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Using Fixed Point Theoremsto Model the Binding
in Protein–ProteinInteractions

Jinyan Li andHaiquan Li

Abstract— The binding in protein–protein interactions exhibits
a kind of biochemical stability in cells. The mathematical notion
of fixed points also describesstability. A point is a fixed point if
it keepsunchanged after a transformation by a function. Many
points may not be a fixed point, but they may approach to
a stable status after multiple steps of transformation. In this
paper, we define a point as a protein motif pair consistingof two
traditional protein motifs. We proposea function and proposea
method to discover stablemotif pairs of this function fr om a large
protein interaction sequencedataset.There are many interesting
properties for this function (for examplethe convergence).Some
of them are useful for gaining much efficiency in the discovery of
those stable motif pairs; someare useful for explaining reasons
why our proposedfixed point theoremsare a good way to model
the binding of protein interactions. Our resultsare alsocompared
to biological resultsto elaborate the effectivenessof our method.

Index Terms— Bioinformatics (genome or protein) database,
mining methods and algorithms, generating functions, stability
and instability , biology and genetics.

I . INTRODUCTION

L ET
�

be a function and � be a point in its domain, if��� ������� , then � is calleda fixedpoint for
�

. A famous
fixed point theoremin modern mathematics, proposedby L.
Brouwerin 1911, saysthat any continuous function

�
	���
�
, where

�
is a closedball in ��� , has at least one fixed

point [1]. An easyexample of fixedpointsis ����� for
��� ������ ����� . Hence,the idea of fixed points is to find conditions

under which a functionpossessesa point thatmapsinto itself.
An interestinginstantiationof this mathematical notion is in
life science:TheDNA of a cell canbesplit into two parts,then
they grow, in two separatecells, to becomethe sameDNA as
theoriginal oneafterself-replicating. In this example, the � is
the DNA, and the

��� ��� is the laws of physics andchemistry
appliedto the DNA.

Recently, we madean important discovery for fixed points
at protein type level [2]. The study is on genomic sequences
of a genefamily. This family of genesis called C2H2 Zinc-
Fingergenes,consistingof 226 members. A characteristicof
this genefamily is the frequent presenceof tandemrepeats.
An interestingproblem about thesegenesis whether they can
be translatedinto the sametype of proteinbefore andafter a
frameshift. We found 12 of them that can be eachtranslated
into the sametype of protein after frameshifts. Again, this
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is a fixed point phenomenon. The � is the protein type, the
function

��� ��� is the frameshift.
In this paper, we apply fixed point theorems to model the

binding in protein–protein interactions, where we define a
point as a protein motif pair [22], [23] consisting of two
traditional proteinmotifs. To transform startingmotif pairsto
become stablemotif pairs,we proposea function

���
where �

is a proteininteraction sequence dataset.Next, we explainwhy
we choosea motif pair insteadof a traditionalsinglemotif as
a point, andwhy this in-silico study is important.

A protein is a complex, high molecular weight organic
compoundthatconsistsof linearaminoacidsjoinedby peptide
bonds. Proteinsare essentialto the structuresand functions
of all living cells andviruses.Many proteinsareenzymesor
subunits of enzymes.Otherproteinsplaystructuralor mechan-
ical roles.Sincea proteinis a chainof aminoacids,it canbe
mathematically representedby a string of theabbreviations1 of
the20 standardaminoacids,allowing repetitions.Life of cells
depends on the interactions of proteins[3]. The interactions
arethrough the so-calledbinding motifs [4], eacha region on
a protein, to connect pairsof proteins.

In the biology field, it is a challenging problem to identify
binding motifs. A commonly-usedway is to examinethe 3-D
structureof theso-calledproteincomplex data[5] generated by
X-ray crystallography[6], [7] or by multidimensionalnuclear
magnetic resonance (NMR) [8], [9]. But, thesemethods are
time-consumingandexpensive. However, it is relatively easy
andeconomical to gettheaminoacidsequencedata(stringsof
aminoacid letters)for a pair of interactingproteins, andthese
interaction sequencedata have beenshown to be useful for
discoveringsinglebinding motifs. (SeeBrazmaet al. [4], [10]
for a good survey about the algorithms to discover binding
motifs.)

In this paper, we are more interestedin binding motif
pairs consistingof two traditional protein motifs, and try to
discover them usingfixed point theorems from large amount
of protein interaction sequence data.A recentstudy reported
that protein interactionscould be determined by correlated
mutationsduring evolution [11]. For example, theco-evolution
of interacting protein pairs has long beenobserved in such
well-known interacting protein pairs as dockerins and co-
hesins[12], as well as insulin and its receptors [13]. These
mutations are thought to be interactively happening between
thebindingsitesof a pair of interacting proteins: if a residue2

change incurred in oneprotein disrupts its interaction with its

1Theseabbreviations are a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w,
andy.

2An equivalent nameto an amino acid.
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partner, somecompensatoryresiduechanges must alsooccur
in its interactingpartner in order to sustainthe interaction,
otherwise,they will be selectedagainst and be eliminated.
Therefore,a more proper way to studythe binding of protein
interactions is to focus on binding motif pairs insteadof only
thoseindividual binding motifs.

The correlated mutations in the evolution imply a chain
of binding motif pairs. We can assumethat the recently
survived binding motif pairs should occur more frequently
than thoseancientbinding motif pairs, and should be more
frequent than thosenon-binding motif pairs.Also, the recent
survivedbinding motif pairsshouldbemorestablethanothers.
Otherwise,they would be mutatedfurther. Basedon these
ideasandassumptions, we emulatethetransformationin fixed
point theoremsto modeltheevolution of binding sites,anduse
fixed points to model the survived binding sites.As will be
seenin SectionVII, such discovered stablemotif pairs are
biologically interesting.

The remaining of the paper is organized as follows: In
SectionII, we definebasicnotations. In SectionIII, we give a
formal descriptionof theproblem. In SectionIV, we introduce
a function

���
that is closely relatedto a sequence dataset�

of proteininteractions.Thefunctionwill beusedto transform
protein motif pairs such that they can become stableones.
In SectionV, we prove anddiscussthe properties of

� � ��� � ,
including theconvergenceproperty andthe forest-like decom-
position of its domain. In SectionVI and SectionVII, we
introducea methodto selectgood startingpoint

�
, andapply

our ideasto a massive real-life protein interaction sequence
datato find meaningful fixed points. We alsogive full details
of somefixed pointsandexplain their biological meanings to
show the significanceof our model. We conclude this paper
in SectionVIII.

I I . BASIC NOTATIONS

We use  to denote the alphabetset of the 20 standard
amino acids.All the amino acidsare denoted by lower-case
letters; but proteins and amino acid patterns are denoted by
capital letters.A protein ! is definedasa sequence (a string)
of amino acids. For example, ! can be "$#%"'&)(*(*(+"-, , where"'.0/1 for 20�3��4*(5(*(%476 . This ! is also called a 6 -length
protein. A segmentof a protein ! is a substringof ! where
aminoacidsareconnectedcontinuously.

An aminoacid pattern, or calleda proteinmotif, is defined
as a sequence(a string) of subsetsof  . Hence,a motif 8
can be written in the form 90#:9;&)(*(*(+9=< , where 9�.?>@ for2��A��4*(5(*(%4CB .

The following is an example of protein motifs that was
found to bebiologically important in signaltransduction [14],
[15]. This proteinmotif is D+EGFH IDKJLF�D7EGFM IDKB-N'F thatbindsto the
SH3 domain of the proteinCrkA. The lengthof this motif is
6; the secondpositionof this motif is the whole alphabet set,
meaning “don’t carewhat is matched”. It canalsobe written
as D7EOFIP=DKJLF�D7EGFIP=DKBQN�F in a traditional way by replacing  
with the sign “*”.

Definition 1: Let a motif 8 be 9 # 9 & (*(5(79 < , whereat least
one 9 is not R . 8 is defined to becontained in a protein !A�

" # " & (5(*(7" , if thereexists a B -length segment of ! , denoted" .TSU# " .TSO& (*(5(V" .TS$< for some2 , suchthat " .TS�W /X9 W for all 9 W ,��Y[Z\Y]B , that are not R . If a motif is a sequence of only
emptysets,we definethat thereis no proteincontaining such
a motif.

A motif 8 containedin a protein ! is denotedby 8^>_! ,
andthe segment " .TS$# " .TSO& (*(5(7" .TS$< is said to match the motif8 .

Next, we give definitions relatedto interactions. A pair of
interacting proteins !`# and !�& is called a protein pair !G!aN .
This pair is denotedby the set of the two proteins, that is,!G!aN=�bDc! # 4+! & F . A motif pair, denoted 8d!GN , is a setof two
motifs.Oneof themostimportant definitionsusedin thispaper
is about the inclusionrelationship betweena motif pair anda
protein pair.

Definition 2: Let 8d!aN\�eDK8f#c4C8g&HF be a motif pair and!G!aN;�bDc! # 4+! & F be a proteinpair. 8d!GN is contained in !G!GN ,
denoted 8
!aNX>A!O!aN , if (1) 8 # >�! # and 8 & >�! & , or (2)8 # >h! & and 8 & >_! # .

Let two proteins: !jik�elK"'m ��nLo , !$pq� o l ��r , and three
motifs: 8_#s� Dc"'NHtuF�D5m r F , 8q&v� DKl�F�D � F , and 8xwy�Dc"'NHtzFKR-Dcm r F . Then the protein ! i containsthe motif 8 # , i.e.8 # >h! i . This is becausethereexists a 2-length segment "'m
in ! i suchthat "{/|Dc"'NHtuF and m}/|Dcm r F . Similarly, 8 & >h! p .
Hence,the motif pair DH8 # 4C8 & F is containedin the protein
pair Dc! i 47! p F .

However, the motif 8 w ��Dc"'NHtuFHR-D5m r F is not containedin
any of the two proteinsbecause theredoes not exist any 3-
length segment in ! i or ! p that can match 8 w . Therefore,
motif pairs DH8 # 4C8 w F or DK8 & 4C8 w F cannotbe contained in
the protein pair Dc! i 4+! p F . But, if 8 w is changed to 8�~w �DclcNHtzFKR-Dcm r F , thenboth !ji and !�p contain 8b~w . Note that the
emptyset R in 8_w or 8�~w hasthe samesemanticmeaning as
that of  in this case(SeeDefinition 1).

We denote a sequence dataset � of m protein pairs byDc!O!aN . ��Dc! .# 47! .& F�4V2�����4*�5�*�%47m�F , where ! .# and ! .& have
interactions.

Definition 3: The support of a motif pair 8
!aN �DK8 # 4+8 & F in a protein sequencedataset� is definedas the
number of protein pairs in � that contain 8d!aN , denoted by� Dc!G!aN . � !G!GN . /0��4C8d!aN�>_!G!GN . F � .

I I I . PROBLEM STATEMENT

Let � bea sequencedatasetof interactingproteinpairs,the
problem studiedin this paperis to designa function

� �
that

is closelyrelatedto � , andthento discover stablemotif pairs
that arefixed points with regard to

�Q�
.

Thedomainof thefunction
� �

is thesetof all possiblemotif
pairs. Let us first discussthe possibilities of single motifs.
Recall that a motif is a sequence of subsetsof  , denoted
by 9�#*9;&j(5(*(+9=< , where 9�.�>] for 2?����4*(*(5(*4CB . Hence,ifB���� , then the set of all possiblemotifs is the power set
of  , denoted � �  �� . Then, possibilities of B -length motifs9 # 9 & (5(*(V9 < canbe represented by the following setunion:� Dc9�#�(*(*(+9=< � 9=.j/�� �  �� for 2��b��45(*(*(*4+B�F
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Sincemotif pairsarepairsof motifs, the setof all possible
motif pairshasa much larger size than the domainof single
motifs. We use � to denote all possibilitiesof motif pairs.

Therefore, in a formal way, the problem can be described
as follows. Let � be a sequence datasetof proteinpairs,our
objective is to designa function� � 	 � 
 �e4
andto find thosestablemotif pairs

�
suchthat�H�?��� �)� �

by usingan efficient algorithm.

IV. OUR PROPOSED FUNCTION
� �

As discussed,the function
� �

is to transform a motif pair8d!aN throughaninteraction sequencedataset� , andto make it
become a differentmotif pair 8d!GN ~ at mostcases.Ideally, for
any motif pair

�
, the following motif pairs,

����� � , ��������� �7� ,(*(*( , ��� (*(5( ����� �7� , shouldconverge to a stablemotif pair. We
will show our proposed

�-�
satisfiestheseconditions.

Given a motif pair 8d!aNq��DK8 # 4C8 & F , our proposed
�-�

involves three stepsto transform 8d!aN . In the first step, it
discovers a subsetof � suchthat for every proteinpair !G!aN
in this subset,!G!GN contains the given motif pair 8d!aN . We
denote this subsetby

�K��� p� ��Dc!G!GN � !G!aN�/0�04+8d!aN�>_!O!aN'F�� (1)

In thesecondstep,
���

movesto extracta segmentpair from
every protein pair in � ��� p� . Let �y��Dc!$iL4+!$pMFX/ � ��� p� , then8d!aN
>1� . Therefore, theremust exist: (1) a segment in !�i
thatmatches 8h# anda segment in !)p thatmatches8x& , or (2)
a segment in !jp that matches 8h# and a segment in !ji that
matches8x& . If the both casesare true, we choose either of
them.In any case,we denote thesegmentthatmatches8�# by� l5�-��lcm n # , and the segment that matches 8f& by � l5�'�Xlcm n & .
Observe that 8h# and � l5�-��lcm n # have thesamelength, andso
for 8 & and � l5�'�Xlcm n & . Suppose thereare � protein pairs in� ��� p� , thenwe canget � number of � l5�-��lcm n # and � number
of � l5�'�Xlcm n & . Let the lengthof � l5�-��lcm n # be

o
. Then, the �� l5�-��lcm n # canbe representedas the following matrix � " .�W%����

�
"u#7# "u#�& (*(5(e"u#V�"-&C# "-&7& (*(5(e"-&+��*�5�"-�M# "-�K&¡(*(5(v"-�c�

¢¤££
¥

This matrix is denotedby "'J¦m ��§¨ . It is calledthe alignment
of 8_# with regard to � ��� p� in the bioinformatics literature.
Similarly, we can represent those � � l5�'�Xlcm n & as another
matrix, denotedby "-J�m �?©¨ .

In the third step,our
� �

movesto find a consensuspattern
from the matrix "'J¦m � §¨ and a consensus pattern from the
matrix "-J�m �?©¨ . In the matrix "-J�m � §¨ , for every column Z ,
denoted by � "ª.�W � 472k����4*(5(*(%47� , we choose those "z.�W , whose
population in this column is larger thana threshold, to form a
setdenotedby 9 W . If noneof these" .«W satisfiesthecondition,
we set this positionas R . Then the sequence 9 # 9 & (5(*(+9 � , a
motif, is called the consensus patternof 8 # . This consensus

patternis denotedby 81~# . Similarly, we canfind theconsensus
pattern 8b~& for 8 & . Then DH8b~# 4+8A~& F is a transformed motif
pair for 8
!aN¬�sDH8 # 4+8 & F by

�M�
. Therefore, we can write�K�­� DK8 # 4+8 & FK�)��DK8A~# 4+8A~& F .

The threshold for the aminoacids’ population in a column
is important for theconsensuspatterndiscovery. In this paper,
we use20%, a percentagevalue,as the threshold. That is, if
the occurrencerateof an aminoacid at a columnis lessthan
20%,thenwe dropit, not allowing it to get into theconsensus
pattern. Absolute support numbers are also possiblefor the
threshold, but we explain later why percentage thresholds are
betterthanabsoluteones.

The discussionabove assumesthat � ��� p� is non-empty. To
let
� �

be well-defined, we definethe following extremecase
for
� �

: Given a motif pair
� �sDK8f#K4C8g&KF , if �c®� �¯R , we

define
� � �¦� �)�ADHR�(*(5(VRQ4CR�(*(5(7R-F , wherethenumberof empty

setsin the first sequence is the lengthof 8°# , andthe number
of emptysetsin thesecondsequenceis thelengthof 8[& . Note
that if a motif pair

� �]DKR�(5(*(7Ru4+R�(5(*(VR-F , then
�-�­�¦� ��� � .

Sucha motif pair is a trivial fixed point for
�z�

.

Next, we usean example to show how
� �

proceeds.Let a
motif pair

�
be DK8f#c4+8q&HF , where 8h#���Dc"ªF�D5�ªF�D*��F�D*��F�Dc2²±zF

and 8x&�� D � 6zF�D*��F�DKlKB�F�Dc"-l�F�DKlcm � F�D52²JLFMDK"uF . Let � be a
sequence datasetof interacting protein pairs. Suppose �ª®�
contains the following 7 proteinpairs

DK³H³H³ agggi ±-±�4 lclc2 fgkasia �K� FDK"-" fgkasia ±-±�4 �K�c� agggy³K±ªFDc±-± agggi³H³H³-4 6�� fgkasia BzB�FDHBuB � agggy�K� "�4 ���Q³ vgeaeia 2²2+FDc6�6 agggi ±'±�4 2�2²2 vgeaeia �K�c� FDK³H³H³ vgeaeia BuB�4�±'±-± agggi³H³H³'FDK³H³H³ agggy³H³H³-4 ³H³H³ vgeenla ±-±�F .
Then "-J¦m � §¨ —thesegments from the7 proteinpairsthatmatch8 # —is the following matrix:

�����������
�

� �¡´¶µ ·
" � �¶� 2" � �¶� ±" � �¶� 2" � �¶� ±" � �¶� 2" � �¶� 2" � �¶� ±

¢¤££££££££££
¥

The consensuspattern 81~# for this matrix is

Dc"ªF�D*��F�D*��F�D5�ªF�D52²±ªF��
Observe that 8b~# is equalto 8h# . This is becausethat at the
fifth columnof this matrix,both 2 and ± occurmorethan20%.
Hence,they arekept in the consensuspattern.

Similarly, "'J¦m � ©¨ —the segments that match 8 & —is the
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following matrix:�����������
�

� � ´ µ · ¸ ¹� � B " � 2 "� � B " � 2 "� � B " � 2 "6 � l¶" l 2 "6 � l¶" l 2 "6 � l¶" l 2 "6 � l¶º » ¼�"

¢ ££££££££££
¥

The consensuspattern 8@~& for this matrix is

D � 6ªF�D5�ªF�DKBQl�F�Dc"ªF�D � l�FMDc2+FMDc"ªF��
Note that 8b~& is not equalto 8x& . Also observe that theamino
acids l'4Vmj47J at columns 4, 5, and6 (in bold font) respectively
aredropped.Therefore,they do not appearin the fourth, fifth,
andsixth setof 8b~& .

Since
�H�­� DK8 # 4+8 & FK�)��DK8 # 4+8A~& F , � ��DK8 # 4+8 & F is not

a fixed point of
���

.
This example has illustrated that

�'�
uses three steps—

discovery of a subsetof � , extraction of segmentsfrom this
subset,and discovery of consensuspatterns—totransform a
given motif pair.

V. PROPERTIES OF
� �

This sectionpresentssomeimportant propertiesof
� �

. At
first part, we prove the convergence property of

� �
for any

startingmotif pair, andalsodiscussthe foreststructure of the
domain of

� �
. At the secondpart, we discusssomespecific

propertiesof
� �

whentheconsensuspatternthreshold is setas
percentagevaluesor setasabsolutenumbers.At thethird part,
we explain why usingpercentagethresholds is a betterchoice
than using absolutenumbersfor our fixed point theoremsto
model the binding in protein–protein interactions.

A. Convergence properties

Proposition1: Givena motif pair � anda sequencedataset� of interactingprotein pairs, let
� � �-�­� ��� and

� ~ �� � �¦� � , then �K®�½� > �5®� .
Proof: If �H®�½� �°R , of course,�M®�½� > �c®� . Next we prove

this proposition for ��®`½� ¾�AR . Denote
� ��DH8 # 4+8 & F , 8 # �9 # 9 & (*(5(79 , , 8 & ��¿ # ¿ & (*(5(�¿ � ;
� ~À��DK8A~# 4+8A~& F , 8A~# �9 ~ # 9 ~& (*(5(79 ~, , 8 ~& �Á¿ ~# ¿ ~& (5(*(V¿ ~� . Because

�
is a motif pair

resultingfrom � after a transformation by
�ª�

, then 9=~. ¾�1R
and also 9�~. >Â9 . for those 2 satisfying 9 . ¾�ÃR . Similarly,¿`~. ¾�°R andalso ¿�~. >_¿). for those2 satisfying¿`. ¾��R . Thatis,
if 9;. ¾�1R (respectively ¿`. ¾�1R ), 9=~. (respectively ¿À~. ) would
never becomean empty set under the percentage thresholds
such as 20% usedin this paper. (Note that this is not true
when

�
is anarbitrary motif pair. That is why we needto set� � � � � ��� for any � .)

Let !G!GN{/ �c®�½� , we prove !G!aN ¾/
��� �M®� . Assume !G!aN{/�Ã� �c®� , then !G!aN ¾Ä � . Therefore, for any two segments
from !G!GN , they cannot match 8 # and 8 & at the sametime.
Therefore, they cannot furthermorematch 8s~# and 8�~& at the
sametime. This is because 9 ~. >s9 . for those 2 satisfying9 . ¾�ÁR , and ¿À~. >h¿ . for those 2 satisfying ¿ . ¾�°R . Here is a

contradiction.Thusour assumption, that !G!aN�/0��� �u®� , must
be false.Therefore, we canconclude that !G!GN=/ �u®� .

This proposition is useful for efficiently computing �ª®�½� . By
definition, �H®�½� is a subsetof � in which every protein pair
contains themotif pair

� ~ . Therefore,a naive way to compute� ®�½� is to checkwhetherevery protein pair in � contains
� ~ .

Having the proposition, this naive methodbecomes unneces-
sary because the check within ��®� is sufficient. Since �H®� is
muchsmallerthan � , we cangain muchefficiency.

Theorem1: Let � be a sequencedatasetof interacting
protein pairs. Then for any starting motif pair

�
,
���?�¦� �

convergesto a fixedpoint
�dÅ

. That is, thereexists an integernLÆ��VÇ �K� suchthat
��È¤É�ÊVË� �¦� �)� �ÌÅ , and

� � ���ÌÅ �)� �kÅ , where� È # Ë� ��� � represents
�M�­�¦� � , � È & Ë� �¦� � represents

�M�­�Í�K����� �7� ,
and

� È¤É S$# Ë� ��� � represents
�M�?��� È¤É�Ë� ��� �7� .

Proof: Denote
� È Æ Ë � � ,

� È # Ë � �$È # Ë� ��� � , (5(*( , � È¤É�Ë �� È¤É�Ë� ��� � .
By Proposition 1, we know that �'®ÀÎ«ÏÑÐ §ÍÒ� > �c®�Î�Ï Ò�

for anyn`Ç � . Since�K®ÀÎ §ÍÒ�
is a limited set,theremustexist a

n�Ç � such
that � ®ÀÎ«Ï Ò� � � ®ÀÎ«ÏÑÐ §ÍÒ�

. Therefore, the consensus patternfrom�c®ÀÎ«Ï Ò�
is equalto the consensuspatternfrom �-®ÀÎ«ÏÑÐ §¦Ò�

. Because
theconsensuspatternfrom ��®ÀÎ�Ï Ò�

is representedas
� È¤É S$# Ë , and

the consensuspatternfrom �'®�Î�ÏÓÐ §ÍÒ�
is representedas

� ÈTÉ SG& Ë ,
we have

� ÈTÉ S$# Ë � � È¤É SG& Ë . That is,
� � ���ÌÅ �=� �ÌÅ , where�ÌÅ � � È¤É S$# Ë , asdesired.

Fromthis theorem, we canunderstand:(1) thatany starting
motif pair will converge to a fixed point (likely an empty
pattern) and(2) thatdifferentstartingmotif pairsmayconverge
to the samefixed point. Therefore, the domain of

� �
can

be partitioned into non-overlapping clusterswith eachcluster
corresponding to one fixed point. More specifically, each
clusteris a tree,asprovedby thefollowing proposition.Which
treesare interestingandbiologically meaningful? In the next
section,we provide a heuristics.

Proposition2: Thedomain (searchspace)of
� �

is a forest,
with eachroot nodeasa fixed point (a stablemotif pair).

Proof: We denotea motif pair
�

as a node. If an
edgeis set from all possible

�
to
� � �¦� � , the searchspace

can be viewed as a graph. Since
� � ��� � is an unique motif

pair, the out-degree of each node should be no more than
one. Meanwhile, it is impossible to have a circle in the
graph. Assume

��Æ 4 � #U�*�5� � <'4 �kÆ is a circle. According to
Proposition 1, � ® Ê� Ä � ® §� �*�*� Ä � ® Ï� Ä � ® Ê� . Then � ® Ê� �� ® §� �*�5��� � ® Ï� � � ® Ê� . Therefore,

�0Æ � � #¬�3�5�*�À� � É .
Hence,

�{Æ
is a fixed point. Thus it is impossibleto have an

out edgeto
� # . Also, by Theorem 1, any motif pair canlead

to a fixed point, with the out degree as zero, which is the
corresponding root of that tree.

B. Specific properties

Recallthatthedefinitionof
� �

involves a stepfor consensus
pattern discovery. To find consensus patterns, we need a
threshold to filter out those minor amino acids from the
alignments.As mentioned, we have two optionsto selectthe
threshold: one is to use percentagevaluesas the threshold;
the other is to use absolutenumbers. We denotethe former
approachas

� ÈÑÔ�Õ � Ë , andthe latter as
� ÈTÖ-Õ � Ë .



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 8, AUGUST 2005 5

Thefollowing propositionshows that thestability of a fixed
point of

� ÈTÖ-Õ � Ë can be transferredto its sub-motifs. Here, a
motif 8�~ is a sub-motif of motif 8 if 81~ is a segmentof8 .

Proposition3: Let a motif pair
� � DK8 # 4C8 & F be a

fixed point of
� ÈTÖ-Õ � Ë , then any of its sub-motif pairs

� ~À�DK8A~# 4C8A~& F is a fixed point of
� ÈTÖ-Õ � Ë as well, where 8�~# is a

sub-motif of 8f# , and 8 ~& is a sub-motif of 8h& .
Proof: Because

� ~ is a sub-motif pair of
�

, for ×�!G!GN=/� ®� , we have !G!GN¯/ � ®�½� , i.e. � ®� > � ®`½� . Since
�

is a
fixed point of

� ÈÓÖ-Õ � Ë , ×a"-.«W°/Ø9=. either from 8�# or from8g& , its population in �M®� mustbe above the threshold. Since
any occurrenceof " .�W in �c®� is also an occurrenceof " .«W in�5®�½� , theoccurrenceof ×�"�.�W in

� ~ is alsoabove the threshold.
Therefore,

� ~ is alsoa fixed point of
� ÈTÖ-Õ � Ë .

Proposition 3 saysthat the fixed points of
� ÈTÖ-Õ � Ë satisfies

the famous Apriori-property [16] known in datamining field.
That is, if a sub-motif pair of a motif pair is not a fixedpoint,
themotif pair is impossibleto bea fixedpoint. Therefore, the
mining of fixed points of

� ÈTÖ-Õ � Ë should be similar to those
algorithms for mining frequent itemsets.

Note that Proposition 3 doesnot hold if we replace
� ÈTÖ-Õ � Ë

with
� ÈÓÔ�Õ � Ë .

Proposition4: Let
�

and � be two equal-length stable
motif pairs of

� ÈTÖ-Õ � Ë , where
� � DK8 ® #c4C8 ® &HF , � �DK8qÙU#H4C8qÙG&�F , � 8 ® # � � � 8qÙ�# � and

� 8 ® & � � � 8qÙO& � . Then
the union motif pair

�ØÚ ���bDK8 ® # Ú 8qÙ�#K4C8 ® & Ú 8qÙG&�F
is alsoa fixedpoint of

� ÈÓÖ-Õ � Ë . Theunionoperation ~ Ú ~ of two
motifs is definedasfollows: suppose 8Û�°9�#%9=&j(*(5(79=< , and8A~I�y9;~# 9;~& (5(*(V9;~< , then 8 Ú 8b~I�s9;~ ~# 9;~ ~& �5�*�V9;~ ~< , where9;~ ~. �f9 .ªÜ 9;~. , �ÝYh2)YfB .

Proof: Observe that ×�!G!GN_/ �M®� , then !G!GN_/ � ® SOÙ�
.

Hence,we have �M®� > � ® SOÙ�
. Similarly, we can get � Ù� >� ® SOÙ�

. Since
�

and � arefixed pointsof
� ÈTÖQÕ � Ë , for ×�" .«W /9 . eitherfrom 8 ® # or from 8 ® & , its support in � ®� is above

the threshold. Since any occurrenceof "O.�W in �c®� is also an
occurrenceof "ª.�W in � ® SOÙ�

, the occurrenceof ×a"�.«W in
�]Ú �

is alsoabove the support threshold. Therefore,
�]Ú � is also

a fixed point.
Note that this proposition may not hold if replacing

� ÈTÖ-Õ � Ë
with

� ÈÓÔ�Õ � Ë . This is becausetheoccurrenceof theunionmotif
pairs not only covers the occurrencesof the two original
fixed points, but also covers some occurrencesfrom new
combinations.Therefore, it is difficult to determine whether
the occurrence rate is still above the percentage threshold.
Another interestingthing is if

�
is not a fixed point,

�ØÚ �
is not impossibleto be a fix point of

� ÈTÖ-Õ � Ë .
Proposition5: Let

� ÈÑÔ�Õ � Ë be the
� �

under the percentage
threshold in the consensuspatterndiscovery. Let a motif pair� �ÞDK8x#K4+8g&MF , where 8h#|�ß9�#%9=&j(*(5(79;, , 9;.0>� , for2`�]��4*(*(5(%4V6 ; 8g&;�A¿�#:¿)&j(*(5(�¿)� , ¿UW�>A , for Z��Â��4*(5(*(%4 o .
If all 9=. and ¿�W aresingletonsets,and �M®� ¾�ÁR , then

�
is a

fixed point of
� ÈÓÔ�Õ � Ë .

Proof: Denote 9�.@� DK"'.�F for 2Â� ��4*(5(*(%476 , and¿ W �bDHà W F for ZÌ�b��4*(5(*(%4 o . Suppose��®� contains � protein
pairs !G!GN . 4V2��@��4*(*(5(%4V� . Then the segment from the protein
pair !G!GN . for every 2 that matches8 # must be " # " & (*(*(+" , ;
Similarly, the segment from the protein pair !G!GN . for every

2 that matches 8 & must be à # à & (*(5(+à � . Therefore, the two
alignments "-J�m ��§¨ and "-J�m � ©¨ are the following two special
matrixes: ���

�
" # " & (*(*(�" ," # " & (*(*(�" ,�*�*�"u#á"-&¡(*(*(�"',

¢ ££
¥

and ���
�
à # à & (5(*(�à �à # à & (5(*(�à ��5�*�à # à & (5(*(�à �

¢ ££
¥

Then, the consensus pattern for "-J�m �­§¨ and "-J�m � ©¨ areDc"u#5F�Dc"-&HF�(*(*(%Dc"-,MF and DKàc#5F�DHà:&KF�(5(*(:DHà:�)F respectively, under
percentage threshold, as the occurrence rate is 100% in this
case.Hence,we canseethat

�
is a fixed point of

� ÈÓÔ�Õ � Ë .
C. The function

� ÈÓÔ�Õ � Ë better than
� ÈTÖQÕ � Ë

In this subsection, we give a comparison between
� ÈÓÔ�Õ � Ë

and
� ÈTÖ-Õ � Ë , and explain the reasonsfor that

� ÈÑÔ�Õ � Ë is better
than

� ÈTÖ-Õ � Ë to model the binding in protein–protein interac-
tions.

First, let us examine the mostlikely lengths of fixed points
derivedby

� ÈÓÔ�Õ � Ë and
� ÈTÖQÕ � Ë . According to Proposition3, for a

longstablemotif pair
�

of
� ÈÓÖ-Õ � Ë , all sub-motif pairsof

�
are

alsofixed pointsof
� ÈÓÖ-Õ � Ë . In extreme cases,thosemany 1-1

pairsarestablemotif pairs.In biology, they arecalledresidue–
resideinteraction pairs[17]. Thoughthey maybefundamental
componentsof somebinding sites,they may have very high
falsepositiverate.Oneway to solve thisproblemis to discover
only thosemaximalfixedpointsof

� ÈTÖ-Õ � Ë which aresimilar to
a well studieddatamining concept called maximal frequent
patterns [18], [19]. On theotherhand,bothveryshortandvery
longmotif pairsareunlikely to befixedpointsof

� ÈÓÔ�Õ � Ë dueto
the equalpossibility for shortmotif pairsandrarepossibility
for long motif pairs.This propertyof

� ÈÓÔ�Õ � Ë is very consistent
with the observations in biology [20] that most binding sites
generally include more than 10 but less than 20 residues.In
fact,the lengths of our discoveredstablemotif pairsof

� ÈÓÔ�Õ � Ë
matchvery well with thoseof real motif pairs.

Secondly, let usdiscusstheunion( ~ Ú ~ ) operationfor
� ÈÓÔ�Õ � Ë

and
� ÈTÖ-Õ � Ë . According to Proposition 4, the union of any two

equal-length fixed points of
� ÈÓÖ-Õ � Ë is also a fixed point of� ÈTÖQÕ � Ë , but this flexibility doesnot hold for fixed points of� ÈÓÔ�Õ � Ë . In the real biology circumstances,this union property

doesnot usuallyhold for binding siteseither. For example, a
study on active sites [21] shows that only speciallyselected
amino acids (not arbitrarily united) are possibleto compose
a binding site or an active site. The union property of fixed
points of

� ÈTÖ-Õ � Ë also leadsto another bad consequence:the
motif pairs with large set in all positionsare more likely to
be fixed points. In the extreme case,the motif pairs which
containonly full alphabet setsin eachpositionaremostlikely
to be fixed points. It is obviously meaningless from biology
perspective. However,

� ÈÑÔ�Õ � Ë does not produce such fixed
points.
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Hereby,
� ÈÓÔ�Õ � Ë is better than

� ÈTÖ-Õ � Ë for modeling the
binding in protein–protein interactions, as it reflects more
properties of the real binding sites. However,

� ÈÑÔ�Õ � Ë has
the singletonproblem as discussedin Proposition 5. By this
proposition, every segment pair from any protein pair of �
is a fixed point of

� ÈÑÔ�Õ � Ë . Hence, it seemsthat there are
many easyfixed points for

� ÈÓÔ�Õ � Ë . Therefore, we needother
statisticalmeasurements to remedy this, for example, using
the support level or P-scoreof thesefixed points in � , or
biological evidence asdiscussedin our anotherpaper[22] to
filter out someeasyones. In the remaining of the paper, any� �

refersbackto
� ÈÓÔ�Õ � Ë .

VI . SELECTION OF STARTING POINTS FOR
���

Starting from any motif pair, we have alreadyknown (by
Theorem1) that this motif pair will becomea fixedpoint after
a number

n7Æ
timesof transformationby

� �
. Sincethedomain

of thefunction
� �

is huge, in this sectionwe discussa method
to selectgoodcandidatesfor startingmotif pairs,so that the
resultingfixed pointscanhave good biological significance.

As discussedin the introduction of this paper, protein
interaction data are categorized into two types: protein in-
teractionsequence data and protein complex data. Existing
biotechnologies cangeneratehigh-throughput proteininterac-
tion sequencedataefficiently. But, it is expensive and time-
consuming to generateprotein complex data.However, only
proteincomplex datacontainsclear3-D structureinformation
for interacting proteins. From a protein complex, the exact
locations of binding sites of the interactingproteins can be
determined by calculatingthe distancesbetweenaminoacids
in a pair of proteins in this complex.

Hereby, in this paper, we useproteincomplex dataas our
platform because thesedata can provide important clues to
guide the selectionof meaningful starting motif pairs. We
first discover binding sites from this kind of biologically
reliabledata.Then,we generalizethesebinding sites,andthen
transform thosegeneralized patterns by our

� �
to get stable

motif pairs.
In oneof ourpreviousstudies[23], weproposedamethod to

discover binding sitesfrom protein complex data.Thesebind-
ing sitesarecalledmaximal contact segmentpairs [23]. Two
segments from two proteins area contact segmentpair if every
residuein onesegmentcanfind at leastonecontact residuein
theoppositesegment,wherethecontactof two residues means
that at leastoneof their atompairshasan Euclideandistance
less than a threshold. A contact segment pair is maximal if
no any other contact segment pair in the sameprotein pair
contains bothsegmentsof this contactsegment pair, capturing
contactsegment pairs as lengthy as possible.The maximal
contactsegment pairsarethengeneralized into startingmotif
pairs.The formal definitionsandexplanationsaboutmaximal
contactsegmentpairsandthe searchalgorithms canbe found
in our previous work [23].

VI I . SOME REAL-L IFE EXAMPLES

In thissection,wereportsomefixedpointsof
�z�

discovered
from a real-lifesequencedataset� of interacting protein pairs.

This sequence datasetis constructedby von Mering [24].
It consistsof 78390 non-redundant interactions, containing
almostall the latestinteractingproteinpairs in yeastgenome
produced by various experimental and high-confident com-
putational methods. The lengths of theseproteinsare typi-
cally from hundredsto thousands.The datais also available
at our website (http://sdmc.i2r.a-star.edu.sg/
BindingMotifPairs).

Our starting motif pairs are also discovered from a real-
life protein complex dataset.This protein complex dataset
is derived from PDB (http://www.rcsb.org/pdb/). It
consistsof 1533 entries that have at least two chains, by
usingonline searchtools in PDB-REPRDB(http://mbs.
cbrc.jp/pdbreprdb-cgi//reprdb_query.pl). In
this complex dataset,themaximum pairwisesequenceidentity
betweenany two complexes is 30% andeachcomplex hasa
structure of resolution 2.0 or higher.

Fromthis protein complex data,we identified1222starting
motif pairs.After transformationby

� �
, 913 of thembecome

fixed points that are not empty patterns.(That is, 309 of
the 1222 starting motif pairs become the empty pattern:DKR�(*(*(VRu4+R�(5(*(7RQF .) Most of the 913 stablemotif pairs have a
length between10 and 20. About 30% of thesestablemotif
pairshave a support of at least10 in � .

Table I givesan example showing the transformation from
a starting motif pair to a fix point, where three rounds of
transformationsby

� �
arereported.

Next, we give full details for one of the 913 stablemotif
pairsto seehow it is discovered,whereits origin is, andwhat
its biological significanceis. This stablemotif pair is

D�D5�ªF�DcJ¦±ªF�DctzF�Dc2�±�FMDc2Í6ªF�4*D5N'F�D*�ªFMDKJ²F�D*�ªFMDKJ²F�D56zF�D5N'F�D � F�F�4
denoted by 8d!aN�â�ãcä:å�æ%iTâ � DH8x#c4C8g&HF , where8x# � D*��F�DcJ¦±�F�DctzF�Dc2²±ªF�D52²6ªF and 8x& �D5N'F�D*��F�DcJ�F�D5�ªF�DcJLF�D*6ªF�D*N'F�D � F .

Its origin is locatedat the so-calledpdb1ors protein com-
plex [25]. Specifically, the motif 8[#?�@D5�ªF�DcJ¦±ªF�DctzF�Dc2�±�F�D52�6zF
is evolved from the segment �-±-t�± � at the chain B of the
pdb1ors complex. Thesefive amino acidsare indexed from
99 to 103 residuesin the chainB. SeeFigure1. To combine
theseaminoacidsandtheir positionstogether, this segmentis
sometimeswritten as � �Qç�çu47±��5è�èz47tª�5èz��4V±��cè � 4 � �5è ´ � .

The motif 8_&[�^DcN'F�D*��F�DKJLF�D*��F�DcJ�F�Dc6zFMDcN'F�D � F is rooted
at the segment "��QJé�QJ � NHJ at the chain C of the pdb1ors
complex. Theseeight amino acids are indexed from 111 to
118residuesin thechainC. Thissegmentis sometimeswritten
as � "ª������4������ � 47JV��� ´ 4������ µ 47JL��� · 4 � ��� ¸ 47N-��� ¹ 47JL���*ê � to combine
the aminoacidsandtheir positions together.

The segment pair, � �Qç�çz4V±��5è�èu4+tz�cèu��47±��5è � 4 � �5è ´ � and� "ª������4������ � 47JV��� ´ 4����M� µ 47JL��� · 4 � ��� ¸ 47N-��� ¹ 47JL���*ê � , is a maximal
contact segment pair. We use Figure 2, abstractedfrom
Figure1, to demonstrateit.

Using our methodproposedin [23], this maximalsegment
pair D5�'±Qt�± � 4+"��-J��-J � NKJ�F is generalizedto thefollowing starting
motif pair

�
,� �AD�D*��F�DcJ¦±�F�DctzF�D � 2²±ªF�D � 2²6zF'4:D5N'F�D5�zF�D5JLFMD5�zF�D5JLFMDc6zF�D5t�N�F�D � 27F�F

for the function
�'�

.
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TABLE I

A STARTING MOTIF PAIR ë�ì
�:�+í+îM�:�7ïc�:�+ðÓ�:�+ðÑ�*ñ��+îM�:�+í+îM�:�+í7îM�CòO�7ïc�:�7óÑôc�:� BECOMES A FIXED POINT OF õ¦ö AFTER THREE ROUNDS OF

TRANSFORMATION BY THIS FUNCTION.

convergence motif pairs
� � �'®� �

starting D ekF D g F D l F D l F , D k F D ekF D ekF  D g F D iv F 31� È # Ë D ekF D g F D l F D l F , D k F D ekF D ekF D aF D g F D iv F 11� È & Ë D ekF D g F D l F D l F , D k F D e F D k F D aF D g F D v F 108q÷c.ÓãcâVø D ekF D g F D l F D l F , D k F D e F D k F D aF D g F D v F 10

Fig. 1. 3-D structure of a binding site in the pdb1ors protein complex, a complex between the kvap potassium channel voltage sensorandan fab in species
mouseandE. Coli., whereChain B is in blue color, andChain C is in greencolor.

y102 f103d101y100g99

a111 g112 l113 g114 l115 f116 r117 l118

Chain B

Chain C

Fig. 2. A maximalcontact segmentpair discoveredfrom the pdb1ors complex. A line between ChainB andChain C represents that the two corresponding
aminoacids areclose in distance.

After onestepof transformationby
�z�

, this startingmotif
pair

�
becomes the fixed point 8d!aN âLãKä:å�æ%iTâ , i.e.

�H�?�¦� ���8d!aN â�ãcä:å�æ%iTâ .
We also found that this stablemotif pair 8d!aN-âLãKä:å�æ%iTâ is

statisticallysignificantafterexamining its support level against
random motif pairs.Thesupport of motif D5�ªF�DKJ�±�F�DKtuF�D52²±�F�Dc2Í6ªF
is 15 in yeast protein set (not the protein interac-
tion sequence dataset � ), and the support of motifD5N'F�D5�ªF�DcJLF�D*��F�DKJLF�D56zF�D5N'F�D � F is 2 with respectto the same
proteinset.The support of 8d!aN-âLãKä:å�æ%iTâ as a pair is 6 in the
protein interaction sequencedataset� . Then, we generated
1000 random motif pairs according to 8d!GN âLãKä:å�æ:iÓâ , where
each random motif pair is generatedby substitutingevery
residuein 8
!aN âLãKä:å�æ%iTâ with a random residue.Therefore, the
random motif pairshave thesamelengthas 8d!GN âLãKä:å�æ%iTâ . The

distribution of the randomly generated residuesfollows the
samedistribution of all theresiduesin thewhole yeastgenome.
For these1000 random motif pairs, the average support of
the random motifs corresponding to D5�ªF�DcJ¦±ªF�DctzF�Dc2�±�F�D*2²6zF is
11.14, the support of every random motif corresponding toD5N'F�D*��F�DcJ�F�D5�ªF�DcJLF�D*6ªF�D*N'F�D � F is 0. Consequently, the support
for any of those 1000 motif pairs is also 0 in the protein
interaction sequencedataset� . Fromthesestatisticalnumbers
of 8d!aNHâLãKä:å�æ:iÓâ andits equal-length1000random motif pairs,
we canseethat 8d!aNHâLãKä:å�æ%iTâ hasoccurrencemuchmorethan
its random expectation in singlemotifs or in pairs.Therefore,
the stable motif pair 8d!aN�âLãKä:å�æ%iTâ is not a random result
indeed.

We alsofound somebiological significanceof themotif pair8d!aN âLãKä:å�æ:iÓâ . In biology, Pellicenaand Miller [26] studied
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a protein motif 8 �$� �3D5±�F�DKtuF�D5±�F�Dc6zF within the protein
p130Cas

ù
of v-Src transformed cells. This motif was biologi-

cally confirmed to bind to the Src homology 2 (SH2) domain
that is a proteindomainwith about100 amino-acid residues
in many intracellular signal-transducingproteins [27]. We had
the following observations after comparing thesebiological
literatureresultswith our computationalresults:ú 8 �O� �¡Dc±�F�DctzF�Dc±�F�D56ªF is similar to the left motifD*��F�DKJ�±�F�DKtuF�D52²±�F�Dc2Í6ªF of our motif pair 8d!aN'âLãcä%å)æ%iTâ .ú The segment J�6'N � in the SH2 domain partially matches

to our right motif D5N'F�D5�ªF�DcJ�F�D*��F�DKJLFMDc6zF�D*N'F�D � F of8d!aN âLãKä:å�æ:iÓâ . The preciselocation of the segment J�6'N �
is from positions118 to 121 at the SH2 domain of the
protein ûjü �Mý ü|þÝ8 ýIÿ , and from positions 139 to
142at the SH2 domain of theprotein ûjü �Mý 8��;þÝû�� .
At the left side of the matchedsegments in the SH2
domain, there is a segment ³c� r ± from 114 to 117 inûjü ��ý ü|þÝ8 ý?ÿ . The residue ³ at position 114 of
this segment is a structure interchangeable residue ofN [28]; the residue � at position 115 exactly matches
with the secondresiduein our motif; at position 116,
both residue

r
and J arehydrophobic residuesthat imply

somestructuresimilarity; at position 117, both residue± and residue � are surface residues (charged/polar
residues).Similarly, we find a segment � r ± from 136
to 138 in ûjü �Mý 8��;þÝû�� . Hereby, the right motif of8d!aN âLãKä:å�æ:iÓâ hasfive positionswhich are exact matches
andtwo positionswhich arecompatible with the biolog-
ical protein sequences (from a domain of 92 residues).ú There are total 295 proteins containing SH2
domains, where the segment J�6'N occurs in 139
of them. (This can be seen from the prosite:
http://tw.expasy.org/prosite/.) Moreover,
the segment J�6'N locatesnearthe most conserved region
in the domain, where the most conserved region is just
between� —the secondresidueand N —the last second
residue.(Seehttp://tw.expasy.org/cgi-bin/
aligner?psa=PS50001&color=1&maxinsert=
10&linelen=0). This implies that the motif pair we
discoveredis likely to be the mostcritical factor for the
binding betweenthe D5±�F�DKtuF�D5±�F�Dc6zF motif in p130Cas
andSH2 domain.

Finally in this section, we describe two more exam-
ples to explain the biological significance of our dis-
covered fixed points. Vancompernolle [29] reported a re-
sult that protein actobindin contains an actin-binding mo-
tif D56ªF�D n�� F�D56ªF�DHB�F�DHB�F�Dc6zF . From our discovered 913 stable
motif pairs, we observed that there are three motif pairs
containing motifs that are similar to the actin-binding motifD56ªF�D n�� F�Dc6zF�DKB�F�DKB�F�D56ªF . The left side and right side of the
threemotif pairsare listed in the secondandthird column of
Table II respectively. A more interestingobservation is that
the threeright-sidemotifs areall contained in thesequence of
the protein actin or its associatedproteins.

Kay et al [15] hada studyon the interaction of proline-rich
motifs in signalingproteinswith their cognatedomains. Four
binding motifs (called binding consensussequences in [15])

arelisted in thefirst columnof TableIII. Fromour discovered
binding motif pairs,we observed that thereare4 motif pairs
containing amotif thatis similar to oneof the4 binding motifs.
The 4 motif pairs are listed in the secondand third columns
of Table III. Anotherobservation is that our right-sidemotifs
are all containedin the proteins in the last column of Table
III which arereportedto bind to the corresponding consensus
sequences in the first column [15]. (Note that similar results
have beenobtained by usingemergencesignificancemeasure-
ment in our previous work [23].)

These observations indicate that the stable motif pairs
discovered by our fixed-point basedmethod would possess
strong biological meaning. An important implication of this
is that our discovered binding motif pairs are likely to be
real biological binding sites. Therefore, this computational
method would have a potentialguidance role to play for the
identification of real biological binding sites.

VI I I . CONCLUSION

In this paper, we have proposed a fixed point theorem
to model the binding in protein–protein interactions where
a point is definedas a protein motif pair consistingof two
traditional protein motifs. The transformation by a function
emulatesthe evolution of bindingsites,while the fixed points
of the function models the binding sites.To discover stable
motif pairsfrom thesequencedataof interactingproteinpairs,
we proposeda mathematical function

�u�
. The transformation

of a motif pair by
�'�

involves three steps: the discovery
of a subsetof � , the extraction of alignments from this
subset,andthe discovery of two consensus patterns.We have
proved that

� �
is a convergent function for any startingmotif

pairs. In this paper, we have also discussedthat
� ÈÑÔ�Õ � Ë is

betterthan
� ÈTÖ-Õ � Ë for modeling thebinding in protein–protein

interactions, as it reflectsmorepropertiesof the real binding
sites.We appliedour method to a huge real-life datasetand
found many biologically interestingmotif pairs. As future
work, wewill collaboratewith biologiststo confirmourresults
using wet experiments.Meanwhile, we are also working on
different functions

�'�
to seewhether it canbe optimized.
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