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Abstract—This paper investigates the event-triggered fixed-
time multi-lane fusion control for vehicle platoon systems with
distance keeping constraints where the vehicles are spread in
multiple lanes. To realize the fusion of vehicles in different lanes,
the vehicle platoon systems are firstly constructed with respect to
a two-dimensional (2-D) plane. In case of the collision and loss of
effective communication, the distance constraints for each vehicle
are guaranteed by a barrier function-based control strategy.
In contrast to the existing results regarding the command
filter techniques, the proposed distance keeping controller can
constrain the distance tracking error directly and the error
generated by the command filter is coped with by adaptive fuzzy
control technique. Moreover, to offset the impacts of the unknown
system dynamics and the external disturbances, an unknown
input reconstruction method with asymptotic convergence is
developed by utilizing the interval observer technique. Finally,
two relative threshold triggering mechanisms are utilized in the
proposed fixed-time multi-lane fusion controller design so as to
reduce the communication burden. The corresponding simulation
results also verify the effectiveness of the proposed strategy.

Index Terms—multi-lane fusion, distance constraints, unknown
input reconstruction, fixed-time control, event-triggered control

I. INTRODUCTION

DUE to the technological development of the Internet of
things devices, the issues regarding the intelligent traffic

control have been discussed frequently [1]. Among these,
many significant vehicle platoon control strategies have been
designed with guaranteed string stability [2]. Retrospecting the
existing researches, the vehicle platoon control strategies can
be categorized into two main classes, namely the adaptive
cruise control (ACC) and the cooperative adaptive cruise
control (CACC) [3]. For the ACC control strategy, one of
the main targets is keeping a safe following between each
two consecutive vehicles. Based on this demand, the control
input of the ACC is usually constructed by the signals obtained

Manuscript received XXX; revised XXX. This work was supported by
National Natural Science Foundation of China under Grant No. 61973236,
61573256 and 61973140. (Corresponding author: Fanglai Zhu)

Zepeng Zhou and Fanglai Zhu are with the College of Electronics and
Information Engineering, Tongji University, Shanghai, 201804, China. (e-
mail: chowzepeng@tongji.edu.cn, zhufanglai@tongji.edu.cn)

Dezhi Xu is with the School of Internet of Things Engineering, Jiangnan
University, Wuxi, 214122, China. (e-mail: xudezhi@jiangnan.edu.cn)

Boli Chen is with the Department of Electronic and Electrical Engi-
neering, University College London, London WC1E 6BT, U.K. (e-mail:
boli.chen@ucl.ac.uk)

Shenghui Guo is with the College of Electronics and Information Engineer-
ing, Suzhou University of Science and Technology, Suzhou, 215009, China.
(email: shguo@usts.edu.cn)

Yuchen Dai is with the School of Automation, Wuhan University of
Technology, Wuhan 430070, China. (e-mail: whutdyc@126.com)

from automotive radars. However, when the platoon systems
are confronted with a complicated environment or the vehicles
move at high speeds, the reliability of the ACC is questionable.
As an alternative, the CACC technique has been investigated
extensively. One of the major differences between the CACC
and the ACC approaches is that the CACC enables vehicles
in the platoon to share control and state information with the
help of wireless communication techniques [4]. Nevertheless,
it should be noted that most of the existing results about
the CACC and the ACC mainly focus on the string stability
analysis for one dimensional (1-D) scenarios. This restricts
the real application of these control strategies. As an exten-
sion, some remarkable researches have been done even for
two dimensional (2-D) plane. In [5], the so-called openCDA
simulation platform is constructed and a convenient way to
deploy CACC algorithm is provided. In [6], the multi-lane
fusion decision in 2-D plane is discussed from strategic and
tactical level. In the present paper, the string stability of the
vehicle platoon is analyzed within 2-D plane under the CACC
control framework and the multi-lane fusion control schemes
for vehicles spread in different lanes are proposed as well.

Although many researches have be conducted on the string
stability issues of the vehicle platoon, the time-varying con-
straints on the distance tracking errors are seldom considered
in literature [7]. During the vehicle moving process, two
main problems must be solved properly, namely, the vehicle
collision avoidance and the limitations on vehicle communi-
cation range [8]. One promising approach for addressing these
problems is output constraint control strategies which involve
the prescribed performance control, barrier Lyapunov function
and funnel control [9]. By importing the given performance
function, the controller in [7] is able to prevent connectivity
breaks and collisions. By integrating a terminal sliding mode
surface and a barrier Lyapunov function, the distance keeping
is ensured in [10] even under an actuator faulty scenario.
In [11], the collision avoidance integrating with the effec-
tive communication range is considered when constructing a
arctan-function-based prescribed performance controller. In
[12], the desired distance is ensured by a log-function for
a 2-D vehicle platoon while the time-varying tracking error
boundaries are considered. By integrating the barrier function
notion, the prescribed performance controller with arctan-
function in [13] can guarantee the desired distance gap for
the 2-D vehicle. In [14], the collision avoidance constraint is
interpreted as a transformation error and a safe distance is
maintained by stabilizing the transformation error. Moreover,
to offset the external disturbance accurately, a sliding mode
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disturbance observer is imported in the platoon controller in
[15]. Retrospecting these existing results, the main contribu-
tions of these control strategies are maintaining the string
stability in 1-D plane. The reliability of these approaches in
the context of 2-D plane remains questionable. Moreover, the
fast responses of a 2-D vehicle platoon system are necessary
due to the more complicated working environment and control
objectives. Therefore, when building the controller, the conver-
gence time for distance tracking errors should be considered.

In addition to the distance keeping problem, the commu-
nication burden of the CACC control strategy should also
be dealt with. One of the widely used techniques is the
event-triggered control strategy in which the corresponding
triggering mechanism can be constructed by fixed, relative,
and dynamic threshold approaches [16]. Furthermore, to mit-
igate the impacts of system uncertainties and external distur-
bances, which are unavoidable in real-world systems, event-
triggered control strategies are now being combined with
several promising signal reconstruction techniques, such as
the adaptive fuzzy logic system and the fuzzy observer-based
method. According to the estimation results from the fuzzy
observer, an adaptive backstepping event-triggered controller
is proposed in [17] for the non-strict feedback system under
the actuator faulty scenario. By noting the differentiation of the
virtual controller in backstepping control, the event-triggered
adaptive fuzzy control scheme integrating the dynamic surface
mechanism is developed in [18] such that the path-following
for the autonomous surface vessels can be realized. The
proposed event-triggered controller in [19] with a relative
threshold can ensure a fixed-time convergent performance
for the vehicle suspension system. With the utilization of
a modified relative-threshold triggering mechanism, the pro-
posed adaptive fuzzy controller in [20] can not only maintain
the multi-agent system’s prescribed performance, but also
release the communication burden between the controller and
the actuator. By introducing a fuzzy observer and a time
decaying event-triggering threshold, the distributed controller
in [21] guarantees the consensus tracking performance of the
nonlinear multi-agent system. Despite the availability of event-
triggered control schemes in the literature for particular control
issues, the event-triggered controller design for vehicle platoon
systems with distance keeping limitations remains open and
deserves to be further investigated. Therefore, this leads to the
combination of the event-triggered control and the distance
keeping control demand for constructing the controller in the
present paper.

Motivated by the preceding discussions, the main objectives
of the present paper can be divided into three parts, namely
the problem formulation for fusion control of vehicle platoon
systems in 2-D plane, the interval estimation-based unknown
input reconstruction scheme, and the event-triggered distance
keeping controller design. In particular, 2-D vehicle platoon
systems are firstly proposed and the multi-lane fusion control
problem for the vehicles spread in different lanes is inter-
preted as a stabilization problem of the tracking angle error
between the adjacent vehicles. For the second part, an interval
observer is proposed for the vehicle platoon systems. Based
on the interval estimation, an unknown input reconstruction

method is developed to asymptotically estimate the impact
of the external disturbance and the system uncertainty for
each vehicle. Thirdly, for maintaining the distance keeping
constraints, an auxiliary tracking error is proposed with respect
to a barrier function. By stabilizing the auxiliary tracking error,
the distance keeping constraints are hence held. To achieve
this, an adaptive fuzzy fusion controller is developed and
the event-triggered mechanism is utilized so as to reduce the
communication burden. The main contributions of the present
paper are summarized as follows,
• Unlike the existing 1-D vehicle platoon control strategies

[22], [23], the vehicle platoon control problem in the
present paper is discussed within a 2-D plane. The
multi-lane fusion control for the vehicle platoon has the
potential to be applied to many actual driving scenarios,
such as vehicles passing a tunnel.

• The interval estimation-based unknown input reconstruc-
tion can provide an asymptotic convergent estimation of
the unknown input via algebraic calculation. Moreover,
the reconstruction decouples the control input success-
fully. Consequently, it improves the flexibility for design-
ing the controller with the unknown input compensation.

• To avoid the possible collision and loss of effective con-
nection, the distance keeping criteria are put forward and
they can be ensured by stabilizing an auxiliary tracking
error generated from a barrier function. In contrast to
[24], the distance tracking error in the present paper
is constrained by a time decreasing boundary set and
the error transformation process is simplified by the
given barrier function when compared to arctan or log
functions in [11]–[13]. In addition, the communication
burden is eased by the event-triggered mechanism with a
relative threshold.

The remainders of this paper are organized as follows. In
Section II, the system description and some preliminaries are
presented. The main results including the unknown input re-
construction and the controller design are given in Section III.
Section IV provides the simulation results and the conclusion
is summarized in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Dynamics
In this paper, vehicles are allowed to run in separate lanes.

However, numerous lanes may merge into a single one in
certain cases (e.g. when passing through a tunnel in Fig.1).
Therefore, it is reasonable to assume that proper peripherals
and GPS are mounted on each vehicle so as to acquire
the positions of itself and its neighbors during the CACC
manipulation. In addition, each vehicle is supposed to track
its predecessor and this is also known as the predecessor
following pattern. Therefore, the ith vehicle’s control input
is based on the (i − 1)th vehicle’s states and control input
which are transferred wirelessly. The model for each follower
vehicle is given as follows [24],

ṗxi(t) =vi(t) cosσi(t), ṗyi(t) = vi(t) sinσi(t)

v̇i(t) =ai(t) = ui(t) + si(pxi, pyi, vi, t) + Tdi(t)

σ̇i(t) =φi(t), φ̇i(t) = τi(t), i = 1, . . . , N

(1)
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where pxi, pyi are the absolute position along with the or-
thogonal axises in a two dimensional coordinate axis. vi is the
volume of vehicle’s velocity. σi stands for the angle between
the vehicle’s headway direction and the positive X-axis. In
other words, σi represents the direction of vehicle’s velocity.
ui is the control input of each vehicle. φi is the acceleration
of σi. τi is the time-derivative of φi, representing the other
control variable. si(pxi, pyi, vi, t) is the nonlinear part of the
vehicle system including unmodeled system dynamics such as
the aerodynamic drags, rolling and gradient resistances. Tdi
is the external disturbance for each vehicle. In this paper, the
impacts of the external disturbance and the unmodeled system
dynamics have been lumped together and the corresponding
unknown input Sid is defined as Sid = si + Tdi.

As for the leader which is labeled as Vehicle 0, the dynamic
model is given as [24],

ṗx0(t) =v0(t) cosσ0(t), ṗy0(t) = v0(t) sinσ0(t)

v̇0(t) =a0(t)
(2)

In this paper, vehicle 0 is considered as a virtual leader which
is an ideal vehicle and free from system uncertainty and dis-
turbance. All the vehicles are assumed traveling alongside the
positive X-axis in the same direction. Moreover, for simplicity,
the virtual leader is considered to remain in a single lane with
no need to change lanes, and so its velocity angle σ0 is 0.

Assumption 1 ( [24]). The external disturbance Tdi(t) is
bounded such that |Tdi(t)| ≤ Td where Td is known.

Assumption 2. The unknown nonlinear part si is bounded
such that |si| ≤ S where S is known.

Remark 1. The model proposed in [24] and the present
paper for the vehicle platoon is a simplified version of the
real vehicle. Moreover, this vehicle model is constructed on
the basis of the commonly used vehicle model in [25]–[27].
Traditional 1-D platoon control in [25]–[27] can be subsumed
under the 2-D problem addressed in this paper with the
velocity deflection angle σi(t) = 0. Furthermore, the variation
range for the velocity angle is set as σi ∈ [−π, π].

Remark 2. It notes that Assumption 1-2 require the bound-
aries Td and S in advance. These variables may vary from
vehicles to vehicles. Even though Td and S are hard to be
obtained accurately in practice, the subsequent unknown input
reconstruction method can fix this problem because different
selections of the boundaries for Td and S result in almost the
same unknown reconstruction performances, just as claimed
in Remark 4.

B. Problem Formulation

According to Fig.1, vehicles distributed over multiple lanes
are forced to merge into one lane due to some special road
conditions. The communication topology of the vehicle pla-
toon is illustrated in Fig.2. Moreover, to avoid the collision and
loss of effective communication, the distance keeping should
be addressed carefully during the vehicular fusion process. In
this paper, a constant distance keeping policy is adopted. The
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Fig. 1. The structure of the 2-D vehicle platoon when passing through tunnel.
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Fig. 2. The communication topology of the 2-D vehicle platoon.

actual gap di(t) and the relative position angle δi(t) between
the ith vehicle and its predecessor is given as,

di(t) =

√
(pxi−1 − pxi)2

+ (pyi−1 − pyi)2 (3)

δi(t) = atan2 [(pyi−1 − pyi) , (pxi−1 − pxi)] (4)

The distance constraints for each follower are defined as,

0 < Dcol < di(t) < Dcon (5)

where Dcol stands for the minimum collision avoidance gap
and Dcon indicates the maximum effective communication
range. Moreover, it is assumed that the initial distance gap
between each adjacent vehicles is within the effective commu-
nication range. Therefore, it is possible to propose a proper
distance keeping controller which is constructed on the shared
states among the adjacent vehicles.

Remark 3. Although the communication reliability may be
affected by various factors, the effective communication is de-
fined to be only related to the distance of the adjacent vehicles
in the present paper. It means that the reliable communication
can be obtained within the limited communication range.

To realize the multi-lane vehicle fusion, we define,

ei(t) =di(t)− d (6)
eσi(t) =σi(t)− δi(t) (7)

where d is the target inter-vehicular distance imposed by the
constant distance keeping policy. Furthermore, it has ∆l <
ei(t) < ∆u where ∆l = Dcol − d and ∆u = Dcon − d. Then,
based on (3), and (6), the time derivative for ei(t) is given as,

ėi = ηi1(t)vi(t) + ηi2(t)

where

ηi1(t) =− [cosσi (pxi−1 − pxi) + (pyi−1 − pyi) sinσi] /di(t)

ηi2(t) = [(pxi−1 − pxi) vi−1 cosσi−1

+ (pyi−1 − pyi) vi−1 sinσi−1] /di(t)
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According to the above discussion, the main concerns can be
categorized as follows,
• Designing a distance constraints-based backstepping fu-

sion controller for each follower vehicle so as to keep the
desired distance gap d and realize the multi lane fusion.

• To eliminate the influences caused by the unmodeled
system dynamics and the external disturbance, an asymp-
totic convergent unknown input reconstruction method is
developed based on state interval estimation.

• Because of the limited on-board communication re-
sources, the event-trigger-based control strategy is intro-
duced to the proposed controller.

Based on this understanding, the control structure in the
present paper is depicted in Fig.3. The following lemmas are
introduced before proceeding with the controller design.

Lemma 1 ( [28]). If a Lyapunov function V (x(t)) holds
V̇ (x(t)) ≤ b1V

a1(x(t)) − b2V
a2(x(t)) + ℵ where b1 > 0,

b2 > 0, ℵ > 0, a1 ∈ (0, 1) and a2 ∈ (1,∞), then all the
signals in the system converge to the following residual set
within a fixed setting time tr,

R =

{
x(t)|V ≤ min

{
b

−1
a1
1

(
ℵ

1− l

) 1
a1

, b
−1
a2
2

(
ℵ

1− l

) 1
a2

}}
where l ∈ (0, 1) and the setting time Tr holds,

tr ≤ tr,max =
1

b1l(1− a1)
+

1

b2l(a2 − 1)

Lemma 2 ( [29]). For ∀κ ∈ R and ℵ > 0, it can be concluded
that 0 ≤ |κ| − κ tanh(κ/ℵ) ≤ 0.2785ℵ.

Lemma 3 ( [30]). For b1, b2 ∈ R, it holds that

|b1|a1 |b2|a2 ≤
a1

a1 + a2
κ|b1|a1+a2 +

a2

a1 + a2
κ−

a1
a2 |b2|a1+a2

where a1, a2 and κ are positive constants.

Lemma 4 ( [28]). For κj ≥ 0, then it has,

n∑
j=1

κa1j ≥

 n∑
j=1

κj

a1

, 0 < a1 ≤ 1

n1−a2

 n∑
j=1

κj

a2

≤
n∑
j=1

κa2j ≤

 n∑
j=1

κj

a2

, 1 < a2 ≤ ∞

Lemma 5 ( [30]). For κ ∈ R and ∀ℵ > 0, it has 0 ≤ |κ| <
ℵ+ κ2/

√
κ2 + ℵ2.

Lemma 6 ( [31]). For a continuous function F (x), there exists
a fuzzy logic system such that,

sup
x∈X

∣∣F (x)−WTϕ(x)
∣∣ ≤ h(x)

where x stands for the input and the ideal weight vector is
defined as W = [w1, . . . , wl]

T ∈ Rl. The approximation error
holds |h(x)| < ~. The fuzzy basis function ϕ(x) is chosen as
ϕ(x) = [ϕ1(x), . . . , ϕl(x)]T /

∑l
j=1 ϕj(x) in which ϕj(x) =

exp
[
− (x−Cj)T (x−Cj)

W 2
j

]
where j = 1, . . . , l, Cj is the center of

ϕj(x) and Wj is the width of ϕj(x).
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III. MAIN RESULTS

A. Unknown Input Reconstruction
To offset the external disturbance and the unknown modeled

system dynamics, an unknown input reconstruction strategy
is proposed. For this purpose, an interval observer is firstly
presented as follows,

˙̄̂vi(t) = ui(t) + S+
d − S

−
d − Li

(
vi − ˆ̄vi

)
(8)

˙̂vi(t) = ui(t) + S−d − S
+
d − Li (vi − v̂i) (9)

where Li is the observer gain and it can be any negative
constants, S+

d = S + Td and S−d = −S+
d . ˆ̄vi and v̂i are the

upper and lower boundary estimations of vi.

Theorem 1. According to the interval observer (8) and (9),
if the initial states satisfy that v̂i(0) < vi(0) < ˆ̄vi(0), then
v̂i(t) < vi(t) < ˆ̄vi(t) holds for all t ≥ 0.

Proof: Firstly, the estimation errors are defined as ˜̄vi =
ˆ̄vi − vi and ṽi = vi − v̂i. Then we have,

˙̄̃vi = Li ˜̄vi + S+
d − S

−
d − Sid(t)

˙̃vi = Liṽi − S−d + S+
d + Sid(t)

It is easy to show that S+
d − S

−
d − Sid(t) > 0 and −S−d +

S+
d + Sid(t) > 0. As a result, if v̂i(0) < vi(0) < ˆ̄vi(0), then
v̂i(t) < vi(t) < ˆ̄vi(t) always holds.

Furthermore, there always exists `i(t) ∈ (0, 1) such that,

vi(t) = `i(t)ˆ̄vi(t) + (1− `i(t)) v̂i(t) (10)

By noting (8)-(10), it has,
˙̄̂vi = ui + S+

d − S
−
d − Li

[
`i ˆ̄vi + (1− `i) v̂i − ˆ̄vi

]
= Gi1 ˆ̄vi − Gi1v̂i + ui + S+

d − S
−
d (11)

˙̂vi = ui + S−d − S
+
d − Li

[
`i ˆ̄vi + (1− `i) v̂i − v̂i

]
= Gi2 ˆ̄vi − Gi2v̂i + ui + S−d − S

+
d (12)

where Gi1 = −Li (`i − 1) and Gi2 = −Li`i. Referring to
(10)-(12), we can have,

v̇i =
[
(1− `i) Gi2 + ˙̀

i + `iGi1
]

ˆ̄vi + (2`i − 1)S+
d

+
[
− (1− `i) Gi2 − `iGi1 − ˙̀

i

]
v̂i − (2`i − 1)S−d + ui

=ui + Ξi1
(
ˆ̄vi − v̂i

)
+ Ξi2

(
S+
d − S

−
d

)
(13)
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where Ξi1 = `iGi1 + ˙̀
i + (1− `i) Gi2 and Ξi2 = 2`i − 1.

By comparing (13) with (1), the unknown input Sid can be
represented as,

Sid = Ξi1
(
ˆ̄vi − v̂i

)
+ Ξi2

(
S+
d − S

−
d

)
(14)

According to (13), the derivation of `i is used. To acquire ˙̀
i,

we firstly rewritten (10) as,

`i = (vi − v̂i) /
(
ˆ̄vi − v̂i

)
(15)

By passing `i through the differentiator in [32], then the
estimate of ˙̀

i, which is denoted by ˆ̇
`i, can be acquired within

a fixed time. Moreover, based on (14), the unknown input
reconstruction result is presented as,

Ŝid = Ξ̂i1
(
ˆ̄vi − v̂i

)
+ Ξi2

(
S+
d − S

−
d

)
(16)

where Ξ̂i1 = `iGi1 +
ˆ̇
`i + (1− `i) Gi2.

Remark 4. Based on the interval estimations from the interval
observer (8) and (9), an algebraic relationship between the
unknown input of Sid and vi is established. Moreover, by
referring to the algebraic relationship in (14), an unknown
input reconstruction method is hence developed in (16). The
proposed unknown input reconstruction possesses some sig-
nificant features. Firstly, it is an algebraic reconstruction and
it can estimate the actual Sid asymptotically. Secondly, the
reconstruction result decouples the control input signal ui suc-
cessfully. Therefore, designing a controller with the unknown
input compensation becomes possible. Thirdly, although the
unknown input reconstruction (16) relies on the values of S+

d

and S−d , different boundary selections result in almost the
same reconstructions.

B. Event-triggered Fixed-time Multi-Lane Fusion Control with
Distance Constraints

From (5) and (6), we can notice that the distance constraints
are expressed as an interval with fixed boundaries. To improve
the tracking performance and the accuracy, the distance con-
straints are modified as,

∆l ≤ ∆il(t) < ei(t) < ∆iu(t) ≤ ∆u (17)

Moreover, ∆il(t) and ∆iu(t) in (17) are defined as,

∆il(t) = −(∆il∞ −∆l)exp(−ςilt) + ∆il∞

∆iu(t) = (∆u −∆iu∞)exp(−ςiut) + ∆iu∞

where ∆il∞ and ∆iu∞ satisfying ∆il∞ < 0 < ∆iu∞ are
the predesigned ultimate values for ∆il(t) and ∆iu(t). The
positive parameters ςil and ςiu are the damping ratios for
∆il(t) and ∆iu(t). Selecting constant ∆̄il and ∆iu such that,

∆il(t) < ∆̄il, ∆iu < ∆iu(t)

To convert (17) into an unconstrained expression, the following
barrier function is developed,

εi =
ei(t)− ∆̄il

ei(t)−∆il(t)
+

ei(t)−∆iu

∆iu(t)− ei(t)
= εi1ei(t) + εi2

(18)

where εi1 =
∆̄il−∆il+∆iu−∆iu

(ei(t)−∆il)(∆iu−ei(t)) and εi2 =
∆il∆iu−∆̄il∆iu

(ei(t)−∆il)(∆iu−ei(t)) . Moreover, the derivative of εi is

ε̇i = ζi1ėi(t) + ζi2 where ζi1 = ∆̄il−∆il

(ei−∆il)
2 +

∆iu−∆iu

(∆iu−ei)2

and ζi2 =
(ei−∆̄il)∆̇il

(ei−∆il)
2 − (ei−∆iu)∆̇iu

(∆iu−ei)2
. According to (18),

εi → +∞ when ei(t) → ∆iu(t)− and εi → −∞ when
ei(t) → ∆il(t)

+. Moreover, to perform an accurate tracking
performance by maintaining the fixed distance gap d, the
ideal form for εi is chosen as εid,

εid =
(
∆̄il∆iu −∆il∆iu

)
/ (∆il∆iu) (19)

The time derivative of εid is calculated as follows,

ε̇id = −∆̄il∆̇il/∆
2
il + ∆iu∆̇iu/∆

2
iu = ζi3

The error between εi and εid is defined as zi1 = εi − εid.
Referring to (18) and (19), we have,

żi1 = ζi1ėi(t) + ζi2 − ζi3
= ζi1ηi1vi(t) + ζi1ηi2 + ζi2 − ζi3
= χi1vi(t) + χi2

where χi1 = ζi1ηi1 and χi2 = ζi1ηi2 + ζi2 − ζi3. Up to now,
it notes that the time-varying performance constraints for the
tracking error ei(t) can be maintained by stabilizing zi1.

Remark 5. Unlike the output constrained control approach
in [24], the proposed distance constraint control scheme can
provide a dynamic output constraint boundary whereas in
[24], the constraint boundaries are set as fixed or symmet-
ric ones via a given barrier Lyapunov function. Moreover,
although some modifications for the fixed boundary can be
found in [33] with the utilization of the integral-type Lyapunov
function, the upper and lower boundaries of the tracking error
are symmetric. Therefore, the asymmetric boundary set can be
viewed as another merit of the proposed method. In addition,
differing from arctan or log functions in [11]–[13], the error
transformation is simplified by a given barrier function in (18)
which can be viewed as the extension of [11]–[13].

To show the convergence of zi1, we construct a Lyapunov
candidate function as V1 =

∑N
i=1

1
2z

2
i1 and the time derivative

of V1 holds,

V̇1 =

N∑
i=1

[zi1 (χi1vi(t) + χi2)]

=

N∑
i=1

{zi1 [χi1 (vid0(t) + zi2d) + χi2]} (20)

where vid0(t) is known as the virtual controller for zi1 and
zi2d = vi − vid0. According to (20), a fixed-time virtual
controller is constructed as follows,

vid0 =
1

χi1

(
−χi2 − ci1z2q1−1

i1 − ci2z2q2−1
i1

)
(21)

where ci1 > 0, ci2 > 0, 0 < q1 < 1 and q2 > 1. Substituting
(21) into (20) yields,

V̇1 ≤− 2q1 min {ci1}V q11 +

N∑
i=1

zi1χi1zi2d

− 2q2 min {ci2}N1−q2V q21
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According to Lemma 1, if zi2d is asymptotically convergent,
then the fixed-time convergence for zi1 is achieved. Moreover,
based on the backstepping control framework, the derivation of
the virtual controller is necessary and the signal differentiator
in [32] is deployed here. However, the estimation error is
inevitable in the presence of the differentiator. Then the virtual
controller is modified as vid and the estimation error is defined
as zi2∆ = vic − vid where vic is the estimate of vid from the
differentiator. Consequently, we have,

V̇1 =

N∑
i=1

{zi1 [χi1 (vi − vic + vic − vid + vid) + χi2]}

=

N∑
i=1

{zi1 [χi1 (zi2 + zi2∆ + vid) + χi2]} (22)

where zi2 = vi − vic. According to (22), the adaptive fuzzy
fixed-time virtual controller is given as,

vid =
1

χi1

(
−χi2 − ci1z2q1−1

i1 − ci2z2q2−1
i1 − 1

2κi1
zi1θ̂iϕ

T
i ϕi

)
(23)

˙̂
θi =

γi
2κi1

z2
i1ϕ

T
i ϕi − βiθ̂i (24)

where γi, κi1 and βi are positive constants. ϕi is the fuzzy
basis function vector and θ̂i is the parameter in fuzzy system
which will be designed later.

Remark 6. In some output control strategies like [34], the
variables to be constrained are the compound of the track-
ing error and the errors generated by the command filter.
Therefore, the real constraint for the tracking error cannot
be guaranteed directly. In the present paper, this problem has
been solved. Moreover, the adaptive fuzzy process is used to
compensate the errors between the ideal virtual controller vid
and the command filtered controller vic.

Remark 7. By noting the definition of ηi1, χi1 and vid,
the singularity problem may occur when the vehicles share
the same X position and σi = 0. Therefore, the applicable
situation for the proposed control strategy requires the vehicles
possess different X positions at the initial time.

Remark 8. It should be noticed that the computational com-
plexity of the adaptive fuzzy virtual controller is related to the
number of fuzzy rules, the adaptive process of the parameters
and the control signals. (23) and (24) show that only one
adaptive parameter and one virtual controller need to be up-
dated. Therefore, one way to further reduce the computational
complexity of the controller design is to select the proper fuzzy
rules and constrain the total number of the fuzzy rules with
respect to the detailed application environment.

By referring (23) and (24), we design V1,m = V1 +∑N
i=1

1
2γi
θ̃2
i where θ̃i = θi − θ̂i. Then V̇1,m holds,

V̇1,m =

N∑
i=1

(zi1χi1zi2 + zi1χi1zi2∆ + zi1χi1vid + zi1χi2)

+

N∑
i=1

(
− 1

γi
θ̃i

˙̂
θi +

1

2κi2
z2
i1 −

1

2κi2
z2
i1

)
(25)

In addition, we define αi = χi1zi2∆ + 1
2κi2

zi1. Based on the
fuzzy logic system in Lemma 6, it can be obtained that,

αi = WT
i ϕ(zi1) + ~i(zi1), |~i(zi1)| ≤ ~

where Wi is the ideal weight vector and θi = WT
i Wi. ~i(zi1)

is a bounded estimation error. Furthermore, we have,

zi1αi ≤
1

2κi1
z2
i1θiϕ

T
i ϕi +

κi1
2

+
1

2κi2
z2
i1 +

1

2
κi2~2

Substituting (23) and (24) into (25) gives,

V̇1,m ≤
N∑
i=1

(
zi1χi1zi2 +

1

2κi1
z2
i1θiϕ

T
i ϕi +

κi1
2

+
1

2
κi2~2

+zi1χi2 +
1

2κi2
z2
i1 − zi1χi2 − ci1z

2q1
i1 − ci2z

2q2
i1

− 1

2κi1
z2
i1θ̂iϕ

T
i ϕi −

1

2κi2
z2
i1

)
+

N∑
i=1

(
− 1

2κi1
z2
i1θ̃iϕ

T
i ϕi +

βi
γi
θ̃iθ̂i

)
(26)

Noting Lemma 3 and the fact that βi

γi
θ̃iθ̂i ≤ − βi

2γi
θ̃2
i +

βi

2γi
θ2
i , if we set b1 = 1, b2 = 1

2γi
θ̃2
i , a1 = 1 −

q1, a2 = q1, and κ = exp
(

q1
1−q1 log q1

)
, then it has

− 1
2γi
θ̃2
i ≤ −

(
1

2γi
θ̃2
i

)q1
+ (1− q1) q

q1
1−q1
1 . Similarly, we can

have, − 1
2γi
θ̃2
i ≤ −

(
1

2γi
θ̃2
i

)q2
+ (1− q2) q

q2
1−q2
2 . Based on the

above deduction, (26) holds,

V̇1,m ≤
N∑
i=1

(
zi1χi1zi2 +

κi1
2

+
1

2
κi2~2 − ci1z2q1

i1 − ci2z
2q2
i1

)

+

N∑
i=1

[
βi
2γi

θ2
i −

βi
2

(
1

2γi
θ̃2
i

)q1
+
βi
2

(1− q1) q
q1

1−q1
1 − βi

2

(
1

2γi
θ̃2
i

)q2]
≤−G1V

q1
1 −G2V

q2
1 +

N∑
i=1

zi1χi1zi2 + ∆V1
(27)

where

∆V1
=

N∑
i=1

(
κi1
2

+
κi2
2

~2 +
βi
2γi

θ2
i +

βi
2

(1− q1) q
q1

1−q1
1

)
,

G1 = min

{
2q1ci1,

βi
2

}
, G2 = N1−q2 min

{
2q2ci2,

βi
2

}
.

To stabilize zi2, the relative threshold event-triggered mech-
anism is introduced. Firstly, the system dynamic is transformed
into v̇i = ui(t)+Sid(t). Moreover, the relative threshold event-
triggering mechanism is given as,

uio(t) =uic
(
tiki
)
, ∀t ∈

[
tiki , t

i
ki+1

)
(28)

tiki+1
=inf

{
t > tiki ||Ei(t)| ≥ ϑi1|uio(t)|+ ϑi2

}
(29)

where uio(t) is an intermediate control variable, 0 < ϑi1 < 1
and ϑi2 > 0, Ei(t) = uic(t)−uio(t). tiki is the latest triggering
time point of the ith vehicle. From (28) and (29), we have,

|Ei(t)| = |uic(t)−uio(t)| < ϑi1|uio(t)|+ϑi2, ∀t ∈
[
tiki , t

i
ki+1

)
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Then uic(t) = (1 + ψi1(t)ϑi1)uio(t) + ψi2(t)ϑi2 where
|ψi1(t)| ≤ 1 and |ψi2(t)| ≤ 1. Consequently, it has,

uio(t) =
uic(t)

1 + ψi1(t)ϑi1
− ψi2(t)ϑi2

1 + ψi1(t)ϑi1
(30)

Based on (28)-(30), the controller is designed as,

ui =− zi2u
2
io√

z2
i2u

2
io + Υ2

i

(31)

uic = (1 + ϑi1)

[
Li tanh

(
zi2Li

ςi1

)
+ ϑ̄i1 tanh

(
zi2ϑ̄i1
ςi1

)]
(32)

where Li = Ŝid − v̇ic + ci3z
2q1−1
i2 + ci4z

2q2−1
i2 + χi1zi1

and ϑ̄i1 > ϑi2/ (1− ϑi1). ci3, ci4, Υi and ςi1 are positive
constants. Then we have the following theorem.

Theorem 2. Considering the given 2-D platoon system in (1),
the proposed event-triggered backstepping controller (31) and
(32) with virtual controller in (23) can ensure the distance
keeping constraints in (5) and the fixed time convergence of
the tracking error in (17).

Proof: Firstly, the Lyapunov candidate is chosen as V2 =
V1,m +

∑N
i=1

1
2z

2
i2. Based on Lemma 5, V̇2 holds,

V̇2 = V̇1,m +

N∑
i=1

(
− z2

i2u
2
io√

z2
i2u

2
io + Υ2

i

+ zi2Sid − zi2v̇ic

)

≤ V̇1,m +

N∑
i=1

(Υi − zi2uio + zi2Sid − zi2v̇ic)

≤ V̇1,m +

N∑
i=1

(
− zi2uic

1 + ϑi1
+

∣∣∣∣ zi2ϑi21− ϑi1

∣∣∣∣+ zi2Sid − zi2v̇ic
)

+

N∑
i=1

(
Υi + ci3z

2q1
i2 + ci4z

2q2
i2 − ci3z

2q1
i2 − ci4z

2q2
i2

)
(33)

According to Lemma 2, it holds that,

zi2Li ≤|zi2Li| ≤ zi2Li tanh (zi2Li/ςi1) + 0.2785ςi1

zi2ϑ̄i1 ≤|zi2ϑ̄i1| ≤ zi2ϑ̄i1 tanh
(
zi2ϑ̄i1/ςi1

)
+ 0.2785ςi1

Substituting (32) into (33), it has,

V̇2 ≤
N∑
i=1

(
−ci1z2q1

i1 − ci2z
2q2
i1 − ci3z

2q1
i2 − ci4z

2q2
i2

)
−

N∑
i=1

[
βi
2

(
1

2γi
θ̃2
i

)q1
+
βi
2

(
1

2γi
θ̃2
i

)q2]
+ ∆V2

≤−G3V
q1
2 −G4V

q2
2 + ∆V2

(34)

where ∆V2 =
∑N
i=1 (Υi + 0.557ςi1) + ∆V1 ,

G3 = min
{

2q1ci1, 2
q1ci3,

βi

2

}
, G4 =

N1−q2 min
{

2q2ci2, 2
q2ci4,

βi

2

}
. According to (34) and

Lemma 1, the convergence time is calculated as,

ts ≤ ts,max =
1

G3ι1 (1− q1)
+

1

G4ι1 (q2 − 1)

where ι1 ∈ (0, 1). Moreover, when t→ ts, it has,

|zi1| ≤

√√√√2 min

{
G
− 1

q1
3

(
∆V2

1− ι1

) 1
q1

, G
− 1

q2
4

(
∆V2

1− ι1

) 1
q2

}

|zi2| ≤

√√√√2 min

{
G
− 1

q1
3

(
∆V2

1− ι1

) 1
q1

, G
− 1

q2
4

(
∆V2

1− ι1

) 1
q2

}

|θ̃i| ≤

√√√√2γ̄min

{
G
− 1

q1
3

(
∆V2

1− ι1

) 1
q1

, G
− 1

q2
4

(
∆V2

1− ι1

) 1
q2

}
where γ̄ = max {γ11, . . . , γN1}.

Moreover, it can be noticed that |uic(t) − uio(t)| <

ϑi1|uio(t)| + ϑi2, ∀t ∈
[
tiki , t

i
ki+1

)
. Based on the discussion

in [16], the differentiability is ensured with respect to (32).
Furthermore, we have,

d |Ei(t)|
dt

=
d

dt
(Ei(t)Ei(t))

1
2 = sign (Ei(t)) Ėi(t) ≤ |u̇ic(t)|

Due to the bounded tracking errors, u̇ic is bounded and
u̇ic ≤ Ui where Ui > 0. Based on this, for the case
when limt→tiki+1

Ei(t) = ϑi1
∣∣uic (tik)∣∣ + ϑi2 > 0, then

tiki+1
−tiki > ϑi2/Ui > 0. A similar result can be obtained for

the case when limt→tiki+1

Ei(t) = −ϑi1
∣∣uic (tik)∣∣− ϑi2 < 0.

Consequently, the zeno behavior is avoided.
To achieve the multi lane fusion, an auxiliary variable λi is

defined as λi = $ieσi
+ ėσi

where $i is a positive constant.
The time derivative of λi satisfies,

λ̇i = τi +$i(φi − δ̇i)− δ̈i (35)

where $i > 0. Moreover, an event-triggered fixed-time control
law for λi is designed. Similar to the previous deduction, the
event-triggering mechanism is defined as,

τio(t) =τic
(
tiji
)
, ∀t ∈

[
tiji , t

i
ji+1

)
(36)

tiji+1
=inf

{
t > tiji ||Hi(t)| ≥ ϑi3|τio(t)|+ ϑi4

}
(37)

where τio(t) is an intermediate control variable, 0 < ϑi3 < 1
and ϑi4 > 0. tiji is the latest triggering time point of the ith
vehicle. According to (36) and (37), it has,

|Hi(t)| = |τic(t)−τio(t)| < ϑi3|τio(t)|+ϑi4,∀t ∈
[
tiji , t

i
ji+1

)
Then τic(t) = (1 + ψi3(t)ϑi3) τio(t) + ψi4(t)ϑi4 where
|ψi3(t)| ≤ 1 and |ψi4(t)| ≤ 1. Consequently, it has,

τio(t) =
τic(t)

1 + ψi3(t)ϑi3
− ψi4(t)ϑi4

1 + ψi3(t)ϑi3
(38)

According to (35) and (38), the control law for λi is given as,

τi =− λiτ
2
io√

λ2
i τ

2
io + %2

i

(39)

τic = (1 + ϑi3)

[
Qi tanh

(
λiQi

ςi2

)
+ ϑ̄i2 tanh

(
λiϑ̄i2
ςi2

)]
(40)

where Qi = ci5λ
2q1−1
i + ci6λ

2q2−1
i + $i(φi − δ̇i) − δ̈i and

ϑ̄i2 > ϑi4/ (1− ϑi3) with ci5 > 0 and ci6 > 0.
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Theorem 3. Considering the given 2-D platoon system in (1),
the proposed event-triggered angle tracking controller (39)
and (40) can ensure the fixed time convergence of the angle
tracking error in (7).

Proof: Here, we select the Lyapunov function as V3 =∑N
i=1

1
2λ

2
i . Then the derivation of V3 holds,

V̇3 =

N∑
i=1

[
− λ2

i τ
2
io√

λ2
i τ

2
io + %2

i

+ λi$i(φi − δ̇i)− λiδ̈i

]

≤
N∑
i=1

[
%i −

λiτic
1 + ϑi3

+

∣∣∣∣ λiϑi41− ϑi3

∣∣∣∣+ λi$i(φi − δ̇i)− λiδ̈i
]

≤
N∑
i=1

(
−ci5λ2q1

i − ci6λ2q2
i

)
+ ∆V3

≤−G5V
q1
3 −G6V

q2
3 + ∆V3

where ∆V3
=
∑N
i=1 (%i + 0.557ςi2), G5 = min{2q1ci5} and

G6 = N1−q2 min{2q2ci6}. The convergence time satisfies,

tλ ≤ tλ,max =
1

G5ι2 (1− q1)
+

1

G6ι2 (q2 − 1)

where ι2 ∈ (0, 1). Moreover, when t→ tλ it has,

|λi| ≤

√√√√2 min

{
G
− 1

q1
5

(
∆V3

1− ι2

) 1
q1

, G
− 1

q2
6

(
∆V3

1− ι2

) 1
q2

}

As for the discussions about the zeno behavior, similar results
can be found in the proof of Theorem 2.

Remark 9. Although the distance constrained fusion control is
discussed in [24], the communication burden is not considered.
Indeed, the controller in [24] needs to be updated continuously
with respect to the changing tracking errors. In the present
paper, to reduce the communication burden, the event trigger-
based fusion control strategy is studied and two separate
event-triggered mechanisms independent of each other are
introduced while making the vehicles track the desired vehicle
distance and the velocity direction angle. Moreover, (28) and
(36) show that uio and τio will hold between each triggering
interval. Therefore, the continuous communications for uic and
τic are not necessary and thus the computation burden for
calculating uic and τic is hence alleviated in (31) and (39).

Remark 10. Despite the fact that the proposed event-triggered
fixed-time control technique includes several adjustable pa-
rameters, the major aim is to provide a quick and precise
control input for the safety-critical vehicle platoon in light of
restricted communication resources. Therefore, by retrospect-
ing Lemma 1, large values of cij , j = 1, . . . , 6 can result
in faster convergence of the tracking errors. As for ϑi1, ϑi2,
ϑi3, ϑi4 in (29) and (37), if ϑi1 and ϑi3 approach 0, then the
relative threshold-based event triggering mechanism performs
like the fixed threshold-based approach in [16] which needs
more triggering events during the system stabilization process.
According to the expressions of ∆V2 and ∆V3 , the parameters
Υi and %i in (31) and (39) are suggested to be made small so
as to achieve preciser error boundaries.

Remark 11. In (29) and (37), the triggering threshold is
composed by a fixed term and a controller signal related part.
According to [16], if there is a large control signal, it indicates
that a large measurement error and a large triggering interval
will be obtained and the communication and computation
burdens are hence eased. When the control signal approaches
to the equilibrium zero, the triggering threshold becomes
smaller so as to provide a precise control process. Similar
event triggering notions can be found in the time varying
threshold method in [35], [36]. However, the threshold is
independent from the system errors or the control signals.
Therefore, the relative-threshold triggering mechanism can be
regarded as the extension of these works.

IV. SIMULATION

In this section, the simulation is executed in Matlab. All
the results are given based on numerical simulation with the
system model proposed in [24]. As is stated in [24], the
unmodeled system dynamics and the external disturbances
are expressed by si and Tdi in (1). Moreover, the corre-
sponding simulation results will be provided so as to validate
the effectiveness of the proposed event-triggered multi-lane
fusion control approach for straight and curved road case.
Moreover, the comparison will be done between the given
method and [24]. In the simulation, four vehicles are con-
sidered where Vehicle 0 is the virtual leader and Vehicle 1-
3 are considered as the followers in sequence. The initial
states of each vehicle are given in Tab.I. With reference to
[24], the nonlinear term si and external disturbance Tdi are
selected as si = −0.1176 − 0.0077616vi − 0.00016v2

i and
Tdi = sin(t + 0.25πi) (i = 1, 2, 3). The desired distance
d between each adjacent vehicle is set as 15m. According
to [24], the minimum collision avoidance gap is given as
Dcol = 8m and the maximum communication range holds
that Dcon = 21m. The upper and lower bounds of Sdi are
selected as S+

d = 10 and S−d = −10 for case 1 and S+
d = 5

and S−d = −5 for case 2. According to [24], the acceleration
of v0 is chosen as,

a0 =


0.5t m/s2, 0s ≤ t < 5s,

2.5 m/s2, 5s ≤ t < 9s,

− 4 m/s2, 14s ≤ t < 17s,

0 m/s2, otherwise.

The control parameters for each vehicle are given like Signal
Reconstruction: Li = −3, ˆ̄vi(0) = 1, v̂i(0) = −1 Error
Transformation: ∆il∞ = −1, ∆iu∞ = 1, ςil = 0.5, ςiu =
0.3, ∆̄il = 0, ∆iu = 0 Event-Triggered Controller: q1 =
0.9, q2 = 1.1, ci1 = 0.5, ci2 = 1.5, ci3 = 0.1, ci4 = 0.1,
γi = 0.1, κi1 = 0.5, βi = 2, ϑi1 = 0.8, ϑi2 = 1, ϑ̄i1 = 5.2,
Υi = 1, ςi1 = 1, $i = 1, ci5 = 0.2, ci6 = 0.5, ϑi3 = 0.8,
ϑi4 = 1, ϑ̄i2 = 5.2, %i = 1, ςi2 = 1. The parameters of the
method in [24] are selected by trials.

A. Unknown Input Reconstruction

As for the unknown input reconstruction, the corresponding
interval estimations for vi are firstly given in Fig.4. From
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TABLE I
INITIAL STATES OF EACH VEHICLE

Parameter Vehicle 0 Vehicle 1 Vehicle 2 Vehicle 3

xi(0) 40 23 15 0
yi(0) 0 5 -5 0
vi(0) 0 0 0 0
σi(0) 0 0 0 0
φi(0) 0 0 0 0

Fig.4, we find that once the initial conditions for the states
satisfy v̂i(0) < vi(0) < ˆ̄vi(0), then v̂i(t) < vi(t) < ˆ̄vi(t)
holds for t ≥ 0 and vi(t) varies in the regions bounded by v̂i(t)
and ˆ̄vi(t) which are marked in blue and red for case 1 and 2.
Therefore, Theorem 1 is valid. Based on the interval estimation
results, the time responses of the unknown input are depicted
in Fig.5 which shows that the asymptotic convergent unknown
input reconstruction is reached within 1s. The reason behind
the fast signal reconstruction is the algebraic calculation in
(16). Moreover, Fig.5 also indicates that even though different
selections for S+

d and S−d may be done, the reconstruction
results can still be achieved swiftly and accurately.

Fig. 4. The interval estimation for vi.

B. Straight Road Case

In this section, Vehicle 0 is assumed to stay on a straight
road. Therefore, the velocity angle σ0 always holds that
σ0 = 0. As for time responses of the adaptive fuzzy fu-
sion control regarding the distance keeping constraints, the
corresponding results are given in Fig.6-9. In Fig.6-7, the
trajectories alongside the X and Y axis for each vehicle
are presented. The multi-lane vehicle fusion is presented in
Fig.7. In Fig.8, the acceptable tracking error variance area is
marked in red which is bounded by the predesigned constraints
on the distance tracking error. Therefore, we can note that
the distance tracking error ei is always bounded by the
predesigned distance tracking error constraints. However, the
distance tracking error ei in [24] is constrained by a fixed
boundary set. In the present paper, the boundary set is selected
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Fig. 5. The reconstruction results for Sdi.
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Fig. 6. The time responses for each vehicle’s trajectory.

as a time-varying one, which is less conservative. Therefore,
the proposed fusion control strategy in the present paper can be
viewed as an extension of the work in [24]. Furthermore, due
to the implement of the fixed time control strategy, faster time
responses can be reached for distance tracking and angular
tracking process. In Fig.8, the setting time for ei is 2s by
using the proposed method while for the approach in [24], it
takes nearly 8s to stabilize ei. The comprehensive distance and
angular tracking processes in Fig.9 also demonstrate the swift
control performance of the proposed strategy when compared
to [24]. According to Fig.9, the multi-lane fusion processes
are achieved within 10s and 25s for the given method and
the strategy in [24], respectively. Therefore, the safety and
reliability of the vehicle platoon are ensured. The control
inputs for each vehicle are presented in Fig.10 and 12. The
released intervals and instants are depicted in Fig.11 and 13.
The detailed event triggering mechanism performance analysis
is provided in Table.II.
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Fig. 7. The time response for the multi-lane vehicle fusion process.

Fig. 8. Responses for the distance tracking error ei in this paper and [24].
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TABLE II
INFORMATION FOR THE RELEASED INTERVALS AND INSTANTS

Index (uio) Vehicle 1 Vehicle 2 Vehicle 3

Number of triggers 105 133 140
Average Period 0.952s 0.751s 0.714s
Maximum Interval 4.988s 5.786s 5.799s

Index (τio) Vehicle 1 Vehicle 2 Vehicle 3

Number of triggers 4 8 6
Average Period 25s 12.5 16.667s
Maximum Interval 0.222s 0.272s 4.942s

C. Curved Road Case

In this section, the curved road is considered and the
velocity angle σ0(t) is assumed to satisfy that,{

σ0 = 0 rad, and σ̇0 = 0 rad/s 0s ≤ t < 25s,

σ̇0 = 0.09 rad/s, otherwise.

The the acceleration of v0 is chosen as,

a0 =


0.5t m/s2, 0s ≤ t < 5s,

3.5 m/s2, 5s ≤ t < 9s,

− 4 m/s2, 14s ≤ t < 17s,

0 m/s2, otherwise.

Moreover, ci5, ci6 and $i are selected as ci5 = 0.5, ci6 = 1
and $i = 5 in this case. The time responses of the systems
with respect to the given method are depicted in Fig.14-17.
The 2-D and 3-D lanes merging processes can be found in
Fig.14-15 while the corresponding positions with respect to
some certain timepoints are marked. In Fig.16, the responses
for the distance tracking error ei are provided. From Fig.16,
it takes 2s to realize the distance keeping under the given
controller. Moreover, it notes that the possible singularity
problem is avoided in this paper because of the implement of
atan2 function. In Fig.17, once the velocity angle σi crosses π,
the value of σi will be mapped into the negative quadrants. The
multi-lane fusion is achieved within 10s. The control inputs are
presented in Fig.18 and 20. The released intervals and instants
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Fig. 14. The time responses for each vehicle’s trajectory.

Fig. 15. The time response for the multi-lane vehicle fusion process.

are depicted in Fig.19 and 21. The detailed event triggering
mechanism performance analysis is provided in Table.III.

TABLE III
INFORMATION FOR THE RELEASED INTERVALS AND INSTANTS

Index (uio) Vehicle 1 Vehicle 2 Vehicle 3

Number of triggers 108 135 139
Average Period 0.926s 0.74s 0.72s
Maximum Interval 5.133s 6.339s 5.112s

Index (τio) Vehicle 1 Vehicle 2 Vehicle 3

Number of triggers 14 17 13
Average Period 7.14s 5.88s 7.69s
Maximum Interval 1.336s 3.285s 4.375s

V. CONCLUSION

In this paper, the multi-lane fusion problem for a 2-D
vehicle platoon system is investigated and an adaptive fuzzy
fusion control strategy is proposed. As for compensating the
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Fig. 16. Responses for the distance tracking error ei in this paper and [24].

0 20 40 60 80 100
12

13

14

15

16

17

18

0 20 40 60 80 100

time(s)

-4

-2

0

2

4

0 5 10 15 20
12

13

14

15

16

17

18

0 5 10 15 20

time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
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impacts caused by the unknown system dynamics and the
external disturbance, an algebraic calculation-based unknown
input reconstruction method is developed on the basis of the
interval estimation results. To avoid the collision and lose of
effective communication, the distance keeping rule is consid-
ered and a barrier function-based distance constrained control
method is hence presented. In addition, the errors between the
ideal virtual controller and the one generated by command
filter are offset by the adaptive fuzzy logic system. Moreover,
because of the limited communication resources, the event
trigger mechanism using the relative threshold technique is
imported to the adaptive fuzzy fixed-time controller. The future
working direction may involve input saturations and the time
delays in the 2-D vehicle platoon system.
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