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Continuous Decision-Making in Lane Changing and
Overtaking Maneuvers for Unmanned Vehicles: A
Risk-Aware Reinforcement Learning Approach With
Task Decomposition

Sifan Wu
Dezong Zhao

, Daxin Tian

Abstract—Reinforcement learning methods have shown the abil-
ity to solve challenging scenarios in unmanned systems. However,
solving long-time decision-making sequences in a highly complex
environment, such as continuous lane change and overtaking in
dense scenarios, remains challenging. Although existing unmanned
vehicle systems have made considerable progress, minimizing driv-
ing risk is the first consideration. Risk-aware reinforcement learn-
ing is crucial for addressing potential driving risks. However,
the variability of the risks posed by several risk sources is not
considered by existing reinforcement learning algorithms applied
in unmanned vehicles. Based on the above analysis, this study
proposes a risk-aware reinforcement learning method with driv-
ing task decomposition to minimize the risk of various sources.
Specifically, risk potential fields are constructed and combined
with reinforcement learning to decompose the driving task. The
proposed reinforcement learning framework uses different risk-
branching networks to learn the driving task. Furthermore, a
low-risk episodic sampling augmentation method for different risk
branches is proposed to solve the shortage of high-quality samples
and further improve sampling efficiency. Also, an intervention
training strategy is employed wherein the artificial potential field
(APF) is combined with reinforcement learning to speed up training
and further ensure safety. Finally, the complete intervention risk
classification twin delayed deep deterministic policy gradient-task
decompose (IDRCTD3-TD) algorithm is proposed. Two scenarios
with different difficulties are designed to validate the superiority
of this framework. Results show that the proposed framework has
remarkable improvements in performance.
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1. INTRODUCTION

ITH the advancement of technology, artificial intelli-
W gence has been widely employed in academia and in-
dustry, where unmanned systems have received more attention
as the derivative of artificial intelligence [1], [2]. Unmanned
systems can replace humans to conduct civilian and military
missions, which is strategically significant for constructing intel-
ligent transportation systems and developing army equipment.
In contrast to manned systems, unmanned systems are mission-
orientated, which eliminates the need for unmanned systems
to consider the passenger’s needs (comfort, space constraints,
impact resistance, etc.). Many of the technologies cannot be
applied to manned platforms because the physiological limits of
the human body constrain them. However, they can be applied
to unmanned platforms. Among these, an overtaking mission is
a typical unmanned system mission characterized by the need to
complete tasks without slowing down to ensure maneuverability
and time efficiency. For example, unmanned rescue vehicles
overtake slow-moving vehicles to reach the emergency area, and
unmanned vehicles overtake obstacles to navigate to the target
positions and complete the mission, which is more focused on
mission execution efficiency than on providing a comfortable
driving experience [3]. In addition, the risk is another factor to
consider with unmanned vehicles; a risk is typically an event
that is not fatal to the system at the current moment but could
lead to severe consequences. In this factor, the loss is not just
a number in a simulator, but the damage caused to the entire
unmanned system; unlike a fatal event such as a collision, an
at-risk unmanned vehicle is still safe but may encounter a fatal
event shortly and the probability of a fatal event and loss is more
significant as the risk increases [4]. Therefore, being aware of
the risks of events and taking appropriate actions to prevent fatal
events is an effective way to avoid serious accidents [5].

In the whole unmanned system, unmanned vehicles as an es-
sential part of the unmanned system have a significant prospect;
unmanned vehicles are intelligent vehicles that do not have
a human driving mechanism and can autonomously perform
tasks such as transport, logistics, patrol, rescue, combat, surveil-
lance and so on. In the civilian field, unmanned vehicles have
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become the core of future intelligent transport and smart city
construction. In the military, unmanned vehicles have become
a new generation of army equipment competing for military
powers and a new generation of army equipment. Therefore,
the accelerated development of mission-orientated unmanned
vehicles is a promising trend for the future [6].

A. Related Works

Unmanned vehicles sense the environment and respond in-
stantaneously to surrounding vehicles by making appropriate
decisions to find a collision-free path [7], [8]. However, decision-
making in a complex environment, more specifically, the act
of making the optimal decision that is conducive to avoiding
obstacles in a complex driving environment has always been
an issue for research [9], [10]. Existing methods for solv-
ing path-planning for collision avoidance decision-making are
mainly classified into traditional and learned methods. In the
traditional methods, for instance, Li et al. used the Cartesian
frame to solve the trajectory planning problem on curvy roads.
The proposed method decomposes the complex collision and
motion constraints into the subproblems to find the optima in the
continuous solution space [11]. Tu et al. proposed a hybrid A* al-
gorithm using a new search strategy and combining interpolation
and nonlinear optimization to improve the performance [12].
Mashayekhi et al. introduced a hybrid rapidly exploring random
tree (RRT) method based on bidirectional and unidirectional
searches. Then, a merging idea was applied to the search tree to
optimize the performance of hybrid RRT [13]. Vinayak et al. de-
veloped a bezier curve-path search method based on a boundary
condition search to determine appropriate control points [14].
However, the above traditional solutions frequently are limited
by their high time complexity, so methods can occasionally
result in paths that collide with and cannot ensure real-time plan-
ning. The artificial potential field (APF) is a typical technique
in path-planning for collision avoidance decision-making [15].
Wang et al. incorporated a safe obstacle-avoidance model into
APF to guarantee the safety of driving [16]. Wu et al. proposed a
method for lane-changing decision-making incorporating APF,
which combined the properties of human drivers’ lane-changing
cognition and proposed a spatially varying moving potential field
to address the driver’s focus transformation process during the
lane-changing process [17]. Wang et al. defined the potential
field as the “risk field” and used it to describe the risk from the
surrounding environment [18]. Li et al. addressed the problem
of APF easily falling into local optima and unreachable targets
by introducing dynamic distance factors and using the invasive
weeds algorithm to solve these problems, respectively [19].
Nevertheless, most current APF-based techniques typically are
easily trapped in local optimal solutions in complex or dynamic
environments, thus failing to generate collision-free paths [20].

Among the learning-based methods, two types of supervised
learning and reinforcement learning are now becoming the pre-
vailing methods for decision-making. In the supervised learning
research area, Xi et al. used mixed integer quadratic problem
based optimization to generate motion trajectories as the training
data and devised a hierarchical supervised learning model, which
employed the support vector machine and multi-layer perception

as the decision module to solve the obstacle-avoidance prob-
lem [21]. Teng et al. proposed a semantic bird’s eye view model
with imitation learning to present an interpretation of the sur-
rounding environment, and their model then fused with the pure-
pursuit algorithm to output the control command to successfully
avoid obstacles for decison-making [22]. However, supervised
learning methods require a large number of human-labeled
samples, which can be labor-intensive and time-consuming.
The absence of some collision or near-collision data impedes
learning, leading to supervised learning methods always having
unsatisfactory practical applications [23]. Deep reinforcement
learning algorithms are increasingly being used in unmanned
vehicles as artificial intelligence technology advances [24].
By interacting with the simulated environment and generating
the data without supervised information [25], reinforcement
learning can effectively reduce the use of human resources
and time consumption [26]. With much fewer constraints than
rule-based approaches, reinforcement learning-based decision-
making methods are acceptable for most cases since they require
fewer constraints to be defined than rule-based methods. Yang
et al. proposed a reinforcement learning decision-making model
for lane changing based on uncertainty estimation to quantify
the reliability of the strategy and identify unknown scenar-
ios [27]. Tang et al. developed a reinforcement learning-based
decision-making method that takes into account different driving
strategies [28]. Xu et al. proposed a safe reinforcement learn-
ing algorithm to ensure safety, which combined reinforcement
learning algorithms with APF and trajectory tracking methods
to output the actions by weighting. Unfortunately, the method
only performed well in low-obstacle scenarios and was not
validated for high-complexity performance [29]. Recently, risk
awareness has become an essential topic for driving decisions
and is critical to making safe decision [30]. However, risk aware-
ness is rarely introduced into reinforcement learning to train
driving strategies in unmanned systems. When reinforcement
learning is applied to driving decisions, the system’s specificity
requires that the strategies be risk-aware to handle emerging
dangers. While this process can be achieved by encoding risk
awareness into rewards, it is a heuristic process in which em-
pirical knowledge of reinforcement learning is required, and
learning about the heterogeneity between different risks in this
process requires further consideration. Li et al. proposed a
novel decision-making method based on risk assessment, which
used a risk-based probabilistic assessment model and applied
it to the reinforcement learning driving strategy to minimize
driving risk. However, this method essentially incorporates risk
into the reward function. It is only deployed to control the
steer in a discrete action space [31]. Marwan et al. developed
a reinforcement learning-based decision-making method that
combined reinforcement learning methods with responsibility-
sensitive safety (RSS) models and used RSS models to design
reward functions and assess driving risk. The method was vali-
dated using the Car Learning to Act (CARLA) simulator. How-
ever, the application scenario of the method needs to be more
homogeneous, considering only scenarios with two vehicles as
obstacles [32]. Wu et al. added risk-aware rewards to the rein-
forcement learning-based decision-making system via reward
shaping to avoid collisions [33]. Li et al. used an end-to-end
model based on lightweight transformers and integrated driving
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Fig. 1.  Solution framework of our proposed methods.

strategies with minimal expected risk into a reinforcement learn-
ing architecture for safe lane-changing decisions [34]. Although
considering the driving risk, the abovementioned reinforcement
learning methods cannot distinguish between risk variations
resulting from different risk sources, which leads to the fact using
a single network model to learn heterogeneous risks may not
ensure the convergence and stability of risk learning. Therefore,
designing risk-aware reinforcement learning models, especially
in risk-aware decision-making and considering heterogeneous
risks, is crucial to strategy and still requires more effort. On the
other hand, inefficient sample efficiency is also a common prob-
lem with reinforcement learning, which learns optimal decision-
making by interacting with the environment. However, this pro-
cess requires numerous samples to support reinforcement learn-
ing to explore the entire state space, which causes the learning
efficiency to be inefficient. To solve this problem, some methods
generate the priority of the samples by calculating the TD-error
to select the samples with higher priority more frequently [35],
[36]. These methods increase time complexity of the algorithm
by adding operations to change priorities to the experience sam-
ples and scanning the experience buffer for experience samples
with high priorities. Moreover, numerous experience samples of
agents interacting with the environment have different charac-
teristics, and different classification criteria are set to classify
the samples. The different classification criteria to classify the
experiences are also an effective way to improve the efficiency of
experience utilization [37], [38]. However, these methods have
relatively few high-quality samples at the beginning of training,
which results in these high-quality samples being learned many
times, which may impact the stability of the algorithm.
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B. Motivation and Contributions

Reinforcement learning methods hold a greater potential for
unmanned vehicles than traditional and supervised learning
techniques since they are more similar to human decision-
making behavior and do not call for elaborate definitions of
restrictions or expensive human efforts to acquire data. However,
developing a risk framework to consider the heterogeneity of the
risks in reinforcement learning remains a great challenge. On the
other side, the reinforcement learning needs to interact with the
environment to find the strategy and requires high number of
training samples that is sample inefficient, so how to improve
sample utilisation is a further consideration to be considering.
To this end, a deep reinforcement learning-based driving risk
decomposition framework is proposed. Our method enables
vehicles to be better aware of risks from different sources and
minimize risks by considering the heterogeneity of risks, which
makes the decision-making system more reasonable and better
adapted to potential risks in different complex environments.
In addition, combining reinforcement learning with driving risk
awareness not only improves the ability of unmanned vehicles
to solve complex environments but also provides interpretabil-
ity for reinforcement learning to solve decision-making prob-
lems, which is essential for achieving safer and more efficient
decision-making systems. Therefore, our method has practical
significance for the development and application of decision-
making systems for unmanned vehicles.

Fig. 1 shows the proposed framework, the framework
mainly comprises four parts, including driving risk decompo-
sition architecture, low-risk episodic sampling augmentation
mechanism, intervention training strategy, and environment.



The driving risk decomposition architecture receives informa-
tion about the environment and performs a task decomposition
of driving risks to output decision behavior. Then, the low-risk
episodic sampling augmentation mechanism classifies episodic
samples from different branches by samples obtained from the
environment and augments the experience buffer with low-
risk episodic sampling augmentation methods. The intervention
training strategy consists of two modules: the APF intervention
module is used to intervene in the decision-making behavior of
the vehicle in the dangerous zone, and the risk state estimation
module uses the current state information and combines actions
output from the reinforcement learning and the APF intervenor
to predict the risk of the future state in the environment re-
spectively, and ultimately selects the optimal decision-making
to the environment. In addition, an annealing strategy is used
to assist in training the decision-making model. Therefore, we
develop a closed-loop optimization mechanism to optimize the
decision-making model by interacting with the environment.
The contributions of this study can be summarized as follows:

1) A deep reinforcement learning decision-making method
based on driving risk fields is developed, and a novel risk
task decomposition framework to reduce learning diffi-
culty by establishing different risk branches is proposed.

2) To further increase the utilisation of samples, a low-risk
episodic sampling augmentation method are applied to
the experience buffer in different risk branches to solve
the shortage of low-risk samples.

3) A new intervention training strategy is proposed that uses
the APF to improve the performance of reinforcement
learning in dangerous environments and adopts a risk
evaluation to avoid the algorithm falling into the local op-
timum. We design two scenarios with different difficulties,
and the superiority of the proposed algorithm is analyzed.

The rest of this study is organized as follows. Section

Il introduces the preliminaries and reinforcement learning-
based description of the lane-changing task. Then, a DRL-
based decision-making framework is proposed, and the frame-
work details are discussed in Section III. Next, the exper-
iments and results are presented and discussed in Section
IV. Finally, the conclusion and future work of this study are
described.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Markov Decision Process

The Markov Decision Process (MDP) is a theoretical
framework for implementing goal-based decision-making tasks
through interactive learning. The agent is an individual who per-
forms the learning and implements the decision-making behav-
ior. All objects interacting with the agent are collectively called
the environment. The agent interacts with the environment, and
the environment responds accordingly to the action chosen,
presenting the agent with new states and generating rewards [39].
MDP is usually represented as a 5-tuple (S, A, P, R, 7), where
S is the set of environment states, A is the set of actions, P
is the state transition probability, and R is the reward function.
In this study, the lane change task is based on the information
about the environment the ego-vehicle observes within a certain
range. First, the vehicle chooses the action a; € A based on the

observed state s; € S at the current time step ¢. Then, it acts
on the environment. Finally, the unmanned vehicle can receive
the reward r;,1 € R and arrive at the new state s;1 € S. The
problem can be described as the finite-horizon MDP problem,
and the process can be written as the finite-horizon MDP tra-
jectory {so, ao, 71,81, a1,72, ..., St, at, T++1 }- The objective is
to maximize the cumulative reward by the adopted policy 7 as
follows:

Gy = Z’Yi : T’(Sm-t, ai+t)- (D

1=0

The state-value function v, (s) of an MDP is the expected
return starting from state s, and then the Bellman expectation
equation for v, (s) is defined as follows:

v(s) =Ex [Gy | Sp = 5], ()

where 7 is called the discount factor and + is less than 1.

The action-value function ¢,(s,a) is the expected return
starting from state s, taking action a, and then the Bellman
expectation equation for ¢ (s, a) is defined as follows:

Grn(s50) =E [Gy | St =5, A = a. 3)

The iterative goal of MDP is to find an optimal value function
that achieves the best possible performance in MDP:

v4(8) = max v, (s), %)

(s, a) = maxqr(s; a). ®)

The optimal strategy is generated by iterating through the
Bellman equation:

(6)

7(s) = argmaxq,(s; a).
acA

B. Twin Delayed Deep Deterministic Policy Gradient (TD3)

In this study, we adopt Twin Delayed Deep Deterministic
Policy Gradient (TD3) [40] as the fundamental model in our
framework. Among the reinforcement learning algorithms that
can be used to solve the continuous action space include asyn-
chronous policy algorithms such as Deep Deterministic Policy
Gradient (DDPG) [41], Soft Actor-Critic (SAC) [42] and TD3,
and synchronous policy algorithms such as Trust Region Policy
Optimization (TRPO) [43], and Proximal Policy Optimization
(PPO) [44]. The synchronous policy algorithm could be more
inefficient in sampling, requiring new samples to be taken at each
gradient update step. On the contrary, the asynchronous policy
algorithm uses an experience buffer to store samples. During
the gradient update, the samples are randomly sampled from the
experience buffer, which is reused to improve efficiency. Among
them, TD3 is the most popular asynchronous policy reinforce-
ment learning algorithm, which has been successfully applied
to unmanned systems [45], [46], [47], [48]. The TD3 algorithm
can be seen as an upgraded version of DDPG, an actor-critic
framework for deterministic output, which inherits the strengths
of the deep Q-networks (DQN) [49] and deterministic policy
gradient (DPG) [50].

The DDPG algorithm uses an actor-critic framework and bor-
rows the concept of target networks from DQN, using the dual



network structure with parameters 6™, §< and target parameters
0™, 69" to achieve more stable results.

{Actor(m), Actor target(eﬂl)} € Actor, (7)

{C’ritic(@Q), Critic target(@Q/)} € Critic. (8)
1) Update of Actor network

Lactor =

B Qs s | 07) [ 09) Ve (s |67)]
)

where )(+) is the optimal value function and 7(s; | 07) is a
Q-optimal policy.
2) Update of Critic network

Lc’r‘itic =
5t+1'\’p(“5t,at)

(v — Q (51,0 | 69))%], (10)

where 3, = 1y + v - Q' (se41, (5041 | 07) | 09) is the target
value and y; — Q(s¢, a; | 69) is TD-error.

The actor target and critic target network are updated differ-
ently to DQN, using a soft update for the parameters:

09 769+ (1—7)-69, (11)

0" —71-0"+(1—71)-0", (12)
where 7 is a soft update factor between 0 and 1.

More algorithm details can be observed in the study [41].

The TD3 algorithm retains the overall framework of the
DDPG algorithm and makes improvements that have helped
improve the algorithm’s performance.

e TD3 uses two critic networks to update Q values to solve

the problem of over-estimation of Q values.

yr =+ - min(Q) (se41, w(se41 | 07) | 69),

Qh(sevr (s | 67) ] 65). (13)

® A delayed update strategy is proposed to prevent training

instability. The action network is updated every certain

number of steps d, while the critic network continues to
use the single-step update strategy.

e A normal distribution noise (¢ ~ N(0,0)) with a certain
range (—c, c) is added to the target action, which makes
the policy less likely to exploit actions with high Q-value
estimates.

ye = e+ - min(Q) (spo1, m(se41 | 07) | 69),

Qb (5041, m(s41 | 07) | 05)) + clip(e, —¢, ¢)).
(14)

III. PROPOSED FRAMEWORK

In this section, road and vehicle risk potential fields are first
developed based on different attributes. Then an actor-critic
framework for risk task decomposition is proposed. Next, the
risk samples are classified according to the critical differences
and a data augmentation idea are applied to low risk experience
buffer. Also, An new intervention training strategy is proposed.
Finally, the complete intervention risk classification TD3-task
decompose (IDRCTD3-TD) algorithm is proposed based on the
above components.
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Fig. 2. Potential risk diagram of the vehicle.

A. Classification of the Driving Risk Potential Field

In this study, driving risk is subdivided into road boundary risk
and vehicle risk, which is the critical concern for regularizing
roads to address the lane change problem for unmanned vehicles.
Therefore, the corresponding risk potential fields are constructed
according to the risk sources.

1) Vehicle Potential Field: According to the sensors infor-
mation, the ego vehicle can detect the position and speed of the
surrounding vehicles (SVs) relative to the host vehicle (HV).
Fig. 2 shows the results of the risk field distribution, obstacles
in the potential field are represented using a squared-negative-
exponential form [51], and we incorporate virtual distances to
rectify real-space distances, aligning the risk field strength’s area
of influence with the genuine hazardous conditions, specifically,
longitudinal relative velocities are introduced to adjust longitu-
dinal distances. Considering the above information, a vehicle
risk potential field F,, is built, as follows:

_ M+6*Dy5y’vy.w g
Evav-Mv-e( >, (15)
1 lf y@ o < ySU
Dy=1{" g ’ 1
Y {—1, otherwise , (16)

where A, denotes the field intensity coefficient of the vehicle,
M, denotes the equivalent mass [18], which is directly propor-
tional to the vehicle velocity, (u., u, ) denotes the coordinates of
the risk source, 3, denote the speed factors in longtitudinal dire-
tion. o, and o, are the shape function of the obstacle. D, denote
relative location factor in longtitudinal diretion and v, denote
relative speed in longtitudinal direction, where v, = v 9% — vy”.
In additional, the pose of the vehicle is also considered to
reflect the variation of the risk field in different directions.

o= (x—ug)-cosp— (y—uy) - sinp + uy,

Y = (x—uy)-sinp+ (y —uy) - cosp + uy,
E':;:E’U?

a7)

where  denotes the heading angle.

2) Road Boundary Potential Field: The potential risk arises
at the road boundary and characterizes the risk to vehicles
because vehicles close to the road boundary limit the driving
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Fig. 3. Potential risk diagram of the road boundary.

area. Road boundary potential fields E,. are as follows:

(tpos ~liane)®
Ey, = Ab e 2012 s (18)
where A, denotes the field intensity coefficient of the road
boundary, [,,s denotes the lateral position of HV, and ;4.
represents the position of the lane boundary. o}, determines the
risk distribution range of the road boundary. As o;, becomes
larger, the impact of risk distribution becomes wider.

3) Lane-Marking Potential Field: Lane marking is less dan-
gerous than the road boundary, and it should be ensured that
the vehicle runs on the center line of each lane as much as
possible [52]. The lane-marking potential field £ is as follows:

E =A e O (19)

where A; denotes the field intensity coefficient of the lane
marking, l.ep¢er denotes the position of lane marking. Similarly,
o7 also determines the risk distribution range of the lane marking.
In this study, £ and E}, are collectively referred to as the road
risk field F, and the results of the risk field distribution for E,
shown in Fig. 3.

B. MDP Model

According to the description in Section II, a lane change
process can be described as an MDP decision process, the
components of which are described below.

1) State: The information about the SVs and information
about the HV are considered inputs to the state, which are
specified as follows

S‘/; = [H’“ AXS’U{, ) A}/TS’UI b} A‘/S’U,;a A‘/S’qu? ya’ws’viL (20)

where I, denotes the lane id where SV, is located. AXy,,, and
AYj,, denote the relative lateral distance and the longitudinal
distance between the SV; and the HV, respectively, AV, and
AVy,, denote the relative lateral speed, and the longitudinal
speed between SV; and HV, respectively, and yaws,, denotes the
yaw angle of the SV,. The state information of HV is described
as follows:

HV = [Hegoa Xegm Ve Vl‘lqm yawego]a

egor Ve

2

where I, denotes the lane id where the HV is located, Xcg,
denotes the lateral position of HV, V7, and V%, denote the
lateral and longitudinal speeds of HV, and yaw,4, denotes the
yaw angle of HV.

2) Action: This study is concerned with the consideration
of the angle of the steering wheel as the action. For longitudinal
behaviors, an advanced driving assistance system or an intelli-
gent driver model (IDM) [53] can control the target speed [31].

The rotation angle of the steering wheel can be expressed as:
(22)

where negative values represent a left-turn command, and posi-
tive values represent a right-turn command, and X is the scaling
factor that limits the steering range [36], A is %

Since model-free reinforcement learning algorithms some-
times can lead to unstable actions that can make passengers feel
uncomfortable, an exponential smoothing strategy is applied to
smooth the planned path [31], [34], denoted as follows:

final
a;

a; € [—)»-7'('7)»'71'],

=a1 +w-(ar —ap-1), (23)

where a{ mal jenotes smoothed action, w denotes the smoothing

factor, a; and a;_1 denote the actions generated by the reinforce-
ment learning at time ¢ and ¢t — 1, respectively.

3) Reward: Inthe problem solved in this study, our goal is to
find a strategy that maximizes the cumulative reward. However,
the definition of the risk potential field is to find a strategy
that minimizes the risk. Therefore, a negative sign is added to
the risk value to transform the minimization risk problem into
the maximization reward problem. The maximum risk value is
added in the risk field to the risk description to represent driving
safety because a positive reward is intrinsically more consistent
with human intuition [54]. The reward is specifically defined as
follows:

R = |max E, — E,|+|max E, — Ep|+|max E; — Ej|+ Reit,

R, R,
(24)

where max F,,, max Ej, and max E; represent the maximum
value defined by the vehicle risk potential field, road bound-
ary potential field and lane-marking potential field. max F,,,
max Ej both are 1, and max E; are 0.6. R.,;; is added to the
total reward to encourage vehicles to drive as free of collisions
as possible at each timestep t. R..;; = 0.1 means the vehicle has
no collision and stays within the road boundary, and R.,;; = —1
means that the vehicle collides with other SVs or the road
boundary. The values 0.1 and —1 in R.,;; are commonly used
in previous studies [31].

C. Risk Task Decomposition Architecture

Driving risk is classified into road and vehicle risks according
to the classification in Section A. However, the direct translation
of risk values into reward functions inevitably results in the
homogenization of all risks and the inability to identify their
categories. When a collision occurs, for instance, the agent
cannot determine which aspect of the risk is causing its collision
behavior. Inspired by [55], [56], a risk task decomposition
framework is proposed and deployed on the TD3 algorithm, note
that other actor-critic algorithms can also apply this framework.
The framework of TD3-TD is shown in Fig. 4, the different
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Fig. 4. Risk decomposition architecture for TD3.

branches in the risk task decomposition architecture get the
state information of the HV and the SVs from the environment,
respectively, by decomposing the driving task to learn the dif-
ferent risk branches in parallel in the critic network, and finally
output the decision-making behavior to the environment through
the actor network. The risk rewards for different branches are
described as follows:

T:wk (st;at;StJrl) = Z 7“? (St,at78t+1),

b=r,v

(25)

70 (8, ap, Sea1) = RY (se, a6, $041) + REV (84, ap, 8141)
(26)

where unlike aggregated reward functions that consider the sin-
gle update of R.,;; at each timestep, in the proposed framework,
R+ needs to be considered for updates in both the vehicle risk
and road risk branches, so that R.,;; reflects the importance in
different branches to ensure optimality.

As two risk branches are considered in the proposed frame-
work, the critic network uses two branches to learn Q values from
the risk task separately. Critic networks based on optimal value
functions can jointly learn policies for different risk branches,
and the loss function is calculated as follows:

> {(yf - Q (St’at | 91Qb))2

b=rv

Lcritic = E

5t+1~p("5taat)

B\ 2
+ (b — @ (se.ar 1 65")) } @
. / 71,_/ I’
yf = 7"? + - mm(Qlf (st41, m(Sp41 [ 0™) | 9? )
/ ! 4
QY (ser1, (5041 | 07) [ 05)). (28)

In the critic network, each sub-critic network corresponds to
the corresponding risk branch, and risk preferences are opti-
mized using different risk branches, so the linear combination
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of risk branches calculates the final Q value:
b
Q (s0:ai:6%) = 3 Qy (s1,00:6%") .
b=r,v

According to (29), the loss function of the actor network is
rewritten as follows:

Lactor - Z VJb(oﬂ—)

b=r,v

(29)

= E
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Z Qp (st,ﬂ(st) | G?b)v(yﬂr (s¢ | 67).

b=rv

(30)

D. Low-Risk Episodic Sampling Augmentation Method in
Different Risk Branches

Some experience samples facilitate model learning during
training more effectively than others. However, spending more
time on low-quality samples, the equal probability selection of
experience samples can lengthen the algorithm’s training time.
Previous research has shown that samples of high-return rewards
positively affect learning [37], [57], so we would like to take
full advantage of these experiences and integrate them into the
proposed framework.

At the first level, risk samples are classified according to the
cumulative reward in each episode, and a certain number m,. of
low-risk samples is sampled according to a certain percentage
p. By continuously replaying the low-risk samples sampled
from the high-reward episode trajectories during training, the
strategy is continuously improved toward the “low-risk” driving
strategy while improving the learning efficiency of the model.
Specifically, two experience buffer, D; and Dy, are established
to classify the samples according to the cumulative rewards
of the episodes. Initially, samples from the current episode
are collected into the temporary cache D;.. After the current
episode ended, the cumulative rewards of the current episode
are calculated, and the samples are classified by determining
the level of risk of the samples according to the classification



conditions set. Subsequently, the maximum value of the episode
cumulative rewards is updated according to the cumulative re-
wards of the current episode. The classification condition and
update conditions can be written as:

(R> R™ % k) U (Ry > R™ x k) U (R, > R™ xk,),

condition3

€19}
(32)

conditionl condition?2

(R > R™) U (R, > R™) U (R, > R™>),

conditionl

condition3

where R, R,, R, denote the cumulative reward for the current
episode, the cumulative reward of the vehicle risk branch for the
current episode and the cumulative reward of the road risk branch
for the current episode, respectively, and R™**, R;"®*, R
denote the maximum cumulative reward in the past episodes, the
maximum cumulative reward for the vehicle risk branch for the
past episodes and the maximum cumulative reward for the road
risk branch for the past episodes, respectively. k, k,,, k,- denote
the percentage of risk classification, the percentage of vehicle
risk classification, and the percentage of road risk classification,
respectively.

After the first-level classifying, we notice that the number of
samples in the low-risk experience buffer is significantly less
than the ones in the high-risk experience buffer, which indicates
a significant shortage of high-quality experiences. Thereby, in-
spired by existing studies [58], this study proposes a method
for low-risk episodic sampling augmentation with reinforcement
learning in unmanned vehicles. We define a one-to-one mapping
o : D; — D, that maps the samples of different risk branches
in the low-risk experience buffer to the new sample experience
buffer.

e(d) (5t7 A, T;J» St-ﬁ-l)Dlv = A(O) : e(st7 A, 7”:7 st+1))D1vT7
(33)

condition2

e(d) (St7 at, ’I“;], St+1)Dlr = A(O) ’ G(St, at, T:’ St+1))Dlr,-T7

(34
where e(s¢, ar, ], S¢41))p,, and e(sg,ap, 77, St41))p,, de-
note the cumulative trajectory samples of the whole
episode in different risk branches, e(?) (8¢, ae, 7], St+1) Dy, and
el@) (8¢, ae, 77, St41) p,, denote the transformed trajectory sam-
ples of the whole episode in different risk branches, respec-
tively. A(o) denotes permutation vector. Here, o is a symmetry
that exist one-to-one mapping and e(?) (s, at, 7, s¢41)p,, and
e(@) (S¢,a¢, 7], St41) D, as shown below:

S‘/i(g) - []- - Hiv 7AX31)1' ) AY@UW 7A‘/sm7 7yawsvi]7
HV(U) = [1 - Hegoa _Xegoa _Vx Veygov _yawego]7

ego’
a(a) = —a,
(o)
Ty = =Ty,
(o)
e =Ty,

(35)

where SVZ.(U), HV @, gV @) @), {7 and ") denote the
transformed vectors from SV;, HV, a, r,, and r,.. Note that A(o)
is one of the permutation rules, and other permutation rules can
be used to complete the mapping, e.g., translations or rotations.

Reward invariance: o is a form of symmetry in
which maps the episodic samples e(s;, a7y, Si+1))D,,
and  e(sg,a¢, 7], S141))p,. to new episodic samples

e(”)(st, ag, 1y, St41)p,, and e(")(st, ag, 7y, St+1)p,,- The
symmetry o : D; — D; only change position of the trajectory
in space, the order of the rewards and the values of the rewards
do not change with symmetry.

Mapping decomposable invariance: mapping o : D; —
D; is a one-to-one mapping for the low risk sam-
ple experience buffer. According to reward invariance
and (25), e(")(st7 ag,Tt, St+1)p, can be decomposed into
e (sy, ar, ri'si41)py, and €\ (sy, ar, v}, s111) p,,. Mapping
o : D; — Dy can naturally be applied to different risk branches
in low risk sample experience buffer.

We apply the symmetry o : D; — D; to episodic samples
from the low-risk experience buffer D; and put them into D;.

D, + D, U {6,; (SEU), aﬁ"),r;, sgi)l)izl - n} ,  (36)

D, + D, U {ei (s,ﬁ"), al” r?, 515?1) s } , (37

D; «+ Dy, U Dy,. (38)

E. Intervention Training Strategy

In this study, a intervention training strategy is proposed to
further speed up the training and improve overall performance.
Firstly, the repulsive potential field force decomposition strat-
egy is applied to the intervener controller [29]. According to
the description of the potential risk field, the field force F' is
repulsive, and the larger the field intensity F, the larger the field
force F', which means that the field intensity is proportional
to the field force. Therefore, the electric field force formula
can describe this relationship. According to the electric field
force formula: /' = E - ¢, in which E can be interpreted as the
electric field intensity generated by the vehicle or road boundary,
q is the quantity of electric charge carried by the object. Note
that the road boundary is only used to describe the risk of the
road because the risk of HV close to the road boundary is the
only concern. In this study, we consider all vehicles and the
road boundary as obstacles, ¢ is related to the motion state of
HV, and consequently, the field force Fyy(o) formed by the
road boundary potential field and the vehicle potential field is
described as follows:

671 . | Ev|

r - if field generated by the vehicle,
HV (o) — eve . ‘Eb‘

other,
(39)

where Fpyy (o) denotes the electric field force on the HV by the
obstacle object o and v, v, denote the speed of HV and the lateral
speed of HV, respectively.

The effect of the intervention for different types of obstacles
is shown in Fig. 5. The red zone is dangerous, the yellow lines
represent the repulsive force, and the blue coordinate decompose
the HV decision behaviour. In Fig. 5(a), the dangerous zone of
the vehicle is described using an ellipse, where min (¢, dgap)
is used for the long axis and the minimum safety distance R for

the short axis. Safe headway distance d3%/¢ = vy, - ;' “and
safe__

safe time-to-collision (TTC) ¢;,; "= 1.5 s are used to limit the
occurrence of longitudinal risks in vehicles [59]. The inter-
vention controller module will activate the steering if the HV
does not meet the minimum safety requirements. Similarly, as
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Fig. 6. Example case where HV could lead to a collision.

shown in Fig. 5(b), the dangerous zone of the road boundary
is equal to [max(l—%ﬂ, (liane — 0+ Vegow - At)), liane], Where
a is step length and vego, is the lateral speed of the HV, At
is the scaling factor. As shown in Fig. 5, the angle 6 formed
between the HV and the obstacle by decomposition of the
repulsive forces applied to x (steering) and y (throttle) axis of the
coordinates, respectively. Steering axis components are shown

in the following equation:

Frep,steer = - Z HFHV(o) H + COS 01’- (40)
The intervention controller controls the final steering, as
shown in the following equation:

Qip = 1] Freq,steerv (41)
where 7) represents a custom weighting factor, and 7 is 0.1. a;y,
denotes the steering of the intervention controller.

However, the intervention controller can lead to local minima
or cause the vehicle to driving towards a more dangerous zone,
as shown in Fig. 6. When the HV enters the dangerous zone, the
HYV is affected by the repulsive forces, which may causes the

Algorithm 1: Risk Evaluation e-Annealing Strategy.
1: Generate random p € (0,1). .
2: Get the next time predicted risk value D" ., using the
intervention controller.
3: Get the the next time predicted risk value D’ 1A Using
the reinforcement learning.

4:it Din ,, < D7l then
5: if p < ¢ then
6: a=ain
7: else
8: a = ap
9: endif
10: else
11: a=a;p,
12: end if

vehicle to fall into local minima due to the fact that the repulsive
forces are in opposite directions. So this study proposes a method
that adopts a risk evaluation to avoid the algorithm falling into
the local optimum and uses the intervention controller as the
assistance controller to improve the performance of reinforce-
ment learning. Specifically, we assume that the vehicle drive at a
constant speed and constant steering for /AAt, received an action
a; = [aFV,a?V],i € {1,2,3..., N} and the next motion state
of the vehicle is described by the kinematics equations:

Tt+At = Tt + At - Vt - COS((pt),
Yerar = yp + At - v - sin(py),
Vipar = U + Al - ay,

tan(pr)

Orrar = pr + At - vy - =72,

(42)

where At is the decision period and L is the distance between
shafts.

When the HV enters the dangerous zone, risk value is com-
pared as the switching strategy, reinforcement learning and in-
tervention controller output the corresponding action a,; and a;,,
according to the state s;, we choose the action by the predicted
risk values ngi A and Dt ¢ at the next time (2 + At). It is

worth noting that the intervention controller can only guarantee
the single-step optimum, which often makes the intervenor
not work. In this study, we adopt the intervention controller
as an assistance controller to improve the performance of re-
inforcement learning. Our strategy is shown in the following
Algorithm 1.

As the number of episodes increases, the times of actions gen-
erated by the intervention controller decreases, and finally, the
intervention controller is discarded. Since IDRCTD3-TD is an
off-policy reinforcement learning method, where the algorithm
updates the policy through the experience buffer, the algorithm
can benefit from learning samples generated by the intervention
controller and more easily explore favorable experiences to
speed up the training.

Algorithm 2 depicts the whole training process of the frame-
work based on the descriptions of the above subsection.

IV. SIMULATION AND EXPERIMENTS RESULT

Given the high-risk factor of actual vehicles and legal restric-
tions, scenario-based virtual testing has the advantages of high



Algorithm 2: IDRCTD3-TD.

Initialization:

1: Initialize actor network 7(s | ™) and critic network
Qi(s.a | 07),QY(s,a | 07), Q5(s,a | 65), Q5(s,a
09").

2: Initialize actor target network ™ < @7 and critic target
network 09" «— 09", 09" 09" 09" — 09",

09" 05",

Implementation:

3:fori=1tomdo

4: fort=1tondo

5 Select action a according to (s, | ™) + noise.

6: if the intervener condition is satisfied then

7 Execute action a; = ai” and get next state Sy

and reward 7} and 7.

8: else

9: Execute action a; = a{l and get next state s,y and
reward 7 and 7.

10: end if

11: Store transition (s;, at, S¢41, 7} ) and
(St,az, S¢1,77 ) to temporary cache Ds..

12: Sample m. transition (s, at, S¢4+1, 7 ) and

(8¢, az, 811,77 ) from experience buffer Dj, with
probability € and my_. transition (s, at, S¢4+1,77 )
and (sy, at, si+1, 77 ) from experience buffer D; with
probability 1 — ¢.

13: Update critic network loss by (27).

14: set y; by (29).

15 ift % d = 0 then

16: Update actor network loss by (30).

17: Update actor and critic target network:
18: 0™ 707 + (1 —7)0™

19: 02" 169" + (1 -71)02"

20: 02" + 702 + (1 —1)6%

21: end if

22: end for

Sampling classification and augmentation:
23: if (31) is satisfied then
24: Store current episode sample to experience buffer
D;.
25: Mapping experience buffer D;,, and D, to
experience buffer D7) and D{?.

26: D« D,U(DYuD).

27: else

28: Store current episode sample to experience buffer
Dy,.

29: end if

30: if (32) is satisfied then

31: Update R™** = R, R)"™ = R,,, R"* = R,.

32: end if

33: Empty the Temporary cache D;..

34: end for

environment reproduction, high testing efficiency, so this study
builds the scenarios based on the CARLA [60] virtual simula-
tion platform, where the computer configuration, and the envi-
ronment configuration, are described as follows: Ubuntul8.04,

/Path Sequence
£

—  Host vehicle (HV) u : Surrounding vehicle (SV)

(a) Scenario-1.

a : Surrounding vehicle (SV)

— : Host vehicle (HV)

(b) Scenario-II.

Fig. 7. Diagram for two scenarios.
TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND
TRADITIONAL METHOD
Scenario Performance DRCTD3-TD(None) DRCTD3-TD
Average return 430.76+2.38 435.25+1.58
. Collision rates(%) 6.80+1.85 4.20+0.83
scenario-I
Surviving distance(m) 385.64+1.52 387.82+1.46
Finish rates(%) 95.22 95.76
Average return 380.35+3.82 395.67+1.92
. Collision rates(%) 12.4043.01 8.80+3.29
scenario-1I
Surviving distance(m) 370.76+3.37 376.54+2.78
Finish rates(%) 91.55 92.97

Python3.7, Pytorch1.10.0, the CPU is i7-11700f, RAM capacity
is 16 GB and the GPU is RTX3060Ti.

A. Scenario Description

In the training phase, 14-20 vehicles are placed on a straight
road 405 m long, The same scenario in CARLA can be observed
in [31], [34]. All SVs are in dynamic driving and are set to be
on the CARLA autopilot. Therefore, the HV should overtake
obstacles in the environment to ensure safe driving, and in the
environment, the initial speed of HV is 0 and the target speed
is set 12 m/s—16 m/s, SVs are initialized with 5 m/s—8 m/s.
Furthermore, we design the scenarios with different difficul-
ties to evaluate the performance of the algorithm during the
evaluation phase, the corresponding evaluation scenarios are
depicted in Fig. 7. To demonstrate the effectiveness of the
algorithm, algorithm is evaluated in 100 episodes, where HV
drives approximately 40 km and makes approximately 1,000
lane changes in each scenario, the placement of the vehicle
is initialized randomly, determining both its position and lane
selection through Gaussian-based sampling [31].

Scenario-I: In the evaluation scenarios, to demonstrate the
robustness of the method, 16-23 vehicles are placed in the dense
flow. The scenario is challenging in the dense flow, where the
mean barrier spacings are only 19 m.

Scenario-II: In this scenario, all SVs has a possibility of p
(p = 0.3) to lane change, and this behaviour sometimes may
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Fig. 8.

TABLE I
RL PARAMETER VALUE

Parameter Value
Critic learning rate 0.0003
Actor learning rate 0.0003

Hidden layers 2

Hidden layer 1 nodes 256
Hidden layer 2 nodes 256
Soft update coefficient 0.05
Total replay memory size 100000
High risk replay memory size 95000
Low risk replay memory size 5000
Mini batch size 64
Sample probability from Dy, 0.9
The percentage of risk classification  0.85
Discount factor 0.99
Soft update factor 0.005
Delayed update step 2

force the HV to make the emergency lane change and overtake.
All the other settings are the same as the scenario-I.

B. Effects of Low-Risk Episodic Sampling Augmentation With
the Experience Buffer

This section explores the impact of low-risk episodic sampling
augmentation on the training performance of the algorithm.
DRCTD3-TD(None) refers to the fact that no low-risk sample
augmentation method is used in the algorithm. We run five ex-
periments in the two scenarios and conduct sensitivity analyses.
The corresponding training results are shown in Fig. 8. From
Fig. 8(a), (b), and (c), it can be seen that DRCTD3-TD reaches

(e) The average reward curve for road subtask per-
formance in scenario-II.

1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Episode Episode

(f) The average reward curve for vehicle subtask
performance in scenario-II.

Average reward curve over the last 100 episodes in scenario-I and scenario-II.

convergence at approximately 1000 episodes in the scenario-
I, while DRCTD3-TD(None) reaches convergence at approxi-
mately 1200 episodes, indicating a significant improvement in
learning speed. According to Fig. 9(a), it is essential to note that
the number of episodic samples does not count the enhanced
samples, ensuring the comparison’s fairness. The results show
that the number of samples of low-risk samples in DRCTD3-TD
compared to DRCTD3-TD(None) is significantly higher, and
finally, the number of samples in DRCTD3-TD is 273, while
the number of samples in DRCTD3-TD(None) is 106. Based
on the above analysis results, we observe that the performance
of different risk-branching networks in DRCTD3-TD is also
improved with the increase of high-quality samples, which may
be due to the presence of diversified high-quality samples in the
experience buffer of DRCTD3-TD during the training process,
which gives the different risk branch networks a chance to
sample more high-quality samples during the sampling process,
thereby improving the overall performance.

We also run scenario-II five times for each algorithm and
plot the learning curves in Fig. 8(d), (e), and (f). Similar
results are shown in scenario-II. In this scenario, we can
see that as the difficulty of the scenario increases, the algo-
rithm decreases slightly in terms of performance and learn-
ing speed, DRCTD3-TD reaches convergence at approximately
1200 episodes, while DRCTD3-TD(None) reaches convergence
at approximately 1300 episodes. Nevertheless, DRCTD3-TD
still outperforms the DRCTD3-TD(None) algorithm in terms of
performance for different risk-branching networks and the num-
ber of episodic samples in the low-risk experience buffer shows
the general trends as in Fig. 9(a) which the number of samples for



Episodic samples size curves (Low risk experience buffer)

2504
200
Q
N
7 1501
Q
e
g
& 1001 /
50 1
=—e— DRCTD3-TD(None)
0 —e— DRCTD3-TD

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

(a) Episodic samples size curve in scenario-I.

Episodic samples size curves (Low risk experience buffer)

2001

2 1501
38
[

g 100 A
1%}

50 A

=== DRCTD3-TD(None)
04 == DRCTD3-TD

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

(b) Episodic samples size curve in scenario-II.

Fig. 9. Episodic samples size curve.

DRCTD3-TD and DRCTD3-TD(None) is 232 and 82, respec-
tively, which somewhat validates our previous conclusion that
sampling more high-quality samples can help improve the per-
formance of each risk network.

Additionally, we record and analyze several performance
metrics, including the average returns, collision rates, survival
distances (driving distances before collision in each episode) and
finish rates (percentage of surviving distance in the total driving
distance). The performance comparison corresponding to the
evaluated episodes is shown in Table I. The experimental results
demonstrate that DRCTD3-TD achieves superior performance
to DRCTD3-TD(None) in two scenarios. Specifically, the aver-
age return when using DRCTD3-TD(None) and DRCTD3-TD
are 430.76 and 435.25, respectively. The collision rate declines
from 6.80% to 4.20% when using DRCTD3-TD(None) and
DRCTD3-TD. The results of surviving distance and the finish
rates show similar trends. The surviving distance increases from
385.64 to 387.82, and the finish rates increases from 95.22 to
95.76 when using DRCTD3-TD(None) and DRCTD3-TD.

Similarly, we run Scenario II five times for two methods.
The average return when using DRCTD3-TD and DRCTD3-
TD(None) are 395.67 and 380.35, respectively. Correspond-
ingly, the collision rate of the DRCTD3-TD declines from
12.40% to 8.80% when using DRCTD3-TD and DRCTD3-
TD(None). In addition, the surviving distance increases from
370.76 to 376.54, and the finish rates increases from 91.55
to 92.97 when using DRCTD3-TD and DRCTD3-TD(None).
In general, low-risk episodic sampling augmentation method
expedites the training process, facilitates faster convergence, and
leads to improved overall performance.

C. Quantitative Results

The IDRCTD3-TD algorithm is compared with different
ablation algorithms, and the performance of the IDRCTD3-
TD algorithm is quantitatively analyzed to demonstrate its
effectiveness. Consequently, the hyperparameters of all algo-
rithms are kept consistent, as shown in Table II.

e TD3: the vanilla TD3 algorithm, which served as the base

framework for our algorithm.

e TD3-TD: TD3 algorithm with risk task decomposition, the
algorithm uses different risk branches to learn different risk
tasks.

e DRCTD3-TD: a low-risk episodic sampling augmentation
method is used in TD3-TD.

® Random strategy: to reflect the difficulty of the experimen-
tal scenario [31].

The algorithm’s performance is first compared when training
in scenario-I and scenario-II are shown in Fig. 10, which shows
the average reward curve over the last 100 episodes. Shaded
areas show the standard deviation over five random seeds, from
Fig. 10(a) can be observed that the TD3-TD algorithm with risk
task decomposition shows the most significant performance and
convergence speed compared to the vanilla TD3, which takes
more time to learn the lane change strategy in the beginning
phase. In contrast, the TD3-TD with risk task decomposition
learns the corresponding risk task using different branches,
allowing each branch to understand the individual risk task
better and learn the minimized risk strategy for each branch.
The TD3-TD considers the risk task in different branches dur-
ing the Q-value update process, therefore learning the per-
mutation strategy faster. The results show that the TD3-TD
with risk task decomposition performs better when it comes
to tackling the problem of unmanned vehicle decision making.
Then, DRCTD3-TD adopts the low-risk episodic sampling
augmentation mechanism, which provides more high-quality
samples in the experience buffer and helps the algorithm samples
diversified low-risk trajectories. By learning diversified high-
quality samples, the algorithm converges faster and maintains
a high reward relative to TD3-TD. The overall performance of
the IDRCTD3-TD is significantly better than other comparative
algorithms, and the reward curve converges faster than other al-
gorithms, which shows that the intervention training strategy can
further accelerate the algorithm’s convergence. This is mainly
reflected in beginning of the training phase, IDRCTD3-TD has
yet to learn an effective strategy, the intervention controller can
guide the reinforcement learning method to train effectively and
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS UNDER DIFFERENT SCENARIOS

Scenario Method Collision rates(%) Average return /(%) Surviving distance A(%) Finish rates(%)
TD3 23.40+3.00 387.49+6.40 - 364.25+6.87 - 89.84
Scenario-I TD3-TD 13.40+1.80 420.86+2.51 8.61 1 379.54+1.17 4.20 1 93.71
DRCTD3-TD 4.20+0.83 435.25+1.58 12.33 1 387.82+1.46 6.47 1 95.76
IDRCTD3-TD 3.50+1.12 439.79+1.95 13.50 1 390.30+0.60 7.15 1 96.37
TD3 33.00+1.81 322.45+4.31 - 343.14+2.81 - 84.73
Scenario-II TD3-TD 18.80+4.98 372.05+8.57 1538 1 365.51+£5.92 6.52 1 90.25
DRCTD3-TD 8.80+3.29 395.67+1.92 2271 ¢ 376.54+2.78 9.73 ¢ 92.97
IDRCTD3-TD 7.20+3.68 399.58+4.09 23.92 ¢ 378.63+2.93 10.34 1 93.49

A : The relative change rate for average return.

improve the algorithm’s convergence speed. During the train-
ing process, IDRCTD3-TD can explore the favorable decision
experience more easily and have the optimal strategy with the
help of the intervention controller. Ultimately, IDRCTD3-TD
speeds up convergence, and improves overall performance. To
further illustrate the algorithm’s performance, Fig. 10(b) and
(c) show the risk task reward for each risk branch separately. It
is found that the TD3-TD significantly outperforms the vanilla
TD3 regarding reward in both risk branches while maintain-
ing consistency with the overall reward curve. This finding
shows that the risk task decomposition framework effectively
improves the performance of the different risk branches, thereby
enhancing the algorithm’s overall performance. Accordingly,
the DRCTD3-TD and the IDRCTD3-TD further improve the
overall strategy by the low-risk episodic sampling augmentation
and the intervening training strategy in dangerous environments,
effectively improving the strategy for each risk branch.

We design a more challenging scenario-II to further demon-
strate the algorithm’s effectiveness. The average reward of the
proposed method when training in scenario-II is shown in
Fig. 10(d), (e), and (f), the general trends are similar to their
performances in scenario-I, even though the increase in the
scenario’s difficulty leads to a slight decrease in the reward of
the algorithms and the convergence rate.

In addition, our trained model is tested 100 times in five
experiments conducted in two challenging scenarios. Table III
and Fig. 11 show that the IDRCTD3-TD algorithm outper-
forms the performance of the other algorithms in two chal-
lenging scenarios. The IDRCTD3-TD algorithm, DRCTD3-TD
algorithm and the TD3-TD algorithm have only average colli-
sion rates of 3.50%, 4.20% and 13.40%, compared to 23.40%
for the vanilla TD3 algorithm, and the average returns of
IDRCTD3-TD, DRCTD3-TD, and TD3-TD are 439.79, 435.25
and 420.86, respectively, the improvements of 13.50%, 12.33%
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and 8.61% compared to the vanilla TD3 algorithm. Similarly,
the performance of our proposed methods on surviving dis-
tance shows similar trends, the surviving distance increase from
364.25 when using vanilla TD3, to 379.54, 387.82, and 390.30
when using the TD3-TD, DRCTD3-TD, and IDRCTD3-TD
and the finish rates increases from 89.84% when using vanilla
TD3, t0 93.71%, 95.76%, and 96.37% when using the TD3-TD,
DRCTD3-TD, and IDRCTD3-TD in scenario-I.

The task becomes more complex as the scenario complexity
increases, leading to more visible effects in scenario-II. For in-
stance, in contrast to the vanilla TD3 algorithm, the average col-
lision rates decrease from 33.00% to 18.80%, 8.80%, and 7.20
when using the TD3-TD, DRCTD3-TD, and IDRCTD3-TD.
Besides, TD3-TD, RCTD3-TD, and IDRCTD3-TD also exhibit
significantly enhanced average returns, surviving distances, and
finish rates compared to the vanilla TD3. The performance of
the proposed algorithm is higher than that of the vanilla TD3
algorithm and can effectively improve safety, which is consistent
with the results analyzed above.

Furthermore, Fig. 12 shows the results of the four algo-
rithms in two different scenarios more visually. From Fig. 12(a)
and (d), the effect of the risk task decomposition framework
is prominent, as can be seen in the risk task decomposition
framework outperforming TD3 with a large margin in terms
of average return. Such results are also reflected in the average
reward of specific subtasks. It is found that, especially for the

TABLEIV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD AND

TRADITIONAL METHOD
Scenario Performance APF IDRCTD3-TD
Average return 428.70+4.38 439.79+1.95
Collision rates(%) 13.40+4.11  3.40+1.12
scenario-I Surviving distance(m) 380.62+5.48 390.30+0.60
Finish rates(%) 93.98 96.37
Computing time(Max value)(ms) 0.10(0.19)  0.53(1.22)
Average return 305.61+3.73 399.58+4.09
Collision rates(%) 74.60+£3.78  7.20+3.68
scenario-11 Surviving distance(m) 296.37+4.62 378.63+2.93
Finish rates(%) 73.18 93.49
Computing time(Max value)(ms) 0.10(0.19)  0.54(1.29)

road risk task, the performance improvement achieved by the
algorithm of the risk task decomposition framework is evident,
indicating that the agent can drive in the center of the lane and
reduce collisions, maintaining safe driving. Correspondingly,
performance improvements are achieved in each subtask based
on the low-risk episodic sampling augmentation method and
intervention training strategy.

D. Performance Comparsion Between the Proposed Method
and Traditional Method

To illustrate the algorithm’s effectiveness further, we com-
pare the proposed algorithm with the APF algorithm, and the
comparison results are shown in Table IV. In scenario-I,
because of the relatively simple structure of the APF method,
the computation time is only 0.1 ms within the decision period,
compared to 0.53 ms for the proposed method. However, it is
affected by the superposition of the potential field, which leads to
the average collision rate of 13.40%, with the completion rate of
93.98%, which is still a gap compared to the proposed algorithm.
Moreover, in Scenario-II, the fact that SVs have lane-changing
behavior, which makes the scenario highly dynamic and stochas-
tic, causing APF method failures and collisions in most cases,
which shows that the APF method is poorly adapted to dynamic
environments and is unable to address such scenario. In sum-
mary, combining the results above, the proposed algorithm still
performs best and can satisfy the real-time requirements.

E. Analysis of Failure Scenarios

Although the proposed IDRCTD3-TD algorithm improves
driving safety in different scenarios, there are still some failure
cases, as shown in Fig. 13. By analyzing the failure cases, we
find that failure case I is when HV performs obstacle avoidance
in scenario-I. Because of the proximity of the SVs to the current
and target lanes, the HV cannot react quickly enough to prevent
a collision. Similarly, in failure case II, when the SV cuts in,
the HV cannot react quickly enough to change lanes, primarily
because only the HV’s lateral behavior is considered in this
study. Simultaneously, the adaptive braking behavior is also
significant in avoiding collisions for the HV. Therefore, it is
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necessary to include longitudinal behavior to deal with similar
scenarios in future research.

Another important reason leading to these failures is that the
behavioral intention of the SVs is highly uncertain, and it is
difficult to recognize the driving intention of the SVs just by
risk potential fields combined with reinforcement learning, so it
is not possible to make effective decisions to avoid collisions in
advance. To improve the safety performance of the framework,
it is necessary to incorporate the driving intentions of the SVs
into the framework to predict the driving intentions.

The third causation of these failures may be that the HV
could generate a more aggressive driving style caused by an
imbalance in the setting of the reward function. Considering
that the driving style affects the decision-making behavior of
the vehicle, the future is dedicated to correcting for the effects
of different driving styles on decision-making behavior.

V. CONCLUSION AND FUTURE WORK

This study proposes a deep reinforcement learning decision-
making framework for unmanned vehicles in lane change and
overtaking scenarios. The framework addresses continuous lane-
changing and overtaking decision-making problems to mini-
mize driving risks and further reduces ineffective exploration,
our framework avoids taking ineffective risky and dangerous
behavior, resulting in faster and acceptable performance in an
accurate simulation environment, which is critical for unmanned
tasks with safety and efficiency as considerations. First, the risk

(e) The average reward curve for road subtask per-
formance in scenario-II.

Episode Episode

(f) The average reward curve for vehicle subtask
performance in in scenario-II.

Average reward curve for the trained models in scenario-I and scenario-II.

potential functions are constructed based on road and vehicle
risks. Then, the two categories of risk tasks are decomposed
to learn the different risk branches separately to minimize the
cumulative risk of each branch. Besides, a low-risk episodic sam-
pling augmentation method is designed, using which the pro-
posed framework can sample more low-risk samples to improve
sample utilization. Furthermore, an intervention training strat-
egy incorporating APF is designed to improve the performance
of reinforcement learning. The experiment results with two
difficulties scenarios demonstrate that the proposed algorithm
not only improves the performance of different risk branches
but also generates correct lane-changing decision-making with
the proposed framework, thus reducing the driving risk and
preventing HV collisions. Compared with the vanilla TD3 and
the traditional method, the proposed algorithm shows more
significant performance in collision rates and average returns
and the proposed algorithm has more potential to be deployed
in unmanned vehicles.

For future work, we focus on solving the problem of in-
corporating longitudinal behavior into the algorithm to guide
the vehicle in a cooperative approach to improve performance
further, and to apply the framework to scenarios outside of
this study, the formulation of the MDP will need to be further
adapted, or an MDP covering multiple scenarios will need to
be constructed to accommodate new scenarios. In addition, the
intentions prediction of SVs and consideration of driving style
preferences will assist in improving the safety performance of
the framework.
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