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Abstract

Combined detection-estimation tasks are frequently encountered in medical imaging. Optimal 

methods for joint detection and estimation are of interest because they provide upper bounds on 

observer performance, and can potentially be utilized for imaging system optimization, evaluation 

of observer efficiency, and development of image formation algorithms. We present a unified 

Bayesian framework for decision rules that maximize receiver operating characteristic (ROC)-type 

summary curves, including ROC, localization ROC (LROC), estimation ROC (EROC), free-

response ROC (FROC), alternative free-response ROC (AFROC), and exponentially-transformed 

FROC (EFROC) curves, succinctly summarizing previous results. The approach relies on an 

interpretation of ROC-type summary curves as plots of an expected utility versus an expected 

disutility (or penalty) for signal-present decisions. We propose a general utility structure that is 

flexible enough to encompass many ROC variants and yet sufficiently constrained to allow 

derivation of a linear expected utility equation that is similar to that for simple binary detection. 

We illustrate our theory with an example comparing decision strategies for joint detection-

estimation of a known signal with unknown amplitude. In addition, building on insights from our 

utility framework, we propose new ROC-type summary curves and associated optimal decision 

rules for joint detection-estimation tasks with an unknown, potentially-multiple, number of signals 

in each observation.
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I. Introduction

Joint detection and estimation tasks arise often in medical imaging. For example, a common 

task is to detect the presence of focal lesions and estimate their respective locations [1], [2]. 

Other types of combined detection-estimation tasks are found in cancer imaging, where 

lesion detection may be followed by estimation of tumor size or functional biomarkers such 

as standardized uptake value [3], [4]. Also, measures of tumor heterogeneity and texture can 

be estimated [5], [6]. Further examples of joint detection and estimation tasks arise in 

cardiac imaging (stenosis detection and quantification) [7], [8], neuroimaging (detection and 

severity estimation of traumatic brain injury) [9], [10], and osteoporosis assessment (fracture 

detection and bone density estimation) [11], [12].

Observer performance on a binary detection task is commonly summarized with the receiver 

operating characteristic (ROC) curve [13]. Because ROC curves only summarize 

performance for detection and not estimation, several modifications of the ROC curve have 

been proposed to measure performance on joint detection and estimation tasks; most of this 

work has been motivated by lesion detection-localization tasks in medical imaging. Namely, 

for joint detection and localization of a single signal (or target), the localization ROC 

(LROC) curve [14] can be used. When there are an unknown number of signals, detection 

and localization performance can be summarized with the free-response ROC (FROC) curve 

[15], two versions of alternative free-response ROC (AFROC) curves [16], [17], or the 

exponentially-transformed FROC (EFROC) curve [18]. In addition, the estimation ROC 

(EROC) curve [19] has been proposed to summarize performance for general joint detection 

and estimation tasks.

Optimal methods for simultaneous detection and estimation are of theoretical interest 

because they give upper bounds on observer performance. Such optimal strategies, 

commonly called “ideal observers” in the medical imaging literature [20], can potentially be 

utilized for imaging system optimization [21], [22], evaluation of observer efficiency [23]–

[25], and development of image formation algorithms [23], [24]. For the above ROC-type 

curves, a higher summary curve implies better performance. Hence, the optimal decision 

rule can be defined as the strategy that maximizes the height of the summary curve for each 

value of the abscissa (horizontal axis).1 For a simple binary detection task, the optimal ROC 

decision rule is the likelihood ratio test, which consists of comparing the likelihood ratio 

statistic to a threshold [26], [27]. For joint detection and estimation tasks, optimal decision 

rules have been derived by Khurd et al. that maximize the LROC curve [28] and the FROC 

and AFROC curves [29], respectively. In addition, Clarkson [19] presented the decision rule 

that maximizes the EROC curve.

In this paper, we present a unified, decision-theoretic derivation of optimal decision rules 

associated with ROC-type curves for joint binary detection and estimation tasks. Namely, 

building on findings in [30], a common utility framework is presented that captures key 

properties associated with ROC-type summary curves. In particular, because it explicitly 

describes how decision outcomes are rewarded or penalized, this utility framework provides 

1Throughout this work, for simplicity, we assume that each summary curve is defined for every value of its abscissa.
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a means to adapt the performance criterion to the problem at hand [30]. The decision rule 

that maximizes expected utility is derived and shown to reduce to the optimal ROC, LROC, 

EROC, FROC, AFROC, and EFROC decision rules as special cases, putting the results of 

[19], [28], [29] in a common Bayesian framework. In addition, based on insights from this 

utility framework, we propose new performance summary curves and optimal decision rules 

for joint detection and estimation tasks with an unknown, potentially-multiple, number of 

signals.

In [19], [28], [29], optimal LROC, EROC, FROC, and AFROC decision rules are derived by 

generalizing a proof for the Neyman-Pearson lemma that is commonly found in the 

engineering literature, e.g., [26], [27], which directly solves a constrained maximization 

problem. In addition, [28], [29] give secondary decision-theoretic derivations of the optimal 

LROC, FROC, and AFROC decision rules, respectively. However, these secondary 

derivations are not sufficient to show that the summary curves are maximized. By contrast, 

our approach relies on the structure of the expected utility equation to show that maximizing 

expected utility maximizes the corresponding summary curve. Moreover, the utility 

structures used here for FROC and AFROC curves are more general than those in [29], and 

are seen to be consistent with the requirement that utilities lie on an interval scale [31], a 

property of classical theories of utility [32], [33].

A key concept underlying our approach is the observation that the ordinate (vertical axis) 

and abscissa (horizontal axis) of an ROC-type summary curve can be interpreted as an 

expected utility and an expected disutility (or penalty), respectively, for signal-present 

decisions. Namely, for the ROC curve, the true-positive rate can be seen as an expected 

utility and the false-positive rate can be seen as an expected disutility. This interpretation 

allows us to put other ROC-types curves, such as LROC, EROC, FROC, and AFROC into a 

common utility framework. Furthermore, it leads to a generalization of the classical 

likelihood ratio test for binary detection to joint detection-estimation problems.

II. Preliminaries: the ROC curve and its progeny

This section provides necessary background and notation that will be used in later sections. 

We start with basic aspects of binary detection and the ROC curve. Subsequently, we review 

the definitions of LROC, EROC, FROC, AFROC, and EFROC curves. Throughout the 

paper, we denote vectors with boldface letters and scalars with non-boldface letters.

A. Binary detection

1) The ROC curve—A binary signal detection task consists of deciding whether or not a 

signal is present. Let ℋ ∈ {ℋ0, ℋ1} be a binary random variable denoting signal presence, 

where ℋ0 and ℋ1 correspond to signal-absent and signal-present cases, respectively. Given 

an observation, g, a decision rule for this task produces an estimate ℋ̂(g) of ℋ. In this 

setting, there are four possible outcomes: true-positive (TP), false-negative (FN), true-

negative (TN), and false-positive (FP), which lead to the definition of four rates (or 

conditional probabilities): RTP = P(ℋ̂ = ℋ1 |ℋ = ℋ1), RTN = P(ℋ̂ = ℋ0 |ℋ = ℋ0), RFN = 

P(ℋ̂ = ℋ0 |ℋ = ℋ1), and RFP = P(ℋ̂ = ℋ1 |ℋ = ℋ0), where P(E) denotes the probability 

of event E. In the engineering literature, e.g., [26], [27], the true-positive rate, RTP, false-
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negative rate, RFN, and false-positive rate, RFP, are commonly called the “detection” (or 

“hit”), “miss” and “false-alarm” probabilities, respectively. From the above definitions, it 

follows that RTP + RFN = 1 and RTN + RFP = 1. Consequently, for a given decision 

threshold, binary detection performance is fully described by the pair (RTP, RFP). The ROC 

curve is defined as the plot of RTP versus RFP over all decision thresholds [26]; see Fig. 1.

2) Expected utility—Throughout the paper, to be consistent with [19] and [30], we work 

with expected utility instead of Bayes risk. Nonetheless, all results can alternatively be 

derived with Bayes risk by defining costs as negative utilities [34]. Let UE denote the utility 

of event E. Also, to simplify our notation, we will express P(ℋ = ℋi) as P(ℋi). The total 

expected utility for a binary detection task is the sum of each event utility weighted by its 

corresponding probability [26],

(1)

Above, note that a script letter, , denotes expected utility. Throughout the paper, expected 

utilities will be denoted with script letters to distinguish them from utilities of events. Using 

the identities RTP + RFN = 1 and RTN + RFP = 1, the expected utility can be rewritten in 

terms of RTP and RFP as

(2)

Rearranging terms, we arive at the iso-utility equation [35],

(3)

which defines iso-utility lines in ROC coordinates.

We make two observations from the above equations that will be important for later 

developments. First, under the reasonable assumption that correct decisions have greater 

utility than incorrect decisions, i.e., UTP > UFN and UTN > UFP, (2) shows that expected 

utility has the form  = ARFP+BRTP+C with A < 0 and B > 0. So a higher ROC curve 

implies higher expected utility, and vice-versa. Therefore, maximizing expected utility is 

equivalent to maximizing RTP for each RFP. This observation clarifies why both the Bayes 

criterion and Neyman-Pearson criterion lead to the likelihood ratio test for simple binary 

detection [26].

Second, the iso-utility equation (3) is invariant under positive affine transformations of 

utility. This outcome is consistent with the fact that classical theories of utility [32], [33] 

have the property that utility lies on an interval scale [31]. Specifically, for any constants α > 

0 and β, if the total expected utility is transformed as ′ = α  + β, and the event utilities 
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are transformed as  for each event E, e.g., , etc., then (3) is 

unchanged.

B. EROC and LROC curves

Our focus in this work is a joint detection-estimation task involving a binary determination 

of signal-presence and an estimation of a random signal-parameter vector, θ ∈ Θ. Namely, 

given an observation, g, the aim is to obtain an estimate ℋ̂(g) for ℋ, and if ℋ̂ = ℋ1, to 

estimate θ as θ̂(g). Note that the parameter vector θ is assumed to be relevant only when the 

signal is present, i.e., we do not consider estimation of parameters associated with signal 

absence. For the LROC curve, θ, is the coordinate vector for the signal location, whereas for 

the EROC curve, θ is a general parameter vector. Since the LROC curve is a special case of 

the EROC curve, we start with the EROC definition.

Let ϒTP(θ, θ̂) be a utility function for the parameter estimate in the case of a TP decision. It 

is assumed that the utility function is higher for an accurate parameter estimate and lower for 

an inaccurate estimate. Also, let E[·] denote mathematical expectation, and let ℐ(S) be the 

indicator function that equals one when the proposition S is true and equals zero otherwise. 

The EROC curve [19] plots the expected utility of the parameter estimate for a TP decision 

(called the expected utility of a TP for short), defined as

(4)

versus the false positive rate, RFP, over all decision thresholds. (Note that this expected 

utility is denoted with a script letter to distinguish it from the utility for a TP event.) Above, 

the expectation is over θ, θ̂, and ℋ̂, conditional on the event ℋ = ℋ1. To make the EROC 

curve easier to interpret, and without loss of generality, the utility function can be scaled to 

fall in the interval [0, 1] so that the EROC ordinate is between zero and one [36]. An 

example of an EROC curve is given in Fig. 1.

The ROC curve can be viewed as a special case of the EROC curve when the utility function 

is identically equal to one, i.e, ϒTP(θ, θ̂) ≡ 1, since E[ℐ(ℋ̂ = ℋ1) |ℋ = ℋ1] = P(ℋ̂ = ℋ1 |ℋ 
= ℋ1) = RTP. Another special case of the EROC curve is the LROC curve [14], which 

applies when there is at most one signal per observation and θ is the signal location. The 

LROC curve is obtained when the utility function is the indicator function for correct 

localization, i.e., ϒTP(θ, θ̂) = ℐ(‖θ̂−θ‖ ≤ R), where R is an acceptable radius for correct 

localization. The LROC curve plots the correctly-localized true-positive rate,

(5)

versus the false-positive rate, RFP. In words, RTPL is the probability of a TP decision for 

which the signal is correctly localized; see [37] for additional details on LROC curves.
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C. FROC, AFROC, and EFROC curves

The FROC curve, and its close relatives, AFROC and EFROC curves, are designed to assess 

performance for a detection-location task with an unknown, random number of signals. 

Namely, suppose that each observation contains n ≥ 0 signals, where n is random, and that 

the task is to decide if the observation contains signals (ℋ = ℋ1), and if so, to detect and 

localize all signals. For this task, the signal-parameter vector is θ = [n, r1, r2,…, rn], where 

ri is the coordinate vector of the ith signal. The number of (correctly localized) TP 

detections for an observation is modeled as the sum of n Bernoulli random variables, each 

with success probability, , which is called the signal detection fraction (the superscript 

“F” denotes FROC).2 In general, the Bernoulli random variables can be statistically 

dependent, so that their sum is not necessarily Binomially distributed. The FROC curve plots 

the signal detection fraction versus the mean number of false-positive detections per 

observation; see Fig. 1.3

Before covering AFROC and EFROC curves, we establish some notation and take a closer 

look at the definition of the FROC curve. First, we introduce counting functions, MTP(θ, θ̂) 
and MFP(θ, θ̂), for the number of TP and FP detections in a signal-present observation, 

respectively [29]. At this point, to keep our treatment general, we will not assume specific 

forms for the counting functions; one choice of definitions is presented in Section VI. In 

addition, let the estimated number of signals in an observation be n̂, and denote the number 

of FP detections in an observation as NFP, which is equal to n̂ for a signal-absent observation 

and MFP for a signal-present observation.

The FROC curve coordinates can be expressed in terms of the TP and FP counting 

functions. Specifically, the abscissa, the mean number of FPs per observation, is E[NFP] = 

E[n̂ |ℋ = ℋ0]P(ℋ0) + E[MFP |ℋ = ℋ1]P(ℋ1). In addition, the ordinate, the signal 

detection fraction, can be written as either  or 

. These alternative expressions for the ordinate were first 

presented in [29]. They can be derived by using the law of iterated expectations and the fact 

that MTP is the sum of n (generally dependent) Bernoulli trials, each with probability of 

success ; the details are omitted for brevity. In our previous work on utility theory [30], 

we used the first expression. However, in this paper, we will use a utility structure based on 

the second expression for consistency with [29].

Because the horizontal range of the FROC curve is potentially infinite, the area under the 

curve is generally undefined and not suitable as a summary figure of merit. For this reason, 

three variants of the FROC curve have been proposed that result in a finite area under the 

curve. Each of these variants uses the FROC ordinate (vertical axis) and a modification of 

the FROC abscissa (horizontal axis). The first variant is the AFROC curve [16], which 

2Note that  is assumed to be the same for all signals. Although this is a fairly standard assumption, it may be violated in some 
circumstances due to, e.g., limited search area, signal cuing, or satisfaction of search [38].
3In the FROC literature, starting with [15], the FROC ordinate (vertical axis) is typically defined as an empirical quantity, the total 
number of TP detections divided by the total number of signals in the sample. A more appropriate definition is the population mean of 

this empirical quantity, which is easily seen to be  [30].
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defines the abscissa to be the probability of at least one false-positive per observation, P(NFP 

> 0) = P(n̂ > 0 |ℋ = ℋ0)P(ℋ0) + P(MFP > 0 |ℋ = ℋ1)P(ℋ1). The second variant [17], 

which following [29], we call the signal-absent-abscissa AFROC (SAA-AFROC) curve, 

defines the abscissa as the probability that there is at least one false-positive in a signal-

absent obervation, P(NFP > 0 |ℋ = ℋ0). The third variant, called the EFROC curve [18], 

defines the abscissa as 1−exp(−E[NFP]). Since the EFROC abscissa is a strictly increasing 

transformation of the FROC abscissa, it follows that the decision rule that maximizes the 

FROC curve for each value of the abscissa also maximizes the EFROC curve. For this 

reason, our development below for FROC curves also applies to EFROC curves, and we will 

not discuss the EFROC case separately.

III. The general Bayes decision rule

Before considering optimal strategies that maximize ROCtype summary curves, it is useful 

to start with the general Bayes decision rule [34] for a combined binary detection and 

estimation task, which maximizes expected utility (or equivalently, minimizes Bayes risk). 

We choose to work with expected utility instead of Bayes risk to be consistent with [19] and 

[30], which are formulated in terms of utility functions. Equivalent formulations based on 

Bayes risk can be found in [20, p. 907–908] and [29, p. 381–382].

Using the notation introduced in Section II, let ℋ ∈ {ℋ0, ℋ1} denote signal presence and 

let θ ∈ Θ be a parameter vector associated with the signal(s). Given an observation, g, we 

seek estimates ℋ̂(g) and θ̂(g) for ℋ and θ, respectively.

Below, we write the joint probability density function (pdf) for a vector of random variables 

x as p(x). Generally, random variables are allowed to be either continuous or discrete. When 

they are discrete, probability density functions should be interpreted as probability mass 

functions and integrals over probability densities become summations; these modifications 

are clear from the context. To streamline our notation, we write p(g |ℋ = ℋi) as p(g |ℋi). In 

addition, since the signal-parameter vector is only relevant when the signal is present, p(θ |

ℋ = ℋ1) will be written simply as p(θ).

Expressing the utility function for an estimate (ℋ̂, θ̂) as U(ℋ̂, θ̂, ℋ, θ), the posterior 

expected utility is

(6)

where the expectation is over (ℋ, θ) given g. Above, we use p to denote posterior expected 

utility, in order to distinguish it from expected utility, . The Bayes decision rule, denoted 

(ℋ*, θ*), maximizes p for each g, i.e.,

(7)
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Equivalently, the Bayes decision rule maximizes the total expected utility, , since by the 

law of iterated expectations,  is equal to the expectation of p with respect to g; this is 

similar to the equivalence of minimizing either posterior expected loss or Bayes risk [34, 

Sec. 4.4].

For a binary detection task, there are four possible outcomes: TP, FN, TN, and FP. 

Consequently, the utility function for a joint binary detection-estimation task can be 

decomposed in terms of four utilities: VTP(θ, θ̂), VFN(θ), VTN, and VFP(θ̂). The letter “V” is 

used to distinguish these utilities for the joint detection-estimation task from the binary 

detection utilities, UTP, UFN, UTN, and UFP, introduced in Section II-A2. More generally, 

the utilities can also depend on parameters that are not associated with signal presence [20, 

p. 908]. However, the level of generality used here is sufficient to derive the optimal decision 

rules that maximize ROC-type curves.

With the above utilities, it follows that

(8)

Define the conditional likelihood ratio as

(9)

In the Appendix, we show that the Bayes decision rule is

(10a)

(10b)

(10c)
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The optimal decision rule finds the estimate θ*, calculates the decision statistic, T(g), and 

decides in favor of signal-presence if T(g) is positive. Note that (10) is equivalent to equation 

(23) in Khurd et al. [29].

Observe that the above formulation implicitly includes the possibility of nuisance 

parameters, which are not of interest in themselves, and therefore do not affect expected 

utility. Specifically, the signal-parameter vector can be partitioned as θ = [ϕ, ν], where ϕ is a 

parameter vector of interest, and ν is a vector of nuisance parameters. In this case, the 

utilities VTP(θ, θ̂), VFN(θ), VTN, and VFP(θ̂) do not depend on ν, but the conditional 

likelihood ratio, Λ(g | θ) and the prior density, p(θ), do depend on ν. Consequently, the 

decision rule (10) marginalizes over the nuisance parameters. In the extreme case that all of 

the parameters are nuisance parameters, i.e., θ = ν, the task is pure binary detection, and 

(10) reduces to the classical likelihood ratio test [26].

IV. The optimal ROC-type decision rule

We will use the optimal Bayes rule given in the previous section to derive decision rules that 

maximize ROC-type curves. For this purpose, we introduce a special case of the general 

utility structure in the previous section.

A. Utility framework

First, recall that UTN, UFN, UTP, and UFP are constituent utilities for outcomes of the binary 

detection task. Second, let ΔFP(θ̂) and ΔTP(θ, θ̂) be disutility functions corresponding to 

parameter estimates for FP and TP decisions, respectively. These functions will be used to 

penalize incorrect and inaccurate parameter estimates, where larger values indicate a greater 

penalty. Last, let ϒTP(θ, θ̂) be a utility function corresponding to parameter estimates for TP 

decisions, where a larger value corresponds to a greater reward. For our purposes, the above 

disutility and utility functions for parameter estimates will always be taken to be positive, 

but this requirement is not necessary. Summarizing, UTN, UFN, UTP, and UFP are utilities for 

the binary detection task, and ΔFP(θ̂), ΔTP(θ, θ̂), and ϒTP(θ, θ̂) are disutility and utility 

functions, respectively, for the estimation task.

Now, define the following utility structure for the joint detection-estimation task:

(11a)

(11b)

(11c)
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Since this structure is a special case of the utility structure of Section III, some generality is 

lost, e.g, VFN does not depend on θ. However, we will see that (11) is flexible enough to 

encompass many variants of ROC-type curves and yet sufficiently constrained so as to allow 

a derivation of a linear expected utility equation similar to that for binary detection.

The structure in (11) has two properties worth noting. First, observe that when ΔFP(θ̂) ≡ 1, 

ΔTP(θ, θ̂) ≡ 0, and ϒTP(θ, θ̂) ≡ 1, (11) reduces to the utility structure for simple binary 

detection in Section II-A2. Second, (11) decomposes VTN, VFN, VFP, and VTP as affine 

combinations of UTN, UFN, UTP, and UFP, i.e., the coefficients sum to one. Because affine 

combinations commute with affine transformations, this second property implies that any 

positive affine transformation of the constituent utilities UTN, UFN, UTP, and UFP will 

translate into the same positive affine transformation of VTN, VFN, VFP, and VTP, and vice-

versa. Therefore, (11) is consistent with interval-scale utility [32], [33].

We define the expected FP and TP disutilities as

(12)

and

(13)

and the expected disutility for a positive decision as

(14)

Similarly, we define the expected utility of a TP as

(15)

Under the utility structure in (11), the total expected utility can be expressed as

(16)

Next, rearranging terms leads to the iso-utility equation,

(17)

In the special case that ΔTP(θ, θ̂) ≡ 0, the expected disutility of a TP, TP, is zero, and (17) 

becomes
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(18)

At this stage, it is instructive to pause and compare the above results with the iso-utility 

equation for pure binary detection, (3). In particular, we see that (18), has the same form as 

(3), with TP and FP corresponding to RTP and RFP, respectively. Likewise, (17) is also 

very similar to (3), with p corresponding to RFP, the only difference being the absence of 

P(ℋ0) in the term with P. As we observed for (3), (17) and (18) are invariant with respect 

to positive affine transformations of , UTP, UFN, UTN, and UFP, which provides additional 

evidence that utility structure in (11) is consistent with interval-scale utility.

Table I lists specical cases for which TP corresponds to the ordinate of an ROC-type 

summary curve and either P or P/P(ℋ0) corresponds to the abscissa. For example, in the 

fourth row, the expressions for the FROC axes in Section II-C imply that P is equal to the 

mean number of FPs per observation, E[NFP], and TP is equal to the signal detection 

fraction, . Each of the summary curves discussed in Section II is included in Table I, 

with the exception of EFROC. (Recall from Section II that since maximizing the FROC 

curve is equivalent to maximizing the EFROC curve, it is not necessary to treat the EFROC 

curve separately.)

Given the above observations, we can make the notion of an “ROC-type” summary curve 

more precise. Namely, any curve that plots TP versus a strictly increasing function of P 

can be said to be a member of the “ROC-type” family of performance summary curves. 

Later, we examine possibilities for new types of summary curves from this family. It is 

useful to give the plot of TP versus P a name, so we call it the utility ROC (UROC) curve.

B. Optimal decision rule

Under the reasonable assumption that UTP > UFN, the expected utility equation (16) implies 

that increasing TP for any fixed value of P leads to higher expected utility. (This is simply 

a mathematical statement that a higher curve is better.) Therefore, maximizing expected 

utility, , is equivalent to maximizing TP for each P. Hence, we can obtain the decision 

rule that maximizes any ROC-type summary curve by inserting the utility structure (11) into 

the general Bayes rule (10). Doing this, we obtain the following decision rule:

(19a)

(19b)
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(19c)

(19d)

(19e)

Above, T0 can be interpreted as a decision threshold. For example, in the EROC case of 

Table I, since ΔFP(θ̂) = 1 and ΔTP(θ, θ̂) = 0, signal-presence is determined by comparing the 

integral in (19d) to T0. More generally, we see that the decision threshold is included within 

the integrand in (19d).

A notable aspect of the above decision rule is that the constituent utilities, UTP, UFN, UTN, 

and UFP are absorbed by the decision threshold, T0. Therefore, knowledge of these utilities 

is not required if the threshold can be determined by other means. Namely, T0 can be 

adjusted to achieve a desired value of the summary curve abscissa, and the resulting decision 

rule will maximize the ordinate.

For the special cases in Table I, the decision rule in (19) yields the optimal decision 

strategies [19], [26], [28], [29] that maximize ROC, LROC, EROC, FROC, AFROC, and 

SAA-AFROC curves, respectively. Thus, the above theory unifies previous results within a 

single decision-theoretic framework.

C. Some Special Cases

To better appreciate the generality of the optimal decision rule (19), it is informative to 

consider the EROC-optimal decision rule, and special cases that correspond to the 

commonly-used generalized likelihood ratio test (GLRT) and maximum a posteriori (MAP) 

decision rules [26], [27]. From Table I, the EROC curve corresponds to the choices ΔFP(θ̂) = 

1 and ΔTP(θ, θ̂) = 0, so the EROC-optimal decision rule is

(20a)
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(20b)

(20c)

Note that the parameter estimate, θ*(g), in (20a) is simply the Bayes estimator for θ with 

utility function ϒTP(θ, θ̂*). In addition, the decision statistic is essentially a weighted 

average of the likelihood ratio, where the weighting function is ϒTP(θ, θ̂*). Since the 

decision statistic is smaller for inaccurate parameter estimates, the decision rule is less likely 

to decide in favor of signal-presence when the parameter estimate is poor. By contrast, the 

likelihood ratio test, which corresponds to ϒTP(θ, θ̂*) ≡ 1, simply marginalizes the 

likelihood ratio over the parameter vector.

If the utility function for the parameter estimate is a Dirac delta function, i.e., ϒTP(θ, θ̂) = 

δ(θ̂−θ), and the prior on the parameter vector is uniform over a set Θ with finite Lebesgue 

measure μ(Θ), so that p(θ) = 1/μ(Θ), then (20) is equivalent to the decision rule

(21a)

(21b)

In this case, (21a) is the maximum likelihood estimator (MLE) for θ and (21b) is the GLRT 

[26], [27].

Similarly, taking ϒTP(θ, θ̂) = δ(θ̂ − θ), assuming that UTN − UFP = UTP − UFN, and 

applying Bayes’ rule, it is straightforward show that (20) becomes

(22a)

(22b)

which is the MAP decision rule for joint detection and estimation [39].
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V. Example: Known Signal with Unknown Amplitude

We illustrate the theory in the previous section with an example involving detection of a 

known signal with unknown amplitude in white Gaussian noise (WGN). This task can be 

viewed as a surrogate for tumor detection in positron emission tomography (PET), where the 

task is to detect a lesion and estimate its maximum standardized uptake value (SUVmax) 

[4]. We compare the classical GLRT-MLE detection-estimation strategy to two decision 

rules that maximize ROC-type curves.

Below, 2-D images are writen as column vectors. A p × 1 random vector, x, following a 

multivariate normal distribution with mean μ and covariance matrix, Σ, will be denoted as x 
~ p(μ, Σ). Similarly, x ~ (μ, σ2) will denote a scalar random variable with mean μ and 

variance σ2.

Let g be an m × 1 observation vector, which under the signal-absent and signal-present 

hypotheses, takes the form

(23a)

(23b)

Above, w is an m × 1 noise vector, s is a known m × 1 signal vector, and A is an unknown 

scalar amplitude. Given a measurement, g, the task is to decide if the signal, s, is present and 

if so, to estimate the amplitude, A. For PET tumor detection, s is the lesion and A is 

SUVmax. The noise vector, w, is assumed to be zero-mean, WGN with variance , i.e., 

, where I is the m × m identity matrix. Also, we assume that the amplitude, 

A, is random, statistically independent of w, and follows a normal distribution with mean μA 

and variance , i.e., .

A convenient aspect of the above detection-estimation problem is that closed-form results 

are known for some cases. Namely, the MLE for A and the GLRT are [27, p. 254–255]

(24a)

(24b)
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(24c)

where τ is the decision threshold. In addition, the optimal ROC decision strategy, the 

likelihood ratio test, marginalizes over A, and the decision statistic is [27, p. 257–258]

(25)

which is compared to a threshold to make the decision.

To define an EROC curve, we assume a Gaussian utility function, 

, where σu is a parameter to be specified. In the context 

of PET tumor detection, this utility function rewards estimates of SUVmax that are closer to 

the true value. In a supplementary document available under the multimedia tab for this 

paper on the journal website, it is shown that the optimal EROC decision rule is

(26a)

(26b)

(26c)

The above decision rule possesses three interesting properties. First, it can be shown that the 

amplitude estimate (26a) is the mean of the posterior distribution, p(A| g, ℋ1). Second, (26) 

is independent of the utility function parameter, σu. Lastly, the decision statistic (26b) is 

identical to that for the likelihood ratio test, so it is also the optimal ROC decision rule.

Also, we define a UROC curve by taking the utility function ϒTP(A Â) to be a Gaussian as 

above, and by defining the disutility functions as ΔTP(A, Â) ≡ 0 and ΔFP(Â) = 10|Â|. In 

contrast to the EROC curve, this UROC curve penalizes amplitude estimates for FP 

decisions nonuniformly. Namely, amplitude estimates that are larger in magnitude result in a 

larger penalty for FP decisions. This penalty is desireable in the PET tumor detection 

setting, since FP decisions with larger estimates of SUVmax may result in more aggressive 

treatment.
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In the aforementioned supplementary document accompanying this paper on the journal 

website, we show that the EROC-optimal objective function is

(27)

(28)

where σ̃
w = σw/‖s‖. From (19), it follows that the optimal UROC decision rule is

(29a)

(29b)

(29c)

where T0 is the decision threshold.

We performed a Monte Carlo evaluation to compare the GLRT-MLE, EROC-optimal, and 

UROC-optimal decision rules. A 32 × 32 image region of interest (ROI) was used, so that m 
= 1024, and the signal, s, was taken to be a Gaussian, with kth entry 

, where σs = 3 and xk = yk = −16 + (k−1) for k = 1, 2, …, 32. 

The remaining parameters were σw = 2, μA = 1, σA = 0.5, σu = 0.2. Fig. 2 shows empirical 

ROC, EROC, and UROC curves estimated from 10, 000 Monte Carlo trials, in which half of 

the images contained a signal and half did not. The EROC-optimal and UROC-optimal 

decision rules both outperformed the GLRT-MLE strategy for each summary curve, which 

was expected since the GLRT-MLE does not utilize the prior distribution for A. In adddition, 

the ROC curves were observed to be nearly the same for the EROC-optimal and UROC-

optimal strategies, which indicates that the UROC-optimal decision rule did not sacrifice 

accuracy for the detection component of the task. As expected, the EROC-optimal and 

UROC-optimal decision rules resulted in higher EROC and UROC curves, respectively.
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VI. New performance summary curves for detection tasks with an unknown 

number of signals

The theory in Section IV is suggestive of new classes of summary curves and associated 

optimal decision rules for joint detection-estimation with an unknown number of signals. 

Below, we present examples of new types of summary curves when signal-localization is an 

important factor.

New summary curves can be defined by combining the EROC paradigm with aspects of 

either the FROC or AFROC paradigms. Specifically, suppose that the task consists of 

detecting and correctly localizing n ≥ 0 signals, where n is random and unknown, together 

with estimation of additional parameters associated with each signal. Let the parameter 

vector for the ith signal be of the form θi = [ri, ηi], where ri is the signal location (coordinate 

vector) and ηi is a vector of additional parameters of interest, such as amplitude, width, 

orientation, etc. Similarly, let the jth signal-parameter estimate be θ̂j = [r̂j, η̂j]. We write the 

overall parameter vector for a signal-present observation as θ = [n, θ1, θ2, …, θn], and 

denote its estimate as θ̂ = [n̂, θ̂1, θ̂2, …, θ̂n̂]. Above, note that the indices of θ̂j do not 

necessarily correspond to the indices of θi.

To assess signal-localization, we first define

(30)

which is the index of the signal-location estimate closest to signal i, and

(31)

which is the index of the signal closest to signal-location estimate j. With these index 

functions, the TP and FP counting functions for a signal-present observation can be defined 

as

(32)

and

(33)
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respectively, where R is an acceptable radius for correct localization. Next, motivated by the 

definition of the EROC ordinate, we let u(η̂
f(i), ηi) be a utility function for the estimate of ηi, 

and define the utility function

(34)

Finally, setting ϒTP(θ, θ̂) = γ(θ, θ̂), we see that the resulting TP combines aspects of the 

EROC and FROC ordinates into a single expression. We call the plot of TP versus the 

FROC absicssa, E[NFP], the multiple estimate FROC curve (MEFROC). Similarly, we call 

the plot of TP versus the AFROC abscissa, P(NFP > 0) the multiple estimate AFROC 

(MEAFROC) curve. Note that when u(η̂
f(i), ηi) ≡ 1, MEFROC and MEAFROC curves 

reduce to FROC and AFROC curves respectively, since in this case, γ(θ, θ̂) = MTP(θ, θ̂)/n.

The MEFROC and MEAFROC curves defined above only penalize poor estimates of the 

parameters ηi for TP detections. More generally, we can define a summary curve that 

penalizes parameter estimates η̂
j for FP detections. Specifically, let w(η̂j) be a disutility 

function for a parameter estimate arising from a FP detection, let

(35)

be a disutility function for FP detections in signal-absent observations, and let

(36)

be a disutility function for FP detections in signal-present observations. Defining ΔFP(θ̂) = 

α(θ̂), ΔTP(θ, θ̂) = β(θ, θ̂) and ϒTP(θ, θ̂) = γ(θ, θ̂), we call the resulting summary curve 

plotting TP versus P the generalized FROC (GFROC) curve. Note that the GFROC curve 

reduces to the MEFROC curve in the special case that w(η̂
j) ≡ 1.

The disutility and utility functions for MEFROC, MEAFROC, and GFROC curves are 

summarized in Table II. The decision rule (19) maximizes the height of each curve.

VII. Discussion and Conclusions

Theoretically-optimal approaches for combined detection and estimation tasks are of interest 

in medical imaging because they give upper bounds on observer performance and can 

potentially be utilized for imaging system optimization, evaluation of observer efficiency, 

and development of image formation algorithms. This paper presents a unified, decision-

theoretic derivation of optimal decision rules for joint detection and estimation that 

maximize ROC-type performance summary curves. A key component of our approach is 
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that ROC-type summary curves can be interpreted as plots of an expected utility versus an 

expected disutility for signal-present decisions. Our derivation relies on a general utility 

structure that concisely unifies previous work on utility theory for ROC-type curves [30]. 

Using this structure, decision rules that maximize ROC, LROC, EROC, FROC, AFROC, 

SAA-AFROC, and EFROC curves are placed in a common framework, succinctly 

summarizing previous results in [19], [28], [29]. In addition, our general utility framework is 

suggestive of new performance summary curves and associated optimal decision rules. For 

example, Section V utilizes a UROC curve that nonuniformly penalizes parameter estimates 

for FP decisions. In Section VI, aspects of EROC and FROC curves are combined to 

introduce MEFROC, MEAFROC, and GFROC curves for joint detection-estimation 

problems involving an unknown number of signals in each observation.

An advantage of our utility-based formulation of performance summary curves and decision 

rules is that rewards and penalties for correct and incorrect decisions are made explicit. This 

characteristic of our theory facilitates adaptation of the performance criterion to a given 

problem. For example, consider the task from Section VI that requires detecting an unknown 

number of signals and estimation of both location and additional supplementary parameters. 

For this task, because the FROC utility structure does not reward or penalize estimation of 

supplementary parameters, it is preferable to use a performance criterion that does, such as 

the GFROC curve. Hence, a careful consideration of utility forms the rationale for the choice 

of performance criterion [30].

A more focused application of the theory presented in this paper to practical problems is an 

important topic for future work. One difficulty is that computational evaluation of the 

optimal decision rules given here may be highly complex, particularly for problems 

involving an unknown number of signals, because it generally requires evaluation of high-

dimensional data likelihoods, multi-dimensional integration and nonconvex optimization. 

Nonetheless, computationally tractable methods might be possible in some scenarios, and 

techniques utilized in [21], [40]–[42] may be a good starting point for such research.
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Appendix

Here we derive the general Bayes decision rule in (10). Starting with (8), we apply Bayes 

rule, recall (9), and use the fact that ℐ(ℋ̂ = ℋ0) = 1 − ℐ(ℋ̂ = ℋ1) to rewrite the posterier 

expected utility as
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(37)

where p(θ | ℋ1) is written as p(θ) for notational simplicity. Now, define the decision statistic 

as

(38)

To maximize the posterior expected utility in (37), the optimal strategy is as follows. First, if 

T(g) ≤ 0, decide ℋ0 (Since VTN and VFN do not depend on θ̂, it is inconsequential.) 

Otherwise, if T(g) > 0, decide ℋ1 and estimate θ as

(39)

(40)

Finally, note that the decision statistic (38) can be rewritten in terms of θ* to obtain (10b).
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Fig. 1. 
Examples of ROC-type summary curves. Note that the EROC curve has a utility function 

limited to the interval [0, 1], and that the FROC abscissa has a potentially infinite extent.

Wunderlich et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
ROC, EROC, and UROC curves for the example, which compares GLRT-MLE, EROC-

optimal, and UROC-optimal decision rules. Note that the UROC abscissa has an infinite 

extent, and has been truncated to [0 3] for display purposes.
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TABLE II

Disutility and utility functions that define new types of summary curves. Each curve plots TP versus P.

curve ΔFP(θ ^) ΔTP(θ, θ ^) ϒTP(θ, θ ^)

MEFROC n ^ MFP(θ, θ ^) γ(θ, θ ^)

MEAFROC 1 ℐ(MFP(θ, θ ^) > 0) γ(θ, θ ^)

GFROC α(θ ^) β(θ, θ ^) γ(θ, θ ^)
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