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Abstract—This paper studies the trajectory control and task offloading (TCTO) problem in an unmanned aerial vehicle (UAV)-assisted
mobile edge computing system, where a UAV flies along a planned trajectory to collect computation tasks from smart devices (SDs).
We consider a scenario that SDs are not directly connected by the base station (BS) and the UAV has two roles to play: MEC server or
wireless relay. The UAV makes task offloading decisions online, in which the collected tasks can be executed locally on the UAV or
offloaded to the BS for remote processing. The TCTO problem involves multi-objective optimization as its objectives are to minimize the
task delay and the UAV’s energy consumption, and maximize the number of tasks collected by the UAV, simultaneously. This problem
is challenging because the three objectives conflict with each other. The existing reinforcement learning (RL) algorithms, either
single-objective RLs or single-policy multi-objective RLs, cannot well address the problem since they cannot output multiple policies for
various preferences (i.e. weights) across objectives in a single run. This paper adapts the evolutionary multi-objective RL (EMORL), a
multi-policy multi-objective RL, to the TCTO problem. This algorithm can output multiple optimal policies in just one run, each
optimizing a certain preference. The simulation results demonstrate that the proposed algorithm can obtain more excellent
nondominated policies by striking a balance between the three objectives regarding policy quality, compared with two evolutionary and
two multi-policy RL algorithms.

Index Terms—Mobile edge computing, multi-objective reinforcement learning, task offloading, trajectory control, unmanned aerial
vehicle.
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1 INTRODUCTION

With the rapid development of Internet-of-Things (IoT)
technology, smart devices (SDs) play an essential role
in various applications, such as object detectors for au-
tonomous control, high definition cameras for intelligent
grazing, and meteorological sensors for environmental mon-
itoring [1]. SDs can be deployed to monitor and collect
data from areas of interest, thus providing new oppor-
tunities for emerging intelligent applications, e.g., indus-
trial automation and smart city. These applications are
usually computing-intensive, which results in dramatically
increased demand for computing resources, posing a great
challenge to SDs due to their limited computing resources
and battery capacity [2].

The contradiction between computing-intensive appli-
cations and resource-constrained SDs creates a bottleneck
when achieving satisfactory quality of experience (QoE)
for end users. Fortunately, mobile edge computing (MEC)
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brings abundant computing resources to the edge of net-
works close to SDs [3]. Under this paradigm, SDs can offload
computing-intensive applications to nearby terrestrial base
stations (BSs), which reduces the processing delay of appli-
cations and saves the energy consumption of SDs. Migrating
these applications to BSs for execution are also referred
to as computation offloading. Although the traditional BS-
based MEC promotes computing-intensive applications in
many fields, including computation and communication,
MEC with BSs only may not always results in satisfactory
computation offloading performance [4]. A terrestrial BS has
a fixed wireless communication coverage while users can be
anywhere. It is not possible for a BS to connect to a user
out of its coverage. Especially some BSs may be damaged
by natural disasters or military attacks, causing computing
resource scarcity and offloading performance degradation
[5]. How to provide users with on-demand computing ser-
vices is one of the main challenges BS-based MEC networks
face. Thanks to its high mobility and excellent maneuver-
ability, unmanned aerial vehicle (UAV) has been applied to
terrestrial networks for communication coverage extension
and deployment efficiency improvement [6], [7]. Generally,
UAV-assisted MEC is more agile and can better support on-
demand computing services than the traditional BS-based
MEC.
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1.1 Related Work

An increasing amount of research attention has been paid
to various issues in UAV-assisted MEC networks. There are
mainly two categories according to the number of objectives
to optimize, namely single- and multi-objective optimiza-
tion.

1.1.1 Single-Objective Optimization

There has been a large amount of research studying single-
objective optimization (SOO) problems in the context of
UAV-assisted MEC, where only one objective is considered
for optimization, e.g., delay or enery consumption. Tradi-
tional methods and deep reinforcement learning (DRL) are
mainstream optimization techniques.

SOO with traditional methods. Liu et al. [7] investigated
the computation offloading and UAV trajectory planning
problem, with the total energy consumption of UAVs mini-
mized. The authors used a convex optimization method to
address it. Zhang et al. [8] emphasized task offloading and
UAV relay communication in an MEC system with one UAV
and one BS, where the successive convex approximation
technology was adopted to minimize the system’s energy
consumption. The same technology was also used in [9]
to reduce the energy consumption of a UAV by optimiz-
ing its trajectory and offloading schedule. Tun et al. [10]
proposed a successive convex method that minimized the
energy consumption of IoT devices and UAVs, with the
task offloading decision and UAVs’ trajectories taken into
account. Apostolopoulos et al. [11] presented a data offload-
ing decision-making framework consisting of ground and
UAV-assisted MEC servers and the authors applied convex
optimization to maximize each user’s satisfaction utility. Ye
et al. [12] studied the energy-efficient flight speed scheduling
problem, with the purpose of minimizing the UAV’s energy
consumption. The authors obtained near-optimal solutions
to UAV’s flight speed scheduling via heuristics. In [13], a
Lyapunov-based method was developed to minimize the
average energy consumption of UAVs, where the task of-
floading and UAV trajectory were taken into account.

SOO with DRL methods. Zhou et al. [4] proposed a
deep risk-sensitive reinforcement learning (RL) algorithm to
minimize the total delay of all tasks while satisfying UAV’s
energy capacity constraint. Chen et al. [14] developed a
DRL-based online method to maximize the long-term com-
putation performance, where two deep Q-networks (DQN)
were adopted. Zhao et al. [15] studied the UAV trajectory
planning and power allocation problem and applied deep
deterministic policy gradient (DDPG) to maximize the long-
term network utility. Based on double deep Q-network
(DQN), Liu et al. [16] proposed a two-phase DRL offloading
algorithm for multi-UAV systems, with the system’s total
utility maximized. To minimize the total resource consump-
tion of SDs, Wang et al. [17] presented an intelligent re-
source allocation method based on multi-agent Q-learning.
In [18], a hierarchical DRL algorithm was developed to
minimize the average delay of tasks by jointly optimizing
the movement locations of SDs and offloading decisions. To
minimize the energy consumption of all SDs, Wang et al.
[19] presented a trajectory control method based on DDPG
with prioritized experience replay. Dai et al. [20] considered

a UAV-and-BS enabled MEC system and devised a DDPG-
based task association scheduling method to minimize the
system’s energy consumption.

1.1.2 Multi-Objective Optimization
In nature, multiple possibly conflicting objectives exist in
UAV-assisted MEC. For example, one should consider the
tradeoff between delay and energy consumption in the task
offloading decision-making process; one should balance the
energy consumption and flying speed when planning a
UAV’s trajectory. Some research efforts have been dedicated
to multi-objective optimization (MOO) problems.

MOO with traditional methods. In [5], a game-theory-
based method was proposed to optimize the weighted
cost of delay and energy consumption in UAV-assisted
MEC with multiple SDs and single UAV, subject to the
resource competition constraint. Ning et al. [6] considered
the computation offloading and server deployment problem
and designed two stochastic game methods to minimize
the computation delay and energy consumption of each
UAV. Zhan et al. [21] studied the computation offloading
and resource allocation problem and designed a successive
convex optimization method to minimize the energy con-
sumption and completion delay of a UAV. Lin et al. [22]
developed a Lyapunov based resource allocation method for
UAV-assisted MEC systems, aiming at reducing the overall
energy consumption and computation delay.

MOO with DRL methods. In [23], to improve the
task execution efficiency of each UAV, a DQN-based task
scheduling algorithm was proposed to balance between the
network load and task execution delay. Chen et al. [24]
considered a three-dimensional UAV-assisted MEC system,
minimizing the task processing delay and energy consump-
tion by double DQN. In [25], DQN was used to mini-
mize the energy consumption and computation delay of
MEC networks simultaneously. Sun et al. [26] studied a bi-
objective optimization problem with the age-of-information
(AoI) and UAV’s energy-consumption as two objectives to
minimize and devised a twin-delayed DDPG (TD3) for
UAV trajectory control. Wang et al. [27] proposed a multi-
agent DDPG based trajectory control algorithm that took
the geographical fairness among UAVs and energy con-
sumption of SDs as two objectives for optimization. Peng
et al. [28] studied the single-UAV trajectory control problem
and adopted double DQN to minimize the UAV’s energy
consumption and maximize the amount of offloaded data,
simultaneously.

1.1.3 Analysis and Motivation
Despite the ample research efforts dedicated, UAV-assisted
MEC still faces great challenges in terms of system design
and optimization. We discuss these challenges from two
aspects, i.e., system modeling and optimization techniques.

System modeling. In most existing works, see [6], [21],
[23], [27], a system only employs one or more UAVs for
task collection and processing, where no base station is
involved. Although it suffices in cases where the number of
SDs is small, such a system cannot support large-scale MEC
deployment since UAVs usually have limited computing
resources. Multiple UAVs could alleviate the computing
pressure at an increased deployment cost. To handle the
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issue, some works [8], [11] focus on UAV-assisted MEC sys-
tems, where BSs are considered. With efficient collaboration
between UAV and BS, various computing services can be
provisioned to multiple SDs. UAV-assisted MEC involving
BSs is a practical scenario.

In some extreme scenarios, SDs cannot be reached by
BS due to natural disasters, military attacks or simply being
out of BS’s coverage. In this case, a UAV has two roles to
play: (1) an MEC server that runs some of the collected
computation tasks from SDs and sends back results to them,
or (2) a relay that forwards some computation tasks to a BS.
However, This scenario has received little research attention
in the literature. That is our motivation to consider a UAV-
assisted MEC system without direct connection between
SDs and BSs.

On the other hand, considering delay and energy con-
sumption as optimization objectives is one of the main re-
search streams on UAV-assisted MEC. Most existing works
optimize the two individually. The fact that the conflicts
between objectives are neglected easily leads to biased op-
timization results. Meanwhile, a few studies focus on the
maximization of the number of tasks collected by UAV(s),
which also reflects the benefits that an MEC system brings
to us. Therefore, delay, energy consumption and number of
tasks collected are three important concerns when designing
UAV-assisted MEC systems. However, to the best of our
knowledge, little research has been dedicated to a system
with these three objectives taken into account. That is why
we are motivated to emphasize the UAV-assisted MEC sys-
tem with delay, energy consumption and number of tasks
collected as three objectives for optimization.

Optimization techniques. Traditional methods, includ-
ing convex optimization [7]–[11], [21], heuristics [12], Lya-
punov optimization [13], [22], and game theory [5], [6], work
well when dealing with various optimization issues under
static scenarios, such as a UAV hovering over a fixed spot
during the whole flying mission. However, these methods
are hardly adapted to a dynamic environment, especially
when UAVs move quickly and tasks arrive unpredictably.
That is because the dynamics and uncertainty will fre-
quently trigger execution of the above methods that launch
from scratch, resulting in high computational burdens and
slow response. Thus, these methods are not suitable for
always responding quickly to users while the MEC envi-
ronment is ever-changing.

Different from the traditional methods, DRL can deal
with complicated control problems with little prior informa-
tion extracted from dynamic MEC scenarios. The reason is
that DRL methods are able to quickly adapt their behaviors
to the changes by interacting with the corresponding envi-
ronment. However, all the DRLs above are single-objective
RL (SORL), which defines the user utility as a linear scalar-
ization based on preferences (i.e., weights) across objectives.
These SORL methods first aggregate multiple objectives into
a scalar reward via weighted sum and then optimize the
reward. Nevertheless, the conflicts between objectives are
ignored because weighted sum is usually biased and hardly
strikes a balance between objectives.

Multi-objective RL (MORL) can well address the chal-
lenge above [29], [30]. According to the number of learned
policies, MORLs can be divided into two categories, namely

single-policy MORLs and multi-policy MORLs. A single-
policy MORL aims to optimize one policy for a given
preference. For example, the authors in [31] extended a
single-objective DDPG to a single-policy MORL to optimize
the data rate, total harvested energy, and UAV’s energy
consumption. However, a single-policy MORL cannot out-
put multiple optimal policies after a run, each of which
optimizes a certain preference.

Unlike single-policy MORLs, multi-policy MORLs can
learn a set of policies that approximate the true Pareto front.
These policies correspond to different tradeoffs, and the
decision maker can select the one that matches with the
current preference. With the multi-task multi-objective prox-
imal policy optimization (PPO), the evolutionary MORL
(EMORL) algorithm [30] has promising potential to find a
set of high-quality policies. This algorithm has been success-
fully applied to continuous robotic control problems. This is
why we adapt EMORL to the UAV-assisted MEC concerned
in this paper.

1.2 Contribution
This paper studies the trajectory control and task offloading
(TCTO) problem in a UAV-assisted MEC system, where a
UAV and a BS work together to provide SDs with com-
puting services. We consider the scenario that SDs are not
directly connected by the BS and the UAV plays as an MEC
server when processing a collected computation task locally
or a wireless relay when forwarding the task to the BS.
The UAV collects computation tasks from the SDs within
its coverage and decides the proportion of these tasks to be
offloaded to the BS for remote processing. Different from
the existing works that either optimize a single objective
or a number of objectives via weighted sum, this paper
considers three conflicting objectives and aims to optimize
them, simultaneously. To obtain a set of Pareto optimal
policies, we adapt EMORL to the MOO problem. The main
contributions are summarized as follows.

• We formulate the TCTO problem as an MOO prob-
lem, aiming at minimizing the task delay and UAV’s
energy consumption, and maximizing the number
of tasks collected by the UAV, simultaneously. The
MOO problem is difficult to address because the
three objectives conflict with each other and to strike
a balance between them is quite challenging.

• We model a multi-objective Markov decision process
(MOMDP) with a vector reward of three elements for
the TCTO problem, where each element corresponds
to an optimization objective. Based on the MOMDP
model, we adapt EMORL to the TCTO problem,
namely EMORL-TCTO. EMORL-TCTO can output
multiple policies to satisfy various preferences of
users at a run. To our knowledge, this is the first
work that applies a multi-policy MORL to the UAV-
assisted MEC field.

• We conduct extensive experiments using six test in-
stances. The results clearly show that the proposed
EMORL-TCTO can obtain a set of high-quality non-
dominated policies and outperforms two state-of-
the-art multi-objective evolutionary algorithms and
two exclusively devised multi-policy MORLs against
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Fig. 1. UAV-assisted MEC system.

several evaluation criteria, including the inverted
generational distance, hyper volume, average com-
prehensive objective indicator, and Friedman test.

The remainder of the paper is organized as follows. The
system model and problem formulation are presented in
Section 2. In Section 3, we briefly review the MOMDP and
MOO. In Section 4, we introduce the proposed algorithm
for the TCTO problem in detail. Section 5 analyzes and
discusses the simulation results. Finally, Section 6 concludes
the paper.

2 SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, this paper considers a UAV-assisted
MEC system consisting of one UAV, one BS, and a set of
SDs. These SDs are randomly scattered in a rectangular area
and their computation tasks arrive dynamically. A rotary-
wing UAV can hover in the air and fly at a low altitude
sufficiently close to SDs. Considering the economical and
scalable deployment, this paper considers a rotary-wing
UAV with limited computing resources. The UAV is respon-
sible for task collection, i.e., it flies along a planned trajectory
to collect computation tasks from SDs within its coverage. It
either executes all these tasks locally or offloads a proportion
of them to the BS for processing when needed. The BS has
abundant computing resources and acts as a complementary
offloading solution to the UAV.

We consider a discrete time system, where each time slot
has a time duration of τ . Suppose the entire task collection
process of the UAV lasts for T time slots. Let T = {1, ..., T}
denote the set of time slots. Let K = {1, ...,K} be the set
of SDs, where K is the number of SDs. The main notations
used in this paper are summarized in Table 1.

2.1 Task Model

We assume that the computation tasks arriving at SD
k ∈ K can be modeled as an independent and identically
distributed sequence of Bernoulli random variables with
parameter ζk ∈ [0, 1]. Different SDs are associated with
different parameters of Bernoulli random variables. Let lkt
denote the task arrival indicator of SD k in time slot t. lkt = 1
if a task is generated at the beginning of t and lkt = 0,
otherwise. We have Pr(lkt = 1) = 1 − Pr(lkt = 0) = ζk,

TABLE 1
Summary of main notations

Notation Definition
Notation used in system model

bt Offloading decision of the UAV in time slot t
dmax Maximal distance the UAV can move in each time slot
dt Horizontal distance the UAV flies in time slot t
fU Computing capability of the UAV
H Fixed flying altitude of the UAV
k The k-th SD
K Number of SDs
K Set of SDs
Kkt Set of SDs covered by the UAV in time slot t
lkt Task arrival indicator of SD k in time slot t
Lmax Maximum number of tasks allowed to be stored by an SD
Lkt Number of tasks in the k-th SD’s queue in time slot t
Nmax Maximum number of tasks in the computing queue
Nc
t Number of collected tasks from SDs in time slot t

NO
t Number of tasks offloaded to the BS in time slot t

NL
t Number of tasks executed by the UAV in time slot t

PU Transmission power of the UAV
Rmax Maximum horizontal coverage of the UAV
T Number of time slots
T Set of time slots
W Channel bandwidth
α Input data size of a task
β Number of CPU cycles required to process a task
θmax Maximal azimuth angle of the UAV
θt Horizontal direction the UAV flies in time slot t
ζk Parameter of Bernoulli random variable of SD k
κ Effective capacitance coefficient
µt Data rate of the wireless channel in time slot t
σ2 Background noise power
τ Time duration of a time slot
φ Number of tasks processed by the UAV within a time

slot
Notation used in reinforcement learning

a Action
A Action space
At Vector-valued advantage function
A

wi
t Extended advantage function with weight vector wi

F(π) Objective vector of policy π
n Number of learning tasks
rt Vector-valued reward at time step t
Rπ Vector-valued return following policy π
s State
S State space
Vπ(s) Multi-objective value function in state s
W Set of evenly distributed weight vectors
λ Parameter of general advantage estimator
γ Discount factor
Γi The i-th learning task in Ω, i = 1, ..., n
Ω Set of learning tasks

where Pr(·) stands for the probability of an event occurring.
A computation task is modeled as tuple 〈α, β〉, where α
denotes the input data size of the task and β is the number
of CPU cycles required to process the task. For an arbitrary
SD, a computation task generated in t is stored in its task
queue. Let Lkt be the number of tasks in the k-th SD’s queue
waiting to be uploaded in t, which is updated by

Lkt+1 = min{Lkt + lkt , Lmax}, (1)

where Lmax is the maximum number of tasks allowed to be
stored in the k-th SD’s queue. If the queue is full, each newly
arrival task is dropped. Hence, it is of great significance for
SDs to upload their computation tasks to the UAV in time.
In this paper, the time division multiple access protocol is
adopted for uploading computation tasks.
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2.2 UAV Movement Model
We assume that the UAV flies at an altitude of H , where H
is a positive constant. Let θt and dt denote the horizontal
direction and distance with which the UAV flies in time slot
t, respectively, with the following constraints met:

0 ≤ θt ≤ 2π, 0 ≤ dt ≤ dmax, (2)

where dmax represents the maximal flying distance that the
UAV can move in each time slot due to the limited power
budget.

Similar to previous studies [19], [31], we adopt the Carte-
sian coordinate system to model the movement of the UAV.
Let cU

t = [xU
t , y

U
t ] denote the UAV’s horizontal coordinate

in time slot t. Based on θt and dt, we obtain the UAV’s
horizontal coordinate in time slot t+ 1 by{

xU
t+1 = xU

t + dt · cos(θt)

yU
t+1 = yU

t + dt · sin(θt).
(3)

Assume that the UAV flies at a constant velocity vt = dt/τ ,
limited by a pre-defined maximum flying velocity vmax. The
UAV can only move within a rectangular area whose side
lengths are xmax and ymax. We have

0 ≤ xU
t ≤ xmax, 0 ≤ yU

t ≤ ymax. (4)

When a rotary-wing UAV flies, its propulsion power
consumption with speed v, P (v), is defined as [31]

P (v) = P1

(
1 +

3v2

U2
tip

)
+ P2

(√
1 +

v4

4v4
0

− v2

2v2
0

)1/2

+
1

2
d0ρgAv

3.

(5)

It is seen that P (v) consists of three parts: the blade
profile, induced power, and parasite power. P1 and Utip

denote the blade profile power under hovering status and
tip speed of rotor blade, respectively. P2 and v0 represent
the induced power and mean rotor induced velocity in
hovering, respectively. As for the parasite power, d0, ρ, g,
and A indicate the fuselage drag ratio, air density, rotor
solidity, and rotor disc area, respectively. Note that when
the UAV hovers (i.e., v = 0), the corresponding power
consumption Ph is the summation of P1 and P2. The energy
consumption when the UAV is flying and hovering during
a time duration of T , Efh, is obtained by

Efh =

∫ T

0
P (vt)dt. (6)

2.3 Computing Model
2.3.1 Local Computing
Assume the UAV maintains a computing queue that stores
the computation tasks collected from SDs awaiting for fur-
ther processing. As the UAV can stay at a low altitude
sufficiently close to SDs, this paper ignores the delay for
collecting the computation tasks in each time slot, so does
the corresponding receiving power consumption at the
UAV. In this paper, the delay for processing tasks locally
on the UAV in time slot t consists of the local processing
and queuing delays. Let Nu

t ∈ [0, Nmax] represent the
number of uncompleted tasks in the computing queue at

the beginning of t, where Nmax is the maximum number of
tasks allowed. Let bt ∈ [0, 1] be the proportion of tasks in
the computing queue to be offloaded to the BS in t, namely
the UAV’s offloading decision for t. Specifically, the UAV
offloads NO

t = bbtNu
t c computation tasks to the BS for

remote processing, where b·c denotes the floor function. The
remaining NL

t = Nu
t − NO

t computation tasks are locally
executed on the UAV. Let φ = bτfU/βc denote the number
of computation tasks processed by the UAV within each
time slot, where fU denotes the UAV’s computing capability.
Based on Nu

t and NO
t , the number of queueing tasks in the

computing queue at the end of t, Nq
t , is defined as

Nq
t = max

{
Nu
t − φ−NO

t , 0
}
. (7)

Let ck = [xk, yk] be the horizontal coordinate of SD k ∈
K. The UAV can only collect the tasks within its coverage
area. Let Kc

t represent the set of SDs covered by the UAV in
time slot t, which is defined as

Kc
t = {k|dkt ≤ Rmax, k ∈ K}, (8)

where dkt =
√

(xU
t − xk)2 + (yU

t − yk)2 is the horizontal
distance between the UAV and SD k in t. Rmax is the UAV’s
maximal horizontal coverage, given that it has a maximal
azimuth angle θmax [19]. Rmax is calculated by

Rmax = H · tan(θmax). (9)

Based on Eq. (8), the number of tasks collected by the UAV
in t is obtained by

N c
t =

∑
k∈Kc

t

Lkt . (10)

The number of uncompleted tasks to be processed in t + 1,
Nu
t+1, is updated at the end of t as

Nu
t+1 = min{Nq

t +N c
t , Nmax}. (11)

In t, the delay for completing the NL
t tasks locally on the

UAV can be calculated by

DL
t =

min{φ,NL
t }β

fU
+ τNq

t . (12)

There are two parts in Eq. (12). The first part,
min{φ,NL

t }β/fU, is the local processing delay, and the
second one, τNq

t , is the queuing delay of all Nq
t tasks

waiting in the computing queue. The corresponding energy
consumption of the UAV is calculated by

EL
t = κ ·min{φ,NL

t }β · (fU)2, (13)

where κ is the effective capacitance coefficient depending
on the chip structure used.

2.3.2 Task Offloading
The UAV allows a proportion of its collected tasks to be
offloaded to the BS for remote processing. According to the
Shannon-Hartley theorem [4], we define the data rate of the
wireless link between the UAV and BS in t as

µt = W · log2

1 +
PU · 10

PL(dUB
t ,θUB

t )

10

σ2

 , (14)
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whereW , PU, and σ2 are the channel bandwidth of the wire-
less link, transmission power of the UAV, and background
noise power, respectively. Referring to [4], this paper defines
the pathloss between the UAV and BS in t as

PL(dUB
t , θUB

t ) = 10A0 log(dUB
t )+B0(θUB

t −θ0)e
θ0−θUB

t
C0 +η0,

(15)
where dUB

t and θUB
t are the distance and vertical angle

between the UAV and BS in t, respectively. dUB
t and θUB

t

in Eq. (15) are obtained based on the horizontal coordinates
of the UAV and BS.

The UAV needs to complete the transmission process
of the NO

t computation tasks before it flies out of the BS’s
coverage. Thus, the time duration ϕt that the UAV has been
staying in the coverage of the BS since the beginning of t is
written as

ϕt = arg min
l

(
t+l∑
i=t

τµi ≥ αNO
t

)
, (16)

where α stands for the input data size of a computation task.
Let DO

t denote the delay for offloading the NO
t computation

tasks to the BS, which is calculated by

DO
t =

(ϕt − 1)τ +
αNO

t −
∑ϕt−1
i=t τµi

µt+ϕt
, if αNO

t <
∑ϕt
i=t τµi

τϕt, if αNO
t =

∑ϕt
i=t τµi

(17)
The corresponding energy consumption of the UAV is cal-
culated as

EO
t = PU ·DO

t . (18)

Assume that the BS is of rich computing resources. Thus, the
delay for processing the tasks on the BS can be neglected.
Further, the delay for returning the task results to an SD
is also ignored because the computation result of a task is
usually much smaller than its input data size.

2.4 Problem Formulation

Based on Eqs. (12) and (17), the delay for completing the
NL
t +NO

t computation tasks in the UAV’s computing queue
in t is written as

Dt = DL
t +DO

t . (19)

Similarly, based on Eqs. (13) and (18), the UAV’s energy
consumption for local computing and transmitting tasks to
the BS in t is defined as

Et = EL
t + EO

t . (20)

The total delay for completing all the collected tasks,
Dtotal, and total energy consumption of the UAV, Etotal,
during T time slots are calculated as

Dtotal =
T∑
t=1

Dt, (21)

Etotal =
T∑
t=1

Et + Efh. (22)

Based on the number of collected tasks defined in Eq. (10)
in each time slot, the total number of collected tasks during
time duration T can be obtained by

Ntotal =
T∑
t=1

N c
t . (23)

In this work, we aim to minimize the total task delay
Dtotal and total energy consumption Etotal, and maximize
the total number of tasks collected Ntotal, simultaneously,
through optimizing the UAV’s flying trajectory (i.e., θt and
dt) and task offloading decision (i.e., bt), namely the TCTO
problem. This problem is an MOO problem in nature, de-
fined as:

max
θt,dt,bt

(−Dtotal,−Etotal, Ntotal) (24)

subject to:

C1 : 0 ≤ θt ≤ 2π, ∀t ∈ T ,
C2 : 0 ≤ dt ≤ dmax, ∀t ∈ T ,
C3 : bt ∈ [0, 1], ∀t ∈ T ,
C4 : 0 ≤ xU

t ≤ xmax, ∀t ∈ T ,
C5 : 0 ≤ yU

t ≤ ymax, ∀t ∈ T ,
C6 : dkt ≤ Rmax, ∀k ∈ Kc

t , t ∈ T .

Constraints C1 and C2 confine the horizontal direction and
distance of a flying UAV. Constraint C3 specifies that the
offloading decision for time slot t is a variable between 0
and 1. Constraints C4 and C5 together specify the UAV’s
movement area. Constraint C6 ensures that the UAV can
only collect computation tasks from SDs within its coverage.

It is easily understood that to increase Ntotal, the UAV
should fly with an appropriate trajectory so that it can cover
as many SDs and collect their computation tasks as pos-
sible. However, the more the computation tasks collected,
the higher the energy consumption incurred on the UAV
because more tasks need to be handled by the UAV. Ad-
mittedly, offloading helps to reduce the UAV’s energy con-
sumption as some tasks are processed by the BS. However, it
results in additional transmission delays. So, one can easily
observe that the three objectives, i.e., minimization ofDtotal,
minimization of Etotal, and maximization of Ntotal, conflict
with each other. Unfortunately, traditional SORLs cannot
optimize every objective in a single run since these methods
all aggregate multiple objectives into one via weighted sum,
nor can they change the weights across objectives during
the run, being not easy to strike a balance between them. On
the other hand, single-policy MORLs only obtain an optimal
policy for a pre-defined set of weights after a run. Although
these methods are adaptive to the changes of weights for
objectives, they cannot output multiple optimal policies in a
run, of which each optimizes a certain set of weights. That
is why we are motivated to adapt EMROL, an emerging
multi-policy MORL, to the TCTO problem concerned in this
paper.

3 OVERVIEW OF MOMDP AND MOO
This section first recalls the multi-objective Markov decision
process (MOMDP). Then, we introduce the multi-objective
optimization (MOO) problem.
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3.1 MOMDP

The TCTO problem is a multi-objective control problem that
can be modeled by MOMDP [30]. An MOMDP is defined by
tuple 〈S,A,Q, r, γ,D〉, where S is the state space. A is the
action space andQ(s′|s, a) is the state transition probability.
r = (r1, ..., rm) is the vector-valued reward function and m
is the number of objectives. γ ∈ [0, 1] is the discount factor,
and D is the initial state distribution.

In MOMDPs, a policy π : S → A is a state-to-
action mapping associated with a vector of expected return
Rπ = (R1

π, ..., R
m
π ), where Rjπ is the expected return corre-

sponding to the j-th objective, defined as

Rjπ = Eπ

[
T∑
t=1

γt−1rj(st, at)|s1 v D, at v π(st)

]
. (25)

For the TCTO problem, we have m = 3, namely, R1
π, R

2
π

and R3
π are associated with −Dtotal, −Etotal, and Ntotal,

respectively.
The value function Vπ(s) : S → Rm maps a state s to

the vector of expected return under policy π, defined as

Vπ(s) = Eπ

[
T∑
k=t

γk−trk|st = s

]
, (26)

where rk = (r1
k, ..., r

m
k ) denotes the immediate vector-

valued reward at time step k. Because each element of
rk corresponds to a particular objective, Vπ(s) is a multi-
objective value function.

3.2 MOO

An MOO problem [30] can be formulated as

max
π

F(π) = max
π

(f1(π), ..., fm(π)),

subject to: π ∈ Π. (27)

where π is a policy in search space Π. In objective vector
F(π), there are m objective functions, and they generally
conflict with each other. Note that the objective value f j(π)
is set to Rjπ , j = 1, ...,m.

Let π1, π2 ∈ Π denote two different policies. π1 is said to
dominate π2, denoted by π1 � π2, if and only if f j(π1) ≥
f j(π2) for all j = 1, ...,m, and f l(π1) > f l(π2) for at least
one index l ∈ {1, ...,m}. A policy π∗ ∈ Π is Pareto optimal
if it is not dominated by any other policies in Π. All Pareto
optimal policies form a Pareto optimal set whose mapping
in the objective space is known as the Pareto front.

4 EMORL-TCTO FOR TRAJECTORY CONTROL
AND TASK OFFLOADING

This section first introduces the MOMDP model for the
TCTO problem and then describes the proposed EMORL-
TCTO algorithm in detail.

4.1 MOMDP Model

To address the TCTO problem by an MORL, we need an
MOMDP model for the problem first. The state space, action
space, and reward function are described one by one.

4.1.1 State Space
S = {st|st = (cU

t , N
u
t , N

c
t ),∀t ∈ T }, (28)

where cU
t = [xU

t , y
U
t ] is the horizontal coordinate of the UAV

in time slot t. Nu
t is the number of uncompleted tasks at the

beginning of t, and N c
t is the number of newly collected

tasks from SDs in t.

4.1.2 Action Space
A = {at|at = (θt, dt, bt),∀t ∈ T }, (29)

where θt and dt denote the horizontal direction and distance
with which the UAV flies in t, respectively, and bt is the
UAV’s offloading decision in t.

4.1.3 Reward Function

rt = (rD
t , r

E
t , r

N
t ) =

{
(−Dt,− Et

100 , N
c
t ), if 1t = 1

(−4Dt,−Et25 ,−2N c
t ), otherwise

(30)
where Dt, Et, and N c

t are the delay, energy consumption,
and number of tasks collected in time slot t, respectively. 1t
is an indicator variable that equals 0 if the UAV flies out of
the rectangular area in t and 1t is equal to 1, otherwise.

Based on the vector-valued reward rt, we obtain the
return which is the summation of the discounted reward
generated at each time step over the long run. Let Rπ =
(RD

π , R
E
π , R

N
π ) be the return of rD

1 , rE
1 , and rN

1 under policy
π at the first time step, defined as

RD
π = −

T∑
t=1

γt−1(1tDt + 4(1− 1t)Dt)

= −
T∑
t=1

γt−1(4− 31t)Dt, (31)

RE
π = −

T∑
t=1

γt−1

(
1t

100
Et +

1− 1t
25

Et

)

= −
T∑
t=1

γt−1

(
4− 31t

100

)
Et, (32)

RN
π =

T∑
t=1

γt−1(1tN
c
t − 2(1− 1t)N c

t )

=
T∑
t=1

γt−1(31t − 2)N c
t . (33)

Maximizing the expected return E[Rπ] is equivalent to
minimizingDtotal andEtotal, and maximizingNtotal, simul-
taneously.

4.2 EMORL-TCTO Algorithm
This paper represents a learning task by tuple Γ =
〈w, πθ, πθo ,Vπθ 〉, where w(

∑m
j=1 w

j = 1) is the weight
vector. πθ is the target policy used to select actions and πθo
is the sample policy used to collect trajectories 1. Vπθ is the

1. Note that the term ”trajectories” refers to a sequence of transitions
in RL, each of which consists of state, action, reward, and next state.
However, the term ”trajectory” used in the system model represents
the UAV’s flying path.
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Fig. 2. Framework of EMORL-TCTO.

multi-objective value function for evaluating the selected ac-
tions. Through interacting with the environment, the sample
policy πθo is used to generate the set of trajectories. The
generated set is used to update the target policy πθ for
several epochs. To avoid a large update of the target policy,
a clipped surrogate objective is adopted, which is defined as

JC
Γ (θ,w) =

E

[
T∑
t=1

min

(
πθ(at|st)
πθo(at|st)

Aw
t , clip1+ε

1−ε

(
πθ(at|st)
πθo(at|st)

)
Aw
t

)]
,

(34)

where Aw
t = wAt is the extended advantage function at

time step t, i.e., the weighted-sum of all elements in the
vector-valued advantage function At. At is obtained by the
general advantage estimator (GAE) [32], defined as

At =
T−t+1∑
k=0

(γλ)k(rt+k+γVπθ (st+k+1)−Vπθ (st+k)), (35)

where λ ∈ [0, 1] is a parameter for tuning the trade-off
between variance and bias. clip1+ε

1−ε(∆) is the clip function
that constrains the value of ∆, removing the incentive for
moving ∆ outside of the interval [1− ε, 1 + ε].

The value function loss is defined as

JV
Γ (θ) = E

[
T∑
t=1

‖Vπθ (st)− V̂πθ (st)‖2
]
, (36)

where V̂πθ (st) = rt + γVπθ (st+1) is the target value
function.

Weight 

vector

1 1

1

𝑓1 𝑓2

𝑓3

Fig. 3. Fifteen evenly distributed weight vectors for a three-objective
problem with δ = 4.

The proposed EMORL-TCTO aims to learn a set of
Pareto optimal policies through interacting with the envi-
ronment and its framework is shown in Fig. 2. EMORL-
TCTO shares the same algorithm structure with the original
EMORL [30]. EMORL-TCTO starts from the warm-up stage,
where n learning tasks are randomly generated. The off-
spring population is produced by executing the multi-task
multi-objective PPO (MMPPO). Note that each learning task
uses its associated sample policy to collect a set of trajecto-
ries by interacting with the UAV-assisted MEC environment.
After the warm-up stage, EMORL-TCTO proceeds with the
evolutionary stage. Both the task population and external
Pareto (EP) archive are updated based on the offspring
population. Then, we select n new learning tasks from the
task population for each weight vector. These tasks are
optimized by MMPPO to generate a new generation of
the offspring population. The evolutionary stage terminates
when a predefined number of generations are completed.
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Algorithm 1 Evolutionary multi-objective reinforcement
learning for TCTO problem (EMORL-TCTO)
Input: number of learning tasks n, number of warm-up iter-

ations Φwarm, number of task iterations Φtask, number of
maximum evolution generations Gmax.
// Warm-up stage

1: Initialize task population P = ∅ and external Pareto archive
EP = ∅;

2: Generate n evenly distributed weight vectors {w1, ...,wn};
3: Initialize n target policy networks {πθ1 , ..., πθn};
4: Initialize the i-th sample policy network, πθoi ← πθi , i =

1, ..., n;
5: initialize n value networks {Vπθ1

, ...,Vπθn
};

6: Denote the task set by Ω = {Γ1, ...,Γn}, Γi =
〈wi, πθi , πθoi ,Vπθi

〉;
7: Obtain offspring population P ′ by MMPPO(Ω,Φwarm);

// Evolutionary stage
8: for l = 1, ..., Gmax do
9: Update task population P by TPU(P,P ′);

10: Update EP based on P ′;
11: Set Ω = ∅;
12: Calculate F(πθj ) of target policy πθj of each task Γj ∈ P ;

13: for wi ∈ {w1, ...,wn} do
14: Set index ĵ = arg maxj=1,...,|P|{wiF(πθj )};
15: Replace weight vector wĵ of task Γĵ with wi;
16: Add task Γĵ to Ω;
17: end for
18: Obtain offspring population P ′ by MMPPO(Ω,Φtask);
19: end for
Output: external Pareto archive EP.

Algorithm 2 Multi-task multi-objective PPO (MMPPO)
Input: task set Ω, number of iterations Φ.

1: Initialize offspring population P ′ = ∅;
2: for Γi = 〈wi, πθi , πθoi ,Vπθi

〉 ∈ Ω do
3: for j = 1, ...,Φ do
4: Collect a set of trajectories using sample policy πθoi ;
5: Calculate the advantage function At by Eq. (35);
6: Calculate the extended advantage function Awi

t =
wiAt;

7: Update the target policy network’s parameter θi by
Eq. (34) for several epochs;

8: Update the sample policy network’s parameter θoi ,
i.e., θoi ← θi;

9: Update the value network Vπθi
by Eq. (36);

10: Store the new task Γj = 〈wi, πθi , πθoi ,Vπθi
〉 in P ′;

11: end for
12: end for
Output: Offspring population P ′.

The pseudo-code of EMORL-TCTO is shown in Algo-
rithm 1. We elaborate the two stages above in detail.

4.2.1 Warm-up Stage

In this stage, n learning tasks are randomly generated. These
tasks share the same state space, action space, and reward
function but their dynamics may differ. The task generation
procedure is described as follows.

Firstly, the systematic method [33] is adopted to generate
n evenly distributed weight vectors, W = {w1, ...,wn}.
Each weight vector is sampled from a unit simplex. n =(m+δ−1
m−1

)
points with a uniform spacing of 1/δ, are sampled

on the simplex for any number of objectives, where δ > 0
is the number of divisions considered along each objective

Algorithm 3 Task population update (TPU)
Input: task population P , offspring population P ′, reference

point Zref , Pnum, and Psize.
1: Generate Pnum evenly distributed weight vectors
{w1, ...,wPnum};

2: Set performance buffer Bi = ∅, i = 1, ..., Pnum;
3: for Γ = 〈w, πθ, πθo ,Vπθ 〉 ∈ {P ∪ P

′} do
4: Calculate objective vector F(πθ);
5: Set Ftemp = F(πθ)− Zref ;
6: Set index ĵ = arg maxj=1,...,Pnum{wjFtemp};
7: Store task Γ in Bĵ ;
8: Calculate distance between F(πθ) and Zref ;
9: if |Bĵ | > Psize then

10: Sort all tasks in Bĵ in descending order of their dis-
tances;

11: Retain the first Psize tasks in Bĵ ;
12: end if
13: end for
14: Set new task population Pnew = {B1∪, ...,∪BPnum};
Output: population Pnew.

axis. As [34] suggests, to obtain intermediate weight vectors
within the simplex, we have δ > m. For example, for
the TCTO problem with three objectives (m = 3), if four
divisions (δ = 4) are considered for each objective axis,
n =

(3+4−1
3−1

)
= 15 evenly distributed weight vectors are

generated. We plot these weights vectors in Fig. 3.
Secondly, n target policy networks, {πθ1 , ..., πθn}, are

randomly initialized. The corresponding sample policy net-
works, {πθo1 , ..., πθon}, are initialized, with their parameters
set the same as the target policy networks’, i.e., θo

i =
θi, i = 1, ..., n. Then, n multi-objective value networks,
{Vπθ1

, ...,Vπθn
}, are randomly initialized. In each value

network, the number of neurons in the output layer is the
same as that of optimization objectives, i.e., m.

Finally, we denote the set of learning tasks by Ω =
{Γ1, ...,Γn}, where Γi = 〈wi, πθi , πθoi ,Vπθi

〉. After gener-
ating the tasks, we run MMPPO to obtain the offspring
population, as shown in Algorithm 2, where each learning
task Γi ∈ Ω is optimized by executing multi-objective PPO
(steps 3-11) for a specified number of iterations, Φ (equals to
Φwarm in this stage).

It is noted that the original MMPPO [30] only stores the
last learning task in the offspring population P ′ after Φ
iterations, which may throw away promising learning tasks.
To avoid the problem, we improve the original MMPPO
by storing the new learning task in P ′ after each iteration.
In other words, we save all the learning tasks generated
by MMPPO in the offspring population. Thus, running our
MMPPO once obtains n · Φ new learning tasks.

The warm-up stage can provide a set of promising
learning tasks of which policies reside in high-performance
region in the search space. To start with these tasks, the
EMORL-TCTO’s learning process is of low noise, hence
more likely to achieve excellent MOO results.

4.2.2 Evolutionary Stage
In this stage, the task population P is first updated based
on the offspring population P ′ (step 9 in Algorithm 1). The
task population update procedure is shown in Algorithm 3.
We adopt the performance buffer strategy in [30] to update
P . A number of performance buffers are used to store P for
the purpose of diversity and performance preservation. Let
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Pnum and Psize denote the number of performance buffers
and their size, respectively. The performance space is evenly
divided into Pnum performance buffers, each of which stores
Psize learning tasks at most. According to the target policy’s
objective value, F(πθ), and a reference point Zref , we store
the task associated with πθ in the corresponding perfor-
mance buffer.

For an arbitrary performance buffer, we sort the tasks
in descending order according to their distances to Zref . If
the number of tasks exceeds Psize, we only retain the first
Psize tasks in that buffer. Finally, the learning tasks in all
performance buffers form a new task population.

An EP is employed to store nondominated policies found
during evolution. In each generation, EP is updated based
on the offspring population P ′ (step 10 in Algorithm 1). For
the target policy πθ of each learning task in P ′, we remove
those policies dominated by πθ , and add πθ to EP if no
policies in EP dominates πθ .

For each weight vector, we select the best learning task
from P and update the set of learning tasks Ω with it. First
of all, we calculate the objective vector F(πθj ) of the target
policy πθj of learning task Γj , j = 1, ..., |P|, in P . Then,
for weight vector wi ∈ W , the best learning task in P is
selected based on wi and F(πθj ), j = 1, ..., |P| (steps 14-16
in Algorithm 1). Finally, the n selected learning tasks are
added to Ω. We obtain P ′ by running MMPPO with Ω and
Φtask as its input, where Φtask is the predefined number of
task iterations.

The evolutionary stage terminates when a predefined
number of evolution generations are completed. All non-
dominated policies stored in EP are output as the approxi-
mated Pareto optimal policies for the TCTO problem. These
policies correspond to different tradeoffs between delay,
energy consumption and number of tasks, being helpful
for decision makers to compromise between conflicting
issues/concerns when designing complicated UAV-assisted
MEC systems.

5 SIMULATION RESULTS AND DISCUSSION

We first introduce the parameter settings for the UAV-
assisted MEC scenario. Assume that the UAV’s mission
period is 5 minutes and each time slot lasts for 1 second.
Therefore, there are T = 300 time slots. The side lengths
of the rectangular area, xmax and ymax, are both set to 400
m. At the beginning of each mission, the UAV takes off
at a random position in the rectangular area. In each time
slot, the UAV’s maximal flying velocity vmax and distance
dmax are set to 30 m/s and 30 m, respectively. The input
data size of a computation task, α, and the number of
CPU cycles required to execute the task, β, are set to 5 MB
and 109 cycles, respectively. For each SD, its parameter of
Bernoulli random variable is randomly selected from set
{0.3, 0.5, 0.7}. As for the parameters of pathloss, we set A0,
B0, θ0, C0, and η0 to 3.04, −23.29, −3.61, 4.14, and 20.7,
respectively [4].

We then describe the parameter settings associated with
RL. The number of learning tasks n is set to 15. Each task
is associated with a weight vector. So, there are 15 weight
vectors, as shown in Fig. 3. For each learning task, there
are two fully connected layers in the target policy network.

TABLE 2
Parameter configurations in experiments

Parameter Value
Value used in system model

Rotor disc area (A) 0.503 m2

Fuselage drag ratio (d0) 0.6
Maximal distance the UAV can move (dmax) 30 m

Computing capability of the UAV (fU) 1 GHz
Rotor solidity (g) 0.05

Maximum number of tasks in the computing
queue (Nmax)

10

Blade profile power (P1) 79.86
Induced power (P2) 88.63

Transmission power of the UAV (PU) 1 W
Tip speed of rotor blade (Utip) 120 m/s

Mean rotor induced velocity in hover (v0) 4.03
Maximum flying velocity of the UAV (vmax) 30 m/s

Channel bandwidth (W ) 10 MHz
Air density (ρ) 1.225 km/m3

Maximal azimuth angle (θmax) π/4
Effective capacitance coefficient (κ) 10−26

Background noise power (σ2) 10−6 W
Value used in reinforcement learning

Number of maximum evolution generations
(Gmax)

100

Number of the performance buffers (Pnum) 200
Size of each performance buffer (Psize) 2

Discount factor (γ) 0.995
Clipping parameter (ε) 0.2

Parameter of general advantage estimator (λ) 0.95
Number of warm-up iterations (Φwarm) 60

Number of task iterations (Φtask) 10
Number of divisions of weight vectors (δ) 4

TABLE 3
Test instance

Instance (K,H) Number of SDs (K) Flying altitude (H)
I-(60,30) 60 30
I-(60,50) 60 50
I-(100,30) 100 30
I-(100,50) 100 50
I-(140,30) 140 30
I-(140,50) 140 50

Each layer has 64 neurons, with tanh as activation function.
The target policy network’s output layer uses the sigmoid
function to bound actions. Except for the input and output
layers, the multi-objective value network shares the same
structure and activation function with the target policy net-
work. We use Adam optimizer with a learning rate of 0.0001
to update neural networks. Other parameter configurations
are summarized in Table 2.

We finally introduce the test instances. We consider the
number of SDs, K , and the UAV’s flying altitude, H , as two
important parameters. We specify K ∈ {60, 100, 140} and
H ∈ {30, 50} and generate six test instances with different
combinations of K and H . These test instances are listed in
Table 3.

5.1 Performance Measure

We adopt four widely used evaluation metrics to evaluate
the performance of EMORL-TCTO, including the inverted
generational distance [35] , hyper volume [30], and compre-
hensive objective indicator [2], and Friedman test [36].
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5.1.1 Inverted Generational Distance (IGD)
Let Ftrue and Fapp denote the ture Pareto front and ap-
proximated Pareto front found by an MOO algorithm, re-
spectively. IGD is the average distance from each point v in
Ftrue to its nearest counterpart in Fapp, which is defined as

IGD =

∑
v∈Ftrue

d(v,Fapp)

|Ftrue|
, (37)

where d(v,Fapp) is the Euclidean distance between v in
Ftrue and its nearest point in Fapp. IGD can reflect both the
convergence and diversity of an approximated Pareto front.
An algorithm with a smaller IGD has better performance.

Note that we may not know Ftrue when addressing
highly complicated MOO problems, like the TCTO problem.
In this case, we collect the best-so-far policies found by
all algorithms and select those nondominated from them
to mimic the ture Pareto optimal set. We regard the cor-
responding Pareto front as Ftrue. This method has been
widely used when evaluating MOO algorithms in the lit-
erature [35], [36].

5.1.2 Hyper Volume (HV)
Let Zref ∈ Rm be the reference point. HV is defined as

HV =

∫
Rm

1H(Fapp)(z)dz, (38)

where H(Fapp) = {z|∃1 ≤ j ≤ |Fapp| : Zref ≺ z ≺ Zj}.
Zj is the j-th point in Fapp, and 1H(Fapp) is a Dirac delta
function that equals 1 if z ∈ H(Fapp) and 0, otherwise.

The HV metric can measure both the convergence and
uniformity of an approximated Pareto front without the true
Pareto front known in advance. A larger HV value indicates
the corresponding algorithm has better performance. In this
paper, we set Zref to the all-zero vector.

Note that before calculating IGD and HV, we normalize
the approximated Pareto front via the Min-Max normaliza-
tion method.

5.1.3 Comprehensive Objective Indicator (COI)
Since the TCTO problem has three objectives, we devise
a comprehensive indicator to reflect an MOO algorithm’s
overall performance, with the task delay, energy consump-
tion, and number of tasks collected taken into account. For
each objective vector, we aggregate its objective values into
a COI value using the weighted sum method.

Let Fj = (f1
j , f

2
j , f

3
j ) be the j-th objective vector in Fapp.

Give a weight vector wi = (w1
i , w

2
i , w

3
i ) ∈ W , we define the

COI value of Fj as

COIj(wi) = wi · Fj =
3∑
l=1

wli · f lj . (39)

Based on the COI values, we obtain the best objective vector
in Fapp associated with wi, which is defined as

Fb(wi) = (f1
b (wi), f

2
b (wi), f

3
b (wi)),

b = argmax
j=1,...,|Fapp|

COIj(wi), (40)

where f1
b (wi), f

2
b (wi), and f3

b (wi) are the best objective val-
ues corresponding to Dtotal, Etotal, and Ntotal, respectively.
According to Eqs. (39) and (40), we obtain the best objective

vector for each weight vector inW . After that, we calculate
the average task delay (ATD), average energy consump-
tion (AEC), average task number (ATN), and average COI
(ACOI), defined as

ATD =
1

n

n∑
i=1

f1
b (wi), (41)

AEC =
1

n

n∑
i=1

f2
b (wi), (42)

ATN =
1

n

n∑
i=1

f3
b (wi), (43)

ACOI =
1

n

n∑
i=1

COIb(wi). (44)

5.1.4 Friedman Test
The Friedman test, a non-parametric test [37], is adopted to
measure the differences among MOO algorithms in terms of
ATD, AEC, ATN, and ACOI. All algorithms for comparison
are ranked, and the average rank scores assigned to them
clearly reflect how well they perform.

5.2 Performance Evaluation
To thoroughly study the performance of EMORL-TCTO, we
implement four baseline algorithms for comparison, includ-
ing two multi-objective evolutionary algorithms (MOEA),
i.e., NSGA-II and MOEA/D, and two multi-policy MORLs,
i.e., EDDPG and ETD3. The compared algorithms are de-
scribed as below.

• NSGA-II: The fast and elitist nondominated sorting
genetic algorithm [38] adopted to minimize the aver-
age task delay and average energy consumption. The
population size and number of generations are both
set to 100. The crossover and mutation probabilities
are set to 0.8 and 0.3, respectively.

• MOEA/D: The multi-objective evolutionary algo-
rithm based on decomposition [36] used to minimize
the average application completion time and average
energy consumption. Both the population size and
number of generations are set to 100. The number of
neighbors for each subproblem is set to 10.

• EDDPG: The evolutionary DDPG, a variant of
EMORL-TCTO that uses a multi-task multi-objective
DDPG (MMDDPG) instead of MMPPO, i.e., Algo-
rithm 2. Note that MMDDPG is extended from the
single-policy DDPG [31]. We develop EDDPG for
performance evaluation purpose.

• ETD3: The evolutionary TD3, another variant of
EMORL-TCTO that adopts a multi-task multi-
objective TD3 (MMTD3) instead of MMPPO. Note
that MMTD3 is extended from the single-policy TD3
[39]. We develop ETD3 for performance evaluation
purpose.

• EMORL-TCTO: The proposed algorithm in this pa-
per.

In NSGA-II and MOEA/D, each gene in a chromosome
represents a trajectory control and task offloading decision
in a time slot. For fair comparison, EMORL-TCTO, EDDPG,
and ETD3 use the same parameter settings.
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Fig. 4. Results of IGD.
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Fig. 5. Results of HV.

The results of IGD and HV are shown in Figs. 4 and 5,
respectively. First, one can infer that TCTO is a complicated
MOO problem since NSGA-II and MOEA/D, both widely
recognized, are the two worst algorithms and cannot find a
decent Pareto front in all test instances. It is time-consuming
that an MOEA with a large encoding length (i.e., 900) results
in acceptable nondominated policies. Unfortunately, as the
UAV-assisted MEC environment is highly dynamic and full
of uncertainty, MOEAs usually do not have sufficient time
to converge. That is why NSGA-II and MOEA/D achieve
unsatisfied performance. On the other hand, all MORLs
outperform NSGA-II and MOEA/D in all test instances.
Unlike MOEAs that make decisions for all time slots using
a single chromosome, MORLs make real-time decision in
each time slot according to the current environment state.
Thus, the problem complexity can be reduced. This is why
an MORL is more appropriate to address the TCTO problem
than an MOEA. EMORL-TCTO obtains the smallest IGD
values in four instances and the largest HV values in six
instances, demonstrating its superiority over the other four
algorithms.

To further support our observation above, we plot the
convergence curves of IGD and HV obtained by all algo-
rithms in Figs. 6 and 7. It is obvious that EMORL-TCTO is
the best among all algorithms in almost all instances except
I-(140,30) and I-(140,50) in terms of IGD. Again, NSGA-
II and MOEA/D are the two worst algorithms because
they easily suffer from rapid diversity loss and premature
convergence.

Tables 4-6 show the ATD, AEC, and ATN values ob-
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Fig. 6. Convergence curves of five algorithms in terms of IGD.

tained by the five algorithms. Note that the best results
are in bold. No matter which one gets fixed, K or H , the
corresponding ATD, AEC, and ATN values tend to grow up
as the other increases. Firstly, the larger the number of SDs
located in the rectangular area, the more the computation
tasks need to be collected by the UAV. Secondly, given that
the UAV cannot fly over its maximum allowable altitude,
the higher the flying altitude, the larger the UAV’s coverage,
thus the more the computation tasks can be collected. How-
ever, collecting more tasks by the UAV leads to larger task
processing delay and higher energy consumption because it
has more tasks to handle. Tables 4-6 well support this.

In Table 4, it is easily seen that EMORL-TCTO performs
better than the other algorithms in four instances except
I-(100,50) and I-(140,30). ETD3 achieves the smallest ATD
value in I-(100,50) and I-(140,30). However, it is worse than
EMORL-TCTO in terms of AEC and ATN, with all instances
considered. For instance, although ETD3 obtain the smallest
ATD value in I-(100,50) and I-(140,30), its AEC and ATN
values are both beaten by EMORL-TCTO’s.

As for the AEC values shown in Table 5, EMORL-
TCTO outperforms the others in I-(60,30), I-(60,50), and I-
(100,50). Although NSGA-II and MOEA/D achieve decent
AEC results in I-(140,30) and I-(140,50), they do not perform
well regarding ATD and ATN. For example, while NSGA-II
obtains the smallest AEC value in I-(140,30), this algorithm
causes larger ATD and smaller ATN values than EMORL-
TCTO. Similar phenomenon can be observed on MOEA/D.
ETD3 obtains the best AEC value in I-(100,30), but its ATD
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TABLE 4
Results of ATD (sec.)

Instance (K,H) NSGA-II MOEA/D EDDPG ETD3 EMORL-TCTO
I-(60,30) 368.1958 445.1122 161.8384 194.0774 154.4438
I-(60,50) 705.8818 913.8073 178.1569 671.9904 169.8130
I-(100,30) 681.5308 782.6583 245.8020 252.0116 187.2126
I-(100,50) 1155.3936 1261.0989 249.7653 226.8773 320.4334
I-(140,30) 933.4857 1104.9209 236.5322 236.5244 592.3761
I-(140,50) 1618.8890 1839.8178 451.0401 640.4673 401.9143

TABLE 5
Results of AEC (×100 J)

Instance (K,H) NSGA-II MOEA/D EDDPG ETD3 EMORL-TCTO
I-(60,30) 541.7004 584.1528 743.8614 622.0636 524.3706
I-(60,50) 573.9115 616.5412 724.3359 762.2767 487.8757
I-(100,30) 574.1068 623.6895 762.4399 567.4193 580.9955
I-(100,50) 679.2424 579.8798 906.7152 737.1444 549.9695
I-(140,30) 626.0573 636.4504 851.3875 776.7553 710.1657
I-(140,50) 677.1887 674.9763 852.3247 917.8795 818.8782

TABLE 6
Results of ATN

Instance (K,H) NSGA-II MOEA/D EDDPG ETD3 EMORL-TCTO
I-(60,30) 443.3333 494.6000 623.4000 647.9333 679.6000
I-(60,50) 826.2667 882.7333 1224.2000 1158.6667 1306.6667
I-(100,30) 785.1333 812.2667 1107.3333 1152.7333 1320.3333
I-(100,50) 1476.8000 1650.3333 1914.0000 1919.6667 2059.7333
I-(140,30) 1071.7333 1227.2667 1717.6667 1760.2667 1967.7333
I-(140,50) 2230.6000 2313.2667 3205.7333 3589.2667 3767.9333

TABLE 7
Results of ACOI

Instance (K,H) NSGA-II MOEA/D EDDPG ETD3 EMORL-TCTO
I-(60,30) 0.3762 32.4460 88.4897 123.2103 170.9732
I-(60,50) 88.1119 51.8222 358.2882 359.2345 466.6511
I-(100,30) 74.9282 5.7390 316.0606 357.1098 435.7963
I-(100,50) 253.9011 210.2697 633.6083 704.2282 747.0715
I-(140,30) 186.4932 169.4821 585.0505 632.3760 726.9881
I-(140,50) 569.7772 482.152 1171.9050 1344.7181 1447.5302

TABLE 8
Rankings of five algorithms

Algorithm ATD AEC ATN ACOI
Average

rank Position Average
rank Position Average

rank Position Average
rank Position

NSGA-II 4.0000 4 2.0000 1 5.0000 5 4.0000 4
MOEA/D 5.0000 5 2.5000 2 4.0000 4 5.0000 5
EDDPG 2.0000 2 4.6667 4 2.8333 3 3.0000 3

ETD3 2.3333 3 3.8333 3 2.1667 2 2.0000 2
EMORL-TCTO 1.6667 1 2.0000 1 1.0000 1 1.0000 1

and ATN values are worse than EMORL-TCTO’s.
As shown in Table 6, EMORL-TCTO is the best as

it results in the largest ATN in every instance. It means
EMORL-TCTO allows the UAV to collect sufficient number
of computation tasks from SDs by appropriately controlling
the UAV’s flying trajectory, during its entire mission period.

As aforementioned, the ACOI indicator reflects an MOO
algorithm’s overall optimization performance. Table 7 lists
the results of ACOI obtained by the five algorithms for
comparison. It is easily seen that EMORL-TCTO overweighs
NSGA-II, MOEA/D, EDDPG, and ETD3 in all test instances

since EMORL-TCTO can better balance between objectives.
In addition, the Friedman test is adopted to rank the five
algorithms. Based on the ATD, AEC, ATN, and ACOI val-
ues, the average rankings and positions of algorithms are
calculated and shown in Table 8. One can clearly observe
that EMORL-TCTO obtains the best overall performance.

6 CONCLUSION

We model the trajectory control and task offloading
(TCTO) problem by multi-objective Markov decision pro-
cess (MOMDP) and adapt a multi-policy multi-objective
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Fig. 7. Convergence curves of five algorithms in terms of HV.

reinforcement learning algorithm to address the problem.
The proposed EMORL-TCTO can output plenty of non-
dominated policies for various user preferences in each
run, clearly reflecting the conflicts between objectives. Com-
pared with NSGA-II, MOEA/D, EDDPG, and ETD3, our
algorithm strikes better balance between the objectives in
four out of six instances regarding inverted generational
distance and in all the six instances regarding hyper volume.
EMORL-TCTO is also the best in most instances with respect
to system-related metrics, including the average task delay,
average UAV’s energy consumption, average number of
tasks collected by the UAV, and average comprehensive ob-
jective indicator. In addition, EMORL-TCTO takes the first
position in the Friedman test. Hence, the performance com-
parison demonstrates EMORL-TCTO’s suitability to tackle
the TCTO problem and its potential to be applied to multi-
objective UAV-assisted MEC scenarios.
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