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Abstract—AI-based lane detection algorithms were actively 

studied over the last few years. Many have demonstrated superior 
performance compared with traditional feature-based methods. 
The accuracy, however, is still generally in the low 80% or high 
90%, or even lower when challenging images are used.  In this 
paper, we propose a real-time lane detection system, called Scene 
Understanding Physics-Enhanced Real-time (SUPER) algorithm. 
The proposed method consists of two main modules: 1) a 
hierarchical semantic segmentation network as the scene feature 
extractor and 2) a physics enhanced multi-lane parameter 
optimization module for lane inference. We train the proposed 
system using heterogeneous data from Cityscapes, Vistas and 
Apollo, and evaluate the performance on four completely separate 
datasets (that were never seen before), including Tusimple, 
Caltech, URBAN KITTI-ROAD, and X-3000. The proposed 
approach performs the same or better than lane detection models 
already trained on the same dataset, and performs well even on 
datasets it was never trained on. Real-world vehicle tests were also 
conducted. Preliminary test results show promising real-time lane-
detection performance compared with the Mobileye. 

Index Terms—Lane detection, semantic segmentation, scene 
understanding, optimization, camera based perception 
 

I. INTRODUCTION 
ccurate and reliable lane detection is a critical feature for 
Lane Keeping (LK), Lane Change Automation (LCA) and 

Lane Departure Warning (LDW) functions. Lane detection 
research can be traced back to the 1980’s [1]. After the turn of 
the century, LDW and LK have been commercialized, some 
vehicles even have LCA. The self-driving challenge launched 
by DARPA (2004-2012) [2] and early ADAS products, e.g., the 
Mobileye [3], further advanced the development of lane 
detection systems. However, due to the diverse appearances due 
to adverse lighting/weather conditions and presence of other 
objects, lane detection is still a challenging problem. Precision 
and recall rate of lane markings are in the low 80% or high 90% 
in most papers in recent literature, still not good enough for safe 
and reliable driving in the real world.   

Lane detection can be achieved by using monocular cameras, 
stereo cameras, lidars, etc.[4].  Cameras are most popular due 
to their rich content features and affordable cost. This paper 
mainly focuses on monocular cameras, but the concept could 

 
 

work with other sensors—albeit with significant additional 
work.  

A. Motivation and Literature Review 
 Many feature-based methods use the generic framework 
summarized in [4]. They decompose road/lane detection 
methods into several modules: image pre-processing, feature 
extraction, model fitting, image to world correspondence and 
time integration. Not all lane detection methods contain all 
these modules, but in general most papers contribute to one or 
more of these elements [5-8]. Deep Learning (DL) presents a 
newer data-driven approach and achieves better performance 
than most feature-based methods right out of the gate [9-15]. 
Although DL systems achieved superior performance in many 
applications, they are often used as a “blackbox” and their 
performance has no guarantee and behavior hard to explain [16]. 
This limits their application for safety-critical tasks, e.g., lane 
detection for autonomous driving. 
1) From lane detection to scene understanding  

Different from conventional objects, e.g., detecting dogs/cats 
and human faces, lane markings are frequently nicely structured.  
In most situations, lane lines appear as parallel polynomials 
evenly spaced on a relatively flat ground.  This is largely true, 
except at lane merge/split, intersections, roundabouts, or on 
steep slopes. So if we can solve this “parallel polynomials” 
problem, we would have addressed the majority (> 90%) of the 
lane detection problem, which is the focus of this paper.   

We are also inspired by the idea that we can deduce lanes 
from street scenes through low-level static or dynamic visual 
cues (e.g., lane markings, road curbs, and vehicles) and high-
level functional cues (e.g., scene layout). Feature-based 
methods, such as ELAS [17], usually detect all possible scene 
cues in advance before lane detection/tracking task is executed. 
For Convolutional Neural Network (CNN)-based methods, 
such kind of scene information is hidden/implicit in the network 
architecture. If we can first understand the scene layout, 
separate the whole image into geometric areas and then focus 
on lane marking areas, the classification accuracy is expected 
improve.  

Another important decision is what lane labels should the 
CNN generate. Many existing CNN-based methods generate 
pixel-wise lane marking flags, lane area masks or parameterized 
lane lines. Usually, manual inference for the occluded or 
missing parts are needed when labeling, thus uncertainty may 
be introduced in this process, see Fig. 1 (a-b). In addition, even 
more elaborate customized labels are required in some cases, 
e.g., VPGNet [15] outputs vanishing points in addition to lane 
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attributes; LineNet [18] outputs six lane-related labels (mask, 
position, direction, confidence, distance, and type).  

Instead of predicting the aforementioned task-oriented lane 
labels using CNNs, this paper attempts to solve the lane 
detection problem starting from scene understanding. Three 
benefits are highlighted here: 1) Adaptability in complex 
scenarios: compared with detecting lane objects directly, the 
holistic street scenes follow more stable layouts and are more 
robust to adverse factors such as lighting, occlusion and 
weather conditions. 2) Reliability and reusability for 
perception: we propose a hierarchical segmentation structure 
imitating human perception ability for reliable scene cues 
prediction, which can be reused in other perception tasks, e.g., 
drivable area detection in off-road driving. 3) Compatibility 
with heterogeneous datasets: the proposed structure works 
with different annotation categories, class definitions and 
labeling policies, see Fig. 1 (c). The above features made it 
possible to train on multiple datasets, e.g., Cityscape [19], 
Vistas [20], BDD [21], Camvid [22], KITTI [23], Apollo [24] 
and GTA5 [25]. These large-scale driving datasets could all be 
used to obtain better performance. 

 

  
(a) (b) 

 
(c) 

Fig 1. Comparison of labels among commonly used lane datasets and our 
training datasets. (a) (b) Examples with occluded/missing lane marks and lane 
labels; (c) Examples of our heterogeneous training datasets without labeling 
uncertainty, where the lane parameters are optimized based on scene labels 
without supervision.  
 

2) Lane parameter estimation 
For most CNN-based lane detection methods, the outputs are 

pixel-level lane instance masks in the image view [9, 13, 15]. 
However, the desired output for autonomous driving is control 
related parameters, i.e., vehicle lateral offset, heading angle and 
curvature [26]. To fill this gap, some post-processing 
procedures are required, e.g., inverse perspective mapping 
(IPM), and lane model fitting. Since the vehicle is moving and 
the road is not always flat, camera intrinsic and extrinsic 
parameters alone are not enough for calculating the 
transformation matrix between the camera and world 
coordinates. Better lane model or additional procedures, e.g., 
vanishing point estimation, are required [27]. It means more 
efforts are still needed after obtaining lane detection results in 
the image view. LaneNet-HNet [10] uses an extra CNN to 
estimate the transformation matrix from the image view to the 

birds’ eye view (BEV) and conducts lane regression in BEV. 
LaneNet-LSTM [11] requires lane coordinates in BEV as input 
and identifies each lane line via LSTM. These estimation 
methods treat lane inference process as a highly nonlinear 
model to learn parameters in a supervised way.  

Differently, we follow the assumption that lane markings are 
largely parallel polynomials, and if we separate the lane 
parameters into shared parts (heading angle and curvature) and 
unique parts (offsets and lane marking attributes), they can be 
estimated together efficiently. To cope with non-flat ground, a 
polynomial road model is adopted. Then the lane parameter 
estimation problem is simplified as an optimization problem 
based on the pixel-wise scene labels. The reasons are: 1) to 
avoid step-by-step rule-based parameter estimation, which 
increases problem complexity and causes error accumulation. 
Instead, we simultaneously estimate the slope angle and multi-
lane parameters simultaneously; 2) to leverage known 
attributes of lane lines. We design an explicit cost function 
considering prior physics model/knowledge and optimize the 
lane parameters without supervision. We call this process 
“physics enhanced multi-lane inference”. 

The diagram of the proposed lane detection system is 
displayed in Fig. 2, including a hierarchical semantic 
segmentation module and a physics enhanced multi-lane 
inference module. The core idea is that CNNs are used for scene 
understanding as well as road/lane extraction, while a physical 
road/lane models are adopted for the lane inference. The 
explainability is improved, and the subsequent lane inference 
module uses a model and thus can be more accurate and reliable. 

B. Contribution 
The main contributions of this paper include:  
1) a novel lane detection system, named as Scene 

Understanding Physics-Enhanced Real-time (SUPER). Its main 
difference from existing methods is that we solve the problem 
starting from scene understanding, and then estimate lane 
parameters through optimization with a physics-enhanced cost 
function, see Fig. 1.  

2) an improved hierarchical semantic segmentation 
structure to capture lane related information focusing on the 
region of interest, i.e., where lane markings are likely to exist, 
and also enable training on multiple datasets. 

3) an optimization-based lane inference method to directly 
estimate multi-lane parameters (i.e., lateral offsets, heading 
angle, and curvature) in real-time. Especially, a cost function 
considering road/lane models is used to formulate the parameter 
estimation problem. 

The remaining contents are organized as follows: section II 
presents the proposed hierarchical semantic segmentation 
network, along with multi-level classifiers design and some 
training strategies; section III focuses on the details of lane 
parameter estimation, covering loss function design, slope 
compensation and optimization strategy; The experiments on 
open/private lane datasets, and real-world vehicle tests are 
conducted in section IV. Section V concludes this paper. 

CULane Tusimple
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Fig. 2. Framework of the proposed method 

II. HIERARCHICAL SCENE UNDERSTANDING 
To understand the holistic scene for reliable lane detection, 

semantic segmentation is selected as the base network for the 
street scenes understanding. To capture the special semantic 
relationship between lanes/roads and other objects with 
multiple heterogeneous datasets, we modify the original 
hierarchical classification convolutional network [28] and 
utilize an improved semantic hierarchy by various lane 
attributes with a more practical architecture for lane detection. 
More details are explained in Sec. A and B. The training 
strategies are described in Sec. C. 

A. Hierarchical semantic segmentation  
Semantic segmentation refers to the process of assigning a 

semantic label to each pixel of an image [29]. For learning 
based semantic segmentation, annotated training data is an 
essential part that affects model performance. In our 
hierarchical semantic segmentation model, both scene labels 
and detailed lane marking labels are required, while no current 
open dataset provides annotations covering all the required 
labels. To address this challenge, we propose the following 
concept to use multiple datasets to train our model.  

Table 1. Training datasets used 

 Cityscape[19] Vistas[20] Apollo[24] 

Image size 1024x2048 varies 2710x3384 
Training size 2975 18000 7392 

Label common scene lane marking 
Classes 34 66 35 

 
Three datasets are selected as the final training datasets, as 

shown in Table 1. Cityscape does provide semantic 
segmentation labels but not lane information. Vistas provides 
scene labels as well as some general categories of lane markings, 
such as ‘bike lane’, ‘lane marking-general’, etc. Apollo 
provides very detailed pixel-wise lane makings and lane 
attributes, including 6 dividing markings, 4 guiding markings, 
2 stopping lines, 12 turning markings and so on. These three 
datasets together provided about 30,000 images with labels for 
our scene understanding based lane detection training and 
validation.  

After gathering training datasets and labels, the next 
challenge is how to design the training process utilizing 
different datasets with varying labeling styles. Panagiotis et al. 
proposed a convolutional network with hierarchical classifiers 

for per-pixel semantic segmentation [28], which enables 
training on multiple heterogeneous datasets. Although many 
objects exist in the holistic scene, some of them are not related 
to lane detection and can be ignored, while others are highly 
related to lane features. Hence, we cannot use the structure of 
the algorithm proposed in [28] directly. To tackle the above 
issue, we optimize the hierarchy with a more practical 
architecture inspired by human perception ability. The 
relationships between different hierarchical levels are redefined, 
so that the proposed structure focuses on both general scene 
cues and lane classification. Our semantic hierarchical structure 
is explained below. 

B. Multi-level classifier design  
Among available open datasets, the definition of object 

classes and labels are different, which needs to be clarified 
before they can be used.  The main conflicts in the class 
definition are ‘road’ and ‘lane marking’. For example, in 
Cityscape, ‘road’ refers to drivable ground, including lanes, 
direction arrows, streets, bicycle lanes, etc. In Vistas, lane 
markings are isolated from ‘road’. To tackle ‘road’ conflict, a 
‘drivable’ class is proposed which partially alleviate the issue, 
but other conflicts (e.g., types of vehicles) still exist. Besides, 
the designed network in [28] aims to predict many classes of 
objects, e.g., animals and birds, which will increase model 
complexity and training cost.  

 

 
Fig. 3. The proposed hierarchical semantic structure. Support area includes 
sidewalk, ground, terrain, curb, and drivable areas; vertical area includes 
person, car, building, wall, bridge, tunnel, fence, vegetables and road utility; 
drivable area includes road, parking, crosswalk, lane marking, bike lane, 
service lane, catch basin, manhole and pothole; lane marking area includes 
dividing/guiding/turning markings, and stop lines. 

To cope with labeling differences/conflicts and removing 
irrelevant labels, a new hierarchical structure is proposed. The 
idea is inspired by [30], which tries to label an image of a street 
scene into coarse geometric classes that are useful for tasks such 
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as navigation, object recognition, and general scene 
understanding. Following the backbone network in Fig. 2, four-
level classifiers are designed in our paper: in the first level, an 
image is divided into sky, vertical and support areas; in the 
second level, vertical/support areas are further divided into 
subclasses for scene description; in the third level, drivable 
areas are further classified; in the last level, detailed lane 
marking types are incorporated. Fig. 3 illustrates and explains 
the detailed multi-level structure.  

C. Training strategy 
Since only pixel-level classification is involved in this section, 
the loss function is relatively simple compared with [28]. 
Softmax cross-entropy loss is adopted for each classifier and 
the total loss is the weighted sum of different classifiers. In the 
inference procedure, each child classifier is governed by its 
parent according to its own decisions. Through this way, we 
obtain more reliable scene labels. 
 In the Apollo dataset, lane marking labels are more accurate 
than the ground and object labels, thus only lane segmentation 
label is used in the training stage. However, some ground area 
near the lane markings is easily misrecognized as lane markings. 
To handle this issue, we expand the lane marking to its vicinity, 
and label the whole expanded area as ‘road’. Road areas 
occluded by objects such as vehicle are removed from the label. 
Fig. 4 exhibits an example of Apollo label before (left) and after 
(right) our expansion processing. Both lane markings and 
generated ‘road’ labels are used for training. 
 

 
Fig. 4. Preprocessing of the Apollo lane dataset 

III. PHYSICS ENHANCED MULTI-LANE INFERENCE 
With the semantic labels in Fig. 3, this section estimates lane 

parameters in the vehicle coordinate system. We assume the 
lane lines are largely parallel polynomials, and the lane 
parameters can be divided into two parts, shared/global 
parameters (i.e., heading angle and curvature) and unique/local 
parameters (i.e., offsets and lane marking attributes). In this 
section, the optimization of multi-lane parameters is described 
first. Then slope compensation (for up/down road grade) is 
proposed for better accuracy.  

A. Lane parameter optimization  
This section describes the lane parameter estimation as an 

optimization problem. The cost function is designed to reflect 
the physical properties of lane lines. The coordinates for the 
image view and BEV are illustrated in Fig. 5, along with 
definition of related symbols in the following. 

The flat ground case is first considered here. Given intrinsic 
and extrinsic camera parameters, any road/lane points could be 
transformed from (𝑢#, 𝑣#) in the image view to (𝑥#, 𝑦#) in the 
BEV. Usually, a lane line can be represented by a polynomial 
function: 𝑓(𝑎+,, 𝒂; 𝑦) = 𝑎+, + 𝑎1𝑦 +	𝑎3𝑦3 + ⋯+ 𝑎5𝑦5  , 
where 𝒂 = {𝑎1, 𝑎3,… , 𝑎5} contains the shared parameters; 𝑎+, 

are the unique parameters – the offset of the nth lane line; 𝑚 is 
the polynomial order and chosen to be 2 in this paper. Two 
kinds of labels are involved: road labels (𝑥:# , 𝑦:#) and lane labels 
(𝑥;# , 𝑦;#).  

 
Fig. 5. Coordinates for the image view and BEV. Red rectangle stands for the 
vehicle, 𝑜 is the center of the camera, h is the mounted height of camera above 
the ground. 

 

 
Fig. 6. Cost function for road fitting (left) and lane fitting (right) 

 
The goal of the optimization problem is to estimate both 𝒂 

and {𝑎+,}, where 𝑛 = 1, 2,… ,𝑁. 𝑁 is the total number of lane 
lines in a given image. To estimate the shared parameter 𝒂, two 
separate cost functions considering the physics knowledge of 
road/lane are proposed and explained, see Fig. 6 for details. 

Road fitting: assuming that (1) all lanes are in the road area; 
(2) the road area is represented by its central line; and (3) the 
lane lines share the same 𝒂 as the central line of the road. We 
understand that assumption (3) is true for the majority of the 
cases, but exceptions exist (lane merge/split, intersection, etc.) 
Here we first aim to have a tool that helps us to solve 90% of 
the lane detection problem. To match the central line with the 
pixels of the road area, Eq. (1) is designed to indicate the 
distance between each point in the road area and the related 
central line. Minimizing 𝒥1 helps to find the best parameters, 
𝑎+B  and 𝒂.  

𝒥1 = −D𝑒𝑥𝑝 G−H
I𝑥:# − 𝑓(𝑎+B, 𝒂; 𝑦:#)I

𝜎K
L
3

M
#

 (1) 

where 𝑎+B  is the offset of the central line; 𝑥:#  and 𝑦:#  are the 
coordinates of each point in the road area; 𝜎K is the standard 
deviation to penalize points far away from the central line, 
which can be set according to the road width. In this paper, 𝜎K	= 
3. This road-related cost function evaluates parameters 𝒂 
independent of {𝑎+,}, 𝑛 ∈ [0, 𝑁]. 

Lane fitting: assuming that all parallel lane lines in the road 
areas share the same global geometric parameter 𝒂. For a given 
point R𝑥;

#,,, 𝑦;
#,,S  on the nth lane lines, ∆𝑑;

#,, = 𝑥;
#,, −

!

"

#

ℎ

!

"

%

&
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𝑓R0, 𝒂; 𝑦;
#,,S represents a value close to the offset of that lane. 

Eq. (2) then measures the distribution of the distance 

𝒥3 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦Rℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S]S + 𝜅
𝑁;
𝑛;

 (2) 

where 𝑥;# and 𝑦;# are the ith coordinates of each sampled point in 
the lane marking areas;	𝑁; is the total number of sampled points 
in the lane marking category; 𝑛; is the number of lane marking 
points whose offsets fall into a pre-defined range, 𝜅  is a 
constant and set to be 2 in this paper;  𝜅𝑁; 𝑛;⁄  is a penalty term 
for abnormal 𝒂 , ℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S]  stands for the 
distribution of offset ∆𝑑;

#,, . Recall the parallelism assumption, 
∆𝑑;

#,,	on the same nth lane line should be the same or similar to 
𝑎+,, thus a peak should occur around the correct 𝑎+, value in the 
histogram. Considering all candidate points in the entire scene, 
several discrete peaks, standing for different offsets of all lane 
lines, are supposed to appear in the histogram. Ideally, the 
number of peaks is equal to lane number N. If we use map 
information, the correct value of N can be known and used for 
more accurate detection. 

Note that a disordered histogram indicates an inaccurate 𝒂. 
To measure the level of error or the quality of 𝒂, we introduce 
an index called 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 , which calculates the entropy of 
\∆𝑑;

#,,]  through its corresponding histogram. A better 𝒂 
corresponds to a histogram that is closer to the ideal distribution 
with a lower entropy, while a higher entropy indicates 
inaccurate 𝒂. 

Eq. (1) and Eq. (2) utilizes the physics features of the road 
and lane to help with lane detection. With enough lane marking 
points, 𝒥3 of lane fitting contributes more than 𝒥1, whereas 𝒥1 
of road fitting enables acceptable performance even without 
many lane points. To achieve a comprehensive evaluation of 
lane parameters, we combine them together to form the final 
loss function 𝒥: 

arg	min
	fgh,𝒂		

𝒥 = 𝜆	𝒥1 + 𝒥3 (3) 

where λ is a weight and set to be 0.001 in this paper. Here the 
global parameter 𝒂 is what we care about. The calculation of 𝒂 
turns into finding the best 𝒂 and 	𝑎+B which minimizes 𝒥.  

Once the optimal 𝒂 is obtained, the optimal distribution of 
\∆𝑑;

#,,] is achieved as well as {𝑎+,}, being the peaks of the best 
histogram 

𝒂𝟎 = 𝑝𝑒𝑎𝑘𝑠Rℎ𝑖𝑠𝑡\𝑥;# − 𝑓R0, 𝒂; 𝑦;#S]S (4) 

where 𝒂𝟎 = {𝑎++, 𝑎+1,… , 𝑎+m}. The peak points were found using 
the findpeaks 1  function, which finds local maxima through 
setting minimum peak separation (equals the minimum road 
width in real world), and minimum peak prominence (equals 
the minimum number of points in each lane line). The first 
parameter is used to incorporate road width prior information 
and the second parameter is used to exclude interference of 
lanes in other directions. To better understand this process, a 

 
1 https://www.mathworks.com/help/signal/ref/findpeaks.html 

typical image along with the detailed lane offset estimation is 
shown in Fig. 7.  

     

 
(a) (b) (c) 

 
(d) (e) 

Fig. 7. Example lane offset estimation process. (a) original images; (b) 
semantic segmentation results; (c) lane detection results; (d) lane/road points 
after removing the global geometry via 𝑥 ! − 𝑓(0, 𝒂; 𝑦!), where the red/cyan 
points are for lane/road points, respectively; (e) lane offset estimation 
through peaks finding, where the blue line depicts the histogram 
corresponding to the x-axis value of the lane points in (d), the triangles 
indicate the peaks of the blue line after considering the minimum peak 
interval, red lines display the peak prominence, and the peaks in green 
ellipses are discarded after considering the minimum peak prominence. 

B. Slope compensation 
In the real world, terrain undulations deteriorate the lane 

conversion from the image view to the BEV if only the default 
intrinsic and extrinsic camera parameters are used. On sloped 
roads, lane lines that are parallel in the real world become non-
parallel in the BEV. To tackle this challenge, methods 
estimating vanishing point have been proposed [15, 27, 31]. 
The results are then used to update extrinsic camera parameters 
online. Differently, in this paper we propose a method to 
compensate for road slope in the optimization process directly. 

Based on Inverse Perspective Mapping (IPM), a point (u, v) 
from the image view can be transformed to (x, y) in the BEV 
[32] by 

1
𝑧!
o
𝑥
𝑦
𝑧
o = 𝑇 o

𝑢
𝑣
1
o (5) 

where 𝑇 is the transformation matrix determined by extrinsic 
and intrinsic camera parameters, and 𝑧B  is the distance along the 
z axis in the camera coordinate. 

Since 𝑧B  is unknown, the exact (𝑥, 𝑦, 𝑧) cannot be calculated 
from Eq. (5). Assuming the vehicle runs on a flat road, an 
estimated coordinate can be obtained, denoted as (𝑥q, 𝑦q), and its 
relationship with (𝑥, 𝑦, 𝑧) follows 

𝑥q = −ℎ 𝑥 𝑧⁄  
𝑦q = −ℎ 𝑦 𝑧⁄  (6) 

where ℎ is the vertical height from the camera center to the flat 
ground. 

If the road is not flat, we must estimate the 𝑧 profile. Here we 
adopt a polynomial road model, assuming 𝑧 is a polynomial 
function related to 𝑦: 𝑧 = 𝑓r(𝑦). Then Eq. (6) becomes 

𝑥q = −ℎ𝑥 𝑓r(𝑦)	⁄  (7) 
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𝑦q = −ℎ𝑦 𝑓r(𝑦)	⁄  

If 𝑓r is known, Eq. (7) can then be rewritten as 

𝑦q + ℎ ∙ 𝑦 𝑓r(𝑦) = 0⁄  (8) 

Thus 𝑦  can be estimated from Eq. (8), denoted as 𝑟𝑜𝑜𝑡(𝑦q). 
Then, feed 𝑟𝑜𝑜𝑡(𝑦q) into Eq. (7) to obtain 𝑥 

𝑥 = −𝑥q ∙ 𝑓rR𝑟𝑜𝑜𝑡(𝑦q)S ℎ⁄  (9) 

Specially, assume 𝑓r  is a linear function 𝑓r = 𝑏𝑦 − ℎ. This 
simplified road model is suitable for most situations, except for 
frequently changing slopes. Then the correct 𝑥 and 𝑦 can be 
represented as 

𝑥 = −𝑥q ∙ 𝑓r u
𝑦q

𝑦q𝑏 ℎ + 1⁄ v ℎw  

𝑦 =
𝑦q

𝑦q𝑏 ℎ + 1⁄  
(10) 

Note that 𝑏 is the only unknown parameter in Eq. (10).  We 
treat it as an additional variable in the optimization problem, 
and optimize it together with the global lane parameters 𝒂, and 
therefore the effect of the slope is estimated and mitigated.  

C. Optimization strategy 
Since the derivative of the proposed loss function is not 

available, we use a Derivative-Free Optimization (DFO) 
algorithms [33], and more specifically, the Nelder-Mead 
simplex algorithm [34].  

Usually, a proper initial guess helps to avoid trapped at the 
local minima and speed up the searching process. Sequential 
information may provide a good initial parameter, which means 
the optimal solution obtained from the previous images can be 
used as the initial value for the next image; curvature 
information of the road ahead the vehicle from map or 
navigation software is also beneficial. If none of them are 
available, other techniques can also be applied. Even when no 
prior information is available, a proper range can be selected for 
each parameter. Then follow Eq. (3) to calculate the loss curve 
of each parameter while setting other variables as 0.  

IV. EXPERIMENTAL VALIDATION 
To evaluate the performance of the proposed lane detection 

algorithm, experiments on various datasets are performed. As 
mentioned before, our training datasets include Cityscape, 
Vistas and Apollo. While, the evaluation datasets include 
Tusimple, Caltech and X-3000.  

Our algorithm was implemented using two platforms:  Titian 
Xp for model inference, and Intel (R) Xeon (R) W-2155 CPU 
@ 3.30GHZ for lane parameter optimization. In the first 
module, the hierarchical model achieves an inference rate of 18 
FPS. For the lane parameter optimization module, the average 
computation time is around 37 milliseconds. In other words, 
using today’s computation platforms, we can achieve a 
combined computation rate of 11 Hz, capable of real-time 
vehicle implementation. 

A. Tusimple benchmark 
Tusimple is a widely used open-source lane detection dataset, 

which consists of 3,626 training and 2,782 testing images. It 
mainly covers highway driving in good or fair weather 
conditions. Moreover, Tusimple provides video clips (20 
frames per clip), but only the last frame of each clip is 
annotated.  

The quantitative evaluation results are listed in Table 2, 
calculated by the official Tusimple benchmark evaluation 
script, compared with two selected benchmarks: SCNN [9] and 
LaneNet [10]. It is observed that joint estimation of slope and 
lane parameters achieves better detection accuracy (about 3% 
higher) than without, which confirms the necessity of slope 
compensation. Even though the accuracy is slightly worse than 
SCNN, the winner of the Tusimple 2017 competition, and the 
LaneNet, it is important to note that both SCNN and LaneNet 
were trained on the Tusimple data, whereas, the proposed 
method was not. In addition, the proposed method outputs lane 
parameters in the real world, and the results are then inversely 
mapped to the image view for the comparison; but SCNN and 
LaneNet focus on lanes in the image view without disturbance 
of road slope or mismatch of camera parameters. Besides, the 
accuracy is slightly improved from 95.90% to 96.01% after 
considering sequential information. This seems to imply that 
the driving data in Tusimple was very “normal” and typical 
default initial guess was close enough to the true solution. In 
this paper, temporal integration is simply performed through 
setting the optimization output of the previous frame as the 
initial guess of the current frame. In practical applications, 
multi-frame fusion could be considered, and advanced spatial 
or temporal filtering might be applied as well. 

Table 2. Evaluation on the Tusimple test dataset, sc means using slope 
compensation for joint estimation, sq means incorporating sequential 
information for initial value setting 

 
SUPER 

SCNN LaneNet no sc sc 

no sq  93.56% 95.90% 
96.53% 96.4% 

sq 93.65% 96.01% 

B. Caltech benchmark 
The Caltech dataset contains 1,224 labeled images with 

4,172 marked lanes [7] from four video clips collected on 
different types of urban streets. For a fair comparison with other 
methods, we use the same evaluation metric – true positive rate 
(TPR) used in [8]. Table 3 shows the comparison results among 
several benchmark methods. Our method achieves the best 
performance in each sub-dataset. The average TPR is 98.6% 
which is over 10% improvement than the other two methods. 

Table 3. Evaluation on Caltech dataset using True Positive Rate (TPR) 

 1 2 3 4 Ave. 

M. Aly[7] 0.813 0.839 0.934 0.890 0.869 

ML-CRF[8] 0.892 0.865 0.850 0.898 0.876 

SUPERsc 0.991 0.980 0.982 0.992 0.986 
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C. KITTI benchmark 
The URABN KITTI-ROAD dataset [23] consists of 600 

frames collected on five different days with relatively low 
traffic density. This paper focuses on the ego-lane detection 
subtask, which contains 100 testing images and 98 training 
images. Table 4 compared the results of our method in BEV 
with other methods. Since the ego-lane benchmark is not 
available in the testing images, the proposed method is 
evaluated on the training dataset using the official evaluation 
code, and other methods in Table 4 are evaluated on the testing 
dataset.  

It is important to note that SPRAY [35], RBNet [36] and 
NVLaneNet2 are all trained on the KITTI dataset. Even though 
KITTI’s labeling style (ego-lane area) is quite different from 

that (lane line) used by Tusimple or Caltech, the proposed 
method without training on KITTI still achieves comparable 
performance. 

Table 4. Evaluation on KITTI ego-lane dataset 

 Fmax Prec. Rec. FPR 

BL[23] 74.4 72.6 76.2 4.8 

SPRAY[35] 83.4 84.8 82.1 2.6 

RBNet[36] 90.5 94.9 86.6 0.82 

NVLaneNet* 91.9 90.9 92.9 1.6 

SUPERsc 86.7 86.0 87.4 2.2 
* unpublished method

 

 
          (a) (b)     (c)         (d) (e) 

Fig. 8. Example results of the proposed method on the X-3000 dataset, (a) raw images, (b) semantic segmentation results, (c) offsets after slope compensation 
(red for lane points, cyan for road points), (d) histograms (green lines) of lane offsets and the detected peaks (red dashed lines), and (e) lane detection results, 
where blue/yellow stands for white/yellow lane line, line styles are also marked through solid/dashed lines. 

 
2 http://www.cvlibs.net/datasets/kitti/eval_road.php 
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D. X-3000 benchmark 
X-3000 is our own dataset collected in urban, suburban and 

highway scenarios with different weather and time in both 
Michigan and California. X-3000 has three subsets: easy, 
moderate and hard, consisting of 1000 images each. The images 
are classified into these three challenging levels subjectively 
based on image quality and road/weather/lighting conditions. 
The easy subset covers straight and curve roads in good and fair 
weather; the moderate subset contains eroded or occluded lane 
markings, heavy shadow, uphill or downhill terrains and 
crossroad; the hard subset focuses on bad weather, bad image 
quality, complex intersection or lane merge/split. Our labeling 
style and assessment metric are similar to Tusimple. We use 
two evaluation modes: one focuses on ego-lane, and the other 
one evaluates 3-lanes (ego-lane and its left/right adjacent lanes). 
SCNN and LaneNet are as-is: trained on the Tusimple dataset, 
then tested on the X-3000 dataset. Sone typical results of our 
methods are displayed in Fig. 8, covering sharp curve, heavy 
occlusion, roundabout, intersection, split/merge, 
uphill/downhill, etc. Intermediate results, including semantic 
segmentation, offsets after global parameters removal and slope 
compensation, histogram of lane offsets, are also shown here. 

 

Fig. 9. Evaluation results using the X-3000 dataset 

The accuracy of the two evaluation modes are summarized 
in Fig. 9. The average accuracy of our method is -8 percentage 
higher than the others. Obviously, the proposed method 
outperforms the other two methods on these three subsets. Here, 
we also quantitatively compute the accuracy of lane color 
(white/yellow, 93.66%) and style (solid/dashed, 92.58%) 
evaluated with all three subsets. Note that all three methods 
were never trained on the X-3000 dataset. Therefore, the 
comparison here seems to indicate better robustness of our 
proposed method. 

E. Vehicle Testing 
To further validate the performance of our algorithm on a test 

vehicle in real-time, we select an open road in Michigan and 
drive our testing vehicle, a Lincoln MKZ, in a morning after 
rain. Fig. 10 (a) shows the test vehicle, (b) shows the test vehicle 
trajectory in the XYZ profile (The origin is marked by red 
rectangles), and (c) displays some typical camera images. This 
road is selected because it contains sharp curves, lane 
split/merge, intersections and frequently up-and-down terrains. 
Since we cannot access the original video of Mobileye, another 
camera (PointGrey) is used and mounted slightly to the right 
(20 cm away) of Mobileye to capture videos. When the test 

vehicle is running, the output of Mobileye (lane parameters 
only), vehicle position from Real-Time Kinematic (RTK) 
positioning system, raw video of PointGrey and outputs of our 
algorithm are recorded.  

The vehicle trajectory captures from RTK does not exactly 
align with the lane center, which means the ground truths of 
offset (𝑎+,) and heading angle (𝑎1) are  not available. However, 
the curvature (𝑎3) information is available as it is not sensitive 
to instantaneous tracking errors. Therefore, here we focus more 
on 𝑎3 for comparison. Fig. 11 (a) shows a general comparison 
of curvature profiles from the RTK trajectory (ground truth), 
Mobileye, and our algorithm. Fig. 11 (b–d) displays the 
curvature profiles under selected sections. The curvature 
profiles of Mobileye and our method are similar and close to 
the ground truth. Note that our algorithm only uses sequential 
information for initial value setting, without any spatial or 
temporal filtering. It seems our method produce results 
comparable to that of Mobileye in this test.   

 
(a) test platform 

 
(b) the trajectory of the test 

 
(c) typical input images  

Fig. 10. Test vehicle platform and test route 
 

   
Fig. 11. Comparison of curvature profiles  
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V. CONCLUSIONS 
This paper proposed a novel lane detection algorithm with 

two unique ideas: 1) it predicts lane related labels from the 
holistic scene understanding; 2) it estimates multi-lane 
parameters and compensate for road slope simultaneously 
under an optimization framework. The advantages of both 
learning-based and physics-based techniques are leveraged.  

The proposed algorithm is trained on heterogeneous datasets 
(Cityscape, Vistas, and Apollo) and then tested on four other 
datasets (Tusimple, Caltech, KITTI and X-3000). The proposed 
method was found to achieve similar or better performance, and 
is more robust. Comparison with Mobileye on open roads also 
indicates the performance of the proposed method seems to be 
fast enough for real-time implementation. 

The lane inferring module presented in this paper follows the 
“parallel polynomials” hypothesis when optimizing lane 
parameters, which works well in most cases, but for accurate 
estimation of unparalleled lanes, such as lane merge and split 
conditions, additional operations/strategies, e.g., extra local 
correction or integration with map prior, are required, which is 
the focus of our current research. 
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