. As we can see from this table, the prediction accuracy of the 

proposed framework is around 2% higher than other features, based on 95% confidence 

interval, which shows a reasonable improvement. One reason that adversarial features are 

better than the convolutional features could be that by regularizing the latent representations 

to be drawn from a prior distribution, it is much easier for the network to converge. 

Interestingly enough, the heldout accuracies are close to validation accuracies, which could 

be a good indicator of the generalizability of the proposed features.

To evaluate the robustness of the model predictions for heldout samples, we evaluated the 

standard deviation (std) of prediction accuracy over these 100 ensemble predictors. The 

standard deviations, and 95% confidence interval of different feature sets are shown in Table 

III. As we can see from this table, the standard variation of all models are relatively small, 

which is a good indicator of generalization.

B. Selected Features

With forward feature selection using the SVM classifier, the optimal feature subsets (with 

maximum feature number set at 10) chosen from different features extraction algorithms are 

listed in the Table IV. It is worth mentioning that the chosen features vary between 

techniques and it is not entirely clear why. Of note, our Adversarial BoW technique selects 

adversarial visual words from kurtosis measures of the thalamus and axonal diffusion, DA, 

of the splenium of the corpus callosum, both measures which have previously been 

implicated in differentiating MTBI patients from controls [5], [47]-[48].

C. Sensitivity, Specificity and ROC Curve Analysis

Besides classification accuracy, we also report the sensitivity and specificity, which are 

important in the study of medical data analysis. The sensitivity and specificity are defined as 

in Eq (2), where TP, FP, TN, and FN denote true positive, false positive, true negative, and 

false negative respectively. In our evaluation, we treat the MTBI subjects as positive.

Sensitivity = TP
TP+FN,  Specificity = TN

TN+FP (2)

The sensitivities and specificities for different features are shown in Table V.

Figure 6 denotes the validation classification accuracies, sensitivities and specificities 

achieved by different ratios of training samples using adversarial features. We see that using 

approximately 80% of training samples gives reasonably well validation performance, and 

we do not gain much by using higher ratios of training samples. Similar trends were 

observed with other features as well. All other results reported in this paper were using 80% 

samples for training and 20% for validation, in the cross validation study.

In Figure 7, we present the receiver operating characteristic (ROC) curve for different set of 

features on heldout samples. ROC curve is a plot which illustrates the diagnostic ability of a 

binary classifier system as its discrimination threshold is varied. This curve is created by 

plotting the true positive rate (i.e. sensitivity) against the false positive rate for various 
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threshold settings. Recall that we use the mean prediction of 100 classifiers to predict 

whether a subject has MTBI. Previously reported results are obtained with a threshold of 0.5 

on the mean prediction. The ROC curve is derived by varying the threshold from 0 to 1 with 

a stepsize of 0.05. As we can see the adversarial and convolutional features provide higher 

sensitivities under the same false positive rate than the other two methods, and overall have 

larger areas under the curve (AUCs).

D. Impact of Number of Features and Histogram Dimension

We also studied the classification performance using feature subset of different sizes. These 

results are shown in Figure 8. We see that with more than 10 features, it is possible to further 

improve the results slightly, except with the statistical features.

In another experiment, we evaluated the impact of histogram dimension on the classification 

performance. We generated histograms of 10, 20, and 30 dimensions, respectively, for each 

metric and region, and performed classification. The accuracies and confidence intervals of 

different histogram dimensions are reported in Table VI. Using 20 dimensional histogram 

yields the best performance on the held-out set.

E. The Impact of Patch Dimension

In another experiment, we study the impact of image patch’s dimension, on the final 

classification performance. Choosing a large patch size, would decrease the number of total 

patches for each brain image (resulting in a less reliable histogram representations), and 

choosing a small patch would lead to lack of enough patterns in each patch, resulting in less 

discriminative histogram representation. We apply our framework on 3 different patch sizes, 

8×8, 16×16 and 32×32. Table VII presents the validation and heldout accuracy of this 

framework using different patch sizes, as well as 95% confidence intervals. As we can the 

model based on 16×16 patches achieves the highest classification accuracy on the heldout 

set.

F. The Impact of Feature Selection Approach

There are several ways to perform feature selection for a classification task. Feature 

selection algorithms are divided into three broad categories: wrapper, filter, embedded. In 

this work, we relied on greedy forward feature selection, which belongs to the category of 

wrapper feature selection. One can also try other approaches such as joint feature selection 

and classification (a kind of embedded algorithm) to simultaneously perform feature 

selection and classification. L1-SVM is a popular algorithm for joint feature selection and 

classification. It adds an 𝓁1 regularization on the weights, forcing many of them to be zero. 

In this way, we can treat features with nonzero weights as the selected ones. We start by 

setting aside a held-out set of the same size. There is a regularization weight, C𝓁1
, associated 

with this term which determines the amount of sparsity. We tried 100 different values for 

C𝓁1
, and selected the C𝓁1

 with the highest average validation accuracy across all shufflings 

and re-train the model using that C𝓁1
 on the whole dataset except for the held-out. The 
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classification performance of the 𝓁1-SVM model on validation and heldout set is provided in 

Table VIII. The number of selected features associated with the C𝓁1
 value resulting in the 

highest validation accuracy is 30.

G. The Impact of Latent Prior Distribution

As mentioned in Section III, one needs to impose some prior distribution on latent variables 

of adversarial auto-encoder. Gaussian distribution on latent variables, z, is most commonly 

used and is also adopted in our approach. However, because these latent features are 

clustered to generate the BoW histograms, it is also natural to explore the use of a Gaussian 

mixture distribution on the latent variables, and treat each mixture as a visual word cluster. 

By imposing Gaussian mixture on patch level features, we can follow two different 

directions for deriving the brain-level features (as histogram of patch-level features):

• Assign the latent representation of each patch to the mixture with the highest 

likelihood, and derive the histogram. We call this nearest-neighbor clustering 

approach.

• Assign the latent representation of each patch to different clusters with a weight 

proportional to the likelihood of each mixture. We call this likelihood clustering 

approach.

We trained an adversarial auto-encoder with Gaussian mixture prior on our brain patches, 

and derived the histogram features using both of the above schemes, and performed 

classification. We have set the number of Gaussian mixtures to 20, so that the brain-level 

features are 20-dimensional and consistent with our other experiments. Also all Gaussian 

mixtures are set to be equally likely. The mean of these Gaussians are set as one-hot vectors 

to ensure equal distance, and their covariance are set to be identical and diagonal so that 

different dimensions of each Gaussian are i.i.d. The results are summarized in Table IX. We 

can see that using the Gaussian prior yields better results.

H. Comparison of TBI and Control Histograms

Finally, we present the average histograms of MTBI, and control subjects. These histograms 

and their difference are shown in Fig 9. As we can see MTBI and control subjects have clear 

differences in some parts of these representations.

We also find the average histogram over the chosen words for MTBI and control subjects. 

These histograms are shown in Fig 10. As we can, MTBI and control subjects have clear 

differences over the chosen words. For example the first two words, are less frequent in 

patients, than in controls.

I. Localization of Potential Impacted Regions

We also tried to localize the chosen words within the brain. To do so, each time we focus on 

one of the words chosen by the proposed classification algorithm, and then go over all 

patches of 16×16 in thalamus and sCC (by shifting the patches with some stride) to see if 

they are quantized to the chosen word. If so, we increment by one the voxel values in that 

patch to active regions, and repeat this procedure for the remaining patches. Here, we 
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provide the heatmaps of two patients and two control subjects for two chosen words. These 

heatmaps are illustrated in Fig 11–12. As we can see from Fig 11, this word is much more 

frequent in patient subjects, than in controls. It could imply that, this word has some MTBI 

related information. Note that, for each case, the top two rows denote the heatmap of a 

specific word over different slices, and the bottom two rows denote the actual metric of 

those slices. We intentionally increased the contrast of the actual metrics in the bottom to 

row, for better illustration.

V. Conclusion

In this work, we propose an unsupervised learning framework for MTBI identification from 

diffusion MR images using a dataset of 227 subjects. We first learn a good representation of 

each brain regions, by employing a deep unsupervised learning approach that learns feature 

representation for image patches, followed by aggregating patch level features using bag of 

word representation to form the overall image feature. These features are used along with 

age and gender as the final feature vector. Then greedy forward feature selection is 

performed to find the best feature subset, followed by SVM to perform classification. 

Through experimental studies, we show that by learning deep visual features at the patch 

level, we obtain significant gain over using mean values of MR metrics in brain regions. The 

performance is also improved over the approach where the visual words are determined 

based on the raw image patch representation. Furthermore, we found that the features learnt 

with an adversarial autoencoder are more powerful than a non-adversarial autoencoder. This 

methodology may be of particular use for learning features from datasets with relatively 

small number of samples, as can be encountered in some medical image analysis studies. 

The learned features could also be used for tasks other than classification such as long-term 

outcome prediction.

Acknowledgment

Research reported in this paper is supported in part by grant funding from the National Institutes of Health (NIH): 
R01 NS039135–11 and R21 NS090349, National Institute for Neurological Disorders and Stroke (NINDS). This 
work is also performed under the rubric of the Center for Advanced Imaging Innovation and Research (CAI2R, 
www.cai2r.net), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183). We would like to thank 
both NIH and CAI2R for supporting this work. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the NIH.

References

[1]. Faul MLW, Wald MM, Coronado VG, “Traumatic Brain Injury in the United States: Emergency 
Department Visits, Hospitalizations and Deaths”, 2010.

[2]. Voormolen DC, Cnossen MC, Polinder S, Steinbuechel NV, Vos PE, and Haagsma JA, “Divergent 
classification methods of post-concussion syndrome after mild traumatic brain injury: Prevalence 
rates, risk factors and functional outcome”, Journal of neurotrauma, 2018.

[3]. Roe C, Sveen U, Alvsaker K and Bautz-Holter E “Post-concussion symptoms after mild traumatic 
brain injury: influence of demographic factors and injury severity in a 1-year cohort study”, 
Disability and rehabilitation, 31, 1235–1243, 2009. [PubMed: 19116810] 

[4]. Grossman EJ, Inglese M, Bammer R, “Mild traumatic brain injury: is diffusion imaging ready for 
primetime in forensic medicine?”, Topics in magnetic resonance imaging: TMRI 216: 379, 2010. 
[PubMed: 22158131] 

Minaee et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cai2r.net/


[5]. Chung S, Fieremans E, Wang X, Kucukboyaci NE, Morton CJ, Babb J, Amorapanth Prin et al. 
“White matter tract integrity: an indicator of axonal pathology after mild traumatic brain injury”, 
Journal of neurotrauma 35, no. 8: 1015–1020, 2018. [PubMed: 29239261] 

[6]. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, and Grossman RI, “Diffuse 
axonal injury in mild traumatic brain injury: a diffusion tensor imaging study”, Journal of 
neurosurgery 103, no. 2: 298–303, 2005. [PubMed: 16175860] 

[7]. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM, “White matter integrity 
and cognition in chronic traumatic brain injury: a diffusion tensor imaging study”, Brain, 
130(10), 2508–2519, 2007. [PubMed: 17872928] 

[8]. Shenton ME, Hamoda HM, Schneiderman JS, et al. “A review of magnetic resonance imaging and 
diffusion tensor imaging findings in mild traumatic brain injury”, Brain imaging and behavior 62: 
137–192, 2012. [PubMed: 22438191] 

[9]. Grossman EJ, Jensen JH, Babb JS, Chen Q, Tabesh A, Fieremans E, Xia D, Inglese M, Grossman 
RI, “Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and 
perfusion imaging study”, American Journal of Neuroradiology,34(5):951–7, 2013. [PubMed: 
23179649] 

[10]. Stokum JA, Sours C, Zhuo J, Kane R, Shanmuganathan K, and Gullapalli RP, “A longitudinal 
evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury”, Brain 
injury 29, no. 1: 47–57, 2015. [PubMed: 25259786] 

[11]. Fieremans E, Jensen JH, Helpern JA, “White matter characterization with diffusional kurtosis 
imaging”, Neuroimage, Elsevier, 177–188, 2011.

[12]. Lui YW, Xue Y, Kenul D, Ge Y, Grossman RI, Wang Y, “Classification algorithms using multiple 
MRI features in mild traumatic brain injury”, Neurology 8314: 1235–1240, 2014. [PubMed: 
25171930] 

[13]. Vergara VM, Mayer AR, Damaraju E, Kiehl KA, Calhoun V, “Detection of mild traumatic brain 
injury by machine learning classification using resting state functional network connectivity and 
fractional anisotropy”, Journal of neurotrauma, 2017.

[14]. Minaee S, Wang Y, Lui YW, “Prediction of longterm outcome of neuropsychological tests of 
MTBI patients using imaging features”, Signal Processing in Medicine and Biology Symposium, 
IEEE, 2013.

[15]. Minaee S, Wang Y, Chung S, et al. “A Machine Learning Approach For Identifying Patients with 
Mild Traumatic Brain Injury Using Diffusion MRI Modeling”, The American Society of 
Functional Neuro-radiology (ASFNR), 12th Annual Meeting, 2017.

[16]. Grossman EJ, Inglese M, “The role of thalamic damage in mild traumatic brain injury”, Journal 
of neurotrauma, 33(2), pp.163–167, 2016. [PubMed: 26054745] 

[17]. Treble A, Hasan KM, Iftikhar A, et al. “Working memory and corpus callosum microstructural 
integrity after pediatric traumatic brain injury: a diffusion tensor tractography study”, Journal of 
neurotrauma, 30(19), 1609–1619, 2013. [PubMed: 23627735] 

[18]. Carroll LJ, Cassidy JD, Peloso PM, et al. “Prognosis for mild traumatic brain injury: results of 
the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury” J Rehabil Med: 
84105, 2004.

[19]. Cortes Corinna, and Vapnik Vladimir. ”Support-vector networks”, Machine learning 203: 273–
297, 1995.

[20]. Mitra J, Shen K, Ghose S, Bourgeat P, Fripp J, Salvado O, Pannek K, Taylor DJ, Mathias JL, and 
Rose S, “Statistical machine learning to identify traumatic brain injury (TBI) from structural 
disconnections of white matter networks”, NeuroImage 129, 247–259, 2016. [PubMed: 
26827816] 

[21]. Shaker M, Erdogmus D, Dy J, Bouix S, “Subject-specific abnormal region detection in traumatic 
brain injury using sparse model selection on high dimensional diffusion data”, Medical image 
analysis, 37, 56–65, 2017. [PubMed: 28160691] 

[22]. Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW, “MR imaging applications in mild 
traumatic brain injury: an imaging update”, Radiology, 279(3), 693–707, 2016. [PubMed: 
27183405] 

Minaee et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[23]. Douglas DB, Iv M, Douglas PK, Vos SB, Bammer R, et al. “Diffusion tensor imaging of TBI: 
potentials and challenges”, Topics in magnetic resonance imaging, 24(5), 241–251, 2015. 
[PubMed: 26502306] 

[24]. Mayer AR, Hanlon FM, Dodd AB, Ling JM, Klimaj SD, Meier TB, “A functional magnetic 
resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain 
injury”, Human brain mapping, 36(11), 4394–4406, 2015. [PubMed: 26493161] 

[25]. Minaee S, Wang S, Wang Y, et al. “Identifying Mild Traumatic Brain Injury Patients From MR 
Images Using Bag of Visual Words”, Signal Processing in Medicine and Biology Symposium, 
IEEE, 2017.

[26]. Minaee S, Wang Y, Choromanska A, Chung S, Wang X, Fieremans E, Flanagan S, Rath J, and 
Lui YW., “A Deep Unsupervised Learning Approach Toward MTBI Identification Using 
Diffusion MRI”, The 40th international conference of the IEEE Engineering in Medicine and 
Biology Society, 7 2018 (Accepted).

[27]. Mayer AR, Ling J, Mannell MV, Gasparovic C. et al. “A prospective diffusion tensor imaging 
study in mild traumatic brain injury”, Neurology, 74(8), 643–650, 2010. [PubMed: 20089939] 

[28]. Basser Peter J., Mattiello James, and Denis LeBihan. “MR diffusion tensor spectroscopy and 
imaging”, Biophysical journal, 259–267, 1994. [PubMed: 8130344] 

[29]. Jensen JH, Helpern JA, “MRI quantification of nonGaussian water diffusion by kurtosis 
analysis”, NMR in Biomedicine: 698–710, 2010. [PubMed: 20632416] 

[30]. Lowe David, “Distinctive image features from scale-invariant key-points”, International journal 
of computer vision, 2004.

[31]. Bay H, Ess A, Tuytelaars T, Van Gool L, “Surf: Speeded up robust features”, In European 
conference on computer vision, Springer, 2006.

[32]. Dalal N, Triggs B, “Histograms of oriented gradients for human detection”, CVPR, IEEE, 2005.

[33]. Guo Z, Zhang L, Zhang D, “A completed modeling of local binary pattern operator for texture 
classification”, IEEE Transactions on Image Processing 19, no. 6, 2010.

[34]. Girshick R, Donahue J, Darrell T, Malik J, “Rich feature hierarchies for accurate object detection 
and semantic segmentation”, CVPR, IEEE, 2014.

[35]. Ronneberger O, Fischer P, Brox T, “U-net: Convolutional networks for biomedical image 
segmentation”, In International Conference on Medical image computing and computer-assisted 
intervention, Springer, 2015.

[36]. He K, Zhang X, Ren S, Sun J, “Deep residual learning for image recognition”, In Proceedings of 
the IEEE conference on computer vision and pattern recognition, 2016.

[37]. You Q, Jin H, Wang Z, Fang C, Luo J, “Image captioning with semantic attention”, CVPR, IEEE, 
2016.

[38]. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B, “Adversarial autoencoders”, arXiv 
preprint arXiv:1511.05644, 2015.

[39]. Masci J, Meier U, Ciresan D, Schmidhuber J, “Stacked convolutional auto-encoders for 
hierarchical feature extraction”, International Conference on Artificial Neural Networks, 2011.

[40]. Leng B, Guo S, Zhang X, Xiong Z, “3D object retrieval with stacked local convolutional auto-
encoder”, Signal Processing 112, 2015.

[41]. Yang J, Jiang YG, Hauptmann AG, Ngo CW, “Evaluating bag-of-visual-words representations in 
scene classification”, Proceedings of the international workshop on multimedia information 
retrieval, ACM, 2007.

[42]. Yang Y, Newsam S, “Bag-of-visual-words and spatial extensions for land-use classification”, 
SIG-SPATIAL international conference on advances in geographic information systems, ACM, 
2010.

[43]. Peng X, Wang L, Wang X, Qiao Y, “Bag of visual words and fusion methods for action 
recognition: Comprehensive study and good practice”, Computer Vision and Image 
Understanding 150: 109–125, 2016.

[44]. Guyon I, Elisseeff A, “An introduction to variable and feature selection”, Journal of machine 
learning research, 3(Mar), 1157–1182, 2003.

Minaee et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[45]. Chandrashekar G, Sahin F, “A survey on feature selection methods”, Computers and Electrical 
Engineering, Elsevier, 2014.

[46]. Peng H, Long F, Ding C, “Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy”, IEEE Transactions on pattern analysis and 
machine intelligence, 2005.

[47]. Nss-Schmidt ET, Blicher JU, Eskildsen SF, Tietze A, et al. “Microstructural changes in the 
thalamus after mild traumatic brain injury: A longitudinal diffusion and mean kurtosis tensor 
MRI study”, Brain injury, 31(2), 230–236, 2017. [PubMed: 28055267] 

[48]. Grossman EJ, Ge Y, Jensen JH, Babb JS, et al. “Thalamus and cognitive impairment in mild 
traumatic brain injury: a diffusional kurtosis imaging study”, Journal of neurotrauma, 29(13), 
2318–2327, 2012. [PubMed: 21639753] 

Minaee et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
The block-diagram of the proposed MTBI identification algorithm
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Fig. 2: 
The block-diagram of an example convolutional auto-encoder
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Fig. 3: 
Block-diagram adversarial auto-encoder, courtesy of Makhzani [38]
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Fig. 4: 
The block-diagram of the proposed BoW approach
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Fig. 5: 
The patches in the first, second, third and fourth rows denote some of the sample patches 

from FA, MD, Depar and MK metrics.
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Fig. 6: 
The model performance for different training ratios
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Fig. 7: 
The ROC curve for different features
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Fig. 8: 
The model performance for feature sets of different sizes
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Fig. 9: 
Adversarial-BoW histograms of patients and controls
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Fig. 10: 
Adversarial-BoW histograms over the chosen words
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Fig. 11: 
Localization heatmaps corresponding to a chosen word in thalamus and MD metric. The 

figures in top row denote the heatmaps for two patient subjects, and the heatmaps in bottom 

row denotes the heatmaps for two controls. In each figure, the first two rows denote the 

location of chosen words in different parts of 13 thalamus slices, and the next two rows 

denote the actual MD metrics in thalamus for those subjects.

Minaee et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12: 
Localization heatmaps corresponding to a chosen word in sCC and RK metric. The figures 

in top row denote the heatmaps for two patient subjects, and the heatmaps in bottom row 

denotes the heatmaps for two controls. In each figure, the first two rows denote the location 

of chosen words in different parts of 13 thalamus slices, and the next two rows denote the 

actual MD metrics in thalamus for those subjects.

Minaee et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Minaee et al. Page 28

TABLE I:

MRI metrics description

Diffusion Imaging Features Description

FA Fractional Anisotropy

MD Mean Diffusion

MK, AK, RK Mean/Axial/Radial Kurtosis

AWF Axonal Water Fraction

DA Intra-axonal diffusivity

De-par Extra-axonal axial diffusivity

De-perp Extra-axonal radial diffusivity
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TABLE II:

Performance comparison of different approaches using 16×16 patches

The Algorithm Classification Rate on Validation Set Classification Rate on Heldout Set

The selected subset of statistical features [25] 78±1.1% 76.6±1.1%

BoW on raw patches with 20D histograms [25] 80.9±1.1% 79.9±1.1%

The Convlutional-BoW with 20D histograms [26] 81.2±1.1% 79.9±1.1%

The proposed Adversarial-BoW (20D histograms) 84.2±1% 83.8±1%
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TABLE III:

Analysis of mean, standard deviation, and 95% confidence interval of heldout accuracy of different approaches 

using 16×16 patches

The Algorithm Classification Rate Mean Classification Rate STD The 95% confidence interval

The selected subset of statistical features [25] 76.6% 3.05% 76±1.1%

BoW on raw patches with 20D histograms [25] 79.9% 3.67% 79.9±1.1%

The Convlutional-BoW with 20D histograms [26] 79.9% 3.08% 79.9±1.1%

The proposed Adversarial-BoW (20D histograms) 83.8% 2.85% 83.8±1%
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TABLE IV:

Chosen features by different approaches. Note that Thal refers to the thalamus region, and sCC refers to 

Splenium subregion within Corpus Callosum.

The Algorithm Chosen Features’ Metric and Region

Statistical features MD in sCC (mean), FA in sCC (entropy), AK in sCC (mean), FA in Thal (mean), MD in Thal (var), Depar in sCC 
(entropy), MK in sCC (entropy), AWF in sCC (mean), Deperp in sCC (entropy), MK in Thal (entropy)

Raw-BoW FA in sCC, MD in Thal, MK in sCC, AK in Thal, MD in sCC, AWF in sCC, AK in Thal, Depar in sCC, AK in sCC, FA 
in Thal

Conv-BoW FA in Thal, AK in Thal, Depar in sCC, MK in sCC, RK in sCC, AK in sCC, MD in Thal, RK in sCC, MD in Thal, MD in 
sCC

Adversarial-BoW MD in Thal, AK in Thal, RK in sCC, FA in Thal, Deperp in sCC, MD in Thal, DA in sCC, MD in sCC, Deperp in sCC, 
Depar in sCC
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TABLE V:

Sensitivity and specificity of different approaches on validation set

The Algorithm Sensitivity Specificity

Statistical 82.8 74.1

Raw-BoW 79.5 82.3

Conv-BoW 80.2 82.1

Adv-BoW 86.1 81.8
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TABLE VI:

Impact of the number of clusters (or histogram dimension)

The BoW Histogram Dimension Classification Rate on Validation Set Classification Rate on Heldout Set

10 80±1.1% 79.4±1.1%

20 84.2±1% 83.8±1%

30 84.5±1% 82.9±1%
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TABLE VII:

Impact of patch dimension on the classification accuracy rate

Patch Dimension Classification Rate on Validation Set Classification Rate on Heldout Set

8×8 81.2±1.1% 72.5±1.2%

16×16 80.9±1.1% 79.9±1.1%

32×32 66.1 ±1.3% 60±1.4%
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TABLE VIII:

Comparison of performance of different feature selection approaches

Patch Dimension Classification Rate on Validation Set Classification Rate on Heldout Set

Forward feature selection 84.2±1% 83.8± 1%

𝓁1-SVM based feature selection 69.6± 1.3% 67.5± 1.3%
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TABLE IX:

The classification results using different distributions on latent variables

Patch Dimension Validation Classification Heldout Classification

Gaussian prior with k-means clustering 84.2±1% 83.8±1%

Gaussian mixture prior with nearest neighbor clustering 77.5±1.1% 67.5±1.3%

Gaussian mixture prior with likelihood clustering 75 ±1.2% 70±1.3%
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