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Provable Subspace Clustering:
When LRR meets SSC

Yu-Xiang Wang, Huan Xu, and Chenlei Leng

Abstract—An important problem in analyzing big data is
subspace clustering, i.e., to represent a collection of points
in a high-dimensional space via the union of low-dimensional
subspaces. Sparse Subspace Clustering (SSC) and Low-Rank
Representation (LRR) are the state-of-the-art methods for this
task. These two methods are fundamentally similar in that both
are based on convex optimization exploiting the intuition of “Self-
Expressiveness”. The main difference is that SSC minimizes the
vector `1 norm of the representation matrix to induce sparsity
while LRR minimizes the nuclear norm (aka trace norm) to
promote a low-rank structure. Because the representation matrix
is often simultaneously sparse and low-rank, we propose a
new algorithm, termed Low-Rank Sparse Subspace Clustering
(LRSSC), by combining SSC and LRR, and develop theoretical
guarantees of the success of the algorithm. The results reveal
interesting insights into the strengths and weaknesses of SSC
and LRR, and demonstrate how LRSSC can take advantage of
both methods in preserving the “Self-Expressiveness Property”
and “Graph Connectivity” at the same time. A byproduct of
our analysis is that it also expands the theoretical guarantee of
SSC to handle cases when the subspaces have arbitrarily small
canonical angles but are “nearly independent”.

Index Terms—Subspace clustering, Motion Segmentation,
Graph Connectivity

I. INTRODUCTION

We live in the big data era – a world where an over-
whelming amount of data is generated and collected every day,
such that it is becoming increasingly impossible to process
data in its raw form, even though computers are getting
exponentially faster over time. Hence, compact representations
of data such as low-rank approximation (e.g., PCA [1], Matrix
Completion [2]) and sparse representation [3] become crucial
in understanding the data with minimal storage. The under-
lying assumption of such procedures is that high-dimensional
data often lie in a low-dimensional subspace [2]). Yet, when
data points are generated from different sources, they form a
union of subspaces. Subspace Clustering deals with exactly
this structure by clustering data points according to their un-
derlying subspaces. Applications include motion segmentation
and face clustering in computer vision [4], [5], hybrid system
identification in control [6], [7], community clustering in social
networks [8], to name a few.
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Numerous algorithms have been proposed to tackle the
problem. Recent examples include GPCA [9], Spectral Cur-
vature Clustering [10], Sparse Subspace Clustering (SSC) [5],
[11], Low Rank Representation (LRR) [4], [12], its noisy
variant LRSC [13] and more recently, Orthogonal Match-
ing Pursuit (OMP)-based greedy methods, [14]–[17] (for a
more exhaustive survey of subspace clustering algorithms,
we refer readers to the excellent survey paper [18] and
the references therein). Among these algorithms, LRR and
SSC, based on minimizing the nuclear norm and `1 norm
of the representation matrix respectively, remain the top per-
formers on the Hopkins155 motion segmentation benchmark
dataset [19]. Moreover, they are among the few subspace
clustering algorithms supported by theoretic guarantees: Both
algorithms have been shown to succeed when the subspaces
are independent [4], [20]. Later, [5] showed that subspace
being disjoint is sufficient for SSC to succeed, and [21] further
relaxed this condition to include some cases of overlapping
subspaces 1. Robustness of the two algorithms has been studied
too. Liu et al. [22] showed that a variant of LRR works
even in the presence of some arbitrarily large outliers, while
Wang and Xu [23] provided both deterministic and randomized
guarantees for SSC when data are noisy or corrupted.

Despite the success of LRR and SSC, there are important
questions unanswered. In the theoretical front, LRR has never
been shown to succeed other than under the very restrictive
“independent subspace” assumption. In the empirical side,
SSC’s solution is sometimes overly sparse such that the
affinity graph of data from a single subspace may be dis-
connected [24]. On the high level, SSC is motivated by the
need to find a sparse representation matrix, whereas LRR aims
to exploits the low-rank nature of this very matrix. Hence,
a natural question is whether combining the two algorithms
leads to a better method, particularly because the underlying
representation matrix we want to recover is low-rank and
sparse simultaneously.

In this paper, we propose Low-Rank Sparse Subspace Clus-
tering (LRSSC) which minimizes a weighted sum of nuclear
norm and vector 1-norm of the representation matrix. We
establish theoretical guarantees for LRSSC that strengthen
the results in [21]. The statements and the proofs of these
results also shed insight on why LRR requires independence
assumption. Furthermore, our results imply that there is a
fundamental trade-off between the interclass separation and
the intra-class connectivity. Moreover, our experiment shows

1 Definition of “independent”, “disjoint” and “overlapping” subspaces are
given in Table I. We will discuss these assumptions with further details in
Section II
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that LRSSC works well in cases where data distribution is
skewed (in which case graph connectivity becomes an issue
for SSC) and subspaces are not independent (for which LRR
performs poorly in terms of separating different clusters).
These insights would be useful when developing subspace
clustering algorithms and applications. We remark that in the
regression setup, the simultaneous nuclear norm and 1-norm
regularization has been studied in the literature [25]. However,
the focus of this paper is on the subspace clustering problem,
and hence the results and analysis are completely different.

The contribution of this paper is three-fold:
1) We analyze LRSSC and state its theoretical guaran-

tees that matches and significantly improves existing
literature for subspace clustering problems. The result
also broadens the range of problems for which SSC is
guaranteed to be successful covering in particular, the
nearly-independent but highly-correlated subspaces that
often occur in practice.

2) We revisit the graph-connectivity problem as an alterna-
tive consideration that is largely neglected in most SSC
analysis, which sheds a light on why LRR is successful.

3) We conduct extensive numerical simulation and real
data experiments which demonstrate that the proposed
LRSSC is more robust than SSC and more accurate than
LRR.

We remark that a short version of the paper appeared in the
proceedings of Neural Information Processing Systems (NIPS)
in 2013 [26] with part of the technical results presented in
the conference version. The current paper represents a more
comprehensive treatment of the subject with new technical
results and exposition.

A. Problem Setup

Notations: We denote the data matrix by X ∈ Rn×N ,
where each column of X (normalized to a unit vector) belongs
to the union of L subspaces (L assumed unknown)

S1 ∪ S2 ∪ ... ∪ SL.

Each subspace S` contains N` data samples with N1 +N2 +
... + NL = N . Given the data matrix X , the subspace
clustering task aims to identify these unknown subspaces S`
and to assign columns of X to the appropriate subspaces.
Let X(`) ∈ Rn×N` denote the selection (as a set and a
matrix) of columns in X that belong to S` ⊂ Rn, which
spans a d`-dimensional subspace. Without loss of generality,
let X = [X(1), X(2), ..., X(L)] be ordered. In addition, we use
‖·‖ to represent Euclidean norm (for vectors) or spectral norm
(for matrices) throughout the paper.
Method:

To tackle the subspace clustering task, we first solve the
following convex optimization problem

LRSSC : min
C
‖C‖∗ + λ‖C‖1

s.t. X = XC, diag(C) = 0.
(1)

Spectral clustering techniques (e.g., [27]) are then applied on
the affinity matrix W = |C| + |C|T where C is the solution

to (1) to obtain the final clustering. Here |·| is the elementwise
absolute value.

Note that (1) is an interpolation between LRR and SSC.
where when λ → ∞ it becomes SSC and when λ → 0
it becomes a variant of LRR. A minor difference from the
original LRR proposed in [4] is that we require diag(C) = 0.
The criterion of success: In the subspace clustering task, as
opposed to compressive sensing or matrix completion, there is
no “ground-truth” C to compare the solution against. Instead,
the algorithm succeeds if each sample is expressed as a linear
combination of the samples belonging to the same subspace,
i.e., the output matrix C are block diagonal (up to appropriate
permutation) with each subspace cluster represented by a
disjoint block. Formally, we have the following definition.

Definition 1 (Self-Expressiveness Property (SEP)). Given
subspaces {S`}L`=1 and data points X from these subspaces,
we say a matrix C obeys Self-Expressiveness Property, if the
nonzero entries of each ci (ith column of C) correspond to
only those columns of X sampled from the same subspace as
xi.

Note that the solution obeying SEP alone does not imply the
clustering is correct, since each block may not be connected.
This is the so-called “graph connectivity” problem studied in
[24], where examples of SSC failing to construct a connected
graph are provided for problems with subspace dimension
larger than 3 (More discussions of this in [28] which shows a
pessimistic lower bound in the noisy case).

On the other hand, failure to achieve SEP does not neces-
sarily imply clustering error either, as the spectral clustering
step may generate a (sometimes perfect) solution even when
there are non zero entries between blocks. Nevertheless, SEP
is the condition that verifies the design intuition of SSC and
LRR. Besides, if C obeys SEP and each block is connected,
we immediately get the correct clustering.

In practice, we note that SEP is an “almost” sufficient
condition and it is often stronger than necessary, especially
when a small error in clustering is tolerable, in which case it
might be desirable to trade off SEP with denser connections
within each class.

II. RELATED WORK

In this section, we discuss and compare related work for
subspace clustering and highlight our contribution.

A. Self-expressiveness property

Most prior theoretical works on SSC-like algorithms focus
on establishing sufficient conditions that guarantee the con-
structed affinity matrix to satisfy SEP (Definition 1). These
conditions are also crucial for understanding our technical
results and their relative merits compared to existing work.
We summarize the assumptions on the subspaces in Table I
and the assumptions on the models in Table II.

SSC has been shown to succeed under a broad spectrum
of conditions. Beyond the basic guarantee for independent
subspace, it is also shown to work for disjoint subspaces [5]
and overlapping subspaces [21] under both probabilistic and
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TABLE I
THE HIERARCHY OF ASSUMPTIONS ON THE SUBSPACES. SUPERSCRIPT ∗ INDICATES THAT ADDITIONAL SEPARATION CONDITIONS ARE NEEDED.

A. Independent Subspaces dim [S1 ⊗ ...⊗ SL] =
∑L
`=1 dim [S`].

B. Disjoint Subspaces∗ S` ∩ S`′ = {0} for all {(`, `′)|` 6= `′}.
C. Overlapping Subspaces∗ dim(S` ∩ S`′ ) < min {dim(S`), dim(S`′ )} for all {(`, `′)|` 6= `′}.

TABLE II
A REFERENCE CHART OF MODELS USED IN ANALYZING SUBSPACE CLUSTERING ALGORITHMS.

Assumption on data points within each subspace Assumption on subspaces themselves
1. Fully-Random Model Uniform on unit sphere in each subspace Uniform drawn from Rn
2. Semi-Random Model Uniform on unit sphere in each subspace Canonical angles
3. Deterministic Model Inradius / minimum singular value (minimax/projected) Subspace incoherence

deterministic models. In contrast, while LRR has comparable
empirical performance as SSC, it has not been proven to work
except under the independent subspace setting. Motivated by
this, our algorithm is a combination of LRR and SSC in the
hope of combining the strengths of LRR and SSC. Along the
way, our analysis also shed insight into why LRR works well
in practice.

A recent line of work [29], [30] developed a simpler
algorithm that only involves calculating and thresholding the
pairwise cosine distances of data points, and established
guarantees similar to SSC [21] under the semi-random model
using a much simpler algorithm that only involves calculating
and thresholding the pairwise cosine distances of data points.
These thresholding based subspace clustering methods (TSC)
however, seem to rely critically on the distribution assumptions
of the semi-random model and hence do not work as well as
SSC or LRR in applications such as motion segmentation and
face clustering (see e.g., experiments in [30], [31]).

Independent of this paper, there is another line of work
on greedy feature selection, [14]–[16] that uses orthogonal
matching pursuit (OMP) or its variants in lieu of solving a
convex optimization and is therefore more scalable than LRR,
SSC and LRSSC in the current paper (detailed discussion
on computation is deferred to Section VII and Section D).
It is more challenging to analyze the greedy algorithms,
which is probably why their theoretical guarantees only cover
the noiseless settings initially. This is changed by a recent
revisit of the problem due to Tschannen and Bölcskei [17],
where comparable guarantees (with even stronger parameters
in some regimes) under noisy observations were established
for OMP and the more computationally efficient matching
pursuit algorithm. Empirically, these greedy approaches tend
to have slightly worse performance on benchmarking datasets
[14].

In terms of proof techniques, our analysis is inspired by the
dual certificate analysis in [21], but is more involved as the
optimization objective is more complicated. Moreover, some
new technical elements are introduced in the proof, including
a new minimax subspace incoherence condition (which strictly
expands the results for SSC in [21], see Fig. 1) and the
connections between the inradius and minimum singular value.

We want to remark on the assumptions in Table I that
the results in [21], [29] for disjoint or partially overlapping
subspaces do not imply the independent subspaces case. This

Fig. 1. The coverage of theoretical results for subspace clustering. Note
that our result interpolates between the general separation type of guarantee
originated in Soltanolkotabi and Candes [21] and the basic independence-
based guarantee [11], [12] that requires no additional separation assumptions.

is because the analysis for disjoint or partially overlapping
case often requires separation conditions on the subspaces,
while independent subspace by itself is sufficient for SEP
(see Table II). Our result bridges this gap and covers not
only independent subspaces but also a large class of problems
with nearly independent subspaces. This is reflected in the
triangular grey region in Fig. 1.

B. Graph Connectivity

The works mentioned above focus only on SEP and neglect
the graph connectivity problem [24]. Notable exceptions are
[30], [15] and [28]. [30] proves graph connectivity of TSC
under semi-random models using the connectivity of k-nearest
neighbors which unfortunately requires an exponential (with
respect to the subspace dimension) number of data points in
each subspace. [15] and [28] overcome the issue by post-
processing of possible disconnected components. However,
these approaches are fragile under noise and do not apply
to practical cases when SEP does not hold. Therefore, they
cannot replace LRR or LRSSC in practical applications.

Finally, we would like to point out a connection to an
interesting line of work on least-square subspace clustering
(pioneered by [32]), which uses square vector `2 norm of the
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representation matrix instead of the vector `1 norm or the nu-
clear norm. After writing the current paper, it has come to our
realization that there is really nothing special about the nuclear
norm in terms of “densifying” the representation matrix. As
a result, the square `2 regularization is equally effective and
computationally a lot cheaper than using the nuclear norm.
This idea motivated the subsequent development of elastic net
subspace clustering [33], a fast active set algorithm and its
corresponding theoretical guarantee [34]. You, Li, Robinson,
et al. [34]’s bound explicitly demonstrates how the strength
of square `2 regularization affects a geometric condition that
describes the trade-off between SEP and graph connectivity.
Another attempt to interpolate between `1 and `2 is the trace-
lasso approach [35], which has strong empirical performance
on the YaleB datasets for face clustering.

III. THEORETICAL GUARANTEES

In this section, we present the theoretical guarantee for
LRSSC in “deterministic” and “fully random” models (see
Table II).

A. The Deterministic Setup

Before we state our theoretical results for the deterministic
setup, we need to define a few quantities.

Definition 2 (Normalized dual matrix set). Let {Λ1(A)} be
the Λ1 part of the set of optimal solutions to

max
Λ1,Λ2,Λ3

〈A,Λ1〉

s.t. ‖Λ2‖∞ ≤ λ, ‖ATΛ1 − Λ2 − Λ3‖ ≤ 1,

diag⊥(Λ3) = 0,

(2)

where ‖ · ‖∞ is the vector `∞ norm and diag⊥ selects all
the off-diagonal entries and A = [a1, ..., am] ∈ Rd×m is a
full rank matrix and a1, ..., am 6= 0. Let Λ∗ ∈ {Λ1(A)} be
the solution of the above optimization problem such that its
column vectors ν∗1 , ..., ν

∗
m ∈ span(A) 2 Define normalization

operator fΛ∗ : Rd×m → Rd×m, such that

fΛ∗(Λ) ,

[
ν1

‖ν∗1‖
, ...,

νm
‖ν∗m‖

]
.

The normalized dual matrix set {V (A)} is the range of fΛ∗

on domain {Λ1(A)}. Each V (A) ∈ {V (A)} is called a
normalized dual matrix.

To see that the above definition is well-defined, check that
Λ∗ always exists since we can project any solution to span(A)
without changing the objective and feasibility. The normalized
dual matrix set is only a function of A because f∗Λ and
{Λ1(A)} depend only on A.

The intuition of the above definition is not clear at this point
yet and will be explained in details in Section V. The short
version is that (2) is the Lagrange dual of the LRSSC objective
(1) with input data matrix X replaced by a generic matrix A,
and this definition captures the fact that the solution to (2) is
often not unique. The following definition exploits this non-
uniqueness to our advantage.

2If Λ∗ is not unique, we can just pick the one with least Frobenious norm.

Definition 3 (Minimax subspace incoherence property). Com-
pactly denote V (`) = V (X(`)). We say the vector set X(`) is
µ-incoherent to other points if

µ ≥ µ(X(`)) := inf
V (`)∈{V (`)}

max
x∈X\X(`)

‖V (`)Tx‖∞.

The incoherence µ in the above definition measures how
separable the data points in S` are from other data points
(small µ represents more separable data using LRSSC). We
stress that µ is a function of the data set X rather than the
collection of subspaces. Also, it is a measure of separability
that is specific to LRSSC with a fixed λ, as for SSC or
LRR the definition of V ` is different. The data-dependent and
algorithm-dependent nature of this metric of the separability
of the subspace clustering problems are essential for us to
establish fine-grained theoretical guarantee that applies to
every data set separately instead of resorting to a conserva-
tive worst-case upper bound. Similar data/algorithm-dependent
definitions have been used in the analysis of SSC algorithms
in [21], [23] and thresholding-based algorithms [29], [30]

Our definition differs from Soltanokotabi and Candes’s
definition of subspace incoherence in that it is defined as
the minimum over all possible dual directions, while [21,
Definition 2.4] takes only the dual direction in {V (X)} that is
on subspace S`. Thus, it is easy to see that µ-incoherence in
[21, Definition 2.4] implies µ-minimax-incoherence. In fact,
in several interesting cases, µ can be significantly smaller
under the new definition. We illustrate the point with the two
examples below and leave detailed discussions in the appendix.

Example 1 (Independent Subspace). Suppose the subspaces
are independent, i.e., dim(S1⊕...⊕SL) =

∑
`=1,...,L dim(S`),

then all X(`) are 0-incoherent under our Definition 3. This
is because for each X(`) one can always find a dual matrix
V (`) ∈ {V (`)} whose column space is orthogonal to the
span of all other subspaces. In contrast, the incoherence
parameter according to Definition 2.4 in [21] is a positive
value, potentially large if the angles between the subspaces
are small.

Example 2 (Random except 1 subspace). Suppose that there
are L disjoint 1-dimensional subspaces in Rn (L > n) and
that S1, ...,SL−1 are randomly drawn. SL is chosen such that
its angle to one of the L− 1 subspace, say S1, is π/6. Then
the incoherence parameter µ(X(L)) defined in [21] is at least
cos(π/6). However under our new definition, one can show

that µ(X(L)) ≤ 2
√

6 log(L)
n with high probability3.

Our definition is also different from those incoherence
definitions used in thresholding-based algorithms [29], [30]
and greedy approaches [14]–[16].

The incoherence definition in the thresholding-based al-
gorithms is defined to be the maximum cosine distances
between data points in different subspaces; and the incoher-
ence definition in greedy approaches is defined through the
cosine distances between the sequence of residuals induced by

3This example is described with more details in Section V and generalized
to d-dimensional subspaces and to “random except K subspaces”.
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running the OMP or nearest neighbor search and data points
in a different subspace.

These differences are not important in fully-random models
but in the semi-random models and the deterministic setting
where the subspaces are highly correlated with each other, the
flexibility of choosing a particular dual solution from an affine-
subspace of optimal solutions to minimize the incoherence µ
becomes significant. We believe this is the theoretical reason
why SSC and LRR working better than TSC and greedy
approaches in motion-segmentation data sets.

The result in the deterministic setup also depends on the
smallest singular value of a rank-d matrix (denoted by σd)
and the inradius of a convex body as defined below.

Definition 4 (inradius). The inradius of a convex body P ,
denoted by r(P), is the radius of the largest Euclidean ball
inscribed in P .

The smallest singular value and inradius measure how well-
represented each subspace is by its data samples. Small inra-
dius/singular value implies either insufficient data or skewed
data distribution, in other words, it means that the subspace is
“poorly represented”.

The relationship of the inradius and smallest singular value
can be seen from their alternative representations as optimiza-
tion problems

r(conv(±A)) = min
‖v‖2=1

‖AT v‖∞

σd(A) = min
‖v‖2=1

‖AT v‖2
(3)

where A ∈ Rd×m be a full rank-matrix. Since columns of
A all have magnitude 1, one can immediately see that 0 <
r(conv(±A)) ≤ 1, while 0 < σd(A) ≤

√
N/d and

r(conv(±A))→ 0⇔ σd(A)→ 0.

Now we may state our main result.

Theorem 1 (LRSSC). The self-expressiveness property holds
for the solution of (1) on the data X if there exists a weighting
parameter λ such that for all ` = 1, ..., L, one of the following
two conditions holds:

µ(X(`))(1 + λ
√
N`) < λmin

k
σd`(X

(`)
−k), (4)

or µ(X(`))(1 + λ) < λmin
k
r(conv(±X(`)

−k)), (5)

where X−k denotes X with its kth column removed and
σd`(X

(`)
−k) represents the dth` (smallest non-zero) singular

value of the matrix X(`)
−k.

We briefly explain the intuition of the proof. The theorem
is proven by duality. First, we write out the dual problem of
(1),

Dual LRSSC : max
Λ1,Λ2,Λ3

〈X,Λ1〉

s.t. ‖Λ2‖∞ ≤ λ, diag⊥(Λ3) = 0,

‖XTΛ1 − Λ2 − Λ3‖ ≤ 1.

This leads to a set of optimality conditions and leaves us to
show the existence of a dual certificate satisfying these condi-
tions. We then construct two levels of fictitious optimizations

(which is the main novelty of the proof) and construct a dual
certificate from the dual solution of the fictitious optimization
problems. Under either condition (4) or (5), we establish
that the dual certificate meets all optimality conditions, hence
certifying that SEP holds. We defer the detailed proof to the
appendix and focus on discussing the results in the main text.

Remark 1 (SSC). Theorem 1 can be considered as a gener-
alization of Theorem 2.5 of [21]. Indeed, when λ → ∞, (5)
reduces to

µ(X(`)) < min
k
r(conv(±X(`)

−k)).

One may observe that this is exactly the same as Theorem 2.5
of [21], with the only difference being the definition of
µ. Since our definition of µ(X(`)) is tighter (i.e., smaller)
than that in [21], our guarantee for SSC is indeed stronger.
Theorem 1 also implies that the good properties of SSC (such
as overlapping subspaces, large dimension) shown in [21] are
also valid for LRSSC for a range of λ greater than a threshold.

To further illustrate the key difference with [21], we con-
sider the following scenario.

Example 3 (Correlated/Poorly Represented Subspaces). Sup-
pose the subspaces are poorly represented, i.e., the inradius r
is small. Further, suppose the subspaces are highly correlated,
i.e., the canonical angles between subspaces are small, then the
subspace incoherence µ′ defined in [21] is quite large (close
to 1). Thus, the succeed condition µ′ < r presented in [21] is
violated. Using our new definition of incoherence µ, as long
as the subspaces are “sufficiently independent”4 (regardless of
their correlation) µ will be small (e.g., Example 2), making
SEP hold even if r is small, namely when subspaces are poorly
represented. This is an important scenario because real data
such as those in Hopkins155 and Extended YaleB often suffer
from both problems, as illustrated in [5, Figure 9 & 10].

Remark 2 (LRR). We observe that our guarantee is the
strongest when λ→∞ and becomes superfluous when λ→ 0
unless subspaces are independent (see Example 1). This seems
to imply that the “independent subspace” assumption used
in [4], [22] to establish sufficient conditions for LRR (and
variants) to work is essential.5 On the other hand, for each
problem instance, there is a λ∗ such that whenever λ > λ∗,
the result satisfies SEP.

Remark 3 (A polynomial-time verifiable condition). Condi-
tion (4) is based on singular values, hence is computationally
tractable. In contrast, the verification of (5) or the deterministic
condition in [21] is NP-Complete, as it involves computing the
inradii of V-Polytopes [36]. When λ→∞, Theorem 1 reduces
to the first computationally tractable guarantee for SSC that
works for disjoint and potentially overlapping subspaces.

B. The Random Setup
In this subsection we present the results for the random

design case, i.e., data are generated under some random
models.

4We formalize this concept later in Section V.
5Our simulation in Section VII also supports this conjecture.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

Definition 5 (Random data). “Random sampling” assumes
that for each `, data points in X(`) are iid uniformly dis-
tributed on the unit sphere of S`. “Random subspace” as-
sumes each S` is generated independently by spanning d` iid
uniformly distributed vectors on the unit sphere of Rn.

Lemma 1 (Singular value bound). Assume random sampling.
If d` < N` < n, then there exists an absolute constant C1

such that with probability of at least 1−N−10
` ,

σd`(X) ≥ 1

2

(√
N`
d`
− 3− C1

√
logN`
d`

)
,

or simply σd`(X) ≥ 1

4

√
N`
d`
,

if we assume N` ≥ C2d`, for some constant C2.

Lemma 2 (Inradius bound [21], [37]). Assume random sam-
pling of N` = κ`d` data points in each S`, then with
probability larger than 1−∑L

`=1N`e
−√d`N` ,

r(conv(±X(`)
−k)) ≥ c(κ`)

√
log (κ`)

2d`
for all pairs (`, k).

Here, c(κ`) is a constant depending on κ`. When κ` is
sufficiently large, we can take c(κ`) = 1/

√
8.

By Lemma 1 and Lemma 2, we can express the two
conditions (4) and (5) in more explicit terms and compare them
directly. Substitute uppers bounds in Lemma 1 and Lemma 2
into (4) and (5) respectively, we get

µ ≤ O
(

λ
√
N`√

d`(1 + λ
√
N`)

)
⇒ (4) (6)

µ ≤ O
(
λ
√

logN` − log d`√
d`(1 + λ)

)
⇒ (5) (7)

Clearly, not one condition dominates the other uniformly over
all settings. In particular, when N` is sufficiently large and

λ = O

(
1

1+
√

log (N`−log d`)

)
, (6) is a weaker condition than

(7). On the other hand, if λ is much larger than 1, then (7) is
weaker than (6) by a factor of

√
logN`. These observations

suggest that (6) and (7) are complementary to each other and
taking the union of them strictly strengthens the theorem than
either condition alone.

Of course, one might be tempted to maximize the right hand
side of (6) and (7) over λ, which will occur at λ → ∞,
then the algorithm reduces to plain SSC and the inradius
condition (7) from [21] becomes always active. This suggests
that SSC maximizes the ability of the algorithm to handle
closely correlated subspaces. However, the concern is that
using larger λ leads to a sparser embedded graph and poorer
graph connectivity.

By further assuming random subspace, we provide an upper
bound of the incoherence µ.

Lemma 3 (Subspace incoherence bound). Assume random
subspace and random sampling. It holds with probability
greater than 1− 2/N that for all `,

µ(X(`)) ≤
√

6 logN

n
.

This result mirrors the first equation in Page 39 of [21], but
needs to be proven as µ is defined differently. In Section V,
we present how our new definition can lead to a sharper bound
of the subspace incoherence in the nearly-independent settings
(see Proposition 4).

Combining Lemma 1 and Lemma 3, we have the following
theorem.

Theorem 2 (LRSSC for random data). Suppose L rank-d
subspaces are uniformly and independently generated from
Rn, N/L data points are uniformly and independently sam-
pled from the unit sphere embedded in each subspace, and
N > CdL for some absolute constant C. Then SEP holds
with probability larger than 1− 2/N − 1/(Cd)10, if

d <
n

96 logN
, for all λ >

1√
N
L

(√
n

96d logN − 1
) . (8)

The above condition is obtained from the singular value
condition. Using the inradius guarantee, combined with
Lemma 2 and 3, we have a different success condition requir-
ing d < n log(κ)

96 logN for all λ > 1/
(√

n log κ
96d logN − 1

)
. Ignoring

constant terms, the condition on d is slightly better than (8)
by a log factor but the range of valid λ is significantly reduced.

IV. GRAPH CONNECTIVITY

In this section, we discuss the largely ignored “other side” of
the subspace clustering problem — graph connectivity. SSC,
LRR, and LRSSC can all be viewed as approaches that learn
an affinity graph from the data where edges of the graph
between two data points indicate that the two data points
should be within the same subspace. Our results in the previous
section establish conditions under which the SEP condition
holds, which implies that there are no edges between data
points from two different subspaces. By the feasibility of the
optimization problem (1), we also know that any point in X(`)

must have at least d` edges connected to it if a weak “general
position” assumption is true 6. But that does not rule out the
possibility that X(`) gets broken down into multiple smaller
connected components on the learned affinity graph and when
that happens, we say that the algorithm “oversegments” the
data or we have ran into a graph connectivity problem.

The graph connectivity for SSC is studied by [24]. It was
shown that “general position” assumption is sufficient for SSC
to produce a connected graph when d = 1, 2 and 3. But
for d = 4, they provided a negative example which shows
that the “general position” assumption is no longer sufficient.
Robustified version of the graph connectivity problem in Noisy
SSC [23] is studied in [28] showing that the “general position”
assumption can typically be broken by a very small adversarial
perturbation to the dataset.

On the other hand, in practice, it is observed that graph
connectivity is not an issue for LRR [4], [12]. We provide the

6 The “general position” assumption says any d` data points in X(`) spans
the full subspace S`. In some sense, this is a necessary assumption because
otherwise those k+ 1 points can be alternatively considered to be forming a
separate subspace.
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following proposition that formalizes this empirical observa-
tion.

Proposition 1. When the subspaces are independent, X is not
rank-deficient and the data points are randomly sampled from
an arbitrary non-degenerate continuous distribution defined
on a unit sphere in each subspace, then the solution to LRR
defined as

min
C
‖C‖∗ s.t. X = XC,

is class-wise dense, namely each diagonal block of the matrix
C that corresponds to the class labels are all non-zero.

The result says that under a weak distribution assumption,
the intra-class connections of LRR’s solution are inherently
dense (fully connected). The proof makes use of the following
lemma which states the closed-form solution of LRR.

Lemma 4 ([4]). Take skinny SVD of data matrix X = UΣV T .
The closed-form solution to LRR is the shape interaction
matrix C = V V T .

Proposition 1 then follows from the fact that each entry of
V V T has a continuous distribution, hence with probability 1
that none of the entries are exactly zero.

Note that the above result does not solve the graph connec-
tivity problem for LRSSC, which concerns the solution of the
following fictitious optimization problem.

min
C(`)
‖C(`)‖∗ + λ‖C(`)‖1

s.t. X(`) = X(`)C(`), diag(C(`)) = 0.
(9)

Even when λ → 0, (9) is not exactly LRR, but with an
additional constraint that diagonal entries are zero.

Proposition 1, however, demonstrates the nature of the
nuclear norm regularization which tends to induce a dense
solution. By increasing the weight λ on the `1 norm, we
are essentially making the graph sparser with the hope of
achieving SEP, whereas by decreasing λ, we are hoping to
make the solution to (9) more densely connected. By striking
a balance between the two extremes, we may get the best of
both worlds. This is demonstrated numerically in Section VII.
Some recent advances. After the conference version of the
current paper was presented at NIPS’13, much progress had
been made to address the problem of graph connectivity [24].
It comes to our realization that we can replace the nuclear
norm with the square `2 norm and Proposition 1 remains cor-
rect. You, Li, Robinson, et al. [34] combine the square `2 norm
and `1 norm and provide a thorough theoretical guarantee
for the approach, including a clear geometric interpretation of
how the regularization weight λ affects the tradeoff between
SEP and graph connectivity. Park, Caramanis, and Sanghavi
[15] and Wang, Wang, and Singh [28] provide alternative
algorithms that lead to a provably correct clustering by avoid-
ing, rather than resolving the graph connectivity issue, which
prompts us to rethink whether the graph connectivity problem
is the correct way of framing the problem, to begin with. We
discuss further details of these results and their implications
in the concluding remarks towards the end of the paper in
Section VIII.

Fig. 2. The illustration of dual direction and its geometric meaning (figure
extracted from [21]).

V. DISCUSSIONS AND BOUNDS OF MINIMAX SUBSPACE
INCOHERENCE PROPERTY

In this section, we will explain the notion of minimax
subspace incoherence property (Definition 3) and highlight the
difference between this definition and the subspace incoher-
ence property in [21].

A. Non-uniqueness of the dual directions

Since minimax subspace incoherence critically depends on
the normalized dual direction matrix (Definition 2), we start
investigating it first. Note that V (X) is essentially an optimal
solution to the dual problem of LRSSC with data X . When
λ =∞, namely, for SSC, the dual problem becomes a linear
programming problem. Hence its solution may be obtained
geometrically on the vertices of the dual polytope in a column-
by-column fashion. This is illustrated in Fig. 2, where the
dual direction of data point x(`)

i is obtained from its low-
dimensional representation y. Note that x(`)

i = Uy for some
orthonormal basis U of S`. Other data points in S` can be
similarly represented as X(`)

−i = UA. Note that the reduced
dimensional primal constraint y = Ac is equivalent to the
original x(`)

i = X
(`)
−i c. Dual point of the reduced dimensional

dual problem is obtained and denoted as λ(A, y) and the dual
direction v

(`)
i corresponding to x

(`)
i is hence defined as the

embedding of the low-dimensional dual point λ(y,A) to the
ambient space via

v
(`)
i = Uλ(y,A)/‖λ(y,A)‖.

In the general LRSSC case the dual problem is a semidef-
inite programming problem. Hence there is no simple ge-
ometric illustration of where the optimal dual variable will
be. In addition, since nuclear norm cannot be separated into
column by column optimization, the dual variable is a matrix.
Nevertheless, the key idea is the same. We may still represent
the data in the low-dimensional space and obtain a dual matrix
V ∗(X(`)) where all columns of which are within the subspace
of X(`).

The key observation here in this paper is that the dual matrix
constructed in this way is not the only optimal dual matrix.
Essentially, in the ambient space, we may add any arbitrary
matrix V ⊥(X(`)) to V ∗(X(`)) as long as each column of
V ⊥(X(`)) belongs to the orthogonal complement of S`. The
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x

y

z

O

S1

S1

ν∗ ∈ S3

ν⊥ ⊥ S3

ν ⊥ span(S1,S2)

S1,S2 ∈xy-plane

Fig. 3. Illlustration of how dual vector ν can be constructed to get minimax
subspace incoherence µ = 0 under independent subspace assumption. Note
that we can always find a ν perpendicular to the span to the remaining
subspaces no matter how closely affiliated the subspaces are.

so-called normalized dual matrix set is just the collection of
all possible dual matrices with each column’s projection to S`
normalized to 1.

B. The advantages of the minimax subspace incoherence
property

The minimax subspace incoherence (Definition 3) is simply
defined as the minimum subspace incoherence over all possible
dual matrix defined as

V (X(`)) = V ∗(X(`)) + V ⊥(X(`)).

It differs from the original definition in [21] in that [21] takes
V ⊥(X(`)) = 0. There is two effects of using a non-zero
V ⊥(X(`)). First, the magnitude of each column will be larger.
This is undesirable since we would like ‖[V (X(`)]Tx‖∞ to
be as small as possible. The second effect is on the angles
between each column of V (X(`)) and x. This is desirable
since we may choose a direction such that the angles are
close to π/2 for all x. This is the property we leverage in
the proof of Example 1 and 2, which demonstrate that in
many cases, using a non-zero V ⊥(X(`)) leads to substantially
smaller incoherence µ.

1) Proof of Example 1 (Independent subspace): We claim
in Example 1 that µ = 0 when subspaces are independent
without detailed justification. Here we provide the proof and an
illustration. By definition of independent subspaces, dim(S1⊕
... ⊕ SL) =

∑
`=1,...,L dim(S`) ≤ n where n is the ambient

dimension. Then for data point x in Si, we may choose a
corresponding dual vector ν = ν∗ + ν⊥ such that

ν ∈ Null(S1 ⊕ ...⊕ Si−1 ⊕ Si+1 ⊕ ...⊕ SL)).

The nullspace is of dimension larger than 1 if we remove any
Si, so we can always construct such ν (with potentially very
large ν⊥). Then by definition of subspace incoherence µ = 0
is proven. The construction is illustrated in Fig. 3.

2) Proof of Example 2 (Random except 1 subspace): Recall
that the setup is L disjoint 1-dimensional subspaces in Rn
(L > n), where S1, ...,SL−1 subspaces are randomly drawn;
and SL is chosen such that its angle to one of the L − 1
subspace, say S1, is π/6. There is at least one sample in each
subspace, and N ≥ L. Our claim is that

Proposition 2. Assume the above problem setup, then with
probability at least 1− 2L/N3,

µ ≤ 2

√
6 log(L)

n
.

Proof. For xi ∈ S` with ` = 2, ..., L − 1, we simply
choose νi = ν∗i . Note that ν∗i is uniformly distributed, so by
Lemma 12 and union bound, the maximum of |〈x, νi〉| is upper

bounded by 2
√

6 log(N)
n with probability at least 1− 2(L−2)2

N12 .
Then we only need to consider νi in S1 and SL, denoted by ν1

and νL. We may randomly choose any ν1 = ν∗1 + ν⊥1 obeying
ν1 ⊥ SL and similarly νL ⊥ S1.

By the assumption that ∠(S1,SL) = π/6,

‖ν1‖ = ‖νL‖ =
1

sin(π/6)
= 2.

Also note that they are considered a fixed vector w.r.t. all
random data samples in S2, ..,SL, so the maximum inner

product is 2
√

6 log(N)
n , summing up the failure probability for

the remaining 2L− 2 cases, we get

µ ≤ 2

√
6 log(N)

n
with probability

1− 2L− 2

N3
− 2(L− 2)2

N12
> 1− 2L

N3
.

C. “Sufficiently Independent”: Take-K-out-Independence

We mentioned in Example 3 that as long as the subspaces
are “sufficiently Independent”, subspace incoherence µ will
be significantly smaller under our minimax definition than
under the subspace incoherence definition in [21]. In this sec-
tion, we formalize our claim by introducing the Take-K-out-
Independence condition and providing a bound of incoherence
µ under both the deterministic and the random model.

Definition 6 (Take-K-out-Independence). Suppose there are
L disjoint subspaces. If the remaining subspaces become inde-
pendent after any K subspaces are excluded, then we say these
L subspaces obey “Take-K-Out-Independence” condition.

Definition 7 (Take-K-out-Angle). Correspondingly, let the
indices of K subspaces taken out be K and the remaining
subspaces indices be Kc := {1, ..., L}/K. Furthermore, de-
note each

(
L
K

)
experiment with index i such that Ki and Kci

represent respectively the particular indices sets for experi-
ment i and A−`(i) := span(Sk|k ∈ Kci/`). Then we define the
“Take-K-out-Angle” as

θ = arcsin

[
min
i

min
`∈Kci

min
{j|xj∈X(`)}

‖ProjNull(A−`
(i)

)

(
ν∗j
)
‖
]
,

where ν∗j ∈ S` is the in-subspace dual vector corre-
sponding to xj , ProjA is the Euclidean projection to sub-
space A and Null(A) gives the null space of subspace A.
Note that if S1, ...,SL obeys Take-K-out-Independence, then
dim[Null(A−`(i))] ≥ 1.

The “Take-K-out-Angle” measures how separable the L−
K subspaces are after taking out K subspaces. For θ to be
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bounded away from 0, it suffices that each subspace within the
L−K is as close to “orthogonal” as possible to the all of the
remaining L−K − 1 subspaces. Using the above definitions,
we can bound the subspace incoherence.

Proposition 3 (µ bound for deterministic
Take-K-Out-Independent subspaces). If L subspaces obey
Take-K-out-Independence with Take-K-out-Angle θ, then the
minimax subspace incoherence property in Definition 3 is
upper bounded by

µ ≤ K

(L− 1) sin θ
. (10)

The proof, given in the appendix, involves a new construc-
tion of µ that attains these bounds.

Example 4 (Trivial cases). If subspaces are independent such
that K = 0, then µ = 0. If subspaces are “nearly independent,”
i.e., independent after K subspaces are removed, the smaller
K is, the better the bound. There might be a range of K under
which this bound on µ is meaningful.

If we further assume that the data are randomly generated,
we are able to obtain a stronger bound.

Proposition 4 (µ bound for random Take-K-Out-Independent
subspaces). Suppose the ambient dimension is n. Let L
d-dimensional subspaces and a total of N data points be
generated under the “fully random model”, and let K be
the smallest integer such that n < Ld < n + Kd (this
implies that the subspaces obey “Take-K-out-Independence”
condition with probability 1) and M :=

(
L−1
K

)
. Then with

probability larger than 1− 3/N , the minimax subspace inco-
herence satisfies

µ ≤K
√

6 logN

α(L− 1)
+

√
12 logN√
nM

+

√
6 logN

n

[
1− (1− δ(α, n))e−3α2/2

]
,

(11)

for any fixed 0 < α ≤ √n where the small residual satisfies

δ(α, n) <

 e
2(n+1)! + α2

n , when 0 < α <
√

2
3 ;

e
2(n+1)! + α4

n , otherwise.
(12)

In addition, if we take α > Θ(
√

logN
n ), then

Pr

(
µ ≤

√
6 logN

n

)
≥ 1− 3/N. (13)

On the other hand, if we take α < o(e−n) then

Pr

(
µ <

K
√

6 logN

α(L− 1)

)
≥ 1− 3/N. (14)

The proof in the appendix involves carefully exploiting the
relevant model assumptions and the corresponding probabilis-
tic bounds. To see the potential use of the above bound, we
first do a sanity check by taking two extreme cases K = 0
and K = O(L). K = 0 essentially means the subspaces are
independent and α can be taken to be arbitrarily small and

by (14) the bound is 0. When K is on the same order as
L, we can choose a large α, and by (13), the bound reduces
to Lemma 3. When K is small but not 0,i.e., in the “nearly
independent” cases, we now provide a few simple examples
to illustrate how the above general bound (12) can be an order
of magnitude sharper than Lemma 3.

Example 5 (n + 1 i.i.d 1D subspaces). In this case, K = 1,
L = n+ 1, M = n. Suppose n is large such that logN/n�√

logN/n. We may take α = 0.1 and obtain

µ <
24.5
√

logN

n
+ 0.015

√
6 logN

n
+

√
12 logN

n

< 0.03

√
6 logN

n
.

This is more than 20 times smaller than the bound in Lemma 3.

Example 6 (bn/d + Kc i.i.d. rank-d subspaces). This is a
generalization of the previous example with L = bn/d+Kc =
bn/dc + K and M =

(
L−1
K

)
. As Kd increases , the first

term of (11) becomes larger. Whenever Kd = o(
√
n), the

bound (12) in Proposition 4 is sharper than that in Lemma 3.
We may verify this by checking M =

(bn/dc+K−1
K

)
increases

monotonically w.r.t. the increasing K and the decreasing d
when Kd = o(

√
n). The smallest M occurs when K = 1 and

d = b√nc with M = b√nc. This implies that the third term
of (11) is small compared to the first term in many interesting
cases.

VI. FAST NUMERICAL ALGORITHM

As the subspace clustering problem is usually large-scale,
off-the-shelf SDP solvers are often too slow to be useful. In-
stead, we derive an alternating direction method of multipliers
(ADMM) algorithm [38] to solve the problem numerically.
The algorithm involves decoupling the two objectives and
diagonal constraints by introducing dummy variables C2 and
J as

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1
s.t. X = XJ, J = C2 − diag(C2), J = C1,

(15)

and updating J,C1, C2 and the three dual variables alterna-
tively. Thanks to the change of variables, all the updates have
closed-form solutions. To further speed up the convergence,
we adopt the adaptive penalty idea in [39], which ameliorates
the problem of tuning numerical parameters in ADMM. The
detailed pseudocode of the algorithm and the convergence
guarantee can be found in the appendix.

We now discuss the computational complexity of the
ADMM algorithm. While the ADMM algorithm is more
scalable than the standard SDP solvers and is sufficient to run
all our experiments, it requires to computing a full-SVD in
every iteration which has a complexity of O(N3). In practice,
using partial SVD requires a complexity of O(sN2) where s
is what what chosen in a somewhat ad-hoc manner. Develop-
ing an efficient algorithm to speed up the standard ADMM
algorithm for solving the LRSSC optimization problem is an
important problem for future research. To the best of our
knowledge, the fastest algorithm for solving SSC to date is



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

O(N2) (see [40] for various algorithms that achieve this), and
it remains an open problem whether we can solve SSC in
subquadratic time. Resolving this issue for any algorithms that
use self-representation like SSC and LRR will be an important
breakthrough that enables application of subspace clustering
to large scale data sets.

VII. EXPERIMENTS

To verify our theoretical results and illustrate the advan-
tages of LRSSC, we design several numerical experiments
to evaluate different aspects of the algorithm under various
settings. Then we test the performance on a real application
using the Hopkins155 motion segmentation dataset. In all
our synthetic experiments on noise-free problems, we use
the ADMM implementation of LRSSC with a fixed set of
numerical parameters. In the real-data experiments, we use
the corresponding ADMM algorithm for the following noisy
LRSSC formulation

min
C

1

2
‖X −XC‖2F + β1‖C‖∗ + β2‖C‖1 s.t. diag(C) = 0,

(16)
which is arguably the natural extension to handle noise (see
[23]). β1 and β2 is set to be

β1 =
α

1 + λ
, β2 =

αλ

1 + λ
.

where α is a tuning parameter that reflects the different noise
level.

Most of the results are plotted against an exponential grid
of λ values, such that comparisons to SSC and LRR are clear
at the two ends of the plots.

A. Numerical Simulation

Exp 1: Separation-Sparsity Tradeoff: We first illustrate
the tradeoff of the solution between obeying SEP and being
connected (this is measured using the intra-class sparsity of
the solution). We randomly generate L subspaces of dimension
10 from R50. Then, 50 unit length random samples are drawn
from each subspace and we concatenate them into a 50×50L
data matrix. We use Relative Violation [23] to measure the
violation of SEP and Gini Index [41] to measure the intra-
class sparsity. We choose Gini Index over the more typical `0
as the latter is sensitive to numerical inaccuracy. Also, Gini
index is a sensible measure of sparsity as discussed in Hurley
and Rickard [41].

Formally, the relative violation index is defined as

RelViolation (C,M) =

∑
(i,j)/∈M |C|i,j∑
(i,j)∈M |C|i,j

,

where M is the index set that contains all (i, j) such that
xi, xj ∈ S` for some `. The Gini index for C and mathcalM
is obtained by first sorting the absolute value of Cij∈M
into a non-decreasing sequence ~c = [c1, ..., c|M|], and then
evaluating

GiniIndex (vec(CM)) = 1− 2

|M|∑
k=1

ck
‖~c‖1

( |M| − k + 1/2

|M|

)
.

Fig. 4. Illustration of the separation-sparsity trade-off. Top: 6 subspaces.
Bottom: 11 subspace.

Note that RelViolation takes the value in [0,∞] and SEP
is attained when RelViolation is zero; Gini index takes its
value in [0, 1] and it is larger when intra-class connections are
sparser.

The results for L = 6 and L = 11 are shown in Fig. 4. We
observe phase transitions for both metrics. When λ = 0 (corre-
sponding to LRR), the solution does not obey SEP even when
the independence assumption is only slightly violated (L = 6).
When λ is greater than a threshold, RelViolation goes to zero.
These observations are consistent with Theorems 1 and 2. On
the other hand, when λ is large, intra-class sparsity is high,
indicating possible disconnection within each class.

Moreover, we observe that there exists a range of λ where
RelViolation reaches zero yet the sparsity level does not
reaches its maximum. This justifies our claim that the solution
of LRSSC, taking λ within this range, can achieve SEP and
at the same time keep the intra-class connections relatively
dense. Indeed, for the subspace clustering task, a good tradeoff
between separation and intra-class connection is important.

we provide a qualitative illustration of the separation-
sparsity trade-off in Fig. 5.

Exp 2: when exact SEP is not possible: In this experiment,
we randomly generate 10 subspaces of dimension 3 from a 10
dimensional ambient space, with 15 data points sampled from
each subspace. All the data points are embedded then into
an ambient space of dimension 50. This setting is carefully
chosen by packing more and more subspaces into a relatively
low-dimensional problem such that perfect SEP does not occur
even if we take λ to∞. In other word, the smallest 10 singular
values of the normalized Laplacian matrix are not exactly 0.
Hence we will rely on heuristics such as Spectral Gap and
Spectral Gap Ratio to tell how many subspaces there are and



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

λ = 0 λ = 0.05

λ = 1 λ = 10, 000

Fig. 5. Qualitative illustration of the 11 Subspace Experiment. From left to
right, top to bottom: λ = [0, 0.05, 1, 10, 000], corresponding RelViolation is
[3.4, 1.25, 0.06, 0.03] and Gini Index is [0.41, 0.56, 0.74, 0.79].

Fig. 6. Last 50 Singular values of the normalized Laplacian in Exp2. See
how the spectral gap emerges and become larger as λ increases.

hopefully spectral clustering will return a good clustering.
We find that model selection heuristics such as the spectral

gap [42] and spectral gap ratio [43] of the normalized Lapla-
cian are good metrics to evaluate the quality of the solution
of LRSSC. Fig. 6 gives an qualitative illustration on how
the spectral gap emerges as λ increases. Fig. 7 illustrates
this quantitatively by showing the actual values of the two
heuristics as λ changes. Clearly, model selection is easier in
the SSC side comparing to the LRR side, when SEP is the
main issue (see the comparison in Fig. 8).

Exp 3: Skewed data distribution and model selection: In this
experiment, we use the data with L = 6 in Exp 1 and combine
the first two subspaces into one 20-dimensional subspace. We
then randomly sample 10 more points from the new subspace
to “connect” the 100 points from the original two subspaces

Fig. 7. Spectral Gap and Spectral Gap Ratio for Exp2. When perfect SEP is
not possible, model selection is easier on the SSC side, but the optimal spot
is still somewhere between LRR and SSC.

Exp2 λ = 0 (LRR) Exp2 λ = 10, 000 (SSC)

Fig. 8. Illustration of representation matrices in Exp2. Top: λ = 0, Bottom:
λ = 10, 000. While it is still not SEP, there is significant improvement in
separation.

together. This is to simulate a situation when data distribution
is skewed, i.e., the data samples within one subspace has two
dominating directions. The skewed distribution creates diffi-
culty for model selection in terms of determining the number
of subspaces. In addition, intuitively, the graph connectivity
problem may occur. Here the correct number of subspaces is
5, so the spectral gap is the difference between the 6th and 5th

smallest singular value and the spectral gap ratio is the ratio of
adjacent spectral gaps. The larger these quantities, the better
the affinity matrix reveals that the data contains 5 subspaces.

Fig. 9 demonstrates how singular values change when λ
increases. When λ = 0 (corresponding to LRR), there is no
significant drop from the 6th to the 5th singular value. Hence it
is impossible for either heuristic to identify the correct model.
As λ increases, the last 5 singular values gets smaller and
become almost zero when λ is large. Then the 5-subspace
model can be correctly identified using the spectral gap ratio.
On the other hand, we note that the 6th singular value also
shrinks as λ increases, which makes the spectral gap very
small on the SSC side and leaves little robust margin for
correct model selection against some violation of SEP. As is
shown in Fig. 10, the largest spectral gap and spectral gap
ratio appear at around λ = 0.1, where the solution is able to
benefit from both the better separation induced by the 1-norm
factor and the relatively denser connections promoted by the
nuclear norm factor.

To make the model selection argument more concrete, we
report in Fig. 11 the ranges of λ where the two heuristics
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Fig. 9. Last 20 singular values of the normalized Laplacian in Exp 3.

Fig. 10. Spectral Gap and Spectral Gap Ratio in Exp 3.

Fig. 11. Illustration of model selection with spectral gap (left) and spectral
gap ratio (right) heuristic. The highest point of each curve corresponds to
the inferred number of subspaces in the data. We know the true number of
subspace is 5.

give correct model selection. It appears that “spectral gap”
suggests a wrong model for all λ despite the fact that the 5th

“spectral gap” enlarges as λ increases. On the other hand, the
“spectral gap ratio” reverts its wrong model selection at the
LRR side quickly as λ increases and reaches maximum margin
in the blue region (around λ = 0.5). This seems to imply that
“spectral gap ratio” is a better heuristic in the case when one
or more subspaces are not well-represented.

Exp 4: skewed data distribution but with independent sub-
spaces: All above experiments focus on the “difficult” cases
when the subspaces are not independent. In practice, however,
we often have highly correlated or poorly represented sub-
spaces that are more or less independent. In this experiment,
we demonstrate that LRR is perhaps the better solution for
this situation.

We set ambient dimension n = 50, and generate 3 sub-
spaces. The second and the third subspaces are randomly
generated 3-dimensional subspaces, with 15 points sampled
from each. The first subspace is a 6-dimensional subspace
spanned by two random 3-d subspaces. A total of 33 data
points are taken from this subspace, including 15 data points
each randomly generated from each of the two 3-d subspaces
component and 3 data points randomly taken from the spanned
6-dimensional subspace. As in Exp 3, this 6-d subspace has
skewed data distribution.

For model selection, the spectral gap and spectral ratio for
all λ are shown in Fig. 12. While all experiments return clearly
defined three disjoint components (smallest three singular
values equal to 0 for all λ), the LRR side gives the largest
margin of three subspaces (when λ = 0, the result gives
the largest 4th smallest singular value). This illustrates that
when Skewed-Data-Distribution is the main issue, LRR side
is strictly better than SSC side in terms of robustness even
though any norm penalty (in fact any gauge function) would
have a solution that satisfies SEP in the independent subspace
case. This can be qualitatively seen in Fig. 13.

Fig. 12. Spectral Gap and Spectral Gap Ratio for Exp 4. The independent
subspaces have no separation problem, SEP holds for all λ. Note that due to
the skewed data distribution, the spectral gap gets quite really small at the
SSC side.

Exp3 λ = 0 (LRR) Exp3 λ = 10, 000 (SSC)

Fig. 13. Illustration of representation matrices. Top: λ = 0, Bottom: λ =
10, 000. The 3 diagonal block is clear on the LRR side, while on the SSC
side, it appear to be more like 4 blocks plus some noise.

Exp 5: Noisy version of Exp 3.: Finally, we investigate
whether the robustness in model selection that we see in Exp
3 from more denser affinity matrix translates into clustering
accuracy in the noisy setting. We take the data generated
from Exp 3, which has one 20 dimensional subspace with
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data points sampled from a skewed distribution and four 10-
dimensional subspaces with uniform distributed data points.
Then we add independent Gaussian noise N (0, σ2) to each
coordinate of the data matrix X and then apply NoisyLRSSC
with different tuning parameter λ to it and compare the
clustering error of the algorithm with different λ. The results
for σ2 = [0.005, 0.01, 0.02] are shown in Figure 14. As we can
see, for all three noise levels, choosing λ appropriately reduces
the clustering error, suggesting that the combining LRR and
SSC also helps the spectral clustering approach to behave more
reliably across different noise levels.
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Fig. 14. Illustration of clustering error of NoisyLRSSC under different levels
of noise for Exp 5. It appears that choosing λ appropriately (in fact, taking
λ � 1) seems to always improve over both LRR and SSC.

B. Real Data Experiments on Hopkins155

To complement the numerical experiments, we also run
our NoisyLRSSC on the Hopkins155 motion segmentation
dataset [19]. The dataset contains 155 short video sequence
with temporal trajectories of the 2D coordinates of the feature
points summarizing in a data matrix. The task is to cluster
the given trajectories into blocks in an unsupervised fashion,
such that each block corresponds to one rigid moving objects.
The motion can be 3D translation, rotation or combination of
translation and rotation. Ground truth is given together with
the data. Thus evaluation is simply obtained by examining the
misclassification rate. A few snapshots of the dataset is given
in Fig. 15.

1) Why subspace clustering?: Subspace clustering is ap-
plicable because collections of feature trajectories on a rigid
body captured by a moving affine camera can be factorized
into camera motion matrix and a structure matrix as follows

X =

 x11 ... x1n

... ... ...
xm1 ... xmn

 =

 M1

...
Mm

( S1 ... Sn
)
,

where Mi ∈ R2×4 is a the camera projection matrix from
3D homogeneous coordinates to 2D image coordinates and
Sj ∈ R4 is one feature points in 3D with 1 added at the
back to form the homogeneous coordinates. Therefore, the

Fig. 15. Snapshots of Hopkins155 motion segmentation data set.

inner dimension of the matrix multiplication ensures that all
column vectors of X lies in a 4 dimensional subspace (see
[44, Chapter 18] for details). Depending on the type of motion,
and potential projective distortion of the image (real camera
is never perfectly affine), the subspace may be less than rank
4 (degenerate motion) or only approximately rank 4.

Note that we are not exploiting the information that these are
affine subspaces, except that we lift the observed data points
to a homogeneous coordinate so as to use the tools for linear
subspaces. For the subtleties in handling affine subspaces this
way, we refer the readers to a recent paper [45].

2) Methods: We run the ADMM version of the Noi-
syLRSSC (44) using the same parameter scheme (but with
different values) proposed in [5] for Hopkins155. Specifically,
we rescaled the original problem as

min
C1,C2,J

α

2
‖X −XJ‖2F + β1‖C1‖∗ + β2‖C2‖1

s.t. J = C2 − diag(C2), J = C1,

and set

α =
αz
µz
, β1 =

1

1 + λ
, β2 =

λ

1 + λ
.

with αz = 150007, and

µz = min
i

max
i 6=j
〈xi, xj〉.

Numerical parameters in the Lagrangian are set to µ2 = µ3 =
0.1α. Note that we have a simple adaptive parameter that
remains constant for each data sequence.

Note that no attempt was made to optimally tune the param-
eters. Our main objective is to validate that the combinations
of the two objectives may be useful when all other factors are
equal.

3) Results: Fig. 16 plots how average misclassification
rate changes with λ. While it is not clear on the two-
motion sequences, the advantage of LRSSC is apparent on the
three-motion sequences, as the lowest misclassfication rate is
achieved when λ is chosen to balance the low-rank and sparse
penalties.

To illustrate it more clearly, we plot the RelViolation, Gini
index, and misclassification rate of all sequences for all λ in
Fig. 17, Fig. 18 and Fig. 19 respectively. From Fig. 17 and 18,
we can tell that the results match our theorem and simulation
on synthetic data. Since a correct clustering depends on both

7In [5], they use αz = 800, but we find its performance is less than
satisfactory in our case. We describe the difference to their experiments on
Hopkins155 separately in Section VII-B4.
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Fig. 16. Average misclassification rates vs. λ.

Fig. 17. RelViolation of representation matrix C the 155 data sequence
against λ. Black regions refer to zero RelViolation (namely, SEP), and white
regions stand for large violation of SEP.

Fig. 18. GiniIndex of representation matrix C the 155 data sequence againt λ.
Darker regions represents denser intra-class connections, lighter region means
that the connections are sparser.

Fig. 19. Misclassification rate of the 155 data sequence against λ. Black
regions refer to perfect clustering, and white regions stand for errors.

inter-class separation and intra-class connections, as expected
we observe in Fig. 19 that some sequences attain zero mis-
classification on the LRR side, some on the SSC side, and
many reach the minimum misclassification rate in between.

4) Comparison to SSC results in [5]: The lowest misclassi-
fication rate that LRSSC achieves in Fig. 16 (3% on 3-motion
sequences, 1.9% on 2-motion sequences) clearly outperforms
that of SSC, as these numbers converge to about 4.0% and

2.2% respectively when λ→∞. It also outperforms the SSC
results in [5, Table 1] for three motions sequences (4.4%), but
is slightly worse than the error rate in two motion sequences
(1.52%). Note that the two versions of SSCs produce different
results.

This discrepancy is not just due to the two different choices
of parameter αk. An investigation into the code published
by authors of [5] reveals that there are two hidden post-
processing steps on the representation matrix C that we left
out8. After removing the post-processing steps from their code,
it generates 5.27% for 2-motion sequences and 2.07% for 3-
motion sequences and these numbers are much closer to our
results when λ→∞ with αz = 800.

Results in Fig. 16 suggest that such post-processing might
not be essential, since with a different choice of αz , we are
able to match state-of-the-art performance reported in [5] on
Hopkins155 using plain SSC without any post processing. In
addition, LRSSC is often able to perform even better provided
that λ is chosen appropriately.

VIII. CONCLUDING REMARKS

In this paper, we proposed LRSSC for the subspace cluster-
ing problem and provided a theoretical analysis of the method.
We demonstrated that LRSSC can achieve perfect SEP for a
broader range of problems than previously known for SSC
and meanwhile maintains denser intra-class connections than
SSC (hence less likely to encounter the “graph connectivity”
issue). Furthermore, the results bring new insights to SSC and
LRR themselves as well as problem setups such as skewed
data distribution and model selection. Future research ques-
tions include treating the robustness, missing-data of LRSSC
and designing more scalable algorithms for solving subspace
clustering.

As we mentioned previously in Section II and Section IV,
much progress has been made to address the problem of graph
connectivity after the initial release of the current paper. We
conclude the paper by highlighting two particularly thought-
provoking realizations and what they imply in the future
direction of this problem.

First of all, it has come to our realization that nuclear norm
is not in any way special for the interest of “densifying” the
resulting connectivity graph. Other regularizations, such as the
square `2 norm as was used by [32], have the same effects, and
they tend to work as well as LRR in practice. Combining the
square `2 norm and `1 norm gives rise to the celebrated elastic
net penalty [46], and its application to subspace clustering
was thoroughly studied by You, Li, Robinson, et al. [34].
Specifically, [34] provides a clear geometric interpretation of
the regularization weight λ on the square `2 penalty and how it
affects the conditions of SEP (no false positive edges) and the
number of true positive edges. However, it remains unclear
how to connect the regularization weight λ and the number
of edges to the connectivity of the embedded graph. To the

8The first one is a thresholding step that keeps only the largest non-zero
entries that sum to 70% of the `1 norm of each column. The second post-
processing step is a normalization of |C|’s columns such that the largest entry
in each column is 1.
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best of our knowledge, there isn’t a general solution even for
noiseless subspace clustering.

The second thing that comes to our realization (obvious
in the hindsight) is that the graph connectivity problem as
was discussed in [24] might not be the right problem to
solve for the interest of subspace clustering. While it is
true that when the subspace dimension d > 3, there are
cases where SSC returns an over-segmented graph, there
are alternative algorithmic techniques that can be used to
provably overcome this problem [15], [28] under only the
“general position” assumption. [28] robustifies a simple post-
processing step due to Elhamifar and Vidal [5] that merges
the potentially disconnected components by checking whether
the spanned subspaces are the same. The simple algorithm,
in some sense, reduced the theoretical problem of finding the
correct clusters in noiseless subspace clustering problem to the
simpler problem of achieving SEP as in [21]. In other words, it
settled the long-standing open problem of graph connectivity
issue by avoiding it altogether! This suggests that, instead of
studying the algebraic connectivity of the connectivity graph
(which is zero when the data points from one subspace form
more than one connected components), it is potentially more
fruitful to study the dth largest singular value of the data matrix
formed by each connected component (there might be multiple
connected components from each subspace). The algorithmic
question is, therefore: how can we design efficient algorithms
that build connectivity graphs with connected components of
data points that are more well-conditioned? The nature of this
new problem seems to suggest that we need to radically deviate
from the existing machinery (e.g., SSC and spectral clustering)
and be more creative in how we attack the problem.

APPENDICES

The appendices are organized as follows. In Ap-
pendix A and B, we provide the detailed proof of respectively
the deterministic and randomized guarantee for LRSSC. In
Appendix C, we provide supporting proofs for Section V.
In Appendix D, we derive the fast Alternating Direction
Methods of Multipliers (ADMM) algorithm for LRSSC and
NoisyLRSSC and verify its convergence guarantee. In Ap-
pendix E, the proofs to some stand-alone claims in the paper
are given, including the graph connectivity of LRR and the
computational tractability of the singular value condition.
Finally, for readers’ easy reference, we attach a table of
symbols and notations at the end of the paper.

APPENDIX A
PROOF OF THEOREM 1 (THE DETERMINISTIC RESULT)

Theorem 1 is proven by duality. As described in the
main text, it involves constructing two levels of fictitious
optimizations. For convenience and clarity of presentation, we
illustrate the proof with only three subspaces of the same
dimension. Namely, X = [X(1)X(2)X(3)] and S1 S2 S3

are all d-dimensional subspaces. This is without loss of any
generality because the proof trivially generalizes to more than
3 subspaces and subspaces of different dimensions.

A. Optimality condition

We start by describing the subspace projection critical in
the proof of matrix completion and RPCA[2], [47]. We need
it to characterize the subgradient of nuclear norm.

Define projection PT (and PT⊥ ) to both column and row
space of low-rank matrix C (and its complement) as

PT (X) = UUTX +XV V T − UUTXV V T ,

PT⊥(X) = (I − UUT )X(I − V V T ),

where UUT and V V T are projections matrix defined from
skinny SVD of C = UΣV T .

Lemma 5 (Properties of PT and PT⊥ ).

〈PT (X), Y 〉 = 〈X,PT (Y )〉 = 〈PT (X),PT (Y )〉

〈PT⊥(X), Y 〉 = 〈X,PT⊥(Y )〉 = 〈PT⊥(X),PT⊥(Y )〉
Proof. Using the property of inner product 〈X,Y 〉 =
〈XT , Y T 〉 and definition of adjoint operator 〈AX,Y 〉 =
〈X,A∗Y 〉, we have

〈PT (X), Y 〉 = 〈UUTX,Y 〉+ 〈XV V T , Y 〉 − 〈UUTXV V T , Y 〉
=〈UUTX,Y 〉+ 〈V V TXT , Y T 〉 − 〈V V TXT , (UUTY )T 〉
=〈X,UUTY 〉+ 〈XT , V V TY T 〉 − 〈XT , V V TY TUUT 〉
=〈X,UUTY 〉+ 〈X,Y V V T 〉 − 〈X,UUTY V V T 〉
=〈X,PT (Y )〉.

Use the equality with X = X,Y = PT (Y ), we get

〈X,PT (PT (Y ))〉 = 〈PT (X),PT (Y )〉.
The result for PT⊥ is the same as the third term in the previous
derivation as I − UUT and I − V V T are both projection
matrices that are self-adjoint.

In addition, given index set D, we define projection PD,
such that

PD(X) =

{
[PD(X)]ij = Xij , if (i, j) ∈ D;
[PD(X)]ij = 0, Otherwise.

For example, when D = {(i, j)|i = j}, PD(X) = 0 ⇔
diag(X) = 0.

Consider a general convex optimization problem

min
C1,C2

‖C1‖∗ + λ‖C2‖1
s.t. B = AC1, C1 = C2, PD(C1) = 0

(17)

where A ∈ Rn×m is arbitrary dictionary and B ∈ Rn×N is
data samples. Note that when B = X , A = X , (17) reduces
to (1).

Lemma 6. For optimization problem (17), if there exists a
quadruplet (C,Λ1,Λ2,Λ3) where C1 = C2 = C is feasible,
the support supp(C) = Ω ⊆ Ω̃, rank(C) = r and skinny SVD
of C = UΣV T (Σ is an r× r diagonal matrix and U , V are
of compatible size), moreover if Λ1, Λ2, Λ3 satisfy

1© PT (ATΛ1 − Λ2 − Λ3) = UV T , 2© [Λ2]Ω = λsgn([C]Ω),

3© ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖ ≤ 1, 4© [Λ2]Ωc
⋂

Ω̃ ≤ λ,
5© [Λ2]Ω̃c < λ, 6© PDc(Λ3) = 0
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then all optimal solutions to (17) satisfy supp(C) ⊆ Ω̃.

Proof. The subgradient of ‖C‖∗ is UV T +W1 for any W1 ∈
T⊥ and ‖W1‖ ≤ 1. For any optimal solution C∗ we may
choose W1 such that ‖W1‖ = 1, 〈W1,PT⊥C∗〉 = ‖PT⊥C∗‖∗.
Then by the definition of subgradient, convex function ‖C‖∗
obey

‖C∗‖∗ ≥‖C‖∗ + 〈UV T +W1, C
∗ − C〉

=‖C‖∗ + 〈UV T ,PT (C∗ − C)〉
+ 〈UV T ,PT⊥(C∗ − C)〉+ 〈W1, C

∗ − C〉
=‖C‖∗ + 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥C∗‖∗. (18)

To see the equality, note that 〈UV T ,PT⊥(A)〉 = 0 for any
compatible matrix A and the following identity that follows
directly from the construction of W1 and Lemma 5

〈W1, C
∗ − C〉 =〈PT⊥W1, C

∗ − C〉 = 〈W1,PT⊥(C∗ − C)〉
=〈W1,PT⊥C∗〉 = ‖PT⊥C∗‖∗.

Similarly, the subgradient of λ‖C‖1 is λsgn(C) +W2, for
any W2 obeying supp(W2) ⊆ Ωc and ‖W2‖∞ ≤ λ. We
may choose W2 such that ‖W2‖∞ = λ and 〈[W2]Ωc , C

∗
Ωc〉 =

‖C∗Ωc‖1, then by the convexity of `1-norm,

λ‖C∗‖1 ≥ λ‖C‖1 + λ〈∂‖C‖1, C∗ − C〉
= λ‖C‖1 + 〈λsgn(CΩ), C∗Ω − CΩ〉+ λ‖C∗Ωc‖1.

(19)
Then we combine (18) and (19) with conditions 1© and 2©

to get

‖C∗‖∗ + λ‖C∗‖1
≥ ‖C‖∗ + 〈UV T ,PT (C∗ − C)〉+ ‖PT⊥(C∗)‖∗ + λ‖C‖1

+ 〈λsgn(CΩ), C∗Ω − CΩ〉+ λ‖C∗Ωc‖1
= ‖C‖∗ + 〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉

+ ‖PT⊥(C∗)‖∗ + λ‖C‖1
+ 〈Λ2, C

∗
Ω − CΩ〉+ λ‖C∗

Ωc∩Ω̃
‖1 + λ‖C∗

Ω̃c
‖1. (20)

By Lemma 5, we know

〈PT (ATΛ1 − Λ2 − Λ3),PT (C∗ − C)〉
=〈ATΛ1 − Λ2 − Λ3,PT (PT (C∗ − C))〉
=〈ATΛ1 − Λ2 − Λ3,PT (C∗)〉 − 〈ATΛ1 − Λ2 − Λ3,PT (C)〉
=〈Λ1, APT (C∗)〉 − 〈Λ2 + Λ3,PT (C∗)〉 − 〈Λ1, AC〉

+ 〈Λ2 + Λ3, C〉
=〈Λ1, AC

∗ −AC〉 − 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉
− 〈Λ2 + Λ3,PT (C∗)〉

=− 〈Λ1, APT⊥(C∗)〉+ 〈Λ2 + Λ3, C〉 − 〈Λ2 + Λ3, C
∗〉

+ 〈Λ2 + Λ3,PT⊥(C∗)〉
=− 〈ATΛ1 − Λ2 − Λ3,PT⊥(C∗)〉 − 〈Λ2 + Λ3, C

∗〉
+ 〈Λ2 + Λ3, C〉

=− 〈PT⊥(ATΛ1 − Λ2 − Λ3),PT⊥(C∗)〉 − 〈Λ2 + Λ3, C
∗〉

+ 〈Λ2 + Λ3, C〉
=− 〈PT⊥(ATΛ1 − Λ2),PT⊥(C∗)〉 − 〈Λ2, C

∗〉+ 〈Λ2, C〉.

Note that the last step follows from condition 6© and C, C∗’s
primal feasibility. Substitute back into (20), we get

‖C∗‖∗ + λ‖C∗‖1
≥‖C‖∗ + λ‖C‖1 + ‖PT⊥(C∗)‖∗
− 〈PT⊥(ATΛ1 − Λ2 − Λ3),PT⊥(C∗)〉
+ λ‖C∗Ωc∩Ω̃‖1 − 〈[Λ2]Ωc∩Ω̃, C

∗
Ωc∩Ω̃〉+ λ‖C∗Ω̃c‖1 − 〈[Λ2]Ω̃c , C

∗
Ω̃c〉

≥‖C‖∗ + λ‖C‖1 + (1− ‖PT⊥(ATΛ1 − Λ2 − Λ3)‖)‖PT⊥(C∗)‖∗
+ (λ− ‖[Λ2]Ωc∩Ω̃‖∞)‖C∗Ωc∩Ω̃‖1 + (λ− ‖[Λ2]Ω̃c‖∞)‖C∗Ω̃c‖1

Assume C∗
Ω̃c
6= 0. By condition 4©, 5© and 3©, we have the

strict inequality

‖C∗‖∗ + λ‖C∗‖1 > ‖C‖∗ + λ‖C‖1.

Recall that C∗ is an optimal solution, i.e., ‖C∗‖∗+λ‖C∗‖1 ≤
‖C‖∗ + λ‖C‖1. By contradiction, we conclude that C∗

Ω̃c
= 0

for any optimal solution C∗.

B. Constructing solution

Apply Lemma 6 with A = X , B = X and Ω̃ is selected
such that the Self-Expressiveness Property (SEP) holds, then
if we can find Λ1, Λ2 and Λ3 satisfying the six conditions with
respect to a feasible C, then we know all optimal solutions of
(1) obey SEP. The dimension of the dual variables are Λ1 ∈
Rn×N and Λ2,Λ3 ∈ RN×N .
First layer fictitious problem

A good candidate can be constructed by the optimal solu-
tions of the fictitious programs for i = 1, 2, 3

P1 : min
C

(i)
1 ,C

(i)
2

‖C(i)
1 ‖∗ + λ‖C(i)

2 ‖1

s.t. X(i) = XC
(i)
1 , C

(i)
1 = C

(i)
2 , PDi(C(i)

1 ) = 0.
(21)

Corresponding dual problem is

D1 : max
Λ

(i)
1 ,Λ

(i)
2 ,Λ

(i)
3

〈X(i),Λ
(i)
1 〉

s.t. ‖Λ(i)
2 ‖∞ ≤ λ, PDci (Λ

(i)
3 ) = 0,

‖XTΛ
(i)
1 − Λ

(i)
2 − Λ

(i)
3 ‖ ≤ 1,

(22)

where Λ
(i)
1 ∈ Rn×Ni and Λ

(i)
2 ,Λ

(i)
3 ∈ RN×Ni . Di is the

diagonal set of the ith Ni × Ni block of C(i)
1 . For instance

for i = 2,

C
(2)
1 =

 0

C̃
(2)
1

0

 , D2 =

(i, j)

∣∣∣∣∣∣
 0
I
0


ij

6= 0

 ,

The candidate solution is C =
[
C

(1)
1 C

(2)
1 C

(3)
1

]
. Now we

need to use a second layer of fictitious problem and apply
Lemma 6 with A = X , B = X(i) to show that the solution
support Ω̃(i) has the following form

C
(1)
1 =

 C̃
(1)
1

0
0

 , C
(2)
1 =

 0

C̃
(2)
1

0

 , C
(3)
1 =

 0
0

C̃
(3)
1

 .

(23)
Second layer fictitious problem
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The second level of fictitious problems are used to construct
a suitable solution. Consider for i = 1, 2, 3,

P2 : min
C̃

(i)
1 ,C̃

(i)
2

‖C̃(i)
1 ‖∗ + λ‖C̃(i)

2 ‖1

s.t. X(i) = X(i)C̃
(i)
1 , C̃

(i)
1 = C̃

(i)
2 , diag(C̃

(i)
1 ) = 0.

(24)
which is apparently feasible. Note that the only difference
between the second layer fictitious problem (24) and the first
layer fictitious problem (21) is the dictionary/design matrix
being used. In (21), the dictionary contains all data points,
whereas here in (24), the dictionary is nothing but X(i) itself.
The corresponding dimension of representation matrix C

(i)
1

and C̃
(i)
1 are of course different too. Sufficiently we hope to

establish the conditions where the solutions of (24) and (21)
are related by (23).

The corresponding dual problem is

D2 : max
Λ̃

(i)
1 ,Λ̃

(i)
2 ,Λ̃

(i)
3

〈X(i), Λ̃
(i)
1 〉

s.t. ‖Λ̃(i)
2 ‖∞ ≤ λ, diag⊥

(
Λ̃

(i)
3

)
= 0,

‖[X(i)]T Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖ ≤ 1,

(25)

where Λ̃
(i)
1 ∈ Rn×Ni and Λ̃

(i)
2 , Λ̃

(i)
3 ∈ RNi×Ni .

The proof is two steps. First we show the solution of (24),
zero padded as in (23) are indeed optimal solutions of (21)
and verify that all optimal solutions have such shape using
Lemma 6. The second step is to verify that solution C =[
C

(1)
1 C

(2)
1 C

(3)
1

]
is optimal solution of (1).

C. Constructing dual certificates

To complete the first step, we need to construct Λ
(i)
1 ,

Λ
(i)
2 and Λ

(i)
3 such that all conditions in Lemma 6 (with

A = X,B = X(i)) are satisfied. We use i = 1 to illustrate.
Let the optimal solution9 of (25) be Λ̃

(1)
1 , Λ̃

(1)
2 and Λ̃

(1)
3 . We

set Λ
(1)
1 = Λ̃

(1)
1 , Λ

(1)
2 =

 Λ̃
(1)
2

Λa
Λb

 and Λ
(1)
3 =

 Λ̃
(1)
3

0
0

.

As Ω̃ defines the first block now, this construction naturally
guarantees 2© and 4©. 6© follows directly from the dual
feasibility. Thus, it remains to show the existence of Λa and
Λb obeying 1© 3© 5©.

Here we restrict out attention to Λa and Λb that obey

[X(2)]
T

Λ̃
(1)
1 − Λa = 0, [X(3)]

T
Λ̃

(1)
1 − Λb = 0, (26)

and we will show that (26) is a sufficient condition for 1© and
3©.

To evaluate 1© and 3©, let’s first define the projection oper-
ator. Take skinny SVD C̃

(1)
1 = Ũ (1)Σ̃(1)(Ṽ (1))T , it naturally

extends to the SVD of C(1)
1

C
(1)
1 =

 C̃
(1)
1

0
0

 =

 Ũ (1)

0
0

 Σ̃(1)(Ṽ (1))T ,

9It needs not be unique, for now we just use them to denote any optimal
solution.

U (1)[U (1)]T =

 Ũ (1)[Ũ (1)]T 0 0
0 0 0
0 0 0

 ,

V (1)[V (1)]T = Ṽ (1)(Ṽ (1))T .

Condition 1© can be easily verified by explicitly applying
the projection operator and then substitute (26) into the equa-
tion:

PT1

(
XTΛ

(1)
1 − Λ

(1)
2

)
= PT1

 [X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3

[X(2)]
T

Λ̃
(1)
1 − Λa

[X(3)]
T

Λ̃
(1)
1 − Λb


=

 PT̃1
([X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3)

([X(2)]T Λ̃
(1)
1 − Λa)Ṽ (1)(Ṽ (1))T

([X(3)]
T

Λ̃
(1)
1 − Λb)Ṽ

(1)(Ṽ (1))T

 =

 Ũ (1)[Ṽ (1)]T

0
0

 .

Condition 3© can also be easily shown:∥∥∥PT⊥1 (XTΛ
(1)
1 − Λ

(1)
2 − Λ̃3

)∥∥∥
=

∥∥∥∥∥∥∥
 PT̃⊥1 ([X(1)]

T
Λ̃

(1)
1 − Λ̃2 − Λ̃3)

([X(2)]
T

Λ̃
(1)
1 − Λa)(I − Ṽ (1)(Ṽ (1))T )

([X(3)]
T

Λ̃
(1)
1 − Λb)(I − Ṽ (1)(Ṽ (1))T )


∥∥∥∥∥∥∥

≤‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3)‖

+ ‖[X(2)]
T

Λ̃
(1)
1 − Λa‖+ ‖[X(3)]

T
Λ̃

(1)
1 − Λb‖

=‖PT̃⊥1 ([X(1)]
T

Λ̃
(1)
1 − Λ̃2 − Λ̃3)‖ ≤ 1.

The last row follows from (26) and then the optimality
condition 3© of the first layer fictitious problem.

To complete the argument for Step 1, it remains to show
5©, which equivalent to show that there exist Λa,Λb obeying
‖Λa‖∞ < λ and ‖Λb‖∞ < λ, that can nullify [X(2)]

T
Λ̃

(1)
1

and [X(3)]
T

Λ̃
(1)
1 , or equivalently ‖[X(2)]

T
Λ̃

(1)
1 ‖∞ < λ and

‖[X(3)]
T

Λ̃
(1)
1 ‖∞ < λ. We defer this part of the argument to

the next section. Let us first assume that under some conditions
5© is true for Step 1, which would be sufficient to certify that

the optimal solution of P1 is indeed zero-padded extensions
to the optimal solutions of P2, and address Step 2.

In fact, we will now show that (26) is also sufficient for
Step 2, i.e., the optimal solution to the original optimization
(1) is simply the concatenation of the solutions of P1. We
start the argument by taking the skinny SVD of constructed
solution C.

C =

 C̃1 0 0

0 C̃2 0

0 0 C̃3


=

 Ũ1 0 0

0 Ũ2 0

0 0 Ũ3

 Σ̃1 0 0

0 Σ̃2 0

0 0 Σ̃3

 Ṽ1 0 0

0 Ṽ2 0

0 0 Ṽ3

 .

Check that U, V are both orthonormal, Σ is diagonal matrix
with unordered singular values. Let the block diagonal shape
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be Ω, the six conditions in Lemma 6 (with A = X and B =
X) are met with

Λ1 =
(

Λ̃
(1)
1 Λ̃

(2)
1 Λ̃

(3)
1

)
,

Λ2 =

 Λ̃
(1)
2 Λ

(2)
a Λ

(3)
a

Λ
(1)
a Λ̃

(2)
2 Λ

(3)
b

Λ
(1)
b Λ

(2)
b Λ̃

(3)
2

 ,

Λ3 =

 Λ̃
(1)
3 0 0

0 Λ̃
(2)
3 0

0 0 Λ̃
(3)
3

 ,

as long as Λ
(i)
1 , Λ

(i)
2 and Λ

(i)
3 guarantee the optimal solution

of (21) obeys SEP for each i. By the way C is constructed,
condition 2© 4© 5© and 6© are trivially implied by the condition
2© 4© 5© and 6© of applying Lemma 6 to P1. To verify

conditions 1© and 3©, we first rewrite XTΛ1−Λ2−Λ3 as in
(27).

Furthermore, by the block-diagonal SVD of C, projection
PT can be evaluated for each diagonal block, where optimality
condition of the second layer fictitious problem guarantees that
for each i

PT̃i([X
(i)]

T
Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ) = ŨiṼ

T
i .

1© and 3© are therefore true by (28).

D. Dual Separation Condition

Finally we prove the last missing piece: 5© in the argument
for Step 1.

Definition 8 (Dual Separation Condition). For X(i), if the
corresponding dual optimal solution Λ̃

(i)
1 of (25) obeys

‖[X(j)]T Λ̃
(i)
1 ‖∞ < λ for all j 6= i, then we say that dual

separation condition holds.

Remark 4. Definition 8 directly implies the existence of Λa,
Λb obeying ‖Λa‖∞ < λ, ‖Λb‖ < λ and (26).

Bounding ‖[X(j)]T Λ̃
(i)
1 ‖∞ is equivalent to bound the max-

imal inner product of arbitrary column pair of X(j) and Λ̃
(i)
1 .

Let x be a column of X(j) and ν be a column of Λ̃
(i)
1 ,

〈x, ν〉 = ‖ν∗‖〈x, ν

‖ν∗‖〉 ≤ ‖ν
∗‖‖[V (i)]Tx‖∞

≤ max
k
‖ProjSi(Λ̃

(i)
1 )ek‖ max

x∈X\Xi
‖[V (i)]Tx‖∞.

where V (i) = [ ν1
‖ν∗1 ‖

, ...,
νNi
‖ν∗Ni‖

] is a normalized dual matrix as
defined in Definition 2 and ek denotes standard basis. Recall
that in Definition 2, ν∗ is the component of ν inside Si and
ν is normalized such that ‖ν∗‖ = 1. It is easy to verify that
[Λ̃

(i)
1 ]∗ = ProjSi(Λ̃

(i)
1 ) is minimum-Frobenious-norm optimal

solution. Note that we can choose Λ̃
(i)
1 to be any optimal

solution of (25), so we take Λ̃
(i)
1 such that the associated V (i)

is the one that minimizes maxx∈X\Xi ‖[V (i)]Tx‖∞.
Now we may write a sufficient dual separation condition in

terms of the incoherence µ in Definition 3,

〈x, ν〉 ≤ max
k
‖[Λ̃(i)

1 ]∗ek‖µ(Xi) ≤ λ. (29)

Thus it remains to bound maxk ‖[Λ̃(i)
1 ]∗ek‖ with meaningful

properties of X(i).
1) Separation condition via singular value: By the second

constraint of (25), we have

1 ≥ ‖[X(i)]T Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 ‖

≥ max
k
‖([X(i)]T Λ̃

(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ := ‖v‖ (30)

Note that maxk ‖([X(i)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 − Λ̃

(i)
3 )ek‖ is the 2-norm

of a vector and we conveniently denote this vector by v. It
follows that

‖v‖ =

√
|vk|2 +

∑
i 6=k
|vi|2 ≥

√∑
i 6=k
|vi|2 = ‖v−k‖, (31)

where vk denotes the kth element and v−k stands for v with
the kth element removed. For convenience, we also define
X−k to be X with the kth column removed and Xk to be the
kth column vector of X .

Since Λ̃
(i)
3 is part of the optimal dual solution to the second

layer fictitious problem, it is a diagonal matrix, hence Λ̃
(i)
3 ek =[

0, ..., [Λ̃
(i)
3 ek]k, ..., 0

]T
and [Λ̃

(i)
3 ek]−k = 0. Thus we have

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥.
Note that maxk ‖Xek‖ is a norm, as is easily shown in the

following lemma.

Lemma 7. Function f(X) := maxk ‖Xek‖ is a norm.

Proof. We prove by definition of a norm.
(1) f(aX) = maxk ‖[aX]k‖ = maxk(|a|‖Xk‖) = ‖a‖f(X).
(2) Assume X 6= 0 and f(X) = 0. Then for some (i, j),
Xij = c 6= 0, so f(X) ≥ |c| which contradicts f(X) = 0.
(3) Triangular inequality:

f(X1 +X2) = max
k

(‖[X1 +X2]k‖)
≤max

k
(‖[X1]k‖+ ‖[X2]k‖)

≤max
k1

(‖[X1]k1‖) + max
k2

(‖[X2]k2‖)

=f(X1) + f(X2).

Thus by triangular inequality,

‖v−k‖ ≥max
k

∥∥∥[X
(i)
−k]T [Λ̃

(i)
1 ek]

∥∥∥−max
k

∥∥∥[[Λ̃
(i)
2 ]T ]−kek

∥∥∥
≥σdi(X(i)

−k) max
k
‖[Λ̃(i)

1 ]∗ek‖ − λ
√
Ni − 1 (32)

where σdi(X
(i)
−k) is the rth (smallest non-zero) singular value

of X(i)
−k. The last inequality is true because X(i)

−k and [Λ̃
(i)
1 ]∗

belong to the same di-dimensional subspace and the condition
‖Λ̃(i)

2 ‖∞ ≤ λ. Combining (30)(31) and (32), we find the
desired bound

max
k
‖[Λ̃(i)

1 ]∗ek‖ ≤
1 + λ

√
Ni − 1

σdi(X
(i)
−k)

<
1 + λ

√
Ni

σdi(X
(i)
−k)

.
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XTΛ1 − Λ2 − Λ3

=

 [X(1)]
T

Λ̃
(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 [X(1)]

T
Λ̃

(2)
1 − Λ

(2)
a [X(1)]

T
Λ̃

(3)
1 − Λ

(3)
a

[X(2)]
T

Λ̃
(1)
1 − Λ

(1)
a [X(2)]

T
Λ̃

(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 [X(2)]

T
Λ̃

(3)
1 − Λ

(3)
b

[X(3)]
T

Λ̃
(1)
1 − Λ

(1)
b [X(3)]

T
Λ̃

(2)
1 − Λ

(2)
b [X(3)]

T
Λ̃

(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3


=

 [X(1)]
T

Λ̃
(1)
1 − Λ̃

(1)
2 − Λ̃

(1)
3 0 0

0 [X(2)]
T

Λ̃
(2)
1 − Λ̃

(2)
2 − Λ̃

(2)
3 0

0 0 [X(3)]
T

Λ̃
(3)
1 − Λ̃

(3)
2 − Λ̃

(3)
3

 .

(27)

1© PT (XTΛ1 − Λ2 − Λ3) =

 Ũ1Ṽ
T
1 0 0

0 Ũ2Ṽ
T
2 0

0 0 Ũ3Ṽ
T
3

 = UV T ,

3© ‖PT⊥(XTΛ1 − Λ2)‖

=

∥∥∥∥∥∥∥∥
PT̃⊥i ([X(1)]

T
Λ̃

(1)
1 − Λ̃

(1)
2 ) 0 0

0 PT̃⊥i ([X(2)]
T

Λ̃
(2)
1 − Λ̃

(2)
2 ) 0

0 0 PT̃⊥i ([X(3)]
T

Λ̃
(3)
1 − Λ̃

(3)
2 )

∥∥∥∥∥∥∥∥
= max
i=1,2,3

‖PT̃⊥i ([X(1)]
T

Λ̃
(i)
1 − Λ̃

(i)
2 )‖ ≤ 1.

(28)

The condition (29) now becomes

〈x, ν〉 ≤ µ(1 + λ
√
Ni)

σdi(X
(i)
−k)

< λ ⇔ µ(1+λ
√
Ni) < λσdi(X

(i)
−k).

(33)
Note that when X(i) is well conditioned with condition
number κ,

σdi(X
(i)
−k) =

1

κ
√
di
‖X(i)
−k‖F = (1/κ)

√
Ni/di.

To interpret the inequality, we remark that when µκ
√
di < 1

there always exists a λ such that SEP holds.
2) Separation condition via inradius: This time we relax

the inequality in (32) towards the max/infinity norm.

‖v−k‖ = max
k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
≥max

k

∥∥∥([X
(i)
−k]T Λ̃

(i)
1 − [[Λ̃

(i)
2 ]T ]−k

)
ek

∥∥∥
∞

≥max
k

∥∥∥[X
(i)
−k]T [Λ̃

(i)
1 ]∗

∥∥∥
∞
− λ. (34)

This is equivalent to for all k = 1, .., Ni
‖[X(i)

−k]
T
ν∗1‖∞ ≤ 1 + λ,

‖[X(i)
−k]

T
ν∗2‖∞ ≤ 1 + λ,

...

‖[X(i)
−k]

T
ν∗Ni‖∞ ≤ 1 + λ,

⇔


ν∗1 ∈ (1 + λ)[conv(±X(i)

−k)]o,

ν∗2 ∈ (1 + λ)[conv(±X(i)
−k)]o,

...

ν∗Ni ∈ (1 + λ)[conv(±X(i)
−k)]o,

where Po represents the polar set of a convex set P ,
namely, every column of Λ̃

(i)
1 in (29) is within this convex

polytope [conv(±X(i)
−k)]o scaled by (1 + λ). An upper bound

follows from the geometric properties of the symmetric convex
polytope.

Definition 9 (circumradius). The circumradius of a convex
body P , denoted by R(P), is defined as the radius of the
smallest Euclidean ball containing P .

Since ν∗ is feasible, the magnitude ‖ν∗‖ is bounded by
R([conv(±X(i)

−k)]o). Moreover, by the the following lemma
we may find the circumradius by analyzing the polar set of
[conv(±X(i)

−k)]o instead. By the property of polar operator, po-
lar of a polar set gives the tightest convex envelope of original
set, i.e., (Ko)o = conv(K). Since conv(±X(i)

−k) is convex in
the first place, the polar set is essentially conv(±X(i)

−k).

Lemma 8 (Page 448 in Brandenberg, Dattasharma, Gritzmann,
et al. [48]). For a symmetric convex body P , i.e. P = −P ,
inradius of P and circumradius of polar set of P satisfy:

r(P)R(Po) = 1.

By this observation, we have for all j = 1, ..., Ni

‖ν∗j ‖ ≤ (1 + λ)R(conv(±X(i)
−k)) =

1 + λ

r(conv(±X(i)
−k))

.

Then the condition becomes
µ(1 + λ)

r(conv(±X(i)
−k))

< λ ⇔ µ(1 + λ) < λr(conv(±X(i)
−k)),

(35)
which reduces to the condition of SSC in [21] when λ is large.

With (33) and (35), the proof for Theorem 1 is complete.

APPENDIX B
PROOF OF THEOREM 2 (THE RANDOMIZED CASE)

Theorem 2 is essentially a corollary of the deterministic
case. The proof of it is essentially providing probabilistic lower
bounds of the smallest singular value σ (Lemma 1), inradius



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 20

(Lemma 2) and upper bounds of the minimax subspace inco-
herence µ (Lemma 3), then use union bound to make sure all
random events happen together with high probability.

A. Smallest singular value of unit column random low-rank
matrices

We prove Lemma 1 in this section. Assume the following
mechanism of random matrix generation.

1) Generate n× r Gaussian random matrix A.
2) Generate r ×N Gaussian random matrix B.
3) Generate rank-r matrix AB then normalize each column

to unit vector to get X .
The proof contains three steps. The first step is to bound

the magnitude. When n is large, each column’s magnitude
is bounded from below with large probability. In the second
step, we show that the singular values do not change much if
we normalize every column such that they all have the same
magnitude as the column vector having the smallest. In the
third step, we use singular value bound of A and B to show
that singular value of X .

2σr(X) ≥ σr(AB) ≥ σr(A)σr(B)

Lemma 9 (Magnitude of Gaussian vector). For Gaussian
random vector z ∈ Rn, if each entry zi ∼ N(0, σ√

n
), then

each column zi satisfies:

Pr
[
(1− t)σ2 ≤ ‖z‖2 ≤ (1 + t)σ2

]
> 1− en2 (log(t+1)−t) − en2 (log(1−t)+t)

Proof. To show the property, we observe that the sum of the
square of n independent Gaussian random variables follows
χ2 distribution with d.o.f n, in other word, we have

‖z‖2 = |z1|2 + ...+ |zn|2 ∼
σ2

n
χ2(n).

By Hoeffding’s inequality, we have a sharp upper bound of its
CDF [49], which gives us

Pr(‖z‖2 > ασ2) = 1− CDFχ2
n
(α) ≤ (αe1−α)

n
2 for α > 1,

P r(‖z‖2 < βσ2) = CDFχ2
n
(β) ≤ (βe1−β)

n
2 for β < 1.

Substitute α = 1 + t and β = 1 − t, and apply union bound
we get the concentration statement.

To get an idea of the scale, when t = 1/3, the ratio of
maximum and minimum ‖z‖ is smaller than 2 with probability
larger than 1− 2 exp(−n/20). This completes the first step.

By random matrix theory [e.g., 50]–[52] we conclude that a
“thin-and-tall” gaussian random matrix is close to an orthonor-
mal matrix, as the following lemma, adapted from Theorem
II.13 of [52], shows:

Lemma 10 (Smallest singular value of random rectangular
matrix). Let G ∈ Rn×r has i.i.d. entries ∼ N(0, 1/

√
n). With

probability of at least 1− 2γ,

1−
√
r

n
−
√

2 log(1/γ)

n
≤ σmin(G)

≤ σmax(G) ≤ 1 +

√
r

n
+

√
2 log(1/γ)

n
.

It follows that we can use Lemma 10 to bound the min-
imum non-zero singular value of a random low-rank matrix
constructed by multiplying two Gaussian random matrices.

Lemma 11 (Smallest singular value of random low-rank
matrix). Let A ∈ Rn×r, B ∈ Rr×N , r < N < n, furthermore,
Aij ∼ N(0, 1/

√
n) and Bij ∼ N(0, 1/

√
N). Then there exists

an absolute constant C such that

σr(AB) ≥ 1− 3

√
r

N
− C

√
logN`
N

.

with probability of at least 1− n−10,

The proof is simply by σr(AB) ≥ σr(A)σr(B), apply
Lemma 10 to both terms and then take γ = 1

2N10
`

.
Denote the column-wise normalization of AB into the

maximum column magnitude of AB as AB and similarly the
normalization into the minimum column magnitude of AB as
AB. We claim that we have

σr(AB) ≤ σr(AB) ≤ σr(AB).

This is because by construction ABS = AB and ABS′ = AB
for some diagonal scaling matrix S, S′ � I , therefore these
operators ensures all singular values to be non-decreasing.

Now note that κ1X = AB = κ2AB for some constant
κ1, κ2. By the results in Step 1, we have κ1 ≥ 1 and κ2 ≤ 2
with high probability. Summarizing everything we get

σr(X) =
1

κ1
σr(AB) ≥ σr(AB) =

1

κ2
σr(AB) ≥ 1

2
σr(AB).

Normalizing the scale of the random matrix and plug in the
above arguments, we complete the proof for Lemma 1.

B. Smallest inradius of random polytopes

This bound in Lemma 2 is due to Alonso-Gutiérrez in his
proof of lower bound of the volume of a random polytope [37,
Lemma 3.1]. The results was made clear in the subspace clus-
tering context by Soltanokotabi and Candes [21, Lemma 7.4].
We refer the readers to the references for the proof.

C. Upper bound of Minimax Subspace Incoherence

The upper bound of the minimax subspace incoherence
(Lemma 3) we used in this paper is the same as the upper
bound of the subspace incoherence in [21]. This is because
by definition minimax subspace incoherence is no larger than
subspace incoherence 10. For completeness, we include the
steps of proof here.

The argument critically relies on the following lemma on
the area of spherical cap in [53].

Lemma 12 (Upper bound on the area of spherical cap). Let
a ∈ Rn be a random vector sampled from a unit sphere and
z is a fixed vector. Then we have:

Pr
(
|aT z| > ε‖z‖

)
≤ 2e

−nε2
2

10We did provide proof for some cases where the minimax subspace
incoherence incoherence is significantly smaller (see Section V).
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With this result, Lemma 3 is proven in two steps. The first
step is to apply Lemma 12 to bound 〈ν∗i , x〉 and every data
point x /∈ X(`), where ν∗i (a fixed vector) is the central dual
vector corresponding to the data point xi ∈ X(`) (see the

Definition 3). When ε =
√

6 log(N)
n , the failure probability for

one event is 2
N3 . The second step is to use union bound across

all x and then all ν∗i . The total number of events is less than
N2 so we get

µ <

√
6 logN

n
with probability larger than 1− 2

N
.

APPENDIX C
PROOFS OF RESULTS IN SECTION V

Proof of Proposition 3. We prove the inequality by construct-
ing a normalized dual matrix V (`) for each subspace S`. For all(
L−1
K

)
cases that include S`, the L−K remaining subspaces

are independent. So we may take V (`) = [V (`)]∗ + [V (`)]⊥

such that V (`) is orthogonal to all other L−K−1 subspaces.
By the angle assumption, each column is bounded above by

1
sin θ .

It follows that, ‖[V (`)]TX(k)‖∞ is 0 if Sk is not taken out.
Otherwise,

‖[V (`)]TX(k)‖∞ ≤ max
i
‖V (`)

i ‖ ≤
1

sin θ
.

Now if we take V (`) to be the average of all N =
(
L−1
K

)
cases, for each k,

[V (`)]TX(k) =
1

N

N∑
i=1

[V (`)]Ti X
(k),

Note that in only
(
L−2
K−1

)
cases out of all N , [V (`)]Ti X

(k) is
non-zero (when k is chosen to be one of the K taken out).
With this observation,

‖[V (`)]TX(k)‖∞ ≤
(
L− 2

K − 1

)
/

(
L− 1

K

)
(1/ sin θ)

=
K

(L− 1) sin θ
.

Observe that V (`) constructed this way can still be decom-
posed into unit column [V (`)]∗ and [V (`)]⊥ orthogonal to S`,
so it is a valid normalized dual matrix for X`.

By constructing such V (`) for each subspace S`, we com-
plete the proof.

Proof of Proposition 4. We prove the inequality by construct-
ing a normalized dual vector ν for each data point x (assuming
x ∈ X1), and then bound the inner product of ν against all
other y ∈ X` 6=1.

Now consider the procedure of “Take-K-Out” experiments
as in the previous proof, there are M =

(
L−1
K

)
experiments

with S1 not taken out. Among them, there are M1 =
(
L−2
K−1

)
and M2 =

(
L−2
K

)
trials when one particular y is inside the K

and inside the L − 1 −K remaining subspaces, respectively.
Observe that
M1

M
=

K

L− 1
,

M2

M
=
L−K − 1

L− 1
, M1 +M2 = M.

θi

θi

φi S2

S3

ν∗

S1

ν⊥iνi

ni

0

L

Fig. 20. Illustration of how νi is constructed with ν∗i and φi in the plane
spanned by ni and ν∗i . Note that i is the index of this experiment where S4

is taken out. S1, S2 and S3 are hereby independent. Also note that we can
tune φi to obtain the optimal incoherence value.

Let the ν = ν∗ + ν⊥, where ν∗ ∈ S1 by definition has unit
norm and ν⊥ ∈ S⊥1 . Here we are going to construct ν1, ..., νM
for each and every experiment then derive a bound for |〈ν, y〉|
with

ν =
1

M

M∑
i=1

νi = ν∗ +

M∑
i=1

ν⊥i .

For each experiment, the L−K subspaces are independent,
so by taking out S1, the span of the remaining L − K − 1
subspaces do not cover the full ambient space, in other word,
there is a null space Null(Ai) for the data matrix Ai containing
all samples in the L−K−1 subspaces. Project ν∗ to Null(Ai)
and normalize it to unit vector ni. Note that ni is the normal
vector of the hyperplane span(Ai) that is closest to ν∗.

Then we can construct νi by considering only ν⊥i in the
2-D plane spanned by ν∗ and ni. Because it is planar, we can
use simple trigonometry to express 〈y, νi〉 analytically. The
procedure is illustrated in Fig. 20. Note that θi is the angle
between ν∗ and the intersecting line L =: span(ν∗, ni) ∩
span(Ai) and φi is the angle between ν∗ and νi. The angle φi
characterizes how much we want to push νi from ν∗ towards
ni.

In algebraic terms, consider the inner product

〈y, νi〉 = 〈y, ν∗〉+ 〈y, ν⊥i 〉.
When y is not inside the K subspaces taken out, we can
simplify the above form by ν∗ alone. Notice that we have

〈y, νi〉 = 〈y,ProjL(ν∗+ν⊥i )〉 = 〈y,ProjL(ν∗)〉+〈y,ProjL(ν⊥i )〉.

Since the direction ν⊥i is always chosen to reduce this inner
product,

〈y, νi〉 = (‖ProjL(ν∗)‖ − ‖ProjL(ν⊥i )‖)
〈
y,

ProjL(ν∗)
‖ProjL(ν∗)‖

〉
= (cos θi − sin θi tanφi)〈y,ProjL(ν∗)/ cos θi〉
= (1− tan θi tanφi)〈y,ProjL(ν∗)〉
= (1− tan θi tanφi)〈y, ν∗〉.

Moreover, we choose the value of φi = φ(θi, L,K) defined
in the following manner

φ(θ, L,K) =

{ π
2 − θ, if sin θ ≥ α√

n
;

0, otherwise.
(36)
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Note that in the first case, φi = π/2− θi, then

〈y, νi〉 = 〈y, ν∗〉+ 〈y, ν⊥i 〉 = 〈y, ν∗〉+ 〈y, 1

sin θi
ni − ν∗〉

=
1

sin θi
〈y, ni〉.

In the second case, tanφi = 0. For simplicity, denote the event
that sin θi ≥ α√

n
to be E1 and let E2 to be its complement,

then we have

〈y, νi〉 =


〈y, ν∗〉, if E2;

1
sin θi
〈y, ni〉, if E1 and {y belongs to the K subspaces};

0, Otherwise.

We count the total number of E1 among all M experiments
and obtain the empirical probability

p̂ =
1

M

∑
i=1,...,M

1

{
sin θi ≥

α√
n

}
,

where 1{·} is the indicator function. Denote p̂1 and p̂2 to
be the corresponding empirical probability of E1 in the M1

cases when y ∈ {K} and in the M2 cases when y /∈ {K}
respectively. Observe that

p̂1M1 + p̂2M2 = p̂M.

Also note that the empirical probability of E2 is exactly 1− p̂.
Then it follows that

〈y, ν〉 =〈y, 1

M

M∑
i=1

νi〉 =
1

M

 ∑
{i|y∈{K}}

〈y, νi〉+
∑

{i|y∈{K}c}

〈y, νi〉


=

1

M

 ∑
{i|y∈{K}∩E1}

1

sin θi
〈y, ni〉+

∑
{i|y∈{K}∩E2}

〈y, ν∗〉

+
∑

{i|y∈{K}c∩E2}

〈y, ν∗〉


=
p1M1

M

 1

p1M1

∑
{i|y∈{K}∩E1}

1

sin θi
〈y, ni〉

+ (1− p̂)〈y, ν∗〉

=〈y, ν̃〉

where

ν̃ =
1

M

∑
{i|y∈{K}∩E1}

ni
sin θi

+ (1− p̂)ν∗. (37)

To bound |〈y, ν〉|, we only need to bound ‖ν̃‖. By the
definition of event E1,

sin θi >
α√
n
,

then

‖ν̃‖ ≤
√
nM1p̂1

αM
+ 1− p̂ =

K
√
np̂1

α(L−K − 1)
+ 1− p̂

Under the fully random assumption, ν̃ is independent to y.
This can be seen from (37) that ni and ν∗ are both independent
to the sampling of y (since y is among the data points of K
subspaces taken out). Thus we may apply Lemma 12 to bound
the inner product then use union bound to cover a total of less

than N2 number of events. With probability larger than 1− 2
N ,

all events simultaneously obey

|〈y, ν〉| ≤ Kp̂1

√
6 logN

α(L− 1)
+

√
6 logN(1− p̂)√

n
. (38)

At this stage, we discuss three different cases of α, corre-
sponding to the three statements in Proposition 4.
(1) The general statement: The general statement (11) holds
by substituting the two empirical probability p̂1 and p̂ by

p̂1 ≤ 1, p̂ ≥ (1− δ(α, n))e−3α2/2 − ε.
The first inequality is trivial. To prove the second, we consider
M i.i.d. Bernoulli experiments that get 1 if the event is E1 and
0 otherwise. By Hoeffding’s inequality, empirical expectation

p̂ > p− ε
with probability larger than 1 − e−ε2M . By Corollary 1, we
have p > (1 − δ(α, n))e−

3α2

2 . Also, we may choose ε =√
3 logN
M such that the failure probability over all N2 events

are less than 1/N .
Substitute the bounds into (38) and combine all failure

probabilities with union bound, we get

µ ≤K
√

6 logN

α(L− 1)
+

√
12 logN√
nM

+

√
6 logN

[
1− (1− δ(α, n))e−3α2/2

]
√
n

.

(39)

with probability larger than 1−3/N . This gives us the general
statement in Proposition 4.

Now we will discuss two extreme cases of interest using an
alternative argument 11.
(2)When α is large : Denote the pdf of random inner product
of Lemma 13 as f(x), then by definition

pα = 2

∫ ∞
α

f(x)dx.

Naturally, there exists an α̃ such that pα̃ = 1
MN3 (in par-

ticular, by Lemma 12, we may show pα ≤ 1
MN3 when

α =
√

6 logN+2 logM
n ). By union bound, the probability that

E1 does not occur in all M events for all N2 pairs (x, ν), is
greater than 1 − 1/N . So we may take p̂ = 0 and p̂1 = 0 in
(38) and get directly the result

µ ≤
√

6 logN

n

with probability larger than 1−3/N for some sufficiently large
α.
(3)When α goes to 0: Using a similar argument, when α is
sufficiently small (typically smaller than e−n), we can show
that with probability larger than 1− 1/N , E2 does not occur
at all, hence p̂ = 1 and p̂1 = 1. Then from (38) directly, we
may get

µ ≤ K
√

6 logN

α(L− 1)

11these cannot be stated as a special case of (39)
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with probability larger than 1 − 3/N . As α appear in the
denominator, this bound is only meaningful when K = 0,
which reflects the fact that µ = 0 for independent subspace.
The proof is now complete.

APPENDIX D
NUMERICAL ALGORITHM

Like we described in the main text, we will derive Alternat-
ing Direction Method of Multipliers (ADMM)[38] algorithm
to solve LRSSC and NoisyLRSSC. We start from noiseless
version then look at the noisy version.

A. ADMM for LRSSC

First we need to reformulate the optimization with two
auxiliary terms, C = C1 = C2 as in the proof to separate
the two norms, and J to ensure each step has closed-form
solution.

min
C1,C2,J

‖C1‖∗ + λ‖C2‖1
s.t. X = XJ, J = C2 − diag(C2), J = C1

(40)

The Augmented Lagrangian is:

L =‖C1‖∗ + λ‖C2‖1 +
µ1

2
‖X −XJ‖2F

+
µ2

2
‖J − C2 + diag(C2)‖2F +

µ3

2
‖J − C1‖2F

+ tr(ΛT1 (X −XJ)) + tr(ΛT2 (J − C2 + diag(C2)))

+ tr(ΛT3 (J − C1)),

where µ1, µ2 and µ3 are numerical parameters to be tuned.
By assigning the partial gradient/subgradient of J , C2 and
C1 iteratively and update dual variables Λ1,Λ2,Λ3 in every
iterations, we obtain the update steps of ADMM.

J =
[
µ1X

TX + (µ2 + µ3)I
]−1[

µ1X
TX + µ2C2 + µ3C1 +XTΛ1 − Λ2 − Λ3

] (41)

Define soft-thresholding operator πβ(X) = (|X|−β)+sgn(X)
and singular value soft-thresholding operator Πβ(X) =
Uπβ(Σ)V T , where UΣV T is the skinny SVD of X . The
update steps for C1 and C2 are as follows:

C2 = π λ
µ2

(
J +

Λ2

µ2

)
,

C2 = C2 − diag(C2),

C1 = Π 1
µ3

(
J +

Λ3

µ3

)
.


(42)

Lastly, the dual variables are updated using gradient ascend:
Λ1 = Λ1 + µ1(X −XJ),

Λ2 = Λ2 + µ2(J − C2),

Λ3 = Λ3 + µ3(J − C1).

 (43)

The full steps are summarized in Algorithm 21, with an
optional adaptive penalty step proposed by Lin et. al[39]. Note
that we deliberately constrain the proportion of µ1, µ2 and µ3

such that the
[
µ1X

TX + (µ2 + µ3)I
]−1

need to be computed
only once at the beginning.

B. ADMM for NoisyLRSSC

The ADMM version of NoisyLRSSC is very similar to
Algorithm 21 in terms of its Lagrangian and update rule.
Again, we introduce dummy variable C1, C2 and J to form

min
C1,C2,J

1

2
‖X −XJ‖2F + β1‖C1‖∗ + β2‖C2‖1

s.t. J = C2 − diag(C2), J = C1.
(44)

Its Augmented Lagrangian is

L =‖C1‖∗ + λ‖C2‖1 +
1

2
‖X −XJ‖2F

+
µ2

2
‖J − C2 + diag(C2)‖2F +

µ3

2
‖J − C1‖2F

+ tr(ΛT2 (J − C2 + diag(C2))) + tr(ΛT3 (J − C1)),

and update rules are:

J =
[
XTX + (µ2 + µ3)I

]−1[
XTX + µ2C2 + µ3C1 − Λ2 − Λ3

] (45)


C2 = π β2

µ2

(
J +

Λ2

µ2

)
,

C2 = C2 − diag(C2),

C1 = Π β1
µ3

(
J +

Λ3

µ3

)
.


(46)

Update rules for Λ2 and Λ3 are the same as in (43). Note
that the adaptive penalty scheme also works for NoisyLRSSC
but as there is a fixed parameter in front of XTX in (45)
now, we will need to recompute the matrix inversion every
time µ2, µ3 get updated.

C. Convergence guarantee

Note that the standard ADMM form is

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c.
(47)

In our case, x = J , z = [C1, C2], f(x) = 1
2‖X − XJ‖2F ,

g(z) = β1‖C1‖∗+ β2‖C2‖1 and constraints can be combined
into a single linear equation after vectorizing J and [C1, C2].
Verify that f(x) and g(z) are both closed, proper and convex
and the unaugmented Lagrangian has a saddle point, then the
convergence guarantee follows directly from Section 3.2 in
[38].

Note that the reason we can group C1 and C2 is because the
update steps of C1 and C2 are concurrent and do not depends
on each other (see (42) and (46) and verify). This trick is
important for directly invoking the convergence analysis for
the two-block alternating direction method. Results for more
than two-blocks now exist but still the constant is worse (if
not the rate).
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Fig. 21. ADMM-LRSSC (with optional Adaptive Penalty)

Input: Data points as columns in X ∈ Rn×N , tradeoff parameter λ, numerical parameters
µ

(0)
1 , µ

(0)
2 , µ

(0)
3 and (optional ρ0, µmax, η,ε).

Initialize C1 = 0, C2 = 0, J = 0, Λ1 = 0, Λ2 = 0 and Λ3 = 0.
Pre-compute XTX and H =

[
µ1X

TX + (µ2 + µ3)I
]−1

for later use.
while not converged do

1. Update J by (41).
2. Update C1, C2 by (42).
3. Update Λ1,Λ2,Λ3 by (43).
4. (Optional) Update parameter (µ1, µ2, µ3) = ρ(µ1, µ2, µ3) and the pre-computed H = H/ρ
where

ρ =

{
min{µmaxµ1

, ρ0}, if
√
ηmaxi(µ

prev
i ‖Ci−Cprev

i ‖F )

‖X‖F ≤ ε;
1, otherwise.

end while
Output: Affinity matrix W = |C1|+ |C1|T

APPENDIX E
OTHER RESULTS AND PROOFS

A. LRR solution is dense

Proof of Proposition 1. The proof consists of two steps. First
because the data samples are random, the shape interaction
matrix V V T in Lemma 4 is a random projection to a rank-d`
subspace in RN` . Furthermore, each column is of a random
direction in the subspace.

Second, with probability 1, the standard bases are not
orthogonal to these N` vectors inside the random subspace.
The claim that V V T is dense can hence be deduced by
observing that each entry is the inner product of a column
or row12 of V V T and a standard basis, which follows a
continuous distribution. Therefore, the probability that any
entry of V V T being exactly 0 is 0.

B. Condition (4) in Theorem 1 is computational tractable

First note that µ(X(`)) can be computed by definition,
which involves solving one quadratically constrained linear
program (to get dual direction matrix [V (`)]∗) then finding
µ(X(`)) by solving the following linear program for each
subspace

min
V (`)

‖[V (`)]TX(`)‖∞ s.t. ProjS`V
(`) = [V (`)]∗,

where we use X(`) to denote
[X(1), ..., X(`−1), X(`+1), ..., X(L)].

C. Lower bound of random inner product

Lemma 13 (pdf of inner product of random unit vectors
[54]). Let u, v be random vectors uniformly distributed on
the standard unit n-sphere and then the pdf of z = 〈u, v〉 is
given as

fn(z) =

{
Γ(n+1

2 )

Γ(n2 )
√
π

√
1− z2

n−2
, for −1 < z < 1;

0, elsewhere,
(48)

12It makes no difference because V V T is a symmetric matrix

for n = 1, 2, 3, ...

Lemma 14 (Lower bound of inner product of random unit
vectors). Suppose x is independently sampled from unit n-
sphere Sn−1. y is a fixed vector. Then

Pr(|〈x, y〉| > z0‖y‖) >
(

1− e

2(n+ 1)!

)
(1− z2

0)
3n
2 .

Corollary 1. A special case of interest is that when z0 = α√
n
,

Pr

(
|〈x, y〉| > α√

n
‖y‖
)
> (1− δ(α, n))e−

3α2

2 .

where

δ(α, n) <

 e
2(n+1)! + α2

n , when α <
√

2
3 ;

e
2(n+1)! + α4

n , otherwise.

We first prove this corollary then prove Lemma 14.

Proof of Corollary 1. First note that when x > 1,

(1− 1/x)x > (1− 1/x)(1− 1/x)x−1 > (1− 1/x)e−1.

Then substitute x = n
α2 we get

(1− α2

n
)
n
α2 > (1− α2

n
)e−1.

Then we may simplify the result in Lemma 14.

Pr

(
|〈x, y〉| > α√

n
‖y‖
)
>

(
1− e

2(n+ 1)!

)(
1− α2

n

) 3n
2

=

(
1− e

2(n+ 1)!

)[(
1− α2

n

) n
α2

] 3α2

2

>

(
1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

e
−3α2

2 .

When x ≥ 1, it holds that (1 − δ)x > (1 − δx). Also, (1 −
a)(1− b) > 1− a− b when a, b > 0. So when 3α2/2 > 1, or
equivalently α >

√
2
3(

1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

>

(
1− e

2(n+ 1)!
− 3α4

2n

)
.
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otherwise we may simply drop the exponent and get(
1− e

2(n+ 1)!

)(
1− α2

n

) 3α2

2

>

(
1− e

2(n+ 1)!
− α2

n

)
.

Proof of Lemma 14. The probability p1 that the random inner
product is greater than z0 is given by the following integral

p1(z0) =
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ 1

z0

√
1− z2

n−2
dz

=
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ π/2

arcsin z0

cosn−2 θ d sin θ

=
2Γ(n+1

2 )

Γ(n2 )
√
π

∫ π/2

arcsin z0

cosn−1 θ dθ.

By the table of integral,∫
cosn−1 θ dθ = − 1

n
cosn θ×2F1

(
n

2
,

1

2
,
n+ 1

2
, cos2(θ)

)
+C,

where 2F1 [a, b; c; z] is the Gauss’s hypergeometric function,
defined as follows:

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where

(q)n =

{
1, if n = 0;
q(q + 1)...(q + n+ 1), if n > 0.

Then

p1(z0) =
2Γ(n+1

2
)

Γ(n
2

)
√
π

[
− 1

n
cosn θ × 2F1

(
n

2
,

1

2
,
n+ 1

2
, cos2(θ)

)]π/2
θ=θ0

=
2Γ(n+1

2
)

Γ(n
2

)
√
π

1

n
(1− z2

0)
n
2 × 2F1

(
n

2
,

1

2
,
n+ 1

2
, 1− z2

0

)
.

Let z0 = 0, we know that p1(z0) = 1 by the definition of
probability, hence

2Γ(n+1
2 )

Γ(n2 )
√
π

1

n

∞∑
k=0

(n2 )( 1
2 )

(n+1
2 )k!

= 1.

Taking the small residuals to the right hand side, we get

2Γ(n+1
2 )

Γ(n2 )
√
π

1

n

n∑
k=0

(n2 )( 1
2 )

(n+1
2 )k!

> 1−
∞∑

k=n+1

1

2k!
≥ 1− e

2(n+ 1)!
.

To get the last inequality, use Taylor’s theorem on ex at
x = 1 up to the nth term and observe that

∑∞
k=n+1

1
k!

is the remainder. By the Lagrange form of the remainder:∑∞
k=n+1

1
k! = eξ

(n+1)! for some ξ ∈ (0, 1), therefore smaller
than e

(n+1)! .
Using this bound, we can now derive a lower bound of

p1(z0) :

p1(z0) ≥ 2Γ(n+1
2 )

Γ(n2 )
√
π

1

n
(1− z2

0)
n
2

n∑
k=0

[
(n2 )( 1

2 )

(n+1
2 )k!

(1− z2
0)k
]

≥ 2Γ(n+1
2 )

Γ(n2 )
√
π

1

n
(1− z2

0)
n
2 (1− z2

0)n
n∑
k=0

[
(n2 )( 1

2 )

(n+1
2 )k!

]
≥
(

1− e

2(n+ 1)!

)
(1− z2

0)
3n
2 .

This gives the statement in Lemma 14.

APPENDIX F
TABLE OF SYMBOLS AND NOTATIONS

For easy lookup of the various quantities in the proof, we
provide a table of symbols and notations.

| · | Either absolute value or cardinality.
‖ · ‖ 2-norm of vector/spectral norm of matrix.
‖ · ‖1 1-norm of a vector or vectorized matrix.
‖ · ‖∗ Nuclear norm/Trace norm of a matrix.
‖ · ‖F Frobenious norm of a matrix.
‖ · ‖∞ entrywise max norm of vector or matrix.
S` for ` = 1, .., L The L subspaces of interest.
n,d` Ambient dimension, dimension of S`.
X(`) n×N` matrix collecting all points from S`.
X n×N data matrix, containing all X(`).
C N × N Representation matrix X = XC. In some

context, it may also denote an absolute constant.
λ Tradeoff parameter betwenn 1-norm and nuclear norm.
A,B Generic notation of some matrix.
Λ1,Λ2,Λ3 Dual variables corresponding to the three constraints in

(17).
ν, νi, ν

(`)
i Columns of a dual matrix.

Λ∗, ν∗i Central dual variables defined in Definition 2.
V (X), {V (X)} Normalized dual direction matrix, and the set of all V (X)

(Definition 2).
V (`) An instance of normalized dual direction matrix

V (X(`)).

vi, v
(`)
i Volumns of the dual direction matrices

µ, µ(X(`)) Incoherence parameters in Definition 3
σd, σd(A) dth singular value (of a matrix A).
X

(`)
−k X(`) with kth column removed.

r, r(conv(±X(`)
−k)) Inradius (of the symmetric convex hull of X(`)

−k).
RelViolation(C,M) A soft measure of SEP/inter-class separation.
GiniIndex(vec(CM)) A soft measure of sparsity/intra-class connectivity.
Ω, Ω̃, M,D Some set of indices (i, j) in their respective context.
U,Σ, V Usually the compact SVD of a matrix, e.g., C.
C

(`)
1 , C

(`)
2 Primal variables in the first layer fictitious problem.

C̃
(`)
1 , C̃

(`)
2 Primal variables in the second layer fictitious problem.

Λ
(`)
1 ,Λ

(`)
2 ,Λ

(`)
3 Dual variables in the first layer fictitious problem.

Λ̃
(`)
1 , Λ̃

(`)
2 , Λ̃

(`)
3 Dual variables in the second layer fictitious problem.

U(`),Σ(`), V (`) Compact SVD of C(`).
Ũ(`), Σ̃(`), Ṽ (`) Compact SVD of C̃(`).
diag(·)/diag⊥(·) Selection of diagonal/off-diagonal elements.
supp(·) Support of a matrix.
sgn(·) Sign operator on a matrix.
conv(·) Convex hull operator.
(·)o Polar operator that takes in a set and output its polar set.
span(·) Span of a set of vectors or matrix columns.
null(·) Nullspace of a matrix.
PT /P

T⊥ Projection to both column and row space of a low-rank
matrix / Projection to its complement.

PD Projection to index set D.
ProjS(·) Projection to subspace S.
β1, β2 Tradeoff parameters for NoisyLRSSC.
µ1, µ2, µ3 Numerical parameters for the ADMM algorithm.
J Dummy variable to formulate ADMM.
K Used in Take-K-out Independence (Definition 6).
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