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Abstract—This paper proposes an improved Intelligent driving 
model (Sigmoid-IDM) to address the problems of excessive 
acceleration in traffic oscillation and following failure in free flow. 
The Sigmoid-IDM uses a Sigmoid function to enhance the start-
following characteristics, improve the output strategy of the 
spacing term, and stabilize the steady-state velocity in free flow. 
Moreover, the model’s asymmetry is improved by means of 
introducing cautious following distance, driving caution factor, 
and segmentation function. The anti-interference ability of the 
Sigmoid-IDM is demonstrated by local stability and string 
stability analyses. The model parameters are calibrated based on 
the Hefei dataset and High D data for the start-up scene, stop-go 
scene, and free-flow scene. Compared with IDM, the Sigmoid-IDM 
significantly reduces errors and improves performance. In start-
up and stop-go scenes, the RMSE for spacing is reduced by 46.71% 
and 30.48%, respectively. In free flow, the RMSE of velocity is 
reduced by 26.82%. Additionally, fuel consumption and comfort 
errors are reduced by 60.1% and 49.1%, respectively. 
Additionally, the simulated acceleration and deceleration of the 
Sigmoid-IDM are asymmetric in time and amplitude, better 
reflecting the following characteristics of human drivers. Circular 
road simulation and Simulink-Carsim Co-simulation of the 
Sigmoid-IDM are performed to verify the model’s ability to 
reproduce traffic flow oscillations and the traceability of the 
model’s planning trajectory. 

Index Terms— IDM, traffic oscillation, excessive acceleration, 
asymmetric driving, traffic flow stability  

I. INTRODUCTION 
raffic oscillation, also known as stop-and-go traffic, 
refers to the phenomenon where vehicles experience 
repeated cycles of deceleration and acceleration in 
congested traffic conditions [1]-[4]. The car-following 

(CF) model serves as the fundamental basis for traffic flow 
studies and describes the longitudinal motion of vehicles. The 
primary goal of CF models is to simulate dynamic human 
following behavior. To achieve this goal, a calibrated following 
model can accurately regulate the movement of the following 
vehicle based on the real-time state of the preceding vehicle 
while meeting the driver’s desired behavior. Additionally, the 
CF model must accurately represent realistic traffic flow states 
and reproduce observed traffic flow instabilities such as traffic 
oscillations. 

In decades, various traditional CF models, such as Newell 
[5], OVM [6], GFM [7], and FVDM [8], that describe CF 
behavior have been extensively researched and reviewed by [9]，
[10]. However, they have limitations in setting parameters that 
lead to behavioral operations of acceleration and deceleration 
during driving that are inconsistent with driver expectations. 
 

 

The time-continuous intelligent driving model (IDM) [11] 
ensures collision-free and self-organized driving. It generates 
realistic acceleration profiles and driver behavior in most 
single-lane traffic situations. Other modeling approaches lack 
IDM’s well-defined property for each parameter through three 
common scenarios [12], i.e., free road acceleration from 
standstill, leading vehicle following, and slower or stopped 
vehicle approaching. For example, changing only v0 and 
keeping other parameters constant simulates highway to city 
traffic transition, assuming active or defensive driving on both 
roads. Additionally, IDM’s maximum acceleration and 
comfortable deceleration parameters avoid unrealistically high 
acceleration/deceleration absent in most earlier models [9]. 
However, IDM does not perform as perfectly in many special 
driving scenarios and often appears to contradict human driver 
behavior. Some studies modify the model from two 
perspectives: parameters and representation. This enables IDM 
to produce trajectories more consistent with driver expectations 
and explain traffic oscillation phenomena. 

Several studies have focused on optimizing the IDM 
parameters for specific traffic flow conditions. The calibration 
of IDM parameters to suit different driving styles is crucial, as 
different drivers exhibit varied driving behaviors. [13] provides 
a comprehensive method for calibrating the IDM, which has 
been used in various datasets such as NGSIM [14], Shanghai 
[15], pNEUMA [16], and HighD [17],Waymo [18] .The IDM 
has shown accurate performance in both calibration and 
validation phases, as evidenced by low errors, which further 
validates its suitability for simulating traffic flow. [19] have 
simplified the IDM by performing parameter sensitivity 
analysis, which not only enhances the model's convergence 
velocity but also reduces the calibration's dimensionality. 
Similarly, [20]-[23] have conducted extensive research in this 
regard.[24] from the calibration trajectory indicated that IDM 
calibrates well in trajectory groups without stationary start 
situations, but calibration errors increase in trajectory groups 
with stationary start situations. 

Additionally, studies have examined time-varying 
parameters to enhance the IDM's accuracy. The reason behind 
this is that such time-varying parameters can express the intra-
driver heterogeneity. In recent years, various studies have 
attempted to optimize the IDM time-varying parameters to 
better simulate human driving behavior. IDMM (IDM with 
memory) [25] introduced an additional time-varying parameter 
to improve the calculation of the required time headway by 
considering the driver's memory effect in response to traffic 
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conditions. [26] investigated the adaptive time headway as a 
function of local velocity variance in the IDM and proposed 
variance-driven time headways (VDT) to address the issue of T 
variations in long-time traffic congestion. Jiang [27] proposed 
2D-IDM using the time-varying parameter T, taking into 
account the initial spacing of vehicles, which can change 
intentionally or unintentionally during the driving process. 
Furthermore,[28],[29] have designed and calibrated IDMs with 
time-varying parameters to better describe the different driving 
styles of drivers. 

Calibrating IDM parameters using human driver trajectory 
data is a common approach to simulate human-like car-
following behavior. While Punzo et al.[13] have made 
significant contributions to optimizing IDM parameters by 
improving parameter sensitivity, calibration algorithms, and 
objective functions, the simulated trajectories still differ from 
real trajectories. Intra-driver heterogeneity has an undeniable 
impact, and random parameterization is an effective method for 
reproducing traffic flow and heterogeneity. However, 
accurately identifying which parameter or parameters and how 
to identify the range of parameters in the random IDM can 
accurately represent traffic oscillations and intra-driver 
heterogeneity remains a challenge. Moreover, the use of 
machine learning for real-time calibration may also lead to the 
generation of a large amount of computation[29]. 

Other studies have modified the IDM expressions to fit 
specific scenarios, resulting in more accurate trajectory 
descriptions. Although several studies have attempted to 
optimize IDM expressions, limitations have been found in 
certain scenarios.[30] proposed, when entering a zone with a 
reduced velocity limit, the actual velocity may exceed the 
desired velocity, resulting in unrealistic deceleration. Similarly, 
during a vehicle lane change, the actual spacing may become 
much smaller than the desired spacing, causing the IDM to 
overreact in regaining the required spacing. Additionally, the 
influence of spacing may cause IDM to disperse to negative 
infinity at a given time [31]. On a macroscopic level, the 
fundamental diagram drawn by IDM does not exhibit a perfect 
triangular shape, as the IDM travels at a steady-state velocity in 
free flow, which is much lower than the desired velocity, 
resulting in an arc-shaped curve in free flow. [32]-[36] have 
shown that the density in free flow is related to the flow as a 
one-dimensional straight line of Q=v0ρ. Some researchers 
suggest that setting the IDM acceleration exponent to tend 
towards positive infinity is the closest representation of the 
realistic fundamental diagram, but this parameter setting is not 
widely adopted. In the three-phase traffic theory proposed by 
Kerner [37], the steady-state of congested traffic is assumed to 
occupy a two-dimensional region in the flow density plane. 
Kerner states that there are three traffic phases: free flow, 
synchronous flow, and extensive moving congestion. In 
previous studies, IDM without the inclusion of stochastic 
parameters was unable to reproduce the inverse λ and 
synchronous congested traffic flow due to the limitation of the 
steady-state equilibrium equation. Although the IDMM and 
2D-IDM reproduce the synchronous flow phenomenon by 
introducing dynamic T, the IDM steady-state equilibrium 
equation restriction also changes the IDM free flow profile. 

Furthermore, several studies have pointed out some 
potential limitations of the IDM in accurately simulating human 

driver behavior in terms of acceleration and energy efficiency. 
For instance, [38] set the maximum acceleration parameter of 
the IDM to the theoretical maximum value observed in their 
experimental data, which required the driver to accelerate from 
a standstill to the maximum speed and then decelerate normally 
until the vehicle stopped again. However, this resulted in 
unrealistic and extreme acceleration and deceleration behaviors 
that deviated from human driving patterns. This casts doubt on 
the validity of the IDM in modeling acceleration behavior. 
Moreover, the IDM assumes that the maximum acceleration 
occurs at zero or low velocity, which does not reflect many real-
world driving scenarios where drivers tend to reach a certain 
speed before accelerating to the maximum. This is confirmed 
by real vehicle data in [39], which indicates that the IDM’s 
acceleration leads to a significant amount of energy waste in a 
stop-and-go environment that does not match human driving 
conditions. Additionally, many experimental studies of ACC 
models have shown that the IDM response is too slow and 
causes errors in the simulation of time headway compared to 
real data [10],[40]. 

Additionally, Wei [41] also found that driving behavior is 
asymmetric, meaning that vehicle acceleration and deceleration 
are not always equal in timing and magnitude. In reality, drivers 
often have a long delay and low acceleration when starting, but 
react fast and decelerate sharply to avoid potential collisions. 
The IDM is considered to take into account the driver's 
asymmetric behavior in its expressions[42]. However, in many 
simulation tests [43]-[45], IDM failed to simulate this 
asymmetric behavior (because no cruising process was 
observed) and was therefore unable to accurately simulate 
traffic oscillation caused by driver behavior. Furthermore, some 
drivers may prefer steady driving and not accelerate quickly, 
even with enough headway, to avoid future slowdowns and 
save fuel. But others may start faster, even with small headway, 
to drive more efficiently, though this may lower comfort and 
increase energy use. These driving style differences can cause 
stop-and-go phenomena, making it hard to model human driver 
behavior with the IDM. 

The phenomenon of traffic oscillation, which is 
commonly described by the string instability of the CF model, 
has been extensively studied in [46]-[48]. However, it is 
important for the CF model to have the ability to restore stable 
traffic flow instead of perpetuating or worsening oscillations. 
Local instability is a significant issue that needs to be avoided 
to ensure the reasonableness of CF models [46]. To this end,[49] 
has proposed alternative models to improve the string stability 
of traffic flow, such as the effective cooperative CF model and 
the extended IDM with cooperation. Additionally, the 
modification of the deceleration term of IDM has been explored 
to improve its string stability [50]. [51] provides a framework 
for string stability of heterogeneous traffic flows and applies the 
framework to IDM to analyze the heterogeneity of model 
parameters between vehicles. 

To solve the problems of unreasonable starting 
acceleration and unstable high-velocity in free flow caused by 
the IDM spacing strategy limitations, this paper proposes 
modifications from two perspectives: IDM parameters and IDM 
expression. In terms of IDM parameters, the addition of 
cautious following distance and cautious driving factor are 



 

proposed to better describe the cautiousness of different drivers 
at different driving phases. In terms of IDM expression, the 
Sigmoid function is introduced to adjust the spacing strategy, 
and the segmentation function is used to improve the 
asymmetry of IDM. The main contributions of this paper are as 
follows: 

(1) The Sigmoid-IDM improves the response strength 
characteristics of the starting acceleration during the following 
start process by introducing the Sigmoid function, solving the 
problem of starting reversing generated by IDM. By also 
introducing the cautious following distance and cautious 
driving factor, the driving characteristics of drivers with 
different driving styles at start-up are more reasonably 
expressed, and the traffic oscillation phenomenon is reproduced 
more accurately.  

(2) The Sigmoid-IDM more accurately simulates the 
asymmetric driving behavior of human drivers in terms of 
acceleration and deceleration in time and strength. This helps to 
more accurately represent real-world driving behaviors and 
traffic flow states. 

(3) The Sigmoid-IDM solves the problem of unreasonable 
deceleration caused by spacing strategy limitations of IDM at 
high velocity, enabling the ability to drive more closely to the 
desired velocity steadily in free flow. 

(4) Furthermore, we also propose a Sigmoid-IDM with time-
varying cautious following distance considering the different 
caution levels of drivers at different initiation acceleration 
stages. And the model can reflect the heterogeneity within 
drivers and better simulate the fundamental diagram of traffic 
flow (Reproduce synchronous flow). 

The remainder of this paper is organized as follows. 
Section II is definitions and limitations of IDM; Section III is 
model. Section IV is discussion on stability of Sigmoid-IDM 
and section V is numerical analysis. Finally, section VI 
concludes the paper and discussion. 

II. DEFINITIONS AND LIMITATIONS OF IDM 
The Intelligent Driver Model (IDM) is a collision-free 

model proposed by Treiber based on the social force model in 
2000. [15] indicates IDM simulates human CF behavior better 
compared to other models. The expression is as follows: 
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Where,  1na t is the free acceleration term;  2na t is the 
congestion deceleration term; a  is maximum acceleration; b  is 
desired deceleration; 0v is desired velocity;  S t is spacing;  nv t
is following vehicle velocity;  1nv t is preceding vehicle 
velocity; T is safe time headway; 0s  is jam distance;   is 

acceleration exponent, and typical value is 4; *S is desired 
spacing.  

When the traffic is in the state of free flow, the IDM uses 
the desired velocity as the stimulus to produce acceleration and 
deceleration, as shown in Eq. (3). When in congested flow, the 
IDM takes the desired spacing as the stimulus to produce 
acceleration and deceleration, as shown in Eq. (4). The velocity 
difference is taken as the stimulus for the change of desired 
spacing, so that the model can timely respond to the changes of 
the proceeding vehicle. 

We will discuss the limitations of the IDM spacing 
strategy (without considering time-varying parameters), using 
data sets commonly used in existing studies to calibrate values 
of IDM parameters. 

A. IDM over-acceleration and negative velocity 
When IDM is accelerated from parking, the change of 

initial spacing has an impact on the acceleration. When time t = 
0, the starting acceleration can be expressed as Eq. (5). 
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The usual range of calibrated values of a  and 0s is 
obtained from [29] as (0.5,4) and (0.1,3).Suppose the 
maximum acceleration 23 /a m s .and the jam distance 0 2s m . 
As shown in Fig.1, in scenarios where the preceding vehicle is 
stationary, the following driver is stimulated by the ratio of jam 
distance to the initial spacing, which may result in excessive 
starting acceleration exceeding 2.25 m/s2 (yellow area). 
Although the initial spacing between the two vehicles may be 
only 4m at this point. This high starting acceleration can cause 
vehicle jerking and severely impact passenger comfort. 
Moreover, the IDM tends to initiate with high starting 
acceleration followed by abrupt braking, which is unsafe, 
especially in cases of small spacing. This is unacceptable for 
many cautious drivers. 

Furthermore, when the initial spacing is less than the jam 
distance, the following vehicle’s starting acceleration can 
become negative, leading to instances of vehicle reversing (red 
area). Such negative velocity in most micro-simulation 
frameworks, particularly under high-density simulation, is 
impossible and unrealistic. However, addressing the limitations 
of the IDM expression in these scenarios through calibration is 
challenging. The calibration process typically aims to minimize 
the global error across the trajectory, making it difficult to 
identify and rectify the local starting process's errors. Therefore, 
the inaccurate starting process of IDM is one of the factors 
contributing to the difficulty of calibrating driving trajectories 
in many traffic oscillation environments with high accuracy.  



 

 
Fig 1. IDM starting spacing-acceleration curve from station (Two brief 

simulations about the limitations of IDM are in Appendix A) 

B Limitations of IDM High Velocity in the Free-Flow  
The High D dataset collected by Ika's team at the RWTH 

Aachen University [17] provides a more accurate dataset of 
highway vehicle trajectories. They tracked vehicles in aerial 
videos using U-Net. UAVs recorded traffic from above German 
freeways. The high D trajectories are mainly free-flow data, 
where the vehicle travels at a higher and more equilibrium 
velocity. [17] calibrates the IDM with a dataset where the 
average values of v0 and T are considered to be 30m/s and 1.5s.  

The 3-vehicle platoon high-speed experiment was a CF 
experiment conducted by Jiang [52] on a high-speed 3-vehicle 
platoon on a circular highway in Hefei City. The platoon was 
not impeded by other vehicles and no vehicles switched in 
during the experiment because the traffic was free during the 
experiment time period (9:55 to 10:40 a.m.) and the 
experimental section was lanes 3 and 4. The leading cars in the 
experiment were asked to travel at different constant velocities 
at different time intervals. 

 In equilibrium traffic, IDM tends to keep an equilibrium 
spacing  IDM

eS  and equilibrium velocity IDM
ev .The relationship 

between IDM
eS  and IDM

ev  is shown in Eq. (6). 
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Based on Eq. 6 we can plot the equilibrium state spacing- 
velocity diagram and the fundamental diagram in Fig 2. (a). 

 

(a)The IDM equilibrium spacing- velocity and the fundamental diagram 

 

(b) Non-converging simulation of IDM driving at high velocity 
Fig 2. IDM steady-state equilibrium analysis 

In high-speed free flow, due to the free flow acceleration 
term Eq. (3) converging to 0, the IDM not only does not 
accelerate but also decelerates at    * 2[ / ]na t a S S t   when the 
spacing increases. This deceleration effect is even more 
pronounced in homogeneous traffic flow, although it enhances 
the string stability of the IDM. However, it is not appropriate to 
stabilize   0na t   by keeping vehicles at high speeds only at 

 *S S t . As shown in Fig 2. (a), the IDM has much larger 
equilibrium spacing and time headway at high speeds. 
Therefore, in Fig 2. (b) a slight increase in the preceding 
vehicle’s velocity causes a surge in the equilibrium spacing of 
the IDM, and the IDM needs to expand the spacing for a long 
time to maintain stability, which is unrealistic. This also makes 
the IDM response slow and causes errors between the velocity 
simulation and the real data.  

  
(a)Lane 3 platoon (b)Lane 4 platoon 

Fig 3. Spacing-velocity of the 3-vehicle platoon high-speed experiment 

The total time for the 3-vehicle platoon high-speed 
experiment was 43 minutes. We collected the average values of 
trajectory velocity and spacing of the two following vehicles 
every five seconds and represented them with different shapes 
in Fig 3. when the vehicles are driving freely at high speed (red 
and blue areas), the spacing is unstable and varies more 
substantially. This indicates that within a certain range, the 
variation of the spacing does not have a significant effect on the 
vehicle velocity as long as the vehicle’s free flow velocity is 
close to the desired velocity. Therefore, in the flow-density 
diagram, the slope of the free flow should be close to the 
constant desired velocity. However, as the vehicle approaches 
the desired velocity, the equilibrium spacing and time headway 
increase significantly due to the denominator of equation (6) 
tending to zero while the numerator tending to infinity. This 
prevents the vehicle from traveling in free flow at or near the 
desired velocity and makes the fundamental diagram arc-
shaped (Fig. 2 (a)). 

 
 
 
 



 

To verify this phenomenon, we fit the two models’ the 
steady-state equations using the average spacing and the 
average velocity of the two lanes in Fig 3. As expected, the 
Sigmoid-IDM describes the steady-state spacing-velocity 
relationship well. In contrast, when the IDM steady-state 
velocity approaches the desired velocity, the data cannot be 
fitted well due to the surge in equilibrium spacing. 

III. MODEL 

A. Acceleration characteristics of start-to-follow 
The Sigmoid function is a common S-type curve in 

biology, also known as the S-type growth curve [53]-[55] as 
shown in Fig.4. The Sigmoid function expression is as follows:  
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Fig 4. Sigmoid function with different parameters 

The Hefei 25-vehicle platoon experimental data (Hefei 
data) used in this study is sourced from human-driven vehicle 
trajectories collected during 25 vehicles experiments on a three-
lane suburban road in Hefei [52],[56]. High-precision 
differential GPS receivers were installed in each vehicle to 
record their position at 10 Hz. During each experiment, a 
leading vehicle followed a predetermined driving cycle, and the 
following vehicles started from a standstill and reached a 
certain velocity to achieve a steady-state driving condition. The 
purpose of using these data is to analyze the relationship 
between acceleration and spacing during vehicle start-up 
(orange area) and during stable driving (blue area) in Fig 5(a). 

 
(a) Start-up trajectory extraction and correlation analysis 

  
(b) Correlation trajectory acceleration-spacing normalization 

Fig 5. Acceleration-spacing for the trajectories of the Hefei start-up process 
We applied the method of [57],[58] for the reconstruction 

of the Hefei data trajectories, and analyzed the acceleration and 
spacing values of 24 following vehicles from trajectories after 
starting until stabilization. The results of the correlation 
analysis are shown in Fig 5(a). The correlation between spacing 
and acceleration in the stable region is not significant (Pearson 
coefficients [59] are all less than 0.8), indicating that the driver 
responds less to change in spacing when the vehicle is driving 
stably at a velocity close to the desired velocity. However, this 
finding is not compatible with the setting of Eq. (6). 
Furthermore, during the start-up phase, the vehicles with a 
strong correlation between acceleration and spacing were 
screened by Pearson coefficient R>0.8. Sixteen vehicles met the 
requirement as shown in the Fig 5(b) and were used for further 
analysis. The spacing values of these vehicles were normalized 
to the acceleration values, and an "S"-like relationship (Not the 
quadratic function relationship of IDM) was found, indicating 
that the acceleration curve of human driving can be fitted by a 
Sigmoid function Eq. (7).  

The curve fitting of vehicles’ acceleration and spacing in 
start-up phase by Sigmoid function using MATLAB's curve 
fitting library, the parameters as well as the evaluation index of 
the effect are shown in TABLE IV in the appendix B, where the 
average value of R2 of vehicles is 0.94, and the average value 
of RMSE is 0.096. The Fig 6 shows the effect of starting curve 
fitting of the No.12 vehicle. Based on this similarity, we 
proposed the Sigmoid-IDM, which optimizes the vehicle’s 
initial acceleration by means of a Sigmoid function with the aim 
of achieving a smooth start. And the cautious following 
distance and cautious driving factor are adapted to the different 
phases of vehicle driving. 

 
Fig 6. No.12 vehicle acceleration-spacing Sigmoid Curve Fitting 



 

B. Sigmoid-IDM  

 
Fig.7. Acceleration indication of start-to-follow at different distance 

Cautious following distance dc is the distance at which 
the driver will carefully choose small acceleration to follow the 
preceding vehicle. According to the Sigmoid curve, the start-to-
follow acceleration of vehicles with different spacing is shown 
in Fig.7. 

  00 cS d s  , drivers start with maximal acceleration to 
ensure efficiency. 

  00S s , vehicle does not start. 

 0 00 cs S d s   , the vehicle's initial acceleration 
increases in the "S" shape with the increase of  0S . 

 
Fig.8. Acceleration Diagram of different spacing with an initial velocity 

The acceleration diagram of the following vehicle with 
initial velocity at different spacing is shown in Fig. 8. 

   *0 0cS d S  , drivers start with maximal acceleration 
to ensure efficiency. 

   *0 0S S , vehicle decelerates. 

     * *0 0 0cS S d S   , the vehicle's initial acceleration 
increases in the "S" shape with the increase of  0S . 

In order to make the vehicle's initial acceleration meet the 
characteristics of S-curve, Sigmoid-IDM is built by adding 
Sigmoid function and cautious following distance into the 
spacing term of IDM. The model is expressed as following: 
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Where dc is cautious following distance;  is cautious 
driving factor, Sigmoid-IDM not only retains the advantages of 

IDM in deceleration scenarios, but also corrects the excessive 
acceleration of the original model by improving the 
acceleration term of IDM. At the same time, the acceleration 
and deceleration time of Sigmoid-IDM are asymmetrical, 
which is similar to the asymmetrical feature of human driving. 

C. Steady-state equilibrium equation 
In equilibrium traffic, IDM tends to keep an equilibrium 

spacing S IDM
eS   and equilibrium velocity S IDM

ev  .The 

relationship between S IDM
eS   and S IDM

ev   is shown in Eq.(11). 
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Based on Eq. (11) we can plot the fundamental diagram in 
Fig. 9(a). 

 

(a) The fundamental diagram of Sigmoid-IDM under different 
cd and

0v  

 

 (b) Converging simulation of Sigmoid-IDM driving at high velocity 
Fig.9.Sigmoid-IDM steady-state equilibrium analysis 

Based on our simulation results, we observed that the IDM 
did not converge when it approached a stable velocity near the 
desired velocity in Fig.2(b). In contrast, the Sigmoid-IDM was 
able to achieve quick convergence of fleet velocity when the 
velocity was close to the desired velocity in Fig. 9(b). The 
fundamental diagram of the homogeneous flow was drawn 
using the steady-state equilibrium equation of the Sigmoid-
IDM. The gray curves plotted in Fig. 9(a) for the examples 

0 10,20,30v  indicated that the velocity of the free flow (green 



 

region) can maintain a steady desired velocity slope of 0v  i.e., 
0Q v  .  
Moreover, as shown in Fig. 9(a), we also found that the 

jam flow region (brown region) changes as the cautious 
following distance dc changes. Specifically, as dc increased 
from 10 to 20, the boundary line between the free flow and the 
wide density region (brown region) shifted to the left and the 
maximum capacity decreases, as shown by the blue line. 
Conversely, when dc decreased from 10 to 0, the maximum 
capacity dropped along the red arrow (black line). In this case, 
the traffic exhibited a hysteresis effect, where the free-flow and 
synchronous traffic flow coexisted in the state, and the flow-
density curve took the inverse-λ form. A desirable property of 
the traffic flow model is its flexibility to represent various flow 
density shapes, from oblique parabolas to inverse -λ [60], which 
the Sigmoid-IDM is able to achieve by varying the value of dc. 

 

Fig.10. IDM and Sigmoid-IDM Fitted to High D lane3 
The High D Lane 3 data is plotted in Fig. 10. the High-D 

data has a strong emphasis on the free-flow region, while the 
observations elsewhere are sparsely scattered. In addition, a 
distinctive feature of the flow-density subplot is the capacity 
peak, which clearly indicates an inverse-λ flow-density 
relationship. As expected, the Sigmoid-IDM is able to fit to 
such a shape and, therefore, can describe the free flow and 
capacity conditions well. In contrast, the IDM velocity-density 
curve is skewed and does not fit the flow-density relationship 
well for this data. 

IV. STABILITY 
Stability is to describe the self-regulation ability of traffic 

flow with external disturbance. Local stability and string 
stability are usually used to verify the self-regulation ability of 
the model in single-vehicle following and multi-vehicle 
following scenarios respectively. The Sigmoid-IDM is 
functionalized as shown in Eq. (12). It is assumed that all 
vehicles in the stable traffic flow have the same spacing ts  and 
velocity tv  at time st , and the acceleration is 0, as shown in Eq. 
(13). And meanwhile, small changes in spacing, velocity or 
acceleration are regarded as small disturbances. The value of 
change in spacing  nh t  and the value of change in velocity

  np t  relative to the equilibrium state is calculated as shown in 
Eq. (14) and Eq. (15). 

        , ,n n na t f S t v t v t   (12) 

   , ,0 0s t ta t f s v   (13) 

    n n th t S t s   (14) 

    n n tp t v t v   (15) 

A. Rationality of Following Behavior 
In the following state, the vehicle should meet several 

rules [46] as following. 
 When the spacing is larger, it should produce higher 

acceleration or smaller deceleration.  
 When the velocity is high, the vehicle will not accelerate 

as much.  
 The increase in relative velocity will cause the vehicle to 

accelerate and reduce braking.  
If 0 0t ts T sv s   : 
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0,0, 0s v vf f f    (22) 

In typical scenario, a numerical test is performed as shown 
in Fig.11. When the stable velocity tv  is 0-20 m/s and the 
stable spacing ts  is 10-50 m, the solutions of the three partial 
derivatives of Sigmoid-IDM all meet the Eq. (22). Therefore, 
the following behavior of the Sigmoid-IDM is reasonable. 
( 0 33.33 /v m s , 22 /b m s , 0 2s m 21.73 /a m s , 1= , 1T s

10cd m )

 
 



 

   

a. Numerical solution of sf  b. Numerical solution of vf  c. Numerical solution of vf  
Fig.11 Solutions of the three partial derivatives of Sigmoid-IDM 

 

B. Local stability 
Local stability refers to whether the state changes of the 

following vehicle converge when the preceding vehicle is 
disturbed. When a small disturbance is loaded on the preceding 
vehicle, the stable spacing and velocity difference will change. 
If the model is local stability, the following vehicle will 
eventually maintain the stable spacing or same velocity with the 
preceding vehicle through acceleration and deceleration. The 
Taylor expansion of Eq. (12) yields Eq. (23). Then, Eq. (14) and 
Eq. (15) are substituted into Eq. (23) to be Eq. (24). 

         

  

, ,0

0

n t t n t n t
a aa t f s v t S t s t v t v
s v

a t v t
v

 
    

 


  
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 (23) 

When the following vehicle is stable at st ：  
         1n s s n s v v n s v n sa t f h t f f p t f p t       (24) 

When the following vehicle is in a stable state, the 
preceding vehicle should also be in a stable state. Thus,  

 1 0n sp t   , the Eq. (24) is transformed into the Eq. (25) 

   n
n

dh t
p t

dt
 

 (25) 
         0

s

n
s n v v n t

dp t
f h t f f p t

dt      

From [48], the local stability of the CF model can be 
guaranteed when the eigenvalue   of the matrix 

0 1
e

s v v

J
f f f

 
   

 has two negative real parts. The calculation 

of the eigenvalue   is 0eJ I  ( I  is the unit diagonal 
matrix). The eigenvalue equation can be translated as: 

 2 0v v sf f f      
2( ( ) 4 ) / 2v v v v sf f f f f        

(26) 

The characteristic equation-based method aims to evaluate 
the perturbation growth rate from the mathematical solution, 
which can be used to verify the local stability of the model. 
When the real parts of the two solutions    are both negative, 
the model is locally stable. According to Eq. (20), if the 

following behavior is reasonable, then 0v vf f  . Therefore, 
the negative real part solution of Eq. (24) must exist and the 
model is local stability. 

C. String stability 
String stability is a property of the backward propagation 

of state changes from the leading vehicle in a following fleet. 
In a stable fleet, if a Fourier disturbance affects the velocity of 
the leading car, the transfer state of the disturbance in the fleet 
can be analyzed to determine whether the transfer state is stable. 
According to Fourier theory, periodic signals can be 
decomposed into the sum of periodic sine and cosine waves 
only. We assume the disturbance of the leading car is stable 
oscillation  0 ( )h t exp iwt .Let ( ) ( )G s   s iw  be the transfer 
function, then the oscillation of the nth following vehicle in the 
convoy is Eq. (27). Then, Eq. (14), Eq. (15) and Eq. (27) are 
substituted into Eq. (24) to be Eq. (28). 

  ( ( )) ( )n
nh t G iw exp iwt  (27) 

      
 2( ) s v

s v v

f iwfG iw
w f wi f f






   

  (28) 

The string stability of the model is proved when 
( ) 1G iw  .Therefore the string stability criterion is 
2 2 2 2 2 2 2( ) ( )v s s v vw f f f w w f f      . When 0w  , the lower 

the frequency is, the stronger the constraint on stability is. Thus 
satisfying Eq. (29) means that the model is string stable.  

  
 2

1 0
2

v s

v v

f f
f f
    (29) 

The maximum velocity is set to 0 78 /v km h , and the 
equilibrium velocity is set to 25 km/h to highlight the influence 
of the parameters on the string stability of the model [51]. The 
influence parameters of driver aggressiveness of the Sigmoid-
IDM are represented by   and dc. In [11], a and T were selected 
as variables due to their significant impact on the string stability 
of the IDM, and the string stability behavior criterion of the 
Sigmoid-IDM was illustrated using Eq. (29).The string stability 
of the Sigmoid-IDM under various values of   and dc is shown 
in Fig. 12, and the string stability behavior of the Sigmoid-IDM 
is depicted within its parameter variable range. The unstable 
region is depicted in pink, whereas the stable region is 
represented in white. 



 

 
Fig.12 String stability diagrams of the Sigmoid-IDM for heterogeneous vehicles 

The Sigmoid-IDM can simulate traffic oscillation 
scenarios by adjusting   and cd  , capturing excessive 
acceleration and deceleration to produce acceleration 
/deceleration string instability. To validate the string stability 
criterion and analyze the effect of  and  on the acceleration 
and deceleration of the string in an unstable state, a simulation 
with 11-vehicle platoon is conducted. We observe whether any 
perturbation in velocity will amplify or not. The selection of 
parameters for each case is shown in Fig. 12. And the leading 
vehicle’s velocity is set to a sinusoidal velocity profile. The 
resulting velocity-time diagram of the following vehicles is 
plotted in Fig. 13. 
 Case I is the simulation of the stable region for 

10, 0.5cd   . It can be found that the model is string 
stable at this time. 

 Case II is the simulation of the unstable region at 
10, 0.1cd   . In this case the deceleration is string stable 

and the acceleration is string unstable. The velocity 
perturbation is amplified during acceleration and is more 
responsive during the start-up phase. 

 Case III is simulated for 15, 1cd    in the unstable 
region. In this case the acceleration is string stable and the 
deceleration is string unstable. The velocity perturbation 
is amplified during deceleration and there is a significant 
delay in waiting during the starting phase of the vehicle, 
which is often similar to that of many cautious drivers in 
reality and illustrates the role of cautious following 
distance introduction. 

 Case IV is simulated for 15, 0.1cd    in the unstable 
region. In this case the acceleration and deceleration are 
string unstable and over-acceleration and deceleration can 
occur. Therefore, the driving characteristics of different 
drivers, i.e., acceleration and deceleration characteristics, 
can be simulated by reasonably calibrating the values of 
  and cd  to present asymmetric driving behavior. 

  
(a)Case I (b)Case II 

  
(c)Case III (d)Case IV 

Fig. 13 Simulation of eleven vehicles in different parameter cases. 

 cd



 

V. NUMERICAL ANALYSIS 
In this section, we calibrate the Sigmoid-IDM and IDM 

models, using the above-mentioned Hefei dataset and the High 
D dataset to obtain the necessary parameter values. Following 
this, we evaluate the accuracy of the models by simulating 
different scenarios and comparing the results with experimental 
data using error measures. Subsequently, we analyze comfort 
and fuel consumption data, which indicates that Sigmoid-IDM 
performed better than IDM in managing starting acceleration 
and better represented human driving behavior. We also 
examine the simulated spacing-velocity relationship to confirm 
the asymmetry of Sigmoid-IDM. Then, we introduce random 
parameters into the Sigmoid-IDM and study the resulting traffic 
flow oscillation phenomenon, ultimately obtaining the 
fundamental diagram through the Circular Road simulation. 
Finally, the traceability of the Sigmoid-IDM trajectory was 
verified by Simulink-Carsim Co-simulation. 

A. Calibration 
To investigate the performance differences between 

human driving, IDM and Sigmoid-IDM in start-stop scenarios, 
stop-and-go scenarios and free-flow scenarios, the models were 
calibrated using 72 sets of experimental data, 48 vehicles from 
the Hefei data (24 for start-stop scenarios and 24 for stop-and-
go scenarios) and 24 vehicles from the high D data (free-flow 
scenarios). Twelve of the follower trajectories in each scenario 
are used for calibration and the rest for validation. The 
calibration method [61] uses a genetic algorithm (GA) with 
spacing chosen as the performance metric and a population size 
equal to 100 allowing the algorithm to possibly converge to a 

global optimal solution with a maximum number of 500 
iterations. The objective function is Eq. (30) for minimizing 
spacing errors and the error formula is Eq. (31) for checking the 
calibration effect. The iterative calibration results are shown in 
TABLE I. In addition, we performed 20 iterations of each 
calibration experiment to verify that the algorithm converged to 
the same solution for each calibration for both the parameter 
values and the objective function values (the standard deviation 
recorded between solutions at convergence was equal to 10-7). 
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B. Start-up scenes 
The simulation results in TABLE II show that in the start 

scenes, the average RMSE of the 12 following vehicle 
trajectories simulated by Sigmoid-IDM is significantly smaller 
than that of IDM when the preceding vehicle is also in the start 
scenario. The prediction accuracy of spacing, velocity, and 
acceleration of Sigmoid-IDM is also significantly better, 
improving by 30.48%, 28.84%, and 27.27%, respectively, 
compared to IDM. This paper argues that the simulation error 
difference between the two models is mainly reflected in the 
vehicle start-up phase. We also analyze the variability between 
the model and the actual data in terms of both fuel consumption 
and comfort. 

 
TABLE I 

 CALIBRATION VALUES OF THE MODELS IN DIFFERENT SCENES 
Scenes Model a (0.1-6) b (0.1-6) 0v (10-40) T (0.1-4) 0s (0.1-6) (0-2) cd (0.1-20)    U s  
Start-up 
(Hefei) 

IDM 2.8 4.9 22.1 2.6 1.3 \ \ 4 0.23 
Sigmoid-IDM 4.9 5.1 23.8 2.4 1.1 0.9 11.9 4 0.13 

Stop-and-go 
(Hefei) 

IDM 2.4 3.7 21.1 3.1 0.7 \ \ 4 0.15 
Sigmoid-IDM 4.3 5.3 23.8 2.8 0.71 0.8 10.7 4 0.08 

Free-flow 
(High D) 

IDM 2.7 4.8 39.9 1.5 1.73 \ \ 4 0.05 
Sigmoid-IDM 4.8 5.9 38.2 1.3 1.65 0.8 17.4 4 0.03 

 
TABLE II 

 ERROR VALUES OF THE MODELS IN DIFFERENT SCENES 
Scenes Model sRMSE  diff  

vRMSE  diff  
aRMSE  diff  

Start-up 
(Hefei) 

IDM 6.13 30.48% 0.52 28.84% 0.22 27.27% Sigmoid-IDM 4.26 0.37 0.16 
Stop-and-go 

(Hefei) 
IDM 4.73 

2.52 46.71% 0.39 41.02% 0.17 41.17% Sigmoid-IDM 0.23 0.10 
Free-flow 
(High D) 

IDM 3.41 2.05% 0.41 26.82% 0.49 4.10% Sigmoid-IDM 3.34 0.30 0.47 

To illustrate the advantages of Sigmoid-IDM over IDM, 
an example (No.13) is provided in Fig. 14, which shows the 
acceleration, velocity and spacing curve of the actual vehicle 
during start-up. It is observed that the driver keeps an 
observation phase before starting, during which the spacing 
remains stable, and then chooses to start when the current 
distance reaches a certain value. However, IDM does not 
simulate this effect and starts directly. Moreover, the 
acceleration profile of the driver during start-up increases 
slowly with increasing velocity, which is consistent with [39] 

experimental data. In contrast, the IDM starts directly at 
maximum acceleration and decelerates immediately after 
reaching a certain velocity in a short time, leading to energy 
waste and a poor comfort level. 



 

 
Fig. 14. IDM and Sigmoid-IDM trajectory of simulation No.13 

The Sigmoid-IDM, on the other hand, exhibits a high 
human-like effect throughout the simulation, and the fuel 
consumption (Fig. 15) and comfort (Fig. 16) are more similar 
to the real trajectory data. Sigmoid-IDM reduces fuel 
consumption and comfort errors by 60.1% and 49.1% compared 
to IDM. Although it is not possible to show the simulation 
results for all starting vehicle trajectories, the presented 
example and the overall analysis suggest that Sigmoid-IDM has 
significant advantages over IDM in accurately simulating the 
start-up phase of vehicles.  

Comfort is an important criterion to evaluate the intensity 
of driving behavior [62]. Comfort is the subjective feeling of 
passengers, mainly affected by the impact force. The jerk 
(derivative of acceleration) is usually used to reflect the impact 
force. The smaller the jerk is, the higher the comfort level of 
passengers will be. Conversely, the worse the comfort level of 
passengers will be.  

 
Fig. 15.  Real-time comfort (jerk) of IDM and Sigmoid-IDM's simulation  

The fuel consumption of a vehicle is closely related to the 
instantaneous velocity and acceleration of the vehicle.  The VT-
Micro model proposed by [63] is widely used in traffic flow 
microsimulation and is calculated as follows. 

 
3 3

,
0 0

ln( ) ( ) ( )i j
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MOE k v a

 

                       (32) 

where nMOE  is the fuel consumption factor for the nth 
vehicle; 0,i  1, 2, 3  is the index of the speed; 0,j  1, 2, 3  is 
the index of the acceleration; and ,i jk  is the regression 
coefficient when the velocity index is i and the acceleration 
index is j. With the calibrated ,i jk  values [64], the fuel 
consumption of the vehicle n  at each moment can be calculated. 
The violin plot (Fig. 16) counts the total value of fuel 
consumption in the start-up phase for each vehicle in the Hefei 
data, and the total value of fuel consumption in the vehicle 
simulation in the start-up phase of IDM and Sigmoid-IDM is 
used as a comparison.  

 
Fig. 16. IDM and Sigmoid-IDM simulation of the total fuel consumption 
distribution per vehicle 

C. stop-and-go scenes 
Stop-and-go traffic is a prevalent and complex 

phenomenon in traffic congestion. The CF model replicates 
human driver behavior, including asymmetry and traffic 
oscillations. Previous analyses have shown the proposed 
Sigmoid-IDM’s ability to simulate the vehicle start-up phase. 
To further validate its performance in stop-and-go traffic, we 
designed a simulation experiment with 24 vehicles in a single 
lane. We assigned the lead vehicle’s velocity as the blue line in 
Fig. 17, based on the observed data from the Hefei dataset. The 
following vehicles used the calibrated Sigmoid-IDM-based CF 
model. Fig. 17 shows the simulated velocity of the vehicles. 
The lead vehicle’s perturbation increases as it spreads upstream, 
while the following vehicles experience stronger velocity 
changes, creating stop-and-go traffic in the platoon. This 
demonstrates the Sigmoid-IDM’s ability to capture real traffic 
features. 

 
a. Time-space diagrams of Hefei data and Sigmoid-IDM in stop-and-go traffic 



 

 

 
b. Time-velocity diagrams of Hefei data and Sigmoid-IDM in stop-and-go traffic 

Fig. 17 Sigmoid-IDM stop-and-go scene simulation 
The CF model’s asymmetry is essential for understanding 

traffic hysteresis and stop-and-go phenomena [43]-[45]. In 
stop-and-go conditions, vehicles undergo various phases: 
acceleration, deceleration, and coasting. During acceleration, 
vehicles increase their velocity slowly and maintain a wide 
spacing to avoid sudden stops by the preceding vehicle. During 
deceleration, vehicles reduce their velocity and use as little 
spacing or delayed braking as possible to prepare for the 
preceding vehicle’s stop. During coasting, vehicles keep a 
constant velocity between the acceleration and deceleration 
curves. The spacing changes depending on the preceding 
vehicle’s acceleration or deceleration. The coasting phases 
indicate asymmetric behavior in traffic, as longer coasting 
periods imply larger distances between acceleration and 
deceleration curves. We examine the Sigmoid-IDM’s 
asymmetric behavior by simulating spacing-velocity plots for 
the two models for No. 3 and No. 10’s stop-and-go state in Fig 
18. The simulation does not observe any coasting phase (black) 
in the IDM, and the acceleration (blue) and deceleration (red) 
curves are not separated. In contrast, the Sigmoid-IDM shows 
a sufficient coasting phase between the acceleration and 
deceleration phases. The Sigmoid-IDM reflects asymmetry 
better than the IDM and aligns more with human drivers’ style 
in stop-and-go conditions. 

  
（a）No. 10 

  
（b）No. 3 

Fig. 18. Vehicle’s spacing-velocity diagram of IDM and Sigmoid-IDM 

D. Circular Road  
In this section, two simulations of Sigmoid-IDM are 

performed on the circular road. Simulation 1 is performed in 
order to verify that the proposed cautious following distance 

0cd   can reproduce the synchronous flow. Simulation 2 is 
performed to explore the correlation between the time-varying 

cd  on the driver's cautious driving and the effect on the flow-
density relationship in traffic oscillations. 
Simulation 1: Simulation of simultaneous traffic flow 

We simulate the traffic flow on a circular road to 
investigate whether Sigmoid-IDM can simulate the 
synchronous traffic flow to reproduce the fundamental diagram 
drawn by the steady-state equilibrium equation in Section III 
when the cautious following distance 0cd  . In the simulation, 
the parameters are set to the same parameters as in Section III 
C and additionally given as a=1.5, b=3. The following two 
initial configurations are used in the simulation: (1) all vehicles 
are homogeneously distributed on the road; (2) all vehicles are 
jam distributed. 

Fig. 19. shows the flow-density diagram of the Sigmoid-
IDM. In the branches with density less than k1, there is only free 
flow on the road. There are two branches in the density region 
k1 < k < k2. The upper branch exhibits synchronous flow, which 
starts from an initial homogeneous distribution; the lower 
branch is a coexisting state of free flow and wide moving jams, 



 

which comes from an initial jam distribution. When the density 
is greater than k2, the synchronous flow is unstable and finally 
a wide moving jam occurs. 

 
Fig. 19.  Flow-density diagrams of Sigmoid-IDM at dc=0. 

Simulation 2: Random Parameter Traffic Flow Simulation 
In this section, we propose a variable parameter form for 

the proposed Sigmoid-IDM, where cd  is time-varying cautious 
following distance. by varying the value of cd  for different 
driving states to explore the effect of having the intra-driver 
heterogeneity under Sigmoid-IDM on traffic oscillations. To 
ensure heterogeneity among drivers, in the simulation we use 
the calibrated values of the 20 vehicles in the stop-and-go 
scenario in section A above, and the cd  changes its value in 
each simulation step Δ t = 0.1 s. The time-varying expression 
of is shown in Eq. (33). 
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d t   rd   with probability p
d t t

d t               otherwise


   


 (33) 

Where, d is a parameter indicating the range of cautious 
following distance variation; r is an independent random 
number between -1 and 1; p is the parameter change probability.  

We simulated traffic flow on a 600m circular road, with 
each vehicle set to a length of 5m. The fleet was initialized with 
an initial velocity of 5m/s and an initial spacing of 10m. The 
total simulation time is 3600s, and the simulation step size is 
0.1s. We set p=0.25, d = 5 and then analyzed three cases for the 
value of r: first, r was set as a random value from -1 to 0 (max 
(dc, 0)); second, r was set to 0; and third, r was set as a random 
value from 0 to 1. For each case, we analyzed the effect of 
changes in dc on traffic flow oscillation, and space-time 
diagrams were generated (Fig.20). Next, we plotted flow-
density diagrams for the three cases with different densities 
(ranging from 0 to 200veh/km) to verify the analysis of the 
steady-state equilibrium equation discussed in Section III C. 

 

 
(a)Random decrease dc  

 
(b)No random dc 

 
(c)Random increase dc 

Fig. 20. Sigmoid-IDM Circular Road Simulation with Random Parameters 
The Fig.20(b) shows that the 20 vehicles in the traffic 

flow oscillation data calibrated with the Sigmoid-IDM 
simulation, without adding the time-varying random cautious 
following distance, display a stop-and-go state for the fleet 
driving in the circular road. However, the average velocity and 
oscillation frequency of the traffic flow significantly change 
after incorporating the random cd . When the random cd  
decreases as shown in Fig. 20(a), the driver's aggressiveness 
increases, resulting in faster vehicle acceleration responses and 
a reduction in traffic flow oscillation. Conversely, as depicted 
in Fig. 20(b), increasing the random cd  results in a higher 
degree of driver caution and a slower fleet acceleration response. 
The random variation of drivers leads to different levels of 
driver caution at different moments, which is manifested in 
different acceleration responses due to the asymmetric of 
Sigmoid-IDM. At 2500s, a "secondary disturbance" 
phenomenon is observed in the oscillation region due to vehicle 
over-response or under-response, resulting in the acceleration 
wave Wa not being equal to the deceleration wave Wb. The wave 
speed of the traffic flow oscillation is then maintained at the 
magnitude of Wa in the Fig.20(c) afterwards. The fact that Wb is 
smaller than Wa is due to the increase in cd  and the relative 
slower propagation of traffic congestion for cautious drivers.



 

(a)Random decrease  (b)No random  (c)Random increase  

Fig. 21 Flow-density diagrams of Sigmoid-IDM with random  

As shown in Fig. 21,the time-varying of the cautious 
following distance does not affect the stable driving of the 
vehicle free flow, and the free flow slope is always kept at v0, 
which is consistent with the fundamental diagram drawn by the 
steady-state equilibrium equation in Section III.C. Due to the 
introduction of random cd , the degree of driver aggressiveness 
increases as cd  decreases, and Fig 21(a) demonstrates 
significant inter- and intra-driver heterogeneity, presenting a 
two-dimensional flow density state when the density is larger. 
As shown in Fig. 21(c), as cd increases, driver caution increases 
to initiate a slower response, the critical density k1 in the flow 
density diagram, the blockage density kjam moves left, and the 
maximum capacity Qmax decreases.  

E. Virtual Start-stop Scene Co-simulation 
Carsim delivers the accurate, detailed and efficient 

methods for simulating the performance of vehicles. To verify 
the traceability of the planned path by Sigmoid-IDM, a joint 

simulation is conducted based on MATLAB/Simulink and 
Carsim[65],[66]. It is assumed that the leading vehicle always 
remains stationary. Initial velocity and acceleration of the other 
vehicles are all zero. The length of the road is 100 meters and 6 
vehicles are evenly distributed on the road with 14m interval. 
The road friction coefficient is set to 0.85, and the vehicle 
length is set to 2.4 m. The closed-loop velocity controller is 
used to control vehicle When the simulation starts, all vehicles 
start at the same time. Acceleration is generated by sigmoid-
IDM respectively. 

The visualization of platoon simulation is shown in 
Figs.22(a)and(b). The trajectory, velocity, acceleration time 
and mean absolute control error per second of platoon are 
shown in Figs.22(c), (d)and(e). As shown in TABLE III, the 
absolute values of the average control errors of the velocity, 
displacement and acceleration of the fleet are small, which 
proves that the trajectory of Sigmoid-IDM simulation can be 
applied to the actual stop-and-go scene.

 
(a)Simulation time = 0s 

 
(b)Simulation time = 36s 

   
(c) Velocity-time and velocity controller error еv (d)Station-time and station controller error еx (e) Acceleration-time and acceleration controller error еa 

Fig. 22. Simulation of platoon Sigmoid-IDM with Carsim 
TABLE III 

FLEET AVERAGE ABSOLUTE ERROR 
Mean absolute error (The whole simulation) No.2 No.3 No.4 No.5 No.6 
Mean absolute position tracking error еx 0.014 0.032 0.015 0.083 0.021 
Mean absolute acceleration error еa 0.026 0.026 0.021 0.021 0.002 
Mean absolute velocity error еv 0.025 0.023 0.020 0.016 0.011 

cd cd cd

cd



 

VI. CONCLUSION 
This paper introduces the Sigmoid-IDM, a CF model that 

incorporates a Sigmoid function and cautious driving factors. 
The Sigmoid function is used to enhance the start-following 
characteristics of the model, while the cautious driving factors 
improve the output strategy of the spacing term and stabilize the 
steady-state velocity in free flow. In the stability analysis, this 
paper analyzes the rationality of the following model and the 
local stability, and analyzes the string stability characteristics 
under different parameters according to the string stability 
criterion. The model has the feature of adjusting the degree of 
driver caution by changing the model parameters, which can 
better describe the heterogeneity among drivers and within 
drivers. In addition, the model uses Hefei data and High D data 
to simulate three common traffic flow scenarios: free-flow 
scenario, start-up scenario, and oscillation scenario, and is 
calibrated by minimizing spacing errors. Specifically, 
compared with IDM, Sigmoid-IDM reduces spacing RMSE by 
46.71% and 30.48% in start-up scenario and oscillation 
scenario respectively, reduces fuel consumption error and 
comfort error by 60.1% and 49.1% respectively. Additionally, 
the RMSE for velocity in the free flow is reduced by 27.1%. 
After analysis, Sigmoid-IDM improves the trajectory 
anthropomorphism by improving the cautious acceleration 
characteristics and the asymmetric driving characteristics of 
IDM. In simulation, the ability of the Sigmoid-IDM to 
reproduce the traffic oscillations as well as the fundamental 
diagram was verified by the circular road simulation. The 
traceability of the model planning trajectory was verified by 
Simulink-Carsim joint simulation. 

In terms of future work, it would be interesting to further 
explore the potential applications of the Sigmoid-IDM in 
various traffic scenarios and to investigate its performance in 
comparison to other CF models, especially the current dynamic 
random parameters of the CF models such as 2D-IDM. 
Additionally, further research could be conducted to optimize 
the model parameters for different driving styles and traffic 
conditions.  

APPENDIX A 

Two brief simulations verify the IDM over-acceleration and 
negative velocity limitations in Section II.A. The IDM with 
parameters a = 3; b = 2; v0 = 10; T = 1.6; s0 = 5; Both the 
preceding vehicle and the following vehicle initially remain 
stationary, and the distance between the two vehicles is D. 

Negative velocity. We will show that the IDM can provide 
negative velocity to the follower, even though the preceding 
vehicle may be traveling at positive velocity.  

   
(A. Fig 1) Left: vehicles’ positions, middle: vehicles’ velocities and right: 
follower’s acceleration. （D = 4） 

Excessive acceleration. We will show that IDM can 
provide over-acceleration to a following vehicle, despite the 

small distance between the vehicle preceding and the vehicle 
following. 

   
(C. Fig 2) Left: vehicles’ positions, middle: vehicles’ velocities and right: 
follower’s acceleration. （D = 10） 

Analysis of Sigmoid-IDM to avoid negative velocity 
After the analysis above, negative speed tends to occur 

when the initial vehicle spacing  0S  is less than the safe 
spacing 0s .When the vehicle starts,  0 0nv  , at which point 
the Sigmoid-IDM start equation is as follows: 

     1

00 1 1 ( 0 )n ca a exp S s d


            (A.1) 

Since   00S <s  at this point, (A.1) can be reduced to 

    1
0 1 1 ( ) 0n ca a exp d   and   


             (A.2) 

Because   1
1 ( ) 1cexp d


        ,(A.2) can be reduced to 

 0 0na                                  (A.3) 
At this point the initial acceleration is very small can be 
regarded as the vehicle does not start. 

APPENDIX B 

In APPENDIX B, we give the results of fitting 15 phased 
vehicles in Section III using the Sigmoid function in 
MATLAB's curve fitting library along with the parameters. 

TABLE IV 

     1

01f x e xa xp x 


      for starting acceleration-

spacing fitting parameters and effects. 
No. a    0x  R AR RMSE 
2 0.06707 1.956 58.69 0.963 0.961 0.175 
3 6.261 1.978 18.27 0.974 0.973 0.146 
4 0.6563 0.6248 8594 0.939 0.937 0.057 
5 0.4356 11.74 10.11 0.967 0.966 0.037 
6 1.366 6.293 20.58 0.785 0.778 0.218 
8 1.7 50.25 2.229 0.907 0.906 0.037 
9 1.867 17.79 0.04534 0.994 0.994 0.062 

11 1 44.14 0.116 0.975 0.974 0.060 
12 0.8508 8.026 2.55 0.999 0.999 0.014 
13 2.086 12.37 13.88 0.990 0.989 0.007 
14 1.283 13.35 2.901 0.995 0.995 0.039 
17 1.107 40.88 9.351 0.806 0.800 0.216 
23 1.2 113.7 0.2399 0.920 0.919 0.142 
24 1.3 33.44 0.8585 0.903 0.902 0.146 
25 0.5448 6.568 18.93 0.838 0.833 0.077 

APPENDIX C 

Since the Sigmoid-IDM expression is a piecewise 
function, it is necessary to prove its continuity.    nf t a t  is 
a piecewise function in model. If  na t  has the first kind of 

discontinuity point or continuity, it can be proved that  
0

t

na t dt  



 

is continuous.  nv t  is also continuous according to 

   
0

t

n nv t a t dt  .Assume that 

            *
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From the above conditions: 

             
        
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

  



(B.3) 

It can be proved that  na t  is continuous at 0t , and then it is 
proved that  na t  and  nv t  are continuous in the time by Eq. 
(B.3) The continuity of  nv t  ensures that the Sigmoid-IDM 
does not appear breakpoint in the acceleration and deceleration 
conversion. 
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