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In this work it is shown that vascular structures of the human retina represent geometrical mul-
tifractals, characterized by a hierarchy of exponents rather then a single fractal dimension. A
number of retinal images from the STARE database (www.parl.clemson.edu/stare) are analyzed,
corresponding to both normal and pathological states of the retina. In all studied cases a clearly
multifractal behavior is observed, where capacity dimension is always found to be smaller then the
information dimension, which is in turn always smaller then the correlation dimension, all the three
being significantly lower then the DLA (Diffusion Limited Aggregation) fractal dimension. We also
observe a tendency of images corresponding to the pathological states of the retina to have lower
generalized dimensions and a shifted spectrum range, in comparison with the normal cases.

PACS numbers: 05.40.-a, 61.43.Hv, 87.57.-s, 87.57.Nk

Over the past decade, there have been several attempts
[1, 2, 3, 4, 5, 6] in the direction of employing the frac-
tal dimension as a measure for quantifying the “state” of
human retinal vessel structures (considered as geometri-
cal objects), with the expectation that such analysis may
contribute to automatic detection of pathological cases,
and therefore to computerization of the diagnostic pro-
cess. While this is certainly a valid question with pos-
sibly high impact on real world diagnostic issues, there
are some issues that should be addressed before such in-
vestigations may prove useful for the standard clinical
practice. First, the fact that retinal vessels represent “fi-
nite size” realizations of a fractal growth process, imposes
questions about how exactly should one go about mea-
suring the fractal dimension of a particular instance (e.g.
an electronic image of a retinal vessel structure, taken
from a given angle, with a given resolution and light-
ning conditions). A related question is to what extent
these calculations may correspond to the limiting fractal
(which would have been attained if the growth process
could have been extended to infinity), or equivalently, to
what degree they may be compared with calculations on
other such finite instances. Although various issues re-
lated to these questions have already been addressed (for
a current review see e.g. [6]), it seems that many of them
remain open for further investigation. Second, some of
these works [3, 4] address the point that the retinal ves-
sels may have different properties in different regions, and
do indeed find different characteristics depending on the
locale of measurement, although the procedures adopted
in these works are only remotely related to established
concepts of multifractality, and the corresponding com-
monly accepted procedures for its measurement (see e.g.
[7, 8, 9, 10, 11, 12] and references therein).

In this work we concentrate on the latter of the above
issues, that is, we show that the human retinal vessel
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structures are geometrical multifractals, characterized by
a hierarchy of exponents rather then a single fractal di-
mension. We analyze a number of retinal images from
the STARE database [13], corresponding to both nor-
mal and pathological states of the retina. In all cases
we find clearly multifractal behavior. The capacity (or
box counting) dimension is always found to be smaller
then the information (or Shannon) dimension, which is
in turn always smaller then the correlation dimension. In
all cases the observed values of the capacity dimension
were significantly lower then the DLA (Diffusion Limited
Aggregation) fractal dimension, which has been consid-
ered in earlier works [1, 2, 6] as the primary model rele-
vant for the phenomenon at hand. It is also found that
images corresponding to pathological cases tend to have
lower generalized dimensions, as well as a shifted spec-
trum range, in comparison with the normal cases.
In contrast to regular fractals (or monofractals), mul-

tifractals are characterized by a hierarchy of exponents,
rather then a single fractal dimension. A well known ex-
ample of multifractality is the growth probability distri-
bution during the DLA growth process, which has been
shown to exhibit multifractal scaling [14, 15, 16, 17].
Geometrical (or mass) multifractals represent a special
case when the measure of interest is homogeneously dis-
tributed over the observed structure, so that only the
number of particles (Lebesgue measure) contributes to
the measure within a given region of the fractal [8, 9].
Considering a structure with mass (number of pixels)
M0 and linear size L, covered with a grid of boxes of
linear size ℓ, the generalized dimension Dq for the mass
distribution is defined by

∑

i

(

Mi

M0

)q

∼

(

ℓ

L

)(q−1)Dq

, (1)

where Mi is the mass (number of pixels) within the i-
th box, and q is a continuous (adjustable) variable that
makes it possible to single out fractal properties of the ob-
ject at different scales (equivalent of inverse temperature

http://arxiv.org/abs/physics/0410076v2
mailto:borko@ufpe.br


2

in thermodynamics). The generalized dimensionsD0, D1

and D2 correspond to the capacity (or box-counting) di-
mension, information (or Shannon) dimension, and cor-
relation dimension, respectively. Finally, D−∞ and D∞

represent the limits of the generalized dimension spec-
trum (for monofractals, all the generalized dimensions
coincide, being equal to the unique fractal dimension).
It turns out that the direct application of (1) in prac-

tice is hindered by the fact that for q < 0 the boxes
that contain a small number of particles (because they
barely overlap with the cluster) give anomalously large
contribution to the sum on the left hand side of (1). To
alleviate this problem and perform the multifractal anal-
ysis of the retinal vessel structures, we adopt the gen-
eralized sand box method [9, 10], which has been suc-
cessfully used do demonstrate geometric multifractality
of DLA [9]. This procedure consists in randomly select-
ing N points belonging to the structure, and counting for
each such point i the number of pixels Mi(R) that belong
to the structure, inside boxes of growing linear dimension
R, centered at the selected pixels. The left hand side of
equation (1) can now be interpreted as the average of the

quantity (Mi(R)/M0)
q−1

according to probability distri-
bution Mi(R)/M0. When the box centers are chosen ran-
domly, the averaging should be made over the chosen set,
and the equivalent of (1) becomes

〈

(

M(R)

M0

)q−1
〉

∼

(

R

L

)(q−1)Dq

. (2)

The practical advantage of this method is that the boxes
are centered on the structure, so that by construction
there are no boxes with too few particles (pixels) inside.
To verify whether human retinal vessel structures

demonstrate geometrical multifractal scaling properties,
we have used a set of forty retinal images from the
STARE database [13], manually segmented by two dif-
ferent observers (herefrom referred to by initials AH and
VK as in [13]) from twenty original retinal scans (con-
taining ten normal and ten pathological cases), for the
purpose of studies on automatic image segmentation and
diagnostics [18]. The images segmented by observers AH
and VK differ in level of detail, and the resulting set,
totaling forty segmented images, is available for down-
load from the STARE project [13] in ppm file format,
with resolution of 700x605 pixels. As recently it has been
argued [19] that fractal analysis may be more sensitive
to changes in vascular patterns when skeletal images of
vascular trees are considered, rather then the original
segmented images (which contain the vessel width in-
formation), in order to verify whether the vessel width
information indeed does exert influence on the multifrac-
tal analysis, we have also performed skeletonization of the
two downloaded sets using the eight connected Rosenfeld
algorithm [20], to produce two additional sets of twenty
images each. A typical normal and a pathological im-
age, segmented by observers AH and VK (where images
segmented by observer VK demonstrate a substantially
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FIG. 1: Image of a typical normal retinal vessel structure
(image files im0162.ah.ppm from the STARE database [13]),
segmented by a) observer AH and b) observer VK, together
with their skeletonized versions c) and d), respectively, and a
typical pathological structure (image file im0001.ah.ppm, di-
agnosed with Background Diabetic Retinopathy), segmented
by observer AH.

higher level of detail), respectively, together with their
skeletonized versions using the Rosenfeld algorithm, are
shown in Fig. 1.
For all of the four sets (containing twenty images

each), we have performed measurements (calculations)
according to (2), selecting 1000 random points on each
structure (typical structure size M0 is approximately
30000 pixels, and the typical linear size L is 600 pix-
els), and counting number Mi of pixels inside boxes cen-
tered at selected points. These numbers were then used
to extract generalized dimension Dq, for different val-
ues of q (−10 < q < 10), as slopes of the lines ob-
tained through regression (minimum squares fitting) of

log
〈

[M(R)/M0]
q−1

〉

/(q− 1), as a function of log(R/L).

The whole procedure was repeated 100 times (with dif-
ferent random choices of the 1000 random points), for
each image, and for each value of q. The final values of
Dq were calculated as averages over these repetitions.
A word is due on calculations for the special case

q = 1, corresponding to information dimension D1. As
the above formulas are non-analytic for q = 1, we per-
form calculations at q = 1±ǫ, for ǫ = 0.001, and assuming
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FIG. 2: The generalized dimension spectrum, Dq versus q,
for a typical normal retinal image (image file im0162.ah.ppm
[13]), averaged over 100 random choices of 1000 points each
(see text for details). The error bars indicate the largest
and smallest values encountered within the 100 runs, and the
curve connecting the points serves as a guide to the eye. The
points corresponding to the capacity dimension D0 = 1.647,
the information dimension D1 = 1.594 and the correlation di-
mension D2 = 1.552 are represented by full circles, while the
dotted lines serve to emphasize their position.

linearity of the function D(q) in this (short) interval, we
interpolate D1 ≈ (D1−ǫ +D1+ǫ) /2 (in fact, the differ-
ence between the values of Dq calculated on both sides
of q = 1 was found to be only slightly larger then the
statistical fluctuations induced by random choice of the
set of measurement points on the structure).
Results of a typical calculation are shown in Fig. 2,

where it is seen that the observed retinal vessel structure
clearly demonstrates multifractal scaling, rather then be-
ing a simple monofractal (there is a significant differ-
ence between generalized dimensions). In particular, the
capacity dimension D0, the information dimension D1

and the correlation dimension D2 are all different, sat-
isfying D0 > D1 > D2. Also, all the three values re-
main substantially lower then the DLA fractal dimen-
sion estimate, commonly accepted in the literature, of
Dq=2 ≃ 1.71 (which is in fact underestimated by com-
monly used methods) [9], in contrast with previous find-
ings [1, 2, 6].
Numerical corresonding to Fig. 2 (for the set of twenty

images from the STARE database segmented by ob-
server AH) are given in Tab. I. The first column lists
the image names, while the second column indicates im-
age classification status as “Pathological” or “Normal”
[21]. The values of generalized dimensions Dq are given
for q = −10, 0, 1, 2, 10, where as already mentioned D0,
D1 and D2 correspond to the capacity, information and
correlation dimension, respectively, while D−10 and D10

indicate the range of the general dimension spectrum.
It is seen from Tab. I that all of the values calculated
for the capacity dimension (which corresponds to box

TABLE I: Generalized dimensions Dq for q = −10, 0, 1, 2, 10,
for the twenty analyzed images from the STARE database.
The second column indicates classification status for each of
the images (pathological and normal).

Image Status D−10 D0 D1 D2 D10

im0001.ah P 1.968 1.540 1.494 1.462 1.361
im0002.ah P 1.930 1.548 1.498 1.460 1.370
im0003.ah P 1.877 1.509 1.469 1.443 1.380
im0004.ah P 1.777 1.522 1.492 1.465 1.367
im0005.ah P 1.900 1.589 1.560 1.538 1.474
im0044.ah P 1.886 1.541 1.493 1.459 1.363
im0077.ah N 1.911 1.576 1.528 1.496 1.426
im0081.ah N 1.917 1.555 1.514 1.487 1.421
im0082.ah N 1.981 1.578 1.518 1.476 1.404
im0139.ah P 1.904 1.565 1.516 1.481 1.413
im0162.ah N 1.968 1.647 1.594 1.552 1.459
im0163.ah N 1.998 1.642 1.587 1.550 1.476
im0235.ah N 1.945 1.597 1.548 1.514 1.442
im0236.ah N 1.868 1.584 1.544 1.514 1.448
im0239.ah N 1.945 1.587 1.549 1.520 1.437
im0240.ah N 1.918 1.593 1.564 1.543 1.494
im0255.ah N 1.944 1.633 1.604 1.583 1.521
im0291.ah P 1.819 1.516 1.482 1.454 1.348
im0319.ah P 1.703 1.443 1.409 1.382 1.299
im0324.ah P 1.923 1.567 1.520 1.486 1.399

counting method), and indeed the correlation dimension
(corresponding to methods such as radius of gyration or
the density-density correlation function), are significantly
lower then the DLA fractal dimension Dq=2 ≃ 1.71 [9].
Therefore, our results show that retinal vessel structures
are geometrical multifractals, and that the overall fractal
dimension is lower then that of the DLA.
Results of the multifractal analysis for the other three

sets of images (STARE database images segmented by
observer VK, and the skeletonized versions of AH and
VK) all yield qualitatively similar results, all of them
clearly demonstrating multifractal behavior. In Table II
we present the results for the capacity (box counting)
dimension D0, for all of the four sets of images. It fol-
lows from Table II that the process of skeletonization
(removal of vessel width information from the image)
slightly reduces the fractal dimension, while this effect
is much weaker in comparison with the effect of the level
of detail present in the segmentation process, as found
between the two current observers. However, when the
results are compared consistently within each group sep-
arately, the mean fractal dimension is found to be lower
for the pathological images then for the normal cases, for
all of the four groups. Although this finding can hardly
be considered conclusive from the statistical viewpoint,
it is nevertheless encouraging from the point of view that
fractal spectrum analysis could be employed for quantifi-
cation of the retinal vessel state, in order to contribute
to automatic diagnostics. To this end, far more detailed
studies of images corresponding to specific deseases and
normal cases, are needed. Assuming that each of the ob-
servers consistently applied his own criteria in segmenta-
tion, it follows that the fractal dimension results may be
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TABLE II: Capacity(or box counting) dimension D0 for the
two sets of images from the STARE database segmented by
observers AH and VK, together with their skeletonzied ver-
sions. The second column indicates classification status for
each of the images (pathological and normal), and the last
three lines present averages for the pathological, normal and
all images, respectively.

Image Status AH AH-S VK VK-S
im0001 P 1.540 1.545 1.583 1.593
im0002 P 1.548 1.524 1.574 1.568
im0003 P 1.509 1.500 1.593 1.608
im0004 P 1.522 1.508 1.573 1.598
im0005 P 1.589 1.554 1.680 1.663
im0044 P 1.541 1.538 1.668 1.661
im0077 N 1.576 1.591 1.658 1.662
im0081 N 1.555 1.551 1.668 1.671
im0082 N 1.578 1.585 1.665 1.680
im0139 P 1.565 1.564 1.679 1.678
im0162 N 1.647 1.638 1.714 1.700
im0163 N 1.642 1.612 1.684 1.646
im0235 N 1.597 1.588 1.685 1.675
im0236 N 1.584 1.581 1.658 1.662
im0239 N 1.587 1.597 1.655 1.655
im0240 N 1.593 1.563 1.677 1.663
im0255 N 1.633 1.634 1.696 1.693
im0291 P 1.516 1.491 1.604 1.578
im0319 P 1.443 1.446 1.555 1.561
im0324 P 1.567 1.503 1.642 1.617
Average P 1.534 1.517 1.615 1.612

N 1.599 1.594 1.676 1.671
All 1.567 1.556 1.646 1.642

compared only between images segmented by the same
observer, either skeletonized or not, but should be nor-
malized before making comparisons of results from dif-
ferent groups.
When addressing multifractality, numerous works deal

with the so-called f(α) spectrum (see e.g. [7, 8, 22] and
references therein), where

N(α) = L−f(α), (3)

represents the number of boxes N(α) where the proba-
bility Pi of finding a particle (pixel) within a given region
i scales as

Pi = Lαi , (4)

and f(α) may be understood as the fractal dimension
of the union of regions with singularity strenghts be-
tween α and α + dα. The exponent α takes values
from the interval [−∞,∞], and the function f(α) is
usually a single humped function with a maximum at
df(α(q))/dα(q) = 0. The relationship between the D(q)
spectrum and the f(α) spectrum is made via the Legen-
dre transform

f (α (q)) = qα (q)− τ (q) , (5)

where

α (q) =
dτ(q)

dq
, (6)
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FIG. 3: The f(α) spectrum for the twenty images from the
STARE database [13], segmented by observer AH. Curves cor-
responding to normal retinal images are represented by open
circles, and those corresponding to pathological images [21]
are represented by full symbols. It is seen that pathological
image curves tend to be shifted to the lower α range and have
lower maxima, in comparison with the normal images (see
text for more details).

and

τ(q) ≡ (q − 1)Dq (7)

is the mass correlation exponent of the qth order. To
calculate the derivatives in (6), we have performed cal-
culations at pairs of points q and q + ǫ with ǫ = 0.001,
so that derivatives were calculated as dτ(q)/dq ≈ (τ(q +
ǫ) − τ(q))/ǫ, except at point q = 1, where we have used
dτ(q)/dq ≈ (τ(1 + ǫ)− τ(1 − ǫ))/(2ǫ).
In Fig. 3 we show detailed results of our calculations,

performed on the STARE database images segmented by
observer AH, with respect to the f(α) spectrum. While
the current set of images is not particularly adequate for
testing the effects of a given type of pathology (there
are only ten normal images, and ten pathological images
affected by not necessarily the same disease, see [21]), it
is seen that pathological case images tend to have lower
maxima, occasionally more narrow spectrum range, and
a shift in the spectrum position, in comparison with the
normal cases.
Finally, in Fig. 4 we present results of the f(α) spec-

trum averaged separately for the normal and the patho-
logical images for all of the four sets, where it is seen
that the previous observation holds for both observers,
independent of skeletonization. The skeletonized images
present more narrow f(α) spectrum then the original seg-
mented images (which contain the vessel width informa-
tion) for both observers, which may explain the conclu-
sion of [19] that fractal analysis after skeletonization may
be more sensitive to changes in vascular patterns. More
precisely, since monofractals have infinitely narrow f(α)
spectrum (a single fractal dimension), the above results
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FIG. 4: The f(α) spectrum for the twenty images from the
STARE database [13], segmented by observer AH. Curves cor-
responding to normal retinal images are represented by open
circles, and those corresponding to pathological images [21]
are represented by full symbols. It is seen that pathological
image curves tend to be shifted to the lower α range and have
lower maxima, in comparison with the normal images (see
text for more details).

show that skeletonized structures may be more closely
approximated as monofractals (when a single dimension
is calculated rather then the whole spectrum). As the
general properties of the spectrum are preserved through
skeletonizatin, another advantage of using such images
may be considered the fact that they contain far fewer
pixels, and therefore the calculations require less com-

puter time.
The results of calculations of the f(α) spectrum pre-

sented in Figs. 3-4 again may be considered encouraging
from the point of view of the objective of turning the
diagnostic process automatic, although further more de-
tailed studies are necessary to determine their statisti-
cal significance, and whether the observed differences in
multifractal scaling behavior may be exploited for dis-
cerning normal images from images with certain types of
pathologies. More precisely, the current work is primar-
ily concerned with establishing the fact that retinal vessel
images represent geometrical multifractals, nevertheless,
our calculations suggest that there may be grounds for
automatic differentiating between normal images and cer-
tain pathological cases.
In conclusion, we show in this work that vascular struc-

tures of the human retina represent geometrical multi-
fractals, characterized by a hierarchy of exponents, rather
then a single fractal dimension. We analyze twenty reti-
nal images from the STARE database [13], where half of
the images correspond to normal states of the retina, and
half to different pathological states [21], together with
their skeletonized versions. In all studied cases we find
clearly multifractal behavior, with capacity dimension
considerably lower then the DLA value. We also observe
a tendency of normal images of having higher general-
ized dimensions and a shift of the f(α) spectrum range
towards higher singularity strength values, in comparison
with the pathological cases. While the last observations
are hardly conclusive from a statistical standpoint, they
may prove relevant in the quest of automatic diagnostic
procedures.
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