
 1

Abstract—AI-based lane detection algorithms were actively

studied over the last few years. Many have demonstrated superior
performance compared with traditional feature-based methods.
The accuracy, however, is still generally in the low 80% or high
90%, or even lower when challenging images are used. In this
paper, we propose a real-time lane detection system, called Scene
Understanding Physics-Enhanced Real-time (SUPER) algorithm.
The proposed method consists of two main modules: 1) a
hierarchical semantic segmentation network as the scene feature
extractor and 2) a physics enhanced multi-lane parameter
optimization module for lane inference. We train the proposed
system using heterogeneous data from Cityscapes, Vistas and
Apollo, and evaluate the performance on four completely separate
datasets (that were never seen before), including Tusimple,
Caltech, URBAN KITTI-ROAD, and X-3000. The proposed
approach performs the same or better than lane detection models
already trained on the same dataset, and performs well even on
datasets it was never trained on. Real-world vehicle tests were also
conducted. Preliminary test results show promising real-time lane-
detection performance compared with the Mobileye.

Index Terms—Lane detection, semantic segmentation, scene
understanding, optimization, camera based perception

I. INTRODUCTION
ccurate and reliable lane detection is a critical feature for
Lane Keeping (LK), Lane Change Automation (LCA) and

Lane Departure Warning (LDW) functions. Lane detection
research can be traced back to the 1980’s [1]. After the turn of
the century, LDW and LK have been commercialized, some
vehicles even have LCA. The self-driving challenge launched
by DARPA (2004-2012) [2] and early ADAS products, e.g., the
Mobileye [3], further advanced the development of lane
detection systems. However, due to the diverse appearances due
to adverse lighting/weather conditions and presence of other
objects, lane detection is still a challenging problem. Precision
and recall rate of lane markings are in the low 80% or high 90%
in most papers in recent literature, still not good enough for safe
and reliable driving in the real world.

Lane detection can be achieved by using monocular cameras,
stereo cameras, lidars, etc.[4]. Cameras are most popular due
to their rich content features and affordable cost. This paper
mainly focuses on monocular cameras, but the concept could

work with other sensors—albeit with significant additional
work.

A. Motivation and Literature Review
 Many feature-based methods use the generic framework
summarized in [4]. They decompose road/lane detection
methods into several modules: image pre-processing, feature
extraction, model fitting, image to world correspondence and
time integration. Not all lane detection methods contain all
these modules, but in general most papers contribute to one or
more of these elements [5-8]. Deep Learning (DL) presents a
newer data-driven approach and achieves better performance
than most feature-based methods right out of the gate [9-15].
Although DL systems achieved superior performance in many
applications, they are often used as a “blackbox” and their
performance has no guarantee and behavior hard to explain [16].
This limits their application for safety-critical tasks, e.g., lane
detection for autonomous driving.
1) From lane detection to scene understanding

Different from conventional objects, e.g., detecting dogs/cats
and human faces, lane markings are frequently nicely structured.
In most situations, lane lines appear as parallel polynomials
evenly spaced on a relatively flat ground. This is largely true,
except at lane merge/split, intersections, roundabouts, or on
steep slopes. So if we can solve this “parallel polynomials”
problem, we would have addressed the majority (> 90%) of the
lane detection problem, which is the focus of this paper.

We are also inspired by the idea that we can deduce lanes
from street scenes through low-level static or dynamic visual
cues (e.g., lane markings, road curbs, and vehicles) and high-
level functional cues (e.g., scene layout). Feature-based
methods, such as ELAS [17], usually detect all possible scene
cues in advance before lane detection/tracking task is executed.
For Convolutional Neural Network (CNN)-based methods,
such kind of scene information is hidden/implicit in the network
architecture. If we can first understand the scene layout,
separate the whole image into geometric areas and then focus
on lane marking areas, the classification accuracy is expected
improve.

Another important decision is what lane labels should the
CNN generate. Many existing CNN-based methods generate
pixel-wise lane marking flags, lane area masks or parameterized
lane lines. Usually, manual inference for the occluded or
missing parts are needed when labeling, thus uncertainty may
be introduced in this process, see Fig. 1 (a-b). In addition, even
more elaborate customized labels are required in some cases,
e.g., VPGNet [15] outputs vanishing points in addition to lane

SUPER: A Novel Lane Detection System
Pingping Lu1, Chen Cui2, Shaobing Xu1, Huei Peng1, Fan Wang2

A

This research was supported by the UM-SFmotors automated car project

and ARC project.
1P. Lu, S. Xu and H. Peng are with the Department of Mechanical

Engineering and the Mcity, University of Michigan, Ann Arbor, MI 48109
USA (Email: pingpinl@umich.edu; xushao@umich.edu; hpeng@umich.edu)

2C. Cui and F. Wang is with the SF Motors Inc., Santa Clara, CA 95054
USA. (Email: cworkc56@gmail.com; fan.wang@driveseres.com)

 2

attributes; LineNet [18] outputs six lane-related labels (mask,
position, direction, confidence, distance, and type).

Instead of predicting the aforementioned task-oriented lane
labels using CNNs, this paper attempts to solve the lane
detection problem starting from scene understanding. Three
benefits are highlighted here: 1) Adaptability in complex
scenarios: compared with detecting lane objects directly, the
holistic street scenes follow more stable layouts and are more
robust to adverse factors such as lighting, occlusion and
weather conditions. 2) Reliability and reusability for
perception: we propose a hierarchical segmentation structure
imitating human perception ability for reliable scene cues
prediction, which can be reused in other perception tasks, e.g.,
drivable area detection in off-road driving. 3) Compatibility
with heterogeneous datasets: the proposed structure works
with different annotation categories, class definitions and
labeling policies, see Fig. 1 (c). The above features made it
possible to train on multiple datasets, e.g., Cityscape [19],
Vistas [20], BDD [21], Camvid [22], KITTI [23], Apollo [24]
and GTA5 [25]. These large-scale driving datasets could all be
used to obtain better performance.

(a) (b)

(c)

Fig 1. Comparison of labels among commonly used lane datasets and our
training datasets. (a) (b) Examples with occluded/missing lane marks and lane
labels; (c) Examples of our heterogeneous training datasets without labeling
uncertainty, where the lane parameters are optimized based on scene labels
without supervision.

2) Lane parameter estimation
For most CNN-based lane detection methods, the outputs are

pixel-level lane instance masks in the image view [9, 13, 15].
However, the desired output for autonomous driving is control
related parameters, i.e., vehicle lateral offset, heading angle and
curvature [26]. To fill this gap, some post-processing
procedures are required, e.g., inverse perspective mapping
(IPM), and lane model fitting. Since the vehicle is moving and
the road is not always flat, camera intrinsic and extrinsic
parameters alone are not enough for calculating the
transformation matrix between the camera and world
coordinates. Better lane model or additional procedures, e.g.,
vanishing point estimation, are required [27]. It means more
efforts are still needed after obtaining lane detection results in
the image view. LaneNet-HNet [10] uses an extra CNN to
estimate the transformation matrix from the image view to the

birds’ eye view (BEV) and conducts lane regression in BEV.
LaneNet-LSTM [11] requires lane coordinates in BEV as input
and identifies each lane line via LSTM. These estimation
methods treat lane inference process as a highly nonlinear
model to learn parameters in a supervised way.

Differently, we follow the assumption that lane markings are
largely parallel polynomials, and if we separate the lane
parameters into shared parts (heading angle and curvature) and
unique parts (offsets and lane marking attributes), they can be
estimated together efficiently. To cope with non-flat ground, a
polynomial road model is adopted. Then the lane parameter
estimation problem is simplified as an optimization problem
based on the pixel-wise scene labels. The reasons are: 1) to
avoid step-by-step rule-based parameter estimation, which
increases problem complexity and causes error accumulation.
Instead, we simultaneously estimate the slope angle and multi-
lane parameters simultaneously; 2) to leverage known
attributes of lane lines. We design an explicit cost function
considering prior physics model/knowledge and optimize the
lane parameters without supervision. We call this process
“physics enhanced multi-lane inference”.

The diagram of the proposed lane detection system is
displayed in Fig. 2, including a hierarchical semantic
segmentation module and a physics enhanced multi-lane
inference module. The core idea is that CNNs are used for scene
understanding as well as road/lane extraction, while a physical
road/lane models are adopted for the lane inference. The
explainability is improved, and the subsequent lane inference
module uses a model and thus can be more accurate and reliable.

B. Contribution
The main contributions of this paper include:
1) a novel lane detection system, named as Scene

Understanding Physics-Enhanced Real-time (SUPER). Its main
difference from existing methods is that we solve the problem
starting from scene understanding, and then estimate lane
parameters through optimization with a physics-enhanced cost
function, see Fig. 1.

2) an improved hierarchical semantic segmentation
structure to capture lane related information focusing on the
region of interest, i.e., where lane markings are likely to exist,
and also enable training on multiple datasets.

3) an optimization-based lane inference method to directly
estimate multi-lane parameters (i.e., lateral offsets, heading
angle, and curvature) in real-time. Especially, a cost function
considering road/lane models is used to formulate the parameter
estimation problem.

The remaining contents are organized as follows: section II
presents the proposed hierarchical semantic segmentation
network, along with multi-level classifiers design and some
training strategies; section III focuses on the details of lane
parameter estimation, covering loss function design, slope
compensation and optimization strategy; The experiments on
open/private lane datasets, and real-world vehicle tests are
conducted in section IV. Section V concludes this paper.

CULane Tusimple

 3

Fig. 2. Framework of the proposed method

II. HIERARCHICAL SCENE UNDERSTANDING
To understand the holistic scene for reliable lane detection,

semantic segmentation is selected as the base network for the
street scenes understanding. To capture the special semantic
relationship between lanes/roads and other objects with
multiple heterogeneous datasets, we modify the original
hierarchical classification convolutional network [28] and
utilize an improved semantic hierarchy by various lane
attributes with a more practical architecture for lane detection.
More details are explained in Sec. A and B. The training
strategies are described in Sec. C.

A. Hierarchical semantic segmentation
Semantic segmentation refers to the process of assigning a

semantic label to each pixel of an image [29]. For learning
based semantic segmentation, annotated training data is an
essential part that affects model performance. In our
hierarchical semantic segmentation model, both scene labels
and detailed lane marking labels are required, while no current
open dataset provides annotations covering all the required
labels. To address this challenge, we propose the following
concept to use multiple datasets to train our model.

Table 1. Training datasets used

 Cityscape[19] Vistas[20] Apollo[24]

Image size 1024x2048 varies 2710x3384
Training size 2975 18000 7392

Label common scene lane marking
Classes 34 66 35

Three datasets are selected as the final training datasets, as

shown in Table 1. Cityscape does provide semantic
segmentation labels but not lane information. Vistas provides
scene labels as well as some general categories of lane markings,
such as ‘bike lane’, ‘lane marking-general’, etc. Apollo
provides very detailed pixel-wise lane makings and lane
attributes, including 6 dividing markings, 4 guiding markings,
2 stopping lines, 12 turning markings and so on. These three
datasets together provided about 30,000 images with labels for
our scene understanding based lane detection training and
validation.

After gathering training datasets and labels, the next
challenge is how to design the training process utilizing
different datasets with varying labeling styles. Panagiotis et al.
proposed a convolutional network with hierarchical classifiers

for per-pixel semantic segmentation [28], which enables
training on multiple heterogeneous datasets. Although many
objects exist in the holistic scene, some of them are not related
to lane detection and can be ignored, while others are highly
related to lane features. Hence, we cannot use the structure of
the algorithm proposed in [28] directly. To tackle the above
issue, we optimize the hierarchy with a more practical
architecture inspired by human perception ability. The
relationships between different hierarchical levels are redefined,
so that the proposed structure focuses on both general scene
cues and lane classification. Our semantic hierarchical structure
is explained below.

B. Multi-level classifier design
Among available open datasets, the definition of object

classes and labels are different, which needs to be clarified
before they can be used. The main conflicts in the class
definition are ‘road’ and ‘lane marking’. For example, in
Cityscape, ‘road’ refers to drivable ground, including lanes,
direction arrows, streets, bicycle lanes, etc. In Vistas, lane
markings are isolated from ‘road’. To tackle ‘road’ conflict, a
‘drivable’ class is proposed which partially alleviate the issue,
but other conflicts (e.g., types of vehicles) still exist. Besides,
the designed network in [28] aims to predict many classes of
objects, e.g., animals and birds, which will increase model
complexity and training cost.

Fig. 3. The proposed hierarchical semantic structure. Support area includes
sidewalk, ground, terrain, curb, and drivable areas; vertical area includes
person, car, building, wall, bridge, tunnel, fence, vegetables and road utility;
drivable area includes road, parking, crosswalk, lane marking, bike lane,
service lane, catch basin, manhole and pothole; lane marking area includes
dividing/guiding/turning markings, and stop lines.

To cope with labeling differences/conflicts and removing
irrelevant labels, a new hierarchical structure is proposed. The
idea is inspired by [30], which tries to label an image of a street
scene into coarse geometric classes that are useful for tasks such

 4

as navigation, object recognition, and general scene
understanding. Following the backbone network in Fig. 2, four-
level classifiers are designed in our paper: in the first level, an
image is divided into sky, vertical and support areas; in the
second level, vertical/support areas are further divided into
subclasses for scene description; in the third level, drivable
areas are further classified; in the last level, detailed lane
marking types are incorporated. Fig. 3 illustrates and explains
the detailed multi-level structure.

C. Training strategy
Since only pixel-level classification is involved in this section,
the loss function is relatively simple compared with [28].
Softmax cross-entropy loss is adopted for each classifier and
the total loss is the weighted sum of different classifiers. In the
inference procedure, each child classifier is governed by its
parent according to its own decisions. Through this way, we
obtain more reliable scene labels.
 In the Apollo dataset, lane marking labels are more accurate
than the ground and object labels, thus only lane segmentation
label is used in the training stage. However, some ground area
near the lane markings is easily misrecognized as lane markings.
To handle this issue, we expand the lane marking to its vicinity,
and label the whole expanded area as ‘road’. Road areas
occluded by objects such as vehicle are removed from the label.
Fig. 4 exhibits an example of Apollo label before (left) and after
(right) our expansion processing. Both lane markings and
generated ‘road’ labels are used for training.

Fig. 4. Preprocessing of the Apollo lane dataset

III. PHYSICS ENHANCED MULTI-LANE INFERENCE
With the semantic labels in Fig. 3, this section estimates lane

parameters in the vehicle coordinate system. We assume the
lane lines are largely parallel polynomials, and the lane
parameters can be divided into two parts, shared/global
parameters (i.e., heading angle and curvature) and unique/local
parameters (i.e., offsets and lane marking attributes). In this
section, the optimization of multi-lane parameters is described
first. Then slope compensation (for up/down road grade) is
proposed for better accuracy.

A. Lane parameter optimization
This section describes the lane parameter estimation as an

optimization problem. The cost function is designed to reflect
the physical properties of lane lines. The coordinates for the
image view and BEV are illustrated in Fig. 5, along with
definition of related symbols in the following.

The flat ground case is first considered here. Given intrinsic
and extrinsic camera parameters, any road/lane points could be
transformed from (𝑢#, 𝑣#) in the image view to (𝑥#, 𝑦#) in the
BEV. Usually, a lane line can be represented by a polynomial
function: 𝑓(𝑎+,, 𝒂; 𝑦) = 𝑎+, + 𝑎1𝑦 +	𝑎3𝑦3 + ⋯+ 𝑎5𝑦5 ,
where 𝒂 = {𝑎1, 𝑎3,… , 𝑎5} contains the shared parameters; 𝑎+,

are the unique parameters – the offset of the nth lane line; 𝑚 is
the polynomial order and chosen to be 2 in this paper. Two
kinds of labels are involved: road labels (𝑥:# , 𝑦:#) and lane labels
(𝑥;# , 𝑦;#).

Fig. 5. Coordinates for the image view and BEV. Red rectangle stands for the
vehicle, 𝑜 is the center of the camera, h is the mounted height of camera above
the ground.

Fig. 6. Cost function for road fitting (left) and lane fitting (right)

The goal of the optimization problem is to estimate both 𝒂

and {𝑎+,}, where 𝑛 = 1, 2,… ,𝑁. 𝑁 is the total number of lane
lines in a given image. To estimate the shared parameter 𝒂, two
separate cost functions considering the physics knowledge of
road/lane are proposed and explained, see Fig. 6 for details.

Road fitting: assuming that (1) all lanes are in the road area;
(2) the road area is represented by its central line; and (3) the
lane lines share the same 𝒂 as the central line of the road. We
understand that assumption (3) is true for the majority of the
cases, but exceptions exist (lane merge/split, intersection, etc.)
Here we first aim to have a tool that helps us to solve 90% of
the lane detection problem. To match the central line with the
pixels of the road area, Eq. (1) is designed to indicate the
distance between each point in the road area and the related
central line. Minimizing 𝒥1 helps to find the best parameters,
𝑎+B and 𝒂.

𝒥1 = −D𝑒𝑥𝑝 G−H
I𝑥:# − 𝑓(𝑎+B, 𝒂; 𝑦:#)I

𝜎K
L
3

M
#

 (1)

where 𝑎+B is the offset of the central line; 𝑥:# and 𝑦:# are the
coordinates of each point in the road area; 𝜎K is the standard
deviation to penalize points far away from the central line,
which can be set according to the road width. In this paper, 𝜎K	=
3. This road-related cost function evaluates parameters 𝒂
independent of {𝑎+,}, 𝑛 ∈ [0, 𝑁].

Lane fitting: assuming that all parallel lane lines in the road
areas share the same global geometric parameter 𝒂. For a given
point R𝑥;

#,,, 𝑦;
#,,S on the nth lane lines, ∆𝑑;

#,, = 𝑥;
#,, −

!

"

#

ℎ

!

"

%

&

Image plane'

 5

𝑓R0, 𝒂; 𝑦;
#,,S represents a value close to the offset of that lane.

Eq. (2) then measures the distribution of the distance

𝒥3 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦Rℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S]S + 𝜅
𝑁;
𝑛;

 (2)

where 𝑥;# and 𝑦;# are the ith coordinates of each sampled point in
the lane marking areas;	𝑁; is the total number of sampled points
in the lane marking category; 𝑛; is the number of lane marking
points whose offsets fall into a pre-defined range, 𝜅 is a
constant and set to be 2 in this paper; 𝜅𝑁; 𝑛;⁄ is a penalty term
for abnormal 𝒂 , ℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S] stands for the
distribution of offset ∆𝑑;

#,, . Recall the parallelism assumption,
∆𝑑;

#,,	on the same nth lane line should be the same or similar to
𝑎+,, thus a peak should occur around the correct 𝑎+, value in the
histogram. Considering all candidate points in the entire scene,
several discrete peaks, standing for different offsets of all lane
lines, are supposed to appear in the histogram. Ideally, the
number of peaks is equal to lane number N. If we use map
information, the correct value of N can be known and used for
more accurate detection.

Note that a disordered histogram indicates an inaccurate 𝒂.
To measure the level of error or the quality of 𝒂, we introduce
an index called 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 , which calculates the entropy of
\∆𝑑;

#,,] through its corresponding histogram. A better 𝒂
corresponds to a histogram that is closer to the ideal distribution
with a lower entropy, while a higher entropy indicates
inaccurate 𝒂.

Eq. (1) and Eq. (2) utilizes the physics features of the road
and lane to help with lane detection. With enough lane marking
points, 𝒥3 of lane fitting contributes more than 𝒥1, whereas 𝒥1
of road fitting enables acceptable performance even without
many lane points. To achieve a comprehensive evaluation of
lane parameters, we combine them together to form the final
loss function 𝒥:

arg	min
	fgh,𝒂		

𝒥 = 𝜆	𝒥1 + 𝒥3 (3)

where λ is a weight and set to be 0.001 in this paper. Here the
global parameter 𝒂 is what we care about. The calculation of 𝒂
turns into finding the best 𝒂 and 	𝑎+B which minimizes 𝒥.

Once the optimal 𝒂 is obtained, the optimal distribution of
\∆𝑑;

#,,] is achieved as well as {𝑎+,}, being the peaks of the best
histogram

𝒂𝟎 = 𝑝𝑒𝑎𝑘𝑠Rℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S]S (4)

where 𝒂𝟎 = {𝑎++, 𝑎+1,… , 𝑎+m}. The peak points were found using
the findpeaks 1 function, which finds local maxima through
setting minimum peak separation (equals the minimum road
width in real world), and minimum peak prominence (equals
the minimum number of points in each lane line). The first
parameter is used to incorporate road width prior information
and the second parameter is used to exclude interference of
lanes in other directions. To better understand this process, a

1 https://www.mathworks.com/help/signal/ref/findpeaks.html

typical image along with the detailed lane offset estimation is
shown in Fig. 7.

(a) (b) (c)

(d) (e)

Fig. 7. Example lane offset estimation process. (a) original images; (b)
semantic segmentation results; (c) lane detection results; (d) lane/road points
after removing the global geometry via 𝑥 ! − 𝑓(0, 𝒂; 𝑦!), where the red/cyan
points are for lane/road points, respectively; (e) lane offset estimation
through peaks finding, where the blue line depicts the histogram
corresponding to the x-axis value of the lane points in (d), the triangles
indicate the peaks of the blue line after considering the minimum peak
interval, red lines display the peak prominence, and the peaks in green
ellipses are discarded after considering the minimum peak prominence.

B. Slope compensation
In the real world, terrain undulations deteriorate the lane

conversion from the image view to the BEV if only the default
intrinsic and extrinsic camera parameters are used. On sloped
roads, lane lines that are parallel in the real world become non-
parallel in the BEV. To tackle this challenge, methods
estimating vanishing point have been proposed [15, 27, 31].
The results are then used to update extrinsic camera parameters
online. Differently, in this paper we propose a method to
compensate for road slope in the optimization process directly.

Based on Inverse Perspective Mapping (IPM), a point (u, v)
from the image view can be transformed to (x, y) in the BEV
[32] by

1
𝑧!
o
𝑥
𝑦
𝑧
o = 𝑇 o

𝑢
𝑣
1
o (5)

where 𝑇 is the transformation matrix determined by extrinsic
and intrinsic camera parameters, and 𝑧B is the distance along the
z axis in the camera coordinate.

Since 𝑧B is unknown, the exact (𝑥, 𝑦, 𝑧) cannot be calculated
from Eq. (5). Assuming the vehicle runs on a flat road, an
estimated coordinate can be obtained, denoted as (𝑥q, 𝑦q), and its
relationship with (𝑥, 𝑦, 𝑧) follows

𝑥q = −ℎ 𝑥 𝑧⁄
𝑦q = −ℎ 𝑦 𝑧⁄ (6)

where ℎ is the vertical height from the camera center to the flat
ground.

If the road is not flat, we must estimate the 𝑧 profile. Here we
adopt a polynomial road model, assuming 𝑧 is a polynomial
function related to 𝑦: 𝑧 = 𝑓r(𝑦). Then Eq. (6) becomes

𝑥q = −ℎ𝑥 𝑓r(𝑦)	⁄ (7)

 6

𝑦q = −ℎ𝑦 𝑓r(𝑦)	⁄

If 𝑓r is known, Eq. (7) can then be rewritten as

𝑦q + ℎ ∙ 𝑦 𝑓r(𝑦) = 0⁄ (8)

Thus 𝑦 can be estimated from Eq. (8), denoted as 𝑟𝑜𝑜𝑡(𝑦q).
Then, feed 𝑟𝑜𝑜𝑡(𝑦q) into Eq. (7) to obtain 𝑥

𝑥 = −𝑥q ∙ 𝑓rR𝑟𝑜𝑜𝑡(𝑦q)S ℎ⁄ (9)

Specially, assume 𝑓r is a linear function 𝑓r = 𝑏𝑦 − ℎ. This
simplified road model is suitable for most situations, except for
frequently changing slopes. Then the correct 𝑥 and 𝑦 can be
represented as

𝑥 = −𝑥q ∙ 𝑓r u
𝑦q

𝑦q𝑏 ℎ + 1⁄ v ℎw

𝑦 =
𝑦q

𝑦q𝑏 ℎ + 1⁄
(10)

Note that 𝑏 is the only unknown parameter in Eq. (10). We
treat it as an additional variable in the optimization problem,
and optimize it together with the global lane parameters 𝒂, and
therefore the effect of the slope is estimated and mitigated.

C. Optimization strategy
Since the derivative of the proposed loss function is not

available, we use a Derivative-Free Optimization (DFO)
algorithms [33], and more specifically, the Nelder-Mead
simplex algorithm [34].

Usually, a proper initial guess helps to avoid trapped at the
local minima and speed up the searching process. Sequential
information may provide a good initial parameter, which means
the optimal solution obtained from the previous images can be
used as the initial value for the next image; curvature
information of the road ahead the vehicle from map or
navigation software is also beneficial. If none of them are
available, other techniques can also be applied. Even when no
prior information is available, a proper range can be selected for
each parameter. Then follow Eq. (3) to calculate the loss curve
of each parameter while setting other variables as 0.

IV. EXPERIMENTAL VALIDATION
To evaluate the performance of the proposed lane detection

algorithm, experiments on various datasets are performed. As
mentioned before, our training datasets include Cityscape,
Vistas and Apollo. While, the evaluation datasets include
Tusimple, Caltech and X-3000.

Our algorithm was implemented using two platforms: Titian
Xp for model inference, and Intel (R) Xeon (R) W-2155 CPU
@ 3.30GHZ for lane parameter optimization. In the first
module, the hierarchical model achieves an inference rate of 18
FPS. For the lane parameter optimization module, the average
computation time is around 37 milliseconds. In other words,
using today’s computation platforms, we can achieve a
combined computation rate of 11 Hz, capable of real-time
vehicle implementation.

A. Tusimple benchmark
Tusimple is a widely used open-source lane detection dataset,

which consists of 3,626 training and 2,782 testing images. It
mainly covers highway driving in good or fair weather
conditions. Moreover, Tusimple provides video clips (20
frames per clip), but only the last frame of each clip is
annotated.

The quantitative evaluation results are listed in Table 2,
calculated by the official Tusimple benchmark evaluation
script, compared with two selected benchmarks: SCNN [9] and
LaneNet [10]. It is observed that joint estimation of slope and
lane parameters achieves better detection accuracy (about 3%
higher) than without, which confirms the necessity of slope
compensation. Even though the accuracy is slightly worse than
SCNN, the winner of the Tusimple 2017 competition, and the
LaneNet, it is important to note that both SCNN and LaneNet
were trained on the Tusimple data, whereas, the proposed
method was not. In addition, the proposed method outputs lane
parameters in the real world, and the results are then inversely
mapped to the image view for the comparison; but SCNN and
LaneNet focus on lanes in the image view without disturbance
of road slope or mismatch of camera parameters. Besides, the
accuracy is slightly improved from 95.90% to 96.01% after
considering sequential information. This seems to imply that
the driving data in Tusimple was very “normal” and typical
default initial guess was close enough to the true solution. In
this paper, temporal integration is simply performed through
setting the optimization output of the previous frame as the
initial guess of the current frame. In practical applications,
multi-frame fusion could be considered, and advanced spatial
or temporal filtering might be applied as well.

Table 2. Evaluation on the Tusimple test dataset, sc means using slope
compensation for joint estimation, sq means incorporating sequential
information for initial value setting

SUPER

SCNN LaneNet no sc sc

no sq 93.56% 95.90%
96.53% 96.4%

sq 93.65% 96.01%

B. Caltech benchmark
The Caltech dataset contains 1,224 labeled images with

4,172 marked lanes [7] from four video clips collected on
different types of urban streets. For a fair comparison with other
methods, we use the same evaluation metric – true positive rate
(TPR) used in [8]. Table 3 shows the comparison results among
several benchmark methods. Our method achieves the best
performance in each sub-dataset. The average TPR is 98.6%
which is over 10% improvement than the other two methods.

Table 3. Evaluation on Caltech dataset using True Positive Rate (TPR)

 1 2 3 4 Ave.

M. Aly[7] 0.813 0.839 0.934 0.890 0.869

ML-CRF[8] 0.892 0.865 0.850 0.898 0.876

SUPERsc 0.991 0.980 0.982 0.992 0.986

 7

C. KITTI benchmark
The URABN KITTI-ROAD dataset [23] consists of 600

frames collected on five different days with relatively low
traffic density. This paper focuses on the ego-lane detection
subtask, which contains 100 testing images and 98 training
images. Table 4 compared the results of our method in BEV
with other methods. Since the ego-lane benchmark is not
available in the testing images, the proposed method is
evaluated on the training dataset using the official evaluation
code, and other methods in Table 4 are evaluated on the testing
dataset.

It is important to note that SPRAY [35], RBNet [36] and
NVLaneNet2 are all trained on the KITTI dataset. Even though
KITTI’s labeling style (ego-lane area) is quite different from

that (lane line) used by Tusimple or Caltech, the proposed
method without training on KITTI still achieves comparable
performance.

Table 4. Evaluation on KITTI ego-lane dataset

 Fmax Prec. Rec. FPR

BL[23] 74.4 72.6 76.2 4.8

SPRAY[35] 83.4 84.8 82.1 2.6

RBNet[36] 90.5 94.9 86.6 0.82

NVLaneNet* 91.9 90.9 92.9 1.6

SUPERsc 86.7 86.0 87.4 2.2
* unpublished method

 (a) (b) (c) (d) (e)

Fig. 8. Example results of the proposed method on the X-3000 dataset, (a) raw images, (b) semantic segmentation results, (c) offsets after slope compensation
(red for lane points, cyan for road points), (d) histograms (green lines) of lane offsets and the detected peaks (red dashed lines), and (e) lane detection results,
where blue/yellow stands for white/yellow lane line, line styles are also marked through solid/dashed lines.

2 http://www.cvlibs.net/datasets/kitti/eval_road.php

 8

D. X-3000 benchmark
X-3000 is our own dataset collected in urban, suburban and

highway scenarios with different weather and time in both
Michigan and California. X-3000 has three subsets: easy,
moderate and hard, consisting of 1000 images each. The images
are classified into these three challenging levels subjectively
based on image quality and road/weather/lighting conditions.
The easy subset covers straight and curve roads in good and fair
weather; the moderate subset contains eroded or occluded lane
markings, heavy shadow, uphill or downhill terrains and
crossroad; the hard subset focuses on bad weather, bad image
quality, complex intersection or lane merge/split. Our labeling
style and assessment metric are similar to Tusimple. We use
two evaluation modes: one focuses on ego-lane, and the other
one evaluates 3-lanes (ego-lane and its left/right adjacent lanes).
SCNN and LaneNet are as-is: trained on the Tusimple dataset,
then tested on the X-3000 dataset. Sone typical results of our
methods are displayed in Fig. 8, covering sharp curve, heavy
occlusion, roundabout, intersection, split/merge,
uphill/downhill, etc. Intermediate results, including semantic
segmentation, offsets after global parameters removal and slope
compensation, histogram of lane offsets, are also shown here.

Fig. 9. Evaluation results using the X-3000 dataset

The accuracy of the two evaluation modes are summarized
in Fig. 9. The average accuracy of our method is -8 percentage
higher than the others. Obviously, the proposed method
outperforms the other two methods on these three subsets. Here,
we also quantitatively compute the accuracy of lane color
(white/yellow, 93.66%) and style (solid/dashed, 92.58%)
evaluated with all three subsets. Note that all three methods
were never trained on the X-3000 dataset. Therefore, the
comparison here seems to indicate better robustness of our
proposed method.

E. Vehicle Testing
To further validate the performance of our algorithm on a test

vehicle in real-time, we select an open road in Michigan and
drive our testing vehicle, a Lincoln MKZ, in a morning after
rain. Fig. 10 (a) shows the test vehicle, (b) shows the test vehicle
trajectory in the XYZ profile (The origin is marked by red
rectangles), and (c) displays some typical camera images. This
road is selected because it contains sharp curves, lane
split/merge, intersections and frequently up-and-down terrains.
Since we cannot access the original video of Mobileye, another
camera (PointGrey) is used and mounted slightly to the right
(20 cm away) of Mobileye to capture videos. When the test

vehicle is running, the output of Mobileye (lane parameters
only), vehicle position from Real-Time Kinematic (RTK)
positioning system, raw video of PointGrey and outputs of our
algorithm are recorded.

The vehicle trajectory captures from RTK does not exactly
align with the lane center, which means the ground truths of
offset (𝑎+,) and heading angle (𝑎1) are not available. However,
the curvature (𝑎3) information is available as it is not sensitive
to instantaneous tracking errors. Therefore, here we focus more
on 𝑎3 for comparison. Fig. 11 (a) shows a general comparison
of curvature profiles from the RTK trajectory (ground truth),
Mobileye, and our algorithm. Fig. 11 (b–d) displays the
curvature profiles under selected sections. The curvature
profiles of Mobileye and our method are similar and close to
the ground truth. Note that our algorithm only uses sequential
information for initial value setting, without any spatial or
temporal filtering. It seems our method produce results
comparable to that of Mobileye in this test.

(a) test platform

(b) the trajectory of the test

(c) typical input images

Fig. 10. Test vehicle platform and test route

Fig. 11. Comparison of curvature profiles

92.74 89.52 85.10

84.85

83.55

81.40

85.69 82.00 77.60

70

80

90

100

easy moderate hard

Our SCNN LaneNet
92.28 89.22 85.3480.92

78.24

79.21

85.52 81.51 77.15

70

80

90

100

easy medium hard

Our SCNN LaneNetsc sc

Ego-lane 3-lanes

bc

d

sc

(a)

(b) (c) (d)

 9

V. CONCLUSIONS
This paper proposed a novel lane detection algorithm with

two unique ideas: 1) it predicts lane related labels from the
holistic scene understanding; 2) it estimates multi-lane
parameters and compensate for road slope simultaneously
under an optimization framework. The advantages of both
learning-based and physics-based techniques are leveraged.

The proposed algorithm is trained on heterogeneous datasets
(Cityscape, Vistas, and Apollo) and then tested on four other
datasets (Tusimple, Caltech, KITTI and X-3000). The proposed
method was found to achieve similar or better performance, and
is more robust. Comparison with Mobileye on open roads also
indicates the performance of the proposed method seems to be
fast enough for real-time implementation.

The lane inferring module presented in this paper follows the
“parallel polynomials” hypothesis when optimizing lane
parameters, which works well in most cases, but for accurate
estimation of unparalleled lanes, such as lane merge and split
conditions, additional operations/strategies, e.g., extra local
correction or integration with map prior, are required, which is
the focus of our current research.

REFERENCES
[1] E. D. Dickmanns, and A. Zapp, "Guiding land vehicles along roadways

by computer vision." Congres Automatique, The tools for tomorrow,
Toulouse, France, 1985.

[2] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Challenge
Autonomous Vehicles in City Traffic. Berlin: Springer Berlin, 2013.

[3] D. B. Yoffie, "Mobileye: The future of driverless cars." Harvard
Business School Case, pp. 715-421, 2014.

[4] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Machine Vision and Applications, vol. 25,
no. 3, pp. 727–745, Jul. 2012.

[5] M. Bertozzi and A. Broggi, “GOLD: a parallel real-time stereo vision
system for generic obstacle and lane detection,” IEEE Transactions on
Image Processing, vol. 7, no. 1, pp. 62–81, Jan. 1998.

[6] Y. Wang, E. K. Teoh, and D. Shen, "Lane detection and tracking using
B-Snake." Image and Vision computing, vol. 22, no. 4, pp. 269-280, Apr.
2004.

[7] M. Aly, “Real time detection of lane markers in urban streets,” 2008
IEEE Intelligent Vehicles Symposium, pp. 7-12, Jun. 2008.

[8] J. Hur, S. N. Kang, and S. W. Seo, “Multi-lane detection in urban driving
environments using conditional random fields,” 2013 IEEE Intelligent
Vehicles Symposium (IV), pp. 1297-1302, Jun. 2013.

[9] X. Pan, et al., "Spatial as deep: Spatial cnn for traffic scene
understanding." in AAAI, New Orleans, LA, USA, Feb. 2-7, 2018.

[10] N. Davy, et al. "Towards end-to-end lane detection: an instance
segmentation approach." 2018 IEEE Intelligent Vehicles Symposium
(IV), pp.286-291, Jun. 2018.

[11] Z. Wang, W. Ren, and Q. Qiu, "LaneNet: Real-Time Lane Detection
Networks for Autonomous Driving." arXiv preprint arXiv:1807.01726,
2018.

[12] N. Garnett, R. Cohen, T. Pe'er, R. Lahav, and D. Levi, "3D-LaneNet:
end-to-end 3D multiple lane detection." in Proc. ICCV, Seoul, Korea,
Oct.27-Nov.2, 2019, pp. 2921-2930.

[13] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij and M. Hofmann, "EL-
GAN: embedding loss driven generative adversarial networks for lane
detection." in ECCV. Munich, German, Sep. 8-14, 2018, pp. 256-272.

[14] B. He, R. Ai, Y. Yan, and X. Lang, “Accurate and robust lane detection
based on Dual-View Convolutional Neutral Network,” 2016 IEEE
Intelligent Vehicles Symposium (IV), pp.1041-1046, Jun. 2016.

[15] S. Lee, et al. "Vpgnet: Vanishing point guided network for lane and road
marking detection and recognition." in Proc. ICCV, Venice, Italy, Oct.
22-29, 2017, pp.1947-1955.

[16] Y. Dong, H. Su, J. Zhu, and B. Zhang, "Improving interpretability of
deep neural networks with semantic information." In Proc. CVPR,
Honolulu,, Hawaii, USA, Jul. 21-26, 2017, pp. 4306-4314.

[17] R. F. Berriel, E. D. Aguiar, A. F. D. Souza, and T. Oliveira-Santos, “Ego-
Lane Analysis System (ELAS): Dataset and algorithms,” Image and
Vision Computing, vol. 68, pp. 64–75, Dec. 2017.

[18] D. Liang,, et al., "LineNet: a Zoomable CNN for Crowdsourced High
Definition Maps Modeling in Urban Environments." arXiv preprint
arXiv:1807.05696, 2018.

[19] M. Cordts, et al. "The cityscapes dataset for semantic urban scene
understanding." In Proc.CVPR, Las Vegas, NV, USA, Jun. 27-30, 2016,
pp. 3213-3223.

[20] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, "The
mapillary vistas dataset for semantic understanding of street scenes." In
Proc. ICCV, Venice, Italy, Oct. 22-29, 2017, pp. 4990-4999.

[21] F. Yu, et al., "BDD100K: A diverse driving video database with scalable
annotation tooling." arXiv preprint arXiv:1805.04687, 2018.

[22] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, "Segmentation
and recognition using structure from motion point clouds." In ECCV,
Marseille France, Oct. 12-18, 2008, pp. 44-52.

[23] J. Fritsch, T. Kuehnl, and A. Geiger. "A new performance measure and
evaluation benchmark for road detection algorithms." in ITSC, Hague,
NL, USA, Oct. 6-9, 2013, pp. 44-57.

[24] X. Huang, et al. "The apolloscape dataset for autonomous driving." in
Proc. CVPR, Jun. 19-21, Salt lake city, USA, 2018, pp. 954-960.

[25] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, "Playing for data:
Ground truth from computer games." in ECCV, Amsterdam, NL, USA,
Oct. 8-16, 2016, pp. 102-118.

[26] Shaobing Xu, Huei Peng. Safeguard Protected Preview Lane Keeping
Control for Automated Vehicles. in AVEC, Beijing, China, Jul. 16-20,
2018, pp. 1-9.

[27] M. Nieto, L. Salgado, F. Jaureguizar, and J. Cabrera, “Stabilization of
Inverse Perspective Mapping Images based on Robust Vanishing Point
Estimation,” 2007 IEEE Intelligent Vehicles Symposium, pp. 315-320,
Jun. 2007.

[28] P. Meletis and G. Dubbelman, “Training of Convolutional Networks on
Multiple Heterogeneous Datasets for Street Scene Semantic
Segmentation,” 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
1045-1050, Jun. 2018.

[29] H. Yu, Z. Yang, L. Tan, Y. Wang, W. Sun, M. Sun, and Y. Tang,
“Methods and datasets on semantic segmentation: A review,”
Neurocomputing, vol. 304, pp. 82–103, Aug. 2018.

[30] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering Surface Layout from
an Image,” International Journal of Computer Vision, vol. 75, no. 1, pp.
151–172, Oct. 2007.

[31] H. Kong, J. Y. Audibert, and J. Ponce, "Vanishing point detection for
road detection." In CVPR, Miami, FL, USA, Jun. 20-25, 2009, pp. 96-
103.

[32] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp.
1330–1334, Dec. 2000.

[33] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-
free optimization. Philadelphia: Society for Industrial and Applied
Mathematics, 2009.

[34] S. Wessing, “Proper initialization is crucial for the Nelder–Mead simplex
search,” Optimization Letters, vol. 13, no. 4, pp. 847–856, Jun. 2018.

[35] T. Kühnl, K. Franz, and F. Jannik, "Spatial ray features for real-time ego-
lane extraction." in ITSC, Anchorage, USA, Sep. 16-19, 2012, pp. 288-
293.

[36] Z. Chen, and Z. Chen, "Rbnet: A deep neural network for unified road
and road boundary detection." in ICONIP, Siem Reap, Cambodi, Dec.
13-16, 2018, pp.677-687.

