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Interference Channels with Rate-Limited Feedback
Alireza Vahid, Changho Suh, and A. Salman Avestimehr

Abstract—We consider the two-user interference channel with
rate-limited feedback. Related prior works focus on the case
where feedback links have infinite capacity, while no research
has been done for the rate-limited feedback problem. Several new
challenges arise due to the capacity limitations of the feedback
links, both in deriving inner-bounds and outer-bounds. We study
this problem under three different interference models: the El
Gamal-Costa deterministic model, the linear deterministic model,
and the Gaussian model. For the first two models, we develop
an achievable scheme that employs three techniques: Han-
Kobayashi message splitting, quantize-and-binning, and decode-
and-forward. We also derive new outer-bounds for all three
models and we show the optimality of our scheme under the
linear deterministic model. In the Gaussian case, we propose
a transmission strategy that incorporates lattice codes, inspired
by the ideas developed in the first two models. For symmetric
channel gains, we prove that the gap between the achievable
sum-rate of the proposed scheme and our new outer-bounds is
bounded by a constant number of bits, independent of the channel
gains.

Index Terms—El Gamal-Costa deterministic model, Gaussian
interference channel, linear deterministic model, rate-limited
feedback, multi-user information theory.

I. INTRODUCTION

The history of feedback in communication systems traces
back to Shannon. It is well-known that feedback does not
increase the capacity of discrete memoryless point-to-point
channels [1]. However, feedback can enlarge the capacity
region of multi-user networks, even in the most basic case
of the two-user memoryless multiple-access channel [2], [3].
Hence, there has been a growing interest in developing feed-
back strategies and understanding the fundamental limits of
communication over multi-user networks with feedback, in
particular the two-user interference channel (IC). See [4], [5],
[6], [7], [8], [9], [10] for example.

Especially in [9], the infinite-rate feedback capacity of the
two-user Gaussian IC has been characterized to within a 2-bit
gap. One consequence of this result is that interestingly feed-
back can provide an unbounded capacity increase. This is in
contrast to point-to-point and multiple-access channels where
feedback provides no gain and bounded gain respectively.

While the feedback links are assumed to have infinite
capacity in [9], a more realistic feedback model is one where
feedback links are rate-limited. In this paper, we study the
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impact of the rate-limited feedback in the context of the two-
user IC. We focus on two fundamental questions: (1) what is
the maximum capacity gain that can be obtained with access
to feedback links at a specific rate of CFB? (2) what are
the transmission strategies that exploit the available feedback
links efficiently? Specifically, we address these questions un-
der three channel models: the El Gamal-Costa deterministic
model [11], the linear deterministic model of [12], and the
Gaussian model.

Under the El Gamal-Costa deterministic model, we derive
inner-bounds and outer-bounds on the capacity region. As
a result, we show that the capacity region can be enlarged
using feedback by at most the amount of available feedback,
i.e., “one bit of feedback is at most worth one bit of capac-
ity”. Our achievable scheme employs three techniques: (1)
Han-Kobayashi message splitting; (2) quantize-and-binning;
and (3) decode-and-forward. Unlike the infinite-rate feedback
case [9], in the rate-limited feedback case, a receiver cannot
provide its exact received signal to its corresponding trans-
mitter; therefore, the main challenge is how to smartly decide
what to send back through the available rate-limited feedback
links. We overcome this challenge as follows. We first split
each transmitter’s message into three parts: the cooperative
common, the non-cooperative common, and the private mes-
sage. Next, each receiver quantizes its received signal and then
generates a binning index so as to capture part of the other
user’s common message (that we call the cooperative common
message) which causes interference to its own message. The
receiver will then send back this binning index to its intended
transmitter through the rate-limited feedback links. With this
feedback, each transmitter decodes the other user’s cooperative
common message by exploiting its own message as side
information. This way transmitters will be able to cooperate by
means of the feedback links, thereby enhancing the achievable
rates. This result will be described in Section IV.

We then study the problem under the linear deterministic
model [12] which captures the key properties of the wire-
less channel, and thus provides insights that can lead to an
approximate capacity of Gaussian networks [12], [9], [13],
[14], [15]. We show that our inner-bounds and outer-bounds
match under this linear deterministic model, thus establishing
the capacity region. While this model is a special case of
the El Gamal-Costa model, it has a significant role to play
in motivating a generic achievable scheme for the El Gamal-
Costa model. Moreover, the explicit achievable scheme in this
model provides a concrete guideline to the Gaussian case. We
will explain this result in Section V.

Inspired by the results in the deterministic models, we
develop an achievable scheme and also derive new outer-
bounds for the Gaussian channel. In order to translate the
main ideas in our achievability strategy for the deterministic
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models into the Gaussian case, we employ lattice coding
which enables receivers to decode superposition of codewords.
Specifically at each transmitter, we employ lattice codes for
cooperative messages. By appropriate power assignment of the
codewords, we make the desired lattice codes arrive at the
same power level, hence, receivers being able to decode the
superposition of codewords. Each receiver will then decode the
index of the lattice code corresponding to the superposition
and sends it back to its corresponding transmitter where
the cooperative common message of the other user will be
decoded. For symmetric channel gains, we show that the gap
between the achievable sum-rate and the outer-bounds can be
bounded by a constant, independent of the channel gains. This
will be explained in Section VI.

Related Work: Interference channels with infinite-rate
feedback have received previous attention [4], [5], [6], [7], [8],
[9], [10]. Kramer [4], [5] developed a feedback strategy in the
Gaussian IC; In [6], Gastpar and Kramer established an outer-
bound on the usefulness of noisy feedback for the two-user
IC. Tandon and Ulukus in [7] derived an outer bound using
the dependence balance bound technique [16]. However, the
gap between the inner-bounds and the outer-bounds becomes
arbitrarily large with the increase of signal to noise ratio (SNR)
and interference to noise ratio (INR). Jiang-Xin-Garg [8]
derived an achievable region in the discrete memoryless IC
with feedback, based on block Markov encoding [17] and
binning. However, no outer-bounds are provided. Suh and
Tse in [9] developed new inner bounds and outer bounds to
characterize the feedback capacity of the Gaussian IC to within
2 bits. Sahai et al. in [10], have shown that in order to achieve
the infinite-rate feedback capacity, it is sufficient to have only
one feedback link of infinite rate from one receiver to either
of the two transmitters.

While no research has been done for the rate-limited feed-
back problem, some works have been done for the different yet
related problem - the conferencing encoder problem [18], [19],
[20], [21], [22], [23]. Tuninetti in [18] has proposed a coding
strategy for the two-user IC that results in higher achievable
rates by expoliting overheard information by the transmitters;
backward decoding is incorporated at the receivers which
we also employ in our achievability scheme. This result
was improved in [19] by incorporating Gelfand-Pinsker cod-
ing [24], [25] to send cooperatively the private messages.
Prabhakaran and Viswanath [21] have made a connection
between the feedback problem and the conferencing encoder
problem However, the connection is loose especially when the
feedback link is rate-limited, although it can be strong for the
infinite-rate feedback case. It turns out this distinction between
the two problems leads to developing a new lattice-code-based
achievable scheme in our problem.

The rest of the paper is organized as follows. In Section II,
we formulate our problem and give a brief overview of
the channel models. In Section III, we provide a motivating
example which forms inspiration of our achievable scheme.
In Section IV, we will provide our main results under the
El Gamal-Costa deterministic model. We will then present
the capacity theorem for the linear deterministic model in
Section V. Next, in Section VI, we describe our main results

for the Gaussian channel. Section VII concludes the paper.

II. PROBLEM FORMULATION AND NETWORK MODEL

We consider a two-user interference channel (IC) where
a noiseless rate-limited feedback link is available from each
receiver to its corresponding transmitter. See Figure 1. The
feedback link from receiver k to transmitter k is assumed to
have a capacity of CFBk, k = 1, 2. on.
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Fig. 1. Two-user interference channel with rate-limited feedback.

Transmitters 1 and 2 wish to reliably communicate
independent and uniformly distributed messages W1 ∈
{1, 2, . . . , 2NR1} and W2 ∈ {1, 2, . . . , 2NR2} to receivers
1 and 2 respectively, during N uses of the channel. The
transmitted signal of transmitter k, k = 1, 2, at time i,
1 ≤ i ≤ N , and the received signal of receiver k, k = 1, 2, at
time i, 1 ≤ i ≤ N , are respectively denoted by Xk,i and Yk,i.
There are two feedback encoders at the receivers that create
the feedback signals from the received signals:

Ỹk,i = ẽk,i(Yk,1, . . . , Yk,i−1) = ẽk,i(Y
(i−1)
k ), k = 1, 2. (1)

where we use shorthand notation to indicate the sequence up
to i− 1.

Due to the presence of feedback, the encoded signal Xk,i

of user k at time i is a function of both its own message and
previous outputs of the corresponding feedback encoder:

Xk,i = ek,i(Wk, Ỹ
(i−1)
k ), k = 1, 2. (2)

Each receiver k, k = 1, 2, uses a decoding function dk,N
to get the estimate Ŵk, from the channel outputs {Yk,i : i =
1, . . . , N}. An error occurs whenever Ŵk 6= Wk. The average
probability of error is given by

λk,N = E[P (Ŵk 6= Wk)], k = 1, 2, (3)

where the expectation is taken with respect to the random
choice of the transmitted messages W1 and W2.

We say that a rate pair (R1, R2) is achievable, if there exists
a block encoder at each transmitter, a block encoder at each
receiver that creates the feedback signals, and a block decoder
at each receiver as described above, such that the average error
probability of decoding the desired message at each receiver
goes to zero as the block length N goes to infinity. The
capacity region C is the closure of the set of the achievable
rate pairs.
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Fig. 2. The El Gamal-Costa deterministic IC with rate-limited feedback.

We will consider the following three channel models to
investigate this problem.
1- El Gamal-Costa Deterministic Interference Channel:

Figure 2 illustrates the El Gamal-Costa deterministic IC [11]
with rate-limited feedback. In this model the outputs Y1 and Y2

and the interferences V1 and V2 are (deterministic) functions
of inputs X1 and X2 [11]:

Y1,i = f1(X1,i, V2,i),

Y2,i = f2(X2,i, V1,i),

V1,i = g1(X1,i),

V2,i = g2(X2,i),

(4)

where f1(., .) and f2(., .) are such that

H(V2,i|Y1,i, X1,i) = 0,

H(V1,i|Y2,i, X2,i) = 0.
(5)

Here Vk is a part of Xk (k = 1, 2), visible to the unintended
receiver. This implies that in any system where each decoder
can decode its message with arbitrary small error probability,
V1 and V2 are completely determined at receivers 2 and 1,
respectively, i.e., these are common signals.
2- Linear Deterministic Interference Channel:

This model, which was introduced in [12], captures the
effect of broadcast and superposition in wireless networks. We
study this model to bridge from general deterministic networks
into Gaussian networks. In this model, there is a non-negative
integer nkj representing channel gain from transmitter k to
receiver j, k = 1, 2, and j = 1, 2. In the linear deterministic
IC, we can write the channel input to the transmitter k at time
i as Xk,i = [X1

k,i X
2
k,i . . . X

q
k,i]

T ∈ Fq2, k = 1, 2, such that
X1
k,i and Xq

k,i represent the most and the least significant bits
of the transmitted signal respectively. Also, q is the maximum
of the channel gains in the network, i.e., q = maxk,j (nkj).
At each time i, the received signals are given by

Y1,i = Sq−n11X1,i ⊕ Sq−n21X2,i,

Y2,i = Sq−n12X1,i ⊕ Sq−n22X2,i,
(6)

where S is the q×q shift matrix and operations are performed
in F2 (i.e., modulo two). See Figure 3 for an example.

It is easy to see that this model also satisfies the conditions
of (5), hence it is a special class of the El Gamal-Costa
deterministic IC.

Tx 1

Tx 2 Rx 2

Rx 1

CFB1

CFB2

n11

n21

n22

n12

Fig. 3. An example of a linear deterministic IC with rate-limited feedback,
where n11 = n22 = 3, n12 = 2, n21 = 1, and q = 3.

3- Gaussian Interference Channel:
In this model, there is a complex number hkj representing

the channel from transmitter k to receiver j, k = 1, 2, and
j = 1, 2. The received signals are

Y1,i = h11X1,i + h21X2,i + Z1,i,

Y2,i = h12X1,i + h22X2,i + Z2,i,
(7)

where {Zj,i}Ni=1 is the additive white complex Gaussian noise
process with zero mean and unit variance at receiver j, j =
1, 2. Without loss of generality, we assume a power constraint
of 1 at all nodes, i.e.,

1

N
E(

N∑
i=1

|Xk,i|2) ≤ 1 k = 1, 2, (8)

where N is the block length. We will use the following
notations:

SNR1 = |h11|2, SNR2 = |h22|2,
INR12 = |h12|2, INR21 = |h21|2.

(9)

III. MOTIVATING EXAMPLE

We start by analyzing a motivating example. Consider the
linear deterministic IC with rate-limited feedback as depicted
in Figure 4(a). As we will see in Section V, the capacity region
of this network is given by the region shown in Figure 4(b).
Our goal in this section is to demonstrate how feedback
can help increase the capacity. In particular, we describe
the achievability strategy for one of the corner points, i.e.,
(R1, R2) = (4, 1). From this example, we will make important
observations that will later provide insights into the achievable
scheme.

The achievability strategy works as follows. In the first time
slot, transmitter 1 sends four bits a1, . . . , a4 and transmitter 2
sends only one bit b1 at the third level, see Figure 4(a). This
way receiver 1 can decode its intended four bits interference
free, while receiver 2 has access to only a1 ⊕ b1 and a2. In
the second time slot, through the feedback link, receiver 2
feeds a1⊕b1 back to transmitter 2 who can remove b1 from it
to decode a1. Also during the second time slot, transmitter 1
sends four fresh bits a5, . . . , a8, whereas transmitter 2 sends
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Fig. 4. (a) A two-user linear deterministic IC with channel gains n11 =
n22 = 4, n12 = n21 = 2 and feedback rates CFB1 = CFB2 = 1, and (b)
its capacity region.

one new bit b2. In the third time slot, through the feedback
link, receiver 2 feeds b2 ⊕ a5 back to transmitter 2 who can
remove b2 from it to decode a5. Moreover, during the third
time slot, transmitter 1 sends four new bits a9, . . . , a12, while
transmitter 2 sends one new bit b3 and at the level shown in
Figure 4(a), sends the other user’s information bit a1 decoded
in the second time slot with the help of feedback. With this
strategy receiver 2 has now access to a1 and can use it to
decode b1. Note that receiver 1 already knows a1 and hence
can decode a12. This procedure will be repeated over the next
time slots. During the last two time slots, only transmitter
2 sends the other user’s information decoded before, while
transmitter 1 sends nothing. Therefore, after B time slots, we
achieve a rate of (R1, R2) = B−2

B (4, 1), which converges to
(4, 1) as B goes to infinity.

Based on this simple capacity-achieving strategy, we can
now make several observations:
• The messages coming from transmitter 1 can be split into

three parts: (1) “cooperative common”: this message is visible
to both receivers, while interfering with the other user’s signals
(e.g., a1 at transmitter 1 in the first time slot). This should
be fed back to the transmitter so that it can be used later in
refining the desired signals corrupted by the interfering signal;
(2) “non-cooperative common”: this message is visible to both

receivers, however it does not cause any interference (e.g.,
a2 at transmitter 1 in the first time slot); (3) “private”: this
message is visible only to the intended receiver (e.g., a3 and
a4 at transmitter 1 in the first time sot). Denote these messages
by wkcc, wknc, and wkp, respectively, where k = 1, 2 is the
transmitter index.
• To refine the desired signal corrupted by the cooperative

common signal of transmitter 1 (i.e., a1), receiver 2 utilizes the
feedback link to send the interfered signal (i.e., a1⊕ b1) back
to transmitter 2. Transmitter 2 then employs a partial decode-
and-forward to help receiver 1 decode its messages, i.e., the
cooperative message of transmitter 1 is decoded at transmitter
2 and it will be forwarded to receiver 2 during another time
slot.
• As we can see in this example, encoding operations

at each time slot depend on previous operations, thereby
motivating us to employ block Markov encoding. As for the
decoding, we implement backward decoding at receivers. Each
receiver waits until the last time B and we use the last received
signal to decode the message received at time B−2. We then
decode the message received at time B − 3 and all the way
down to the message received at time 1.

These observations will form the basis for our achievable
schemes in the following sections.

IV. DETERMINISTIC INTERFERENCE CHANNEL

In this section, we consider the El Gamal-Costa determinis-
tic IC with rate-limited feedback, described in Section II. The
motivating example in the previous section leads us to develop
a generic achievable scheme based on three ideas: (1) Han-
Kobayashi message splitting [26]; (2) quantize-and-binning;
and (3) decode-and-forward [17]. As mentioned earlier, we
split the message into three parts: the cooperative common
message; non-cooperative common message; and private mes-
sage. We employ quantize-and-binning to feed back part of the
interfered signals through the rate-limited feedback link. With
feedback, each transmitter decodes part of the other user’s
common information (cooperative common) that interfered
with its desired signals. We accomplish this by using the
partial decode-and-forward scheme. We also derive a new
outer bound based on the genie-aided argument [11] and the
dependence-balance-bound technique [27], [28], [7].

A. Achievable Rate Region

Theorem 1: The capacity region of the El Gamal-Costa
deterministic IC with rate-limited feedback includes the set
R of (R1, R2) satisfying inequalities (10a)–(10m).

Proof: We first provide an outline of our achievable
scheme. We employ block Markov encoding with a total
size B of blocks. In block 1, transmitter 1 splits its own
message into cooperative common, non-cooperative common
and private parts and then sends a codeword superimposing
all of these messages. The cooperative common message is
sent via the codeword u

N,(1)
1 . The non-cooperative common

message is added to this, being sent via vN,(1)
1 . The private

message is then superimposed on top of the previous messages,
being sent via xN,(1)

1 . Similarly, transmitter 2 sends xN,(1)
2 . In
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R1 ≤ I(U, V2, X1;Y1) (10a)
R1 ≤ I(X1;Y1|U,U1, V2) + min(I(U1;Y2|U,X2), CFB2 − δ2) (10b)
R2 ≤ I(U, V1, X2;Y2) (10c)
R2 ≤ I(X2;Y2|U,U2, V1) + min(I(U2;Y1|U,X1), CFB1 − δ1) (10d)

R1 +R2 ≤ I(X1;Y1|U, V1, V2) + I(U, V1, X2;Y2) (10e)
R1 +R2 ≤ I(X2;Y2|U, V1, V2) + I(U, V2, X1;Y1) (10f)
R1 +R2 ≤ min(I(U2;Y1|U,X1), CFB1 − δ1) + min(I(U1;Y2|U,X2), CFB2 − δ2) + I(X1, V2;Y1|U,U1, U2)

+I(X2;Y2|U, V1, V2) (10g)
R1 +R2 ≤ min(I(U2;Y1|U,X1), CFB1 − δ1) + min(I(U1;Y2|U,X2), CFB2 − δ2) + I(X2, V1;Y2|U,U1, U2)

+I(X1;Y1|U, V1, V2) (10h)
R1 +R2 ≤ min(I(U2;Y1|U,X1), CFB1 − δ1) + min(I(U1;Y2|U,X2), CFB2 − δ2) + I(X1, V2;Y1|U, V1, U2)

+I(X2, V1;Y2|U, V2, U1) (10i)
2R1 +R2 ≤ I(U, V2, X1;Y1) + I(X1;Y1|U, V1, V2) + I(X2, V1;Y2|U,U1, V2) (10j)

+ min(I(U1;Y2|U,X2), CFB2 − δ2)

2R1 +R2 ≤ 2 min(I(U1;Y2|U,X2), CFB2 − δ2) + min(I(U2;Y1|U,X1), CFB1 − δ1) + I(X1, V2;Y1|U,U1, U2)

+I(X1;Y1|U, V1, V2) + I(X2, V1;Y2|U,U1, V2) (10k)
R1 + 2R2 ≤ I(U, V1, X2;Y2) + I(X2;Y2|U, V2, V1) + I(X1, V2;Y1|U,U2, V1) (10l)

+ min(I(U2;Y1|U,X1), CFB1 − δ1)

R1 + 2R2 ≤ 2 min(I(U2;Y1|U,X1), CFB1 − δ1) + min(I(U1;Y2|U,X2), CFB2 − δ2) + I(X2, V1;Y2|U,U1, U2)

+I(X2;Y2|U, V1, V2) + I(X1, V2;Y1|U,U2, V1) (10m)

over all joint distributions

p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)p(x2|u, u2, v2)p(ŷ1|y1)p(ŷ2|y2),

where

δ1 = I(Ŷ1;Y1|U,U2, X1),

δ2 = I(Ŷ2;Y2|U,U1, X2).

block 2, receiver 1 quantizes its received signal yN,(1)
1 into

ŷ
N,(1)
1 with the rate of R̂1. Next it generates a bin index

by considering the capacity of its feedback link and then
feeds the bin index back to its corresponding transmitter.
Similarly, receiver 2 feeds back the corresponding bin index.
In block 3, with feedback, each transmitter decodes the other
user’s cooperative common message (sent in block 1) that
interfered with its desired signals. The following messages
are then available at the transmitter: (1) its own message; and
(2) the other user’s cooperative common message decoded
with the help of feedback. Using its own cooperative com-
mon message as well as the other user’s counterpart, each
transmitter generates the codeword uN,(3). This captures the
correlation between the two transmitters that might induce the
cooperative gain. Conditioned on these previous cooperative
common messages, each transmitter generates new cooperative
common, non-cooperative common, and private messages. It
then sends the corresponding codeword. This procedure is
repeated until block B − 2. In the last two blocks B − 1 and
B, to facilitate backward decoding, each transmitter sends the
predetermined common messages and a new private message.
Each receiver waits until total B blocks have been received

and then performs backward decoding.
Codebook Generation: Fix a joint distribution
p(u)p(u1|u)p(u2|u)p(x1|u1, u)p(x2|u2, u)p(ŷ1|y1)p(ŷ2|y2).
We will first show that p(x1|u, u1, v1) and p(x2|u, u2, v2) are
functions of the above distributions. To see this, let us write
a joint distribution p(u, u1, u2, v1, v2, x1, x2) in two different
ways:

p(u, u1, u2, v1, v2, x1, x2)

= p(u)p(u1|u)p(u2|u)p(x1|u, u1)p(x2|u, u2)δ(v1 − g1(x1))

× δ(v2 − g2(x2))

= p(u)p(u1|u)p(u2|u)p(v1|u, u1)p(v2|u, u2)p(x1|u, u1, v1)

× p(x2|u, u2, v2),
(11)

where δ(·) indicates the Kronecker delta function. No-
tice that by the El Gamal-Costa model assumption (4),
p(v1|u, u1, x1) = δ(v1−g1(x1)) and p(v2|u, u2, x2) = δ(v2−
g2(x2)). From this, we can easily see that

p(x1|u, u1, v1) =
p(x1|u, u1)δ(v1 − g1(x1))

p(v1|u, u1)
,
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p(x2|u, u2, v2) =
p(x2|u, u2)δ(v2 − g2(x1))

p(v2|u, u2)
. (12)

We now generate codewords as follows. Transmitter 1
generates 2N(R1cc+R2cc) independent codewords uN (i, j)
according to

∏N
i=1 p(ui)

1, where i ∈ {1, · · · , 2NR1cc}
and j ∈ {1, · · · , 2NR2cc}. For each codeword
uN (i, j), it generates 2NR1cc independent codewords
uN1 ((i, j), k) according to

∏N
i=1 p(u1i|ui) where k ∈

{1, · · · , 2NR1cc}. Subsequently, for each pair of codewords(
uN (i, j), uN1 ((i, j), k)

)
, generate 2NR1nc independent

codewords vN1 ((i, j), k, l) according to
∏N
i=1 p(v1i|ui, u1i)

where l ∈ {1, · · · , 2NR1nc}. Lastly, for each triple of
codewords

(
uN (i, j), uN1 ((i, j), k), vN1 ((i, j), k, l)

)
, generate

2NR1p independent codewords xN1 ((i, j), k, l,m) according
to
∏N
i=1 p(x1i|ui, u1i, v1i) where m ∈ {1, · · · , 2NR1p}. On

the other hand, receiver 1 generates 2NR̂1 sequences ŷN1 (q)

according to
∏N
i=1 p(ŷ1i) where q ∈ {1, · · · , 2NR̂1}. In

the feedback strategy (to be described shortly), we will see
how this codebook generation leads to the joint distribution
p(ŷ1|y1). Similarly, receiver 2 generates ŷN2 .

As it will be clarified later, for a given block b, indices i and
j in uN (i, j) correspond to the cooperative common message
of transmitter 1 and transmitter 2 sent during block (b − 2)
respectively. Then

∏N
i=1 p(u1i|ui) is used to create 2NR1cc

independent codewords corresponding to the cooperative com-
mon message of transmitter 1 in {1, · · · , 2NR1cc}. Simi-
larly, 2NR1nc independent codewords are created according
to
∏N
i=1 p(v1i|ui, u1i), corresponding to the non-cooperative

common message of transmitter 1 in {1, · · · , 2NR1nc}. Finally,∏N
i=1 p(x1i|ui, u1i, v1i) is used to create 2NR1p independent

codewords corresponding to the private message of transmitter
1 in {1, · · · , 2NR1p}.

Notation: Notations are independently used only for this
section. The index k indicates the cooperative common mes-
sage of user 1 instead of user index. The index i is used for
both purposes: (1) indicating the previous cooperative common
message of user 1; (2) indicating time index. It could be easily
differentiated from contexts.
Feedback Strategy (Quantize-and-Binning): Focus on the
b-th transmission block. First receiver 1 quantizes its received
signal yN,(b)1 into ŷ

N,(b+1)
1 with the rate of R̂. Next it finds

an index q such that
(
ŷ
N,(b+1)
1 (q), y

N,(b)
1

)
∈ T (N)

ε , where

q ∈ [1 : 2NR̂1 ] and T (N)
ε indicates a jointly typical set. The

quantization rate R̂1 is chosen so as to ensure the existence of
such an index with probability 1. The covering lemma in [29]
guides us to choose R̂1 such that

R̂1 ≥ I(Ŷ1;Y1), (13)

since under the above constraint, the probability that there
is no such an index becomes arbitrarily small as N goes
to infinity. Notice that with this choice of R̂1, the codebook
ŷN1 (q) according to

∏N
i=1 p(ŷ1i) would match the codeword

according to
∏N
i=1 p(ŷ1i|y1i).

We then partition the set of indices q ∈ [1 : 2NR̂1 ] into the
number 2NCFB1 of equal-size subsets (that we call bins):

1With a slight abuse of notation, we use the same index i to represent time.

B(r) =
[
(r − 1)2N(R̂1−CFB1) + 1 : r2N(R̂1−CFB1)

]
,

r ∈ [1 : 2NCFB1 ].

Now the idea is to feed back the bin index r such
that q ∈ B(r). This helps transmitter 1 to decode the
quantized signal ŷN,(b)1 . Specifically, using the bin index r,
transmitter 1 finds a unique index q ∈ B(r) such that(
ŷ
N,(b+1)
1 (q), x

N,(b)
1 , uN,(b)

)
∈ T (N)

ε . Notice that by the
packing lemma in [29], the decoding error probability goes
to zero if

R̂1 − CFB1 ≤ I(Ŷ1;X1, U). (14)

Using (13) and (14), transmitter 1 can now decode the quan-
tized signal as long as

I(Ŷ1;Y1|X1, U) ≤ CFB1, (15)

Similarly, transmitter 2 can decode ŷN,(b+1)
2 (q) if

I(Ŷ2;Y2|X2, U) ≤ CFB2. (16)

Encoding: Given ŷ
N,(b−1)
1 (decoded with the help of feed-

back), transmitter 1 finds a unique index ŵ
(b−2)
2cc = k̂ (sent

from transmitter 2 in the (b− 2)-th block) such that(
uN (·) , uN1 (·) , vN1 (·), xN1 (·), uN2 (·, k̂), ŷ

N,(b−1)
1

)
∈ T (N)

ε ,

where (·) indicates the known messages
(w

(b−4)
1cc , ŵ

(b−4)
2cc , w

(b−2)
1nc , w

(b−2)
1p ). Notice that due to the

feedback delay, the fed back signal contains information of
the (b − 2)-th block. We assume that ŵ(b−2)

2cc is correctly
decoded from the previous block. By the packing lemma [29],
the decoding error probability becomes arbitrarily small (as
N goes to infinity) if

R2cc ≤ I(U2; Ŷ1|X1, U)

= I(Ŷ1;Y1|U,X1)− I(Ŷ1;Y1|U,U2, X1)

≤ min(CFB1 − δ1, I(U2;Y1|X1, U)), (17)

where the last inequality follows from (15), δ1 :=
I(Ŷ1;Y1|U,U2, X1) and I(U2; Ŷ1|X1, U) ≤ I(U2;Y1|X1, U).

Based on (w
(b−2)
1cc , ŵ

(b−2)
2cc ), transmitter 1 generates a

new cooperative-common message w
(b)
1cc, a non-cooperative-

common message w
(b)
1nc and a private message w

(b)
1p . It then

sends xN1 . Similarly transmitter 2 decodes ŵ(b−2)
1cc , generates

(w
(b)
2cc, w

(b)
2nc, w

(b)
2p ) and then sends xN2 .

Decoding: Each receiver waits until total B blocks have been
received and then does backward decoding. Notice that a block
index b starts from the last B and ends to 1. For block b,
receiver 1 finds the unique indices (̂i, ĵ, k̂, l̂) such that for some
m ∈ [1 : 2NR2nc ](
uN (̂i, ĵ), uN1 ((̂i, ĵ), ŵ

(b)
1cc), v

N
1 ((̂i, ĵ), ŵ

(b)
1cc, k̂), xN1 ((̂i, ĵ), ŵ

(b)
1cc

, k̂, l̂), uN2 ((̂i, ĵ), ŵ
(b)
2cc), v

N
2 ((̂i, ĵ), ŵ

(b)
2cc,m), y

N,(b)
1

)
∈ T (N)

ε ,

where we assumed that a pair of messages (ŵ
(b)
1cc, ŵ

(b)
2cc)

was successively decoded from the future blocks. Similarly
receiver 2 decodes (ŵ

(b−2)
1cc , ŵ

(b−2)
2cc , ŵ

(b)
2nc, ŵ

(b)
2p ).



7

Analysis of Probability of Error: By symmetry, we con-
sider the probability of error only for block b and for
a pair of transmitter 1 and receiver 1. We assume that
(w

(b−2)
1cc , w

(b−2)
2cc , w

(b)
1nc, w

(b)
1p ) = (1, 1, 1, 1) was sent through

the blocks; and there was no backward decoding error from
the future blocks, i.e., (ŵ

(b)
1cc, ŵ

(b)
2cc) are successfully decoded.

Define an event:

Eijklm =
{(
uN (i, j), uN1 ((i, j), ŵ

(b)
1cc), v

N
1 ((i, j), ŵ

(b)
1cc, k)

, xN1 ((i, j), ŵ
(b)
1cc, k, l), u

N
2 ((i, j), ŵ

(b)
2cc), v

N
2 ((i, j), ŵ

(b)
2cc,m)

, y
N,(b)
1

)
∈ T (N)

ε

}
.

Let Ec1111m be the complement of the set E1111m. Then, by
AEP, Pr(Ec1111m)→ 0 as N goes to infinity. Hence, we focus
only on the following error event.

Pr

 ⋃
(i,j,k,l)6=(1,1,1,1),m

Eijklm


≤

∑
(i,j)6=(1,1)

Pr

 ⋃
k,l,m

Eijklm


︸ ︷︷ ︸

,Pr(E1)

+
∑
k 6=1

Pr

(⋃
l

E11kl1

)
︸ ︷︷ ︸

,Pr(E2)

+
∑

k 6=1,m 6=1

Pr

(⋃
l

E11klm

)
︸ ︷︷ ︸

,Pr(E3)

+
∑
l 6=1

Pr (E111l1)︸ ︷︷ ︸
,Pr(E4)

+
∑

l 6=1,m 6=1

Pr (E111lm)︸ ︷︷ ︸
,Pr(E5)

.

(18)

Here we have:

Pr(E1) ≤ 24

× 2N(R1cc+R2cc+R1nc+R2nc+R1p−I(U,X1,V2;Y1)+5ε)

Pr(E2) ≤ 2× 2N(R1nc+R1p−I(X1;Y1|U,U1,V2)+2ε)

Pr(E3) ≤ 2× 2N(R1nc+R2nc+R1p−I(X1,V2;Y1|U,U1,U2)+3ε)

Pr(E4) ≤ 2N(R1p−I(X1;Y1|U,V1,V2)+ε)

Pr(E5) ≤ 2N(R2nc+R1p−I(X1,V2;Y1|U,V1,U2)+2ε).

Notice in Pr(E1) that as long as (i, j) 6= (1, 1), all of the cases
(decided depending on whether or not k 6= 1, l 6= 1 and m 6=
1) are dominated by the worst case bound that occurs when
k 6= 1, l 6= 1 and m 6= 1. Since (i, j) 6= (1, 1) covers three
different cases and we have eight different cases depending on
the values of (k, l,m), we have 24 cases in total. This number
reflects the constant 24 in the above first inequality. Similarly,
we get the other four inequalities as above.

Hence, the probability of error can be made arbitrarily small
if

R2cc ≤ min(I(U2;Y1|U,X1), CFB1 − δ1)
R1p ≤ I(X1;Y1|U, V1, V2)
R1p +R2nc ≤ I(X1, V2;Y1|U, V1, U2)
R1p +R1nc ≤ I(X1;Y1|U,U1, V2)
R1p +R1nc +R2nc ≤ I(X1, V2;Y1|U,U1, U2)
R1p +R1cc +R2cc +R1nc +R2nc ≤ I(U, V2, X1;Y1),

(19)

R1cc ≤ min(I(U1;Y2|U,X2), CFB2 − δ2)
R2p ≤ I(X2;Y2|U, V1, V2)
R2p +R1nc ≤ I(X2, V1;Y2|U, V2, U1)
R2p +R2nc ≤ I(X2;Y2|U,U2, V1)
R2p +R2nc +R1nc ≤ I(X2, V1;Y2|U,U1, U2)
R2p +R2cc +R1cc +R1nc +R2nc ≤ I(U, V1, X2;Y2).

(20)

Employing Fourier-Motzkin-Elimination, we finally get the
bounds of (10a)–(10m).

Remark 1 (Connection to Related Work [18], [21]): The
three-fold message splitting in our achievable scheme is a
special case of the more-than-three-fold message splitting
introduced in [18], [21]. Also our scheme has similarity
to the schemes in [18], [21] in a sense that the three
techniques (message-splitting, block Markov encoding and
backward decoding) are jointly employed. However, due to
a fundamental difference between our rate-limited feedback
problem and the conferencing encoder problem in [18], [21],
a new scheme is required for feedback strategy and this
is reflected as the quantize-and-binning scheme in the El
Gamal-Costa deterministic model. It turns out this distinction
leads to a new lattice-code-based scheme in the Gaussian
case, as will be explained in Section VI.

B. Outer-bound

Theorem 2: The capacity region of the two-user El Gamal-
Costa deterministic IC with rate limited feedback (as described
in Section II) is included by the set C̄ of (R1, R2) such that

R1 ≤ min{H(Y1), H(Y1|V1, V2, U1) (21a)
+ H(Y2|X2, U1)}

R1 ≤ H(Y1|X2, U1) + CFB2 (21b)
R2 ≤ min{H(Y2), H(Y2|V1, V2, U2) (21c)

+ H(Y1|X1, U2)}
R2 ≤ H(Y2|X1, U2) + CFB1 (21d)

R1 +R2 ≤ H(Y1|V1, V2, U1) +H(Y2) (21e)
R1 +R2 ≤ H(Y2|V1, V2, U2) +H(Y1) (21f)
R1 +R2 ≤ H(Y1|V1) +H(Y2|V2) (21g)

+ CFB1 + CFB2

2R1 +R2 ≤ H(Y1) +H(Y1|V1, V2, U1) (21h)
+ H(Y2|V2) + CFB2

R1 + 2R2 ≤ H(Y2) +H(Y2|V1, V2, U2) (21i)
+ H(Y1|V1) + CFB1,



8

for joint distributions p(u1, u2)p(x1|u1, u2)p(x2|u1, u2). As
depicted in Figure 2, CFB1 and CFB2 indicate the capacity of
each feedback link.

Remark 2: In the non-feedback case, i.e., CFB1 = CFB2 =
0, by setting U1 = U2 = ∅, we recover the outer-bounds
of Theorem 1 in [11]. Note that in this case, H(Y1|X2) =
H(Y1|V2) and H(Y2|X1) = H(Y2|V1). In fact, our achievable
region of Theorem 1 matches the outer-bound under this
model, thereby achieving the non-feedback capacity region.

Remark 3 (Feedback gain under symmetric feedback cost):
Notice from (21g) that the sum-rate capacity can be at most
increased by the rate of available feedback, i.e., one bit of
feedback provides a capacity increase of at most one bit.
Therefore, if the cost of using the feedback link is the same
as that of using the forward link, there is no feedback gain
under the feedback cost. However, it turns out that there is
indeed feedback gain when the costs are asymmetric. This
will be discussed in more details in Remark 5 of Section V.

Proof: By symmetry, it suffices to prove the bounds
of (21a), (21b), (21e), (21g), and (21h). The bounds of (21a)
and (21b) are nothing but the cutset bounds (see Appendix A
for details). Also (21e) is the bound when the feedback link
has infinite capacity [9]. Hence, proving the bounds of (21g)
and (21h) is the main focus of the proof. We will present the
proof of (21g) here and for completeness, the proof for all
other bounds is provided in Appendix A.

Proof of (21g):

N(R1 +R2 − εN ) ≤ I(W1;Y N1 ) + I(W2;Y N2 )

= H(Y N1 )−H(Y N1 |W1) +H(Y N2 )−H(Y N2 |W2)

(a)
= H(Y N1 )−H(V N1 |W2) +H(Y N2 )−H(V N2 |W1)

= H(Y N1 )− [H(V N1 )− I(V N1 ;W2)] +H(Y N2 )

− [H(V N2 )− I(V N2 ;W1)]

(b)

≤ I(V N1 ;W2) + I(V N2 ;W1) +H(Y N1 , V N1 )−H(V N1 )

+H(Y N2 , V N2 )−H(V N2 )

= I(V N1 ;W2) + I(V N2 ;W1) +H(Y N1 |V N1 ) +H(Y N2 |V N2 )

(c)

≤ I(V N1 ,W1, Ỹ
N
1 ;W2) + I(V N2 ,W2, Ỹ

N
2 ;W1)

+H(Y N1 |V N1 ) +H(Y N2 |V N2 )

(d)
= I(W1, Ỹ

N
1 ;W2) + I(W2, Ỹ

N
2 ;W1) +H(Y N1 |V N1 )

+H(Y N2 |V N2 )

= I(Ỹ N1 ;W2|W1) + I(Ỹ N2 ;W1|W2) +H(Y N1 |V N1 )+

H(Y N2 |V N2 )

= H(Ỹ N1 |W1) +H(Ỹ N2 |W2) +H(Y N1 |V N1 ) +H(Y N2 |V N2 )

(e)

≤ N(CFB1 + CFB2) +
∑

H(Y1i|V1i) +
∑

H(Y2i|V2i),

where (a) follows from H(Y N1 |W1) = H(V N2 |W1) and
H(Y N2 |W2) = H(V N1 |W2) (see Claim 1 below); (b) follows
from providing V N1 and V N2 to receiver 1 and 2, respectively;
(c) follows from the fact that adding information increases
mutual information; (d) follows from the fact that V Nk is
a function of (Wk, Ỹ

N−1
k ); (e) follows from the fact that

H(Ỹ Nk |Wk) ≤ NCFBk and conditioning reduces entropy.

Claim 1: H(Y N1 |W1) = H(V N2 |W1) and H(Y N2 |W2) =
H(V N1 |W2).

Proof: By symmetry, it suffices to prove the first one.

H(Y N1 |W1) =
∑

H(Y1i|Y i−1
1 ,W1)

(a)
=
∑

H(V2i|Y i−1
1 ,W1)

(b)
=
∑

H(V2i|Y i−1
1 ,W1, X

i
1, V

i−1
2 )

(c)
=
∑

H(V2i|W1, V
i−1
2 ) = H(V N2 |W1),

where (a) follows from the fact that Y1i is a function of
(X1i, V2i) and X1i is a function of (W1, Y

i−1
1 ); (b) follows

from the fact that Xi
1 is a function of (W1, Y

i−1
1 ) and V i−1

2

is a function of (Y i−1
1 , Xi−1

1 ); (c) follows from the fact that
Y i−1

1 is a function of (Xi−1
1 , V i−1

2 ) and Xi
1 is a function of

(W1, V
i−1
2 ) (see Claim 2 below).

Claim 2: For i ≥ 1, Xi
1 is a function of (W1, V

i−1
2 ).

Similarly, Xi
2 is a function of (W2, V

i−1
1 ).

Proof: By symmetry, it is enough to prove the first
one. Since the channel is deterministic, Xi

1 is a function of
(W1,W2). In Figure 2, we see that information of W2 to
the first link pair must pass through V2i. Also note that X1i

depends on the past output sequences until i − 1. Therefore,
Xi

1 is a function of (W1, V
i−1
2 ).

V. LINEAR DETERMINISTIC INTERFERENCE CHANNEL

In this section, we consider the linear deterministic IC with
rate-limited feedback described in Section II. Since this model
is a special case of the El Gamal-Costa model, our inner
and outer bounds derived in the previous section also apply
to this model. We show that the inner-bound and the outer
bound derived in Theorem 1 and 2 respectively, coincide under
this linear deterministic model, thus establishing the capacity
region.

Theorem 3: The capacity region of the linear determinis-
tic IC with rate-limited feedback is the set of non-negative
(R1, R2) satisfying

R1 ≤ min {max(n11, n21),max(n11, n12)} (22a)
R1 ≤ n11 + CFB2 (22b)
R2 ≤ min {max(n22, n12),max(n22, n21)} (22c)
R2 ≤ n22 + CFB1 (22d)

R1 +R2 ≤ (n11 − n12)+ + max(n22, n12) (22e)
R1 +R2 ≤ (n22 − n21)+ + max(n11, n21) (22f)
R1 +R2 ≤ max

{
n21, (n11 − n12)+

}
(22g)

+ max
{
n12, (n22 − n21)+

}
+ CFB1 + CFB2

2R1 +R2 ≤ (n11 − n12)+ + max(n11, n21) (22h)
+ max

{
n12, (n22 − n21)+

}
+ CFB2

R1 + 2R2 ≤ (n22 − n21)+ + max(n22, n12) (22i)
+ max

{
n21, (n11 − n12)+

}
+ CFB1.

Remark 4: In the non-feedback case, i.e., CFB1 = CFB2 =
0, this theorem recovers the result of [11], [13]. In the infinite
feedback case, i.e., CFB1 = CFB2 = ∞, this recovers the
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result of [30], [9]. Considering the sum-rate capacity under
symmetric setting, i.e., n11 = n22 = n, n12 = n21 = m,
CFB1 = CFB2, this recovers the result of [31].

Proof: The converse proof is trivial due to Theorem 2.
For achievability, we will use the result in Theorem 1. By
choosing the following input distribution, we will show the
tightness of the outer bound. ∀k ∈ {1, 2} and j 6= k, we
choose

U = ∅,
Uk = U ⊕Xkcc,

Vk = Uk ⊕Xknc,

Xk = Vk ⊕Xkp,

Ŷk = LSBmin(nkj ,CFBj)(Yk),

(23)

where for any column vector A, LSBn(A) takes the bottom
n (n ≤ |A|) entries of A while returning zeros for the
remaining part; and Xkcc, Xknc, and Xkp are independent
random vectors of size max{nkk, nkj}, such that

• The random vector Xkp consists of (nkk − nkj)+ i.i.d.
Ber

(
1
2

)
random variables at the bottom, denoted by ∗ in

(24), corresponding to the number of private signal levels
of transmitter k.

• The random vector Xkcc consists of (nkk − nkj)+ i.i.d.
Ber

(
1
2

)
random variables in the middle (above the private

signal levels), denoted by ∗ in (24), corresponding to
the number of common signal levels that will be re-sent
cooperatively through the other commuication link with
the help of feedback.

• The random vector Xknc consists of (nkj −CFBj)
+ i.i.d.

Ber
(

1
2

)
random variables at the top, denoted by ∗ in (24),

corresponding to the number of non-cooperative common
signal levels.

As we show in Appendix B, with this choice of random
variables, the achievable region of Theorem 1 matches the
outer-bounds in Theorem 2.

Xk =



0
...
0
0
...
0
∗
...
∗


︸ ︷︷ ︸
Xkp

⊕



0
...
0
∗
...
∗
0
...
0


︸ ︷︷ ︸
Xkcc

⊕



∗
...
∗
0
...
0
0
...
0


︸ ︷︷ ︸
Xknc

, k = 1, 2.
(24)

It is worth utilizing Theorem 3 to illustrate the impact of
feedback on the sum-rate capacity of the linear deterministic
IC. Consider a symmetric case where n11 = n22 = n, n12 =
n21 = αn, and CFB1 = CFB2 = βn. Using Theorem 3, we
can derive the sum-rate capacity of this network (normalized
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Fig. 5. Normalized sum-rate capacity for β = 0, β = 0.125 and β =∞.

by n)

Csum

n
=


min(2− 2α+ 2β, 2− α) for α ∈ [0, 0.5]
min(2α+ 2β, 2− α) for α ∈ [0.5, 2

3 ]
2− α for α ∈ [ 2

3 , 1]
α for α ∈ [1, 2 + 2β]
2 + 2β for α ∈ [2 + 2β,∞)

(25)
Figure 5 illustrates the (normalized) sum-rate capacity as a

function of α, for different values of β = 0 (i.e., no feedback),
β = ∞ (i.e., infinite feedback), and β = 0.125. We note the
following cases:
• Case 1 (α ∈

[
0, 1

2

]
): In this regime the sum-rate capacity

is increased by the total amount of feedback rates and
saturates at 2− α once the rate of each feedback link is
larger than αn

2 .
• Case 2 (α ∈

[
1
2 ,

2
3

]
): In this regime the sum-rate capacity

is increased by the total amount of feedback rates and
saturates at 2α once the rate of each feedback link is
larger than (2n−3αn)

2 .
• Case 3 (α ∈

[
2
3 , 2
]
): In this regime feedback does not

increase the capacity.
• Case 4 (α ∈ [2 + 2β,∞)): In this regime the sum-

rate capacity is increased by at most the total amount
of feedback rates.

Remark 5 (Feedback gain under asymmetric feedback cost):
As it can be seen in (25) the sum-rate capacity is increased by
at most the total amount of feedback rates. Let the cost be the
amount of resources (e.g., time, frequency) paid for sending
one bit. With this cost in mind, let us consider the effective
gain of using feedback which counts the cost. Notice that by
Case 1,2, and 4, there are many channel parameter scenarios
where one bit of feedback can provide a capacity increase of
exactly one bit. This implies that the effective feedback gain
depends on the cost difference between feedback and forward
links. So if the feedback cost is cheaper than that of using
forward link, then there is indeed feedback gain. The cellular
network may be this case. Suppose that downlink is used for
feedback purpose, while uplink is used as a forward link.
Then, this is the scenario where the feedback cost is cheaper
than the cost of using the forward link, as downlink power
is typically larger than uplink power, thus inducing cheaper
feedback cost.
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R1 ≤ log
(

1 + SNR1 + INR21 + 2ρ
√
SNR1 · INR21

)
(26a)

R1 ≤ log

(
1 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
+ log

(
1 + (1− ρ2)INR12

)
(26b)

R1 ≤ log
(
1 + (1− ρ2)SNR1

)
+ CFB2 (26c)

R2 ≤ log
(

1 + SNR2 + INR12 + 2ρ
√
SNR2 · INR12

)
(26d)

R2 ≤ log

(
1 +

(1− ρ2)SNR2

1 + (1− ρ2)INR21

)
+ log

(
1 + (1− ρ2)INR21

)
(26e)

R2 ≤ log
(
1 + (1− ρ2)SNR2

)
+ CFB1 (26f)

R1 +R2 ≤ log

(
1 + (1− ρ2)INR21 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
+ log

(
1 + (1− ρ2)INR12 +

(1− ρ2)SNR2

1 + (1− ρ2)INR21

)
+ CFB1 + CFB2 (26g)

R1 +R2 ≤ log

(
1 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
+ log

(
1 + SNR2 + INR12 + 2ρ

√
SNR2 · INR12

)
(26h)

R1 +R2 ≤ log

(
1 +

(1− ρ2)SNR2

1 + (1− ρ2)INR21

)
+ log

(
1 + SNR1 + INR21 + 2ρ

√
SNR1 · INR21

)
(26i)

2R1 +R2 ≤ log
(

1 + SNR1 + INR21 + 2ρ
√
SNR1 · INR21

)
+ log

(
1 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
(26j)

+ log

(
1 + (1− ρ2)INR12 +

(1− ρ2)SNR2

1 + (1− ρ2)INR21

)
+ CFB1 + CFB2 (26k)

R1 + 2R2 ≤ log
(

1 + SNR2 + INR12 + 2ρ
√
SNR2 · INR12

)
+ log

(
1 +

(1− ρ2)SNR2

1 + (1− ρ2)INR21

)
(26l)

+ log

(
1 + (1− ρ2)INR21 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
+ CFB1 + CFB2 (26m)

VI. GAUSSIAN INTERFERENCE CHANNEL

In this section, we consider the Gaussian IC with rate-
limited feedback, described in Section II. We first derive
an outer-bound on the capacity region of this network. We
then develop an achievability strategy based on the techniques
discussed in the previous sections and then show that for
symmetric channel gains it achieves a sum-rate within a
constant gap to the optimality.

A. Outer-bound

Theorem 4: The capacity region of the Gaussian IC with
rate-limited feedback is included in the closure of the set C̄ of
(R1, R2) satisfying inequalities (26a)–(26l) over 0 ≤ ρ ≤ 1.

Proof: By symmetry, it suffices to prove the bounds
of (26a), (26b), (26c), (26g), (26h) and (26j). The bounds
of (26a), (26b) and (26c) are nothing but cutset bounds. The
bound of (26h) corresponds to the case of infinite feedback rate
and was derived in [9]. Hence, proving the bounds of (26g)
and (26j) is the main focus of this proof. We will present the
proof of (26g) here, and defer the proof for remaining bounds
to Appendix C.

Proof of (26g): The proof idea mostly follows the determin-
istic case proof of 21g. The only difference in the Gaussian
case is that we define a noisy version of h12X

N
1 corresponding

to V N1 in the deterministic case: SN1 := h12X
N
1 + ZN2 .

Similarly we define SN2 := h21X
N
2 +ZN1 to mimic V N2 . With

this, we can now get:

N (R1 +R2 − εN )
(a)

≤ I
(
W1;Y N1

)
+ I

(
W2;Y N2

)
(b)
= h

(
Y N1
)

+ h
(
Y N2
)
− h

(
SN1 |W2

)
− h

(
SN2 |W1

)
= I

(
SN1 ;W2

)
+ I

(
SN2 ;W1

)
− h

(
SN1 |Y N1

)
− h

(
SN2 |Y N2

)
+ h

(
Y N1 |SN1

)
+ h

(
Y N2 |SN2

)︸ ︷︷ ︸
T

(c)

≤ T + I
(
SN1 , Ỹ

N
1 ,W1;W2

)
+ I

(
SN2 , Ỹ

N
2 ,W2;W1

)
− h

(
SN1 |Y N1 ,W1, Ỹ

N
1

)
− h

(
SN2 |Y N2 ,W2, Ỹ

N
2

)
(d)
= T + I

(
Ỹ N1 ;W2|W1

)
+ I

(
SN1 ;W2|W1, Ỹ

N
1

)
+ I

(
Ỹ N2 ;W1|W2

)
+ I

(
SN2 ;W1|W2, Ỹ

N
2

)
− h

(
ZN1 |SN1 ,W2, Ỹ

N
2

)
− h

(
ZN2 |SN2 ,W1, Ỹ

N
1

)
(e)
= T − h

(
ZN1
)
− h

(
ZN2
)︸ ︷︷ ︸

T ′

+I
(
Ỹ N1 ;W2|W1

)
+ I

(
Ỹ N2 ;W1|W2

)
+ I

(
ZN2 ;SN2 |W1, Ỹ

N
1

)
+ I

(
ZN1 ;SN1 |W2, Ỹ

N
2

)
− h

(
ZN1 |W1,W2, Ỹ

N
2

)
+ h

(
ZN1
)
− h

(
ZN2 |W1,W2, Ỹ

N
1

)
+ h

(
ZN2
)

(f)
= T ′ + I

(
Ỹ N1 ;W2|W1

)
+ I

(
Ỹ N2 ;W1|W2

)



11

+ I
(
ZN2 ;SN2 |W1, Ỹ

N
1

)
+ I

(
ZN1 ;SN1 |W2, Ỹ

N
2

)
+ I

(
ZN1 ; Ỹ N2 |W1,W2

)
+ I

(
ZN2 ; Ỹ N1 |W1,W2

)
= T ′ + I

(
Ỹ N1 ;W2, Z

N
2 |W1

)
+ I

(
Ỹ N2 ;W1, Z

N
1 |W2

)
+ I

(
ZN2 ;SN2 |W1, Ỹ

N
1

)
+ I

(
ZN1 ;SN1 |W2, Ỹ

N
2

)
= T ′ + I

(
Ỹ N1 ;W2|W1, Z

N
2

)
+ I

(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I

(
Ỹ N1 , SN2 ;ZN2 |W1

)
+ I

(
Ỹ N2 , SN1 ;ZN1 |W2

)
(g)

≤ T ′ + I
(
Ỹ N1 ;W2|W1, Z

N
2

)
+ I

(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I

(
ZN2 ; Ỹ N1 ,W2, Ỹ

N
2 , ZN1 |W1

)
+ I

(
ZN1 ; Ỹ N2 ,W1, Ỹ

N
1 , ZN2 |W2

)
(h)
= T ′ + I

(
Ỹ N1 ;W2|W1, Z

N
2

)
+ I

(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I

(
Ỹ N2 ;ZN2 |W1,W2, Z

N
1

)
+ I

(
Ỹ N1 ;ZN1 |W1,W2, Z

N
2

)
+ I

(
Ỹ N1 ;ZN2 |W1,W2, Z

N
1 , Ỹ

N
2

)
+ I

(
Ỹ N2 ;ZN1 |W1,W2, Z

N
2 , Ỹ

N
1

)
(i)
= T ′ + I

(
Ỹ N1 ;W2|W1, Z

N
2

)
+ I

(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I

(
Ỹ N2 ;ZN2 |W1,W2, Z

N
1

)
+ I

(
Ỹ N1 ;ZN1 |W1,W2, Z

N
2

)
= h

(
Y N1 |SN1

)
− h

(
ZN1
)

+ h
(
Y N2 |SN2

)
− h

(
ZN2
)

+ I
(
Ỹ N1 ;W2, Z

N
1 |W1, Z

N
2

)
+ I

(
Ỹ N2 ;W1, Z

N
2 |W2, Z

N
1

)
≤

N∑
i=1

[h (Y1i|S1i)− h (Z1i)] +

N∑
i=1

[h (Y2i|S2i)− h (Z2i)]

+H
(
Ỹ N1 |W1, Z

N
2

)
+H

(
Ỹ N2 |W2, Z

N
1

)
≤

N∑
i=1

[h (Y1i|S1i)− h (Z1i)] +

N∑
i=1

[h (Y2i|S2i)− h (Z2i)]

+

N∑
i=1

H
(
Ỹ1i|X1i

)
+

N∑
i=1

H
(
Ỹ2i|X2i

)
, (27)

where (a) follows from Fano’s inequality; (b) follows from
the fact that h(Y N1 |W1) = h(SN2 |W1) and h(Y N2 |W2) =
h(SN1 |W2) (see Claim 3 below); (c) follows from the non-
negativity of mutual information and the fact that conditioning
reduces entropy; (d) follows from the fact that XN

k is a
function of (Wk, Ỹ

N−1
k ), and the fact that W1 and W2

are independent; (e) follows from the fact that XN
k is a

function of (Wk, Ỹ
N−1
k ); (f ) follows from the fact that ZNk is

independent of W1 and W2; (g) holds since SNk is a function
of (Wk, Ỹ

N−1
k , ZN3−k); (h) holds since W1, W2, ZN1 , and ZN2

are mutually independent; (i) holds since

I
(
Ỹ N1 ;ZN2 |W1,W2, Z

N
1 , Ỹ

N
2

)
=

N∑
i=1

I
(
Ỹ1i;Z

N
2 |W1,W2, Z

N
1 , Ỹ

N
2 , Ỹ i−1

1

)

=

N∑
i=1

I
(
Ỹ1i;Z

N
2 |W1,W2, Z

N
1 , Ỹ

N
2 , Ỹ i−1

1 , XN
2 , X

i
1

)
=

N∑
i=1

I
(
Ỹ1i;Z

N
2 |W1,W2, Z

N
1 , Ỹ

N
2 , Ỹ i−1

1 , XN
2 , X

i
1, Y

i
1

)
=

N∑
i=1

I
(
Ỹ1i;Z

N
2 |W1,W2, Z

N
1 , Ỹ

N
2 , Ỹ i1 , X

N
2 , X

i
1, Y

i
1

)
= 0. (28)

Claim 3: h(SN1 |W2) = h(Y N2 |W2).
Proof:

h(Y N2 |W2) =
∑

h(Y2i|Y i−1
2 ,W2)

(a)
=
∑

h(S1i|Y i−1
2 ,W2)

(b)
=
∑

h(S1i|Y i−1
2 ,W2, X

i
2, S

i−1
1 )

(c)
=
∑

h(S1i|W2, S
i−1
1 ) = h(SN1 |W2),

where (a) follows from the fact that Y2i is a function of
(X2i, S1i) and X2i is a function of (W2, Y

i−1
2 ); (b) follows

from the fact that Xi
2 is a function of (W2, Y

i−1
2 ) and Si−1

1

is a function of (Y i−1
2 , Xi−1

2 ); (c) follows from Claim 4 (see
below).

Claim 4: For all i ≥ 1, Xi
1 is a function of (W1, S

i−1
2 ) and

Xi
2 is a function of (W2, S

i−1
1 ).

Proof: By symmetry, it is enough to prove only one.
Notice that Xi

2 is a function of (W2, Y
i−1
2 ) and Y i−1

2 is
a function of (Xi−1

2 , Si−1
1 ). Hence, Xi

2 is a function of
(W2, X

i−1
2 , Si−1

1 ). Iterating the same argument, we conclude
that Xi

2 is a function of (W2, X21, S
i−1
1 ). Since X21 depends

only on W2, we complete the proof.
From the above, we get

R1 +R2 ≤ h(Y1|S1)− h(Z1) + h(Y2|S2)− h(Z2)

+ CFB1 + CFB2.
(29)

where we have used the fact that H(Ỹki|Xki) ≤ CFBk and
conditioning reduces entropy.

Finally note that for ρ = E[X1X
∗
2 ], we have2

h(Y1|S1) ≤ log 2πe

(
1 + (1− ρ2)INR21 +

(1− ρ2)SNR1

1 + (1− ρ2)INR12

)
.

(30)

Using (30), we get the desired upper bound in (26g).
If we consider the symmetric channel gains, i.e.,

|h11| = |h22| = |hd|,
|h12| = |h21| = |hc|,

(31)

and

SNR1 = SNR2 = SNR = |hd|2,
INR12 = INR21 = INR = |hc|2,

(32)

we get the following outer-bound result.

2ρ captures the power gain that can be achieved by making the transmit
signals correlated.
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Corollary 1: The sum-rate capacity of the symmetric Gaus-
sian IC with rate-limited feedback is included by the set C̄sym

of R1 +R2 satisfying

R1 +R2 ≤ 2 log (1 + SNR) + CFB1 + CFB2 (33a)

R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
(33b)

+ log
(

1 + SNR + INR + 2
√
SNR · INR

)
R1 +R2 ≤ 2 log

(
1 + INR +

SNR

1 + INR

)
(33c)

+ CFB1 + CFB2.

Proof: The proof is straight forward and is a direct
consequence of the bounds in (26c), (26f), (26g), and (26h).
For instance, (33a) is derived by combining (26c) and (26f)
for ρ = 0. Note that ρ = 0 maximizes (26c) and (26f).

B. Acievability Strategy

We first provide a brief outline of the achievability. Our
achievable scheme is based on block Markov encoding with
backward decoding where the scheme is implemented over B
blocks. In each block (with the exception of the last two), new
messages are transmitted. At the end of a block, each receiver
creates a feedback signal and sends it back to its corresponding
transmitter. This will provide each transmitter with part of
the other user’s information that caused interference. Each
transmitter encodes this interfering message and transmit it
to its receiver during a different block. Through this part of
the transmitted signal, receivers will be able to complete the
decoding of the previously received messages. During the last
two blocks, no new messages will be transmitted and each
transmitter provides its receiver with the interfering message
coming from the other transmitter. Later, we let B go to
infinity to get our desired result.

As we have seen in Section III, each receiver may need to
decode the superposition of the two codewords (corresponding
to the other user’s cooperative common message and part of
its own private message). In order to accomplish this in the
Gaussian case, we employ lattice codes.

1) Lattice Coding Preliminaries: We briefly go over some
preliminaries on lattice coding and summerize the results that
will be used later. A lattice is a discrete additive subgroup
of Rn. The fundamental volume Vf (Λ) of a lattice Λ is the
reciprocal of the number of lattice points per unit volume.

Given integer p, denote the set of integers modulo p by
Zp. Let Zn → Znp : v 7→ v̄ be the componentwise modulo p
operation over integer vectors. Also, let C be a linear (n, k)
code over Zp. The lattice ΛC defined as

ΛC = {v ∈ Zn : v̄ ∈ C}, (34)

is generated with respect to the linear code C (see [32] for
details). In [32], it has been shown that there exists good lattice
codes for point-to-point communication channels, i.e., codes
that achieve a rate close to the capacity of the channel with
arbitrary small decoding error probability. We summarize the
result here.

Consider a point-to-point communication scenario over an
additive noise channel

Y = X + Z, (35)

where X is the transmitted signal with power constraint P , Y
is the received signal and Z is the additive noise process with
zero mean and variance σ2.

A set B of linear codes over Zp is called balanced if every
nonzero element of Znp is contained in the same number of
codes in B. Define LB as

LB = {ΛC : C ∈ B}. (36)

Lemma 1 ([32]): Consider a point-to-point additive noise
channel described in (35). Let B be a balanced set of linear
(n, k) codes over Zp. Averaged over all lattices from the
set LB defined in (36), each scaled by γ > 0 and with a
fundamental volume V , we have that for any δ > 0, the
average probability of decoding error is bounded by

P̄e < (1 + δ)
n 1

2 log
(
2πeσ2

)
V

, (37)

for sufficiently large p and small γ such that γnpn−k = V .
See [32] for the proof. The next lemma describes the

existence of a good lattice code for a point-to-point AWGN
channel.

Lemma 2 ([32]): Consider a point-to-point additive noise
channel described in (35) such that the transmitter satisfies
a power constraint of P . Then, we can choose a lattice Λ
generated using construction A, a shift s3 and a shaping region
S4 such that the codebook (Λ + s)∩S achieves a rate R with
arbitrarily small probability of error if

R ≤ 1

2
log

(
P

σ2

)
. (38)

In other words, Lemma 2 describes the existence of a lattice
code with sufficient codewords. See [32] for the proof. For a
more comprehensive review of lattice codes see [32], [33],
[34].

Remark 6: In this paper, we consider complex AWGN
channels. Similar to Lemma 2, one can show that using lattice
codes, a rate of log

(
P
σ2

)
is achievable in the complex channel

setting.
2) Acievability Strategy for CFB1 = CFB and CFB2 = 0: We

describe our strategy for the extreme case where CFB1 = CFB

and CFB2 = 0 (interchanging user IDs, one can get similar
results for CFB2 = CFB and CFB1 = 0). Our strategy for any
other feedback configuration will be based on a combination
of the strategies for these extreme cases.

Codebook Generation and Encoding: The communica-
tion strategy consists of B blocks, each of length N chan-
nel uses. In block b, b = 1, 2, . . . , B − 2, transmitter 1
has four messages W (1,b)

1 ,W
(2,b)
1 ,W

(3,b)
1 and W

(4,b)
1 , where

W
(i,b)
1 ∈ {1, 2, . . . , 2NR

(i)
1 }. Out of these four messages,

W
(1,b)
1 ,W

(2,b)
1 and W (4,b)

1 are new messages and in particular

3Shift s is a vector in Rn and it is required in order to prove of existence
of good lattice codes, see [32] for more details.

4We need to consider the intersection of a lattice with some shaping region
S ⊂ Rn to satisfy the power constraint.
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W
(1,b)
1 and W

(2,b)
1 form the private message of transmitter

1 while W
(4,b)
1 is the non-cooperative message (as it will

be clarified shortly for the feedback strategy, the reason for
splitting the private message of transmitter 1 into two parts is
that in order to be able to use lattice codes, we would like the
codeword corresponding to the cooperative common message
of transmitter 2 to be received at the same power level as
part of the codeword corresponding to the parivate message
of transmitter 1). We will describe W (3,b)

1 when we explain
the feedback strategy. On the other hand, transmitter 2 has
three new independent messages W (1,b)

2 ,W
(2,b)
2 and W

(3,b)
2 ,

the private, the cooperative common, and the non-cooperative
common message of transmitter 2 respectively.

At transmitter k, message W (i,b)
k is mapped to a Gaussian

codeword X(i,b)
k picked from a codebook of size 2NR

(i)
k and

any element of this codebook is drawn i.i.d. from CN (0, P
(i)
k ),

(k, i) ∈ {(1, 1), (1, 3), (1, 4), (2, 1), (2, 3)}. For notational
simplicity, we have removed the superscript N .

Message W
(2,b)
k is mapped to X

(2,b)
k encoded by lattice

Λ
(2,b)
k with shift s(2,b)

k and spherical shaping region S(2,b)
k . This

gives a codebook of size 2NR
(2)
k with power constraint of P (2)

k ,
k = 1, 2. Denote this codebook by (Λ

(2,b)
k + s

(2,b)
k ) ∩ S(2,b)

k .
Transmitter k will superimpose all of its transmitted signals

to create X
(b)
k , its transmitted signal during block b, i.e.,

X
(b)
1 = X

(1,b)
1 + X

(2,b)
1 + X

(3,b)
1 + X

(4,b)
1 and X

(b)
2 =

X
(1,b)
2 +X

(2,b)
2 +X

(3,b)
2 .

The power assignments should be such that they are non-
negative and satisfy the power constraint at each transmitter:

P1 = P
(1)
1 + P

(2)
1 + P

(3)
1 + P

(4)
1 ≤ 1,

P2 = P
(1)
2 + P

(2)
2 + P

(3)
2 ≤ 1.

(39)

Feedback Strategy: Our feedback strategy is inspired by
the motivating example in Section III. Remember that in this
example, receiver 2 had to feed back the superposition of the
two codewords (corresponding to transmitter 1’s cooperative
common message and part of its private message). To realize
this in the Gaussian case, we incorporate lattice coding with
appropriate power assignment as part of our strategy.

We set SNRP
(2)
1 = INRP

(2)
2 , so that X(2,b)

1 and X
(2,b)
2

arrive at the same power level at receiver 1 and therefore
hdX

(2,b)
1 + hcX

(2,b)
2 is a lattice point. We refer to this lattice

index as I
(b)
Λ1,2

. Receiver 1 then feeds
(
I

(b)
Λ1,2

mod 2NCFB

)
back to transmitter 1.

Given
(
I

(b)
Λ1,2

mod 2NCFB

)
, transmitter 1 removes hdX

(2,b)
1

and decodes the message index of W (2,b)
2 . This can be done as

long as the total number of lattice points for either of the two
aligned messages is less than 2NCFB , i.e., R(2,b)

1 , R
(2,b)
2 ≤ CFB.

Since the feedback transmission itself lasts a block, we set
W

(3,b+2)
1 = W

(2,b)
2 .

Decoding: For notational simplicity, we ignore the block
index and from our description it is clear whether the two
signals belong to the same block or different ones. We also
use the following shorthand notation:

P
(1:j)
k = P

(1)
k + P

(2)
k + . . .+ P

(j)
k k = 1, 2. (40)

Our achievable scheme employs different decoding orders
depending on the channel gains. In other words, based on the
channel gains the number of required messages to achieve
the desired sum-rate might vary. In fact based on the channel
gains, it might be sufficient to consider fewer messages than
suggested above. In such cases, we assume the unnecessary
messages to be deterministic (i.e., the corresponding rate to
be zero). In particular, we have three different cases.
Case (a) log (INR) ≤ 1

2 log (SNR):
In this case, we set R(4)

1 = R
(3)
2 = 0. In other words, W (4)

1

and W (3)
2 are deterministic messages. We then get

Y1 = hd

(
X

(1)
1 +X

(2)
1 +X

(3)
1

)
+ hc

(
X

(1)
2 +X

(2)
2

)
+ Z1.

(41)
At the end of each block, receiver 1 first decodes X(3)

1 by
treating all other codewords as noise. X(3)

1 can be decoded
with small error probability if

R
(3)
1 ≤ log

(
1 +

SNRP
(3)
1

1 + INRP2 + SNRP
(1:2)
1

)
. (42)

It then removes hdX
(3)
1 from the received signal and

decodes X(1)
1 by treating other codewords as noise. X(1)

1 is
decodable at receiver 1 with arbitrary small error probability
if

R
(1)
1 ≤ log

(
1 +

SNRP
(1)
1

1 + INRP2 + SNRP
(2)
1

)
. (43)

After removing hdX
(1)
1 , receiver 1 has access to hdX

(2)
1 +

hcX
(2)
2 + hcX

(1)
2 + Z1. Since we have set SNRP

(2)
1 =

INRP
(2)
2 , hdX

(2)
1 + hcX

(2)
2 is a lattice point with some index

I
(b)
Λ1,2

. Receiver 1 decodes I(b)
Λ1,2

by treating other codewords as

noise, and sends back
(
I

(b)
Λ1,2

mod 2NCFB

)
to transmitter 1.

From Lemma 2, decoding with arbitrary small error probability
is feasible if

R
(2)
1 ≤

[
log

(
SNRP

(2)
1

1 + INRP
(1)
2

)]+

,

R
(2)
2 ≤

[
log

(
INRP

(2)
2

1 + INRP
(1)
2

)]+

,

(44)

Here [·]+ = max{·, 0}.
The decoding at receiver 2 proceeds as follows. At the end

of each block, receiver 2 removes hcX
(3)
1 from its received

signal. Note that X(3)
1 is in fact a function of W (2,b−2)

2 and
thus it is known to receiver 2 (assuming successful decoding
in the previous blocks). Therefore, after removing hcX

(3)
1 , we

get

Y2 = hd

(
X

(1)
2 +X

(2)
2

)
+ hc

(
X

(1)
1 +X

(2)
1

)
+ Z2. (45)

Receiver 2 now decodes X(2)
2 and X

(1)
2 by treating other

codewords as noise. This can be done with arbitrary small
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error probability if

R
(2)
2 ≤

[
log

(
SNRP

(2)
2

1 + SNRP
(1)
2 + INRP

(1:2)
1

)]+

,

R
(1)
2 ≤ log

(
1 +

SNRP
(1)
2

1 + INRP
(1:2)
1

)
.

(46)

The decoding strategy presented above describes a set of
constraints on the rates, which is summarized as follows:

R
(1)
1 ≤ log

(
1 +

SNRP
(1)
1

1+INRP2+SNRP
(2)
1

)
R

(2)
1 ≤ min

{
log

(
SNRP

(2)
1

1+INRP
(1)
2

)+

, CFB

}
R

(3)
1 ≤ log

(
1 +

SNRP
(3)
1

1+INRP2+SNRP
(1:2)
1

)
R

(1)
2 ≤ log

(
1 +

SNRP
(1)
2

1+INRP
(1:2)
1

)
R

(2)
2 ≤ min

{[
log

(
INRP

(2)
2

1+INRP
(1)
2

)]+

, CFB

}
(47)

Therefore, we can achieve a sum-rate R(a)
SUM = R

(1)
1 +R

(2)
1 +

R
(1)
2 +R

(2)
2 , arbitrary close to5

R
(a)
SUM = log

(
1 +

SNRP
(1)
1

1 + INRP2 + SNRP
(2)
1

)

+ min


[

log

(
SNRP

(2)
1

1 + INRP
(1)
2

)]+

, CFB


+ log

(
1 +

SNRP
(1)
2

1 + INRP
(1:2)
1

)

+ min


[

log

(
INRP

(2)
2

1 + INRP
(1)
2

)]+

, CFB

 . (48)

Case (b) 1
2 log (SNR) ≤ log (INR) ≤ 2

3 log (SNR): In this
case, we have

Y1 = hd

(
X

(1)
1 +X

(2)
1 +X

(3)
1 +X

(4)
1

)
+ hc

(
X

(1)
2 +X

(2)
2 +X

(3)
2

)
+ Z1. (49)

At the end of each block, receiver 1 first decodes X(4)
1 by

treating all other codewords as noise, and removes hdX
(4)
1

from the received signal. This can be decoded with small error
probability if

R
(4)
1 ≤ log

(
1 +

SNRP
(4)
1

1 + INRP2 + SNRP
(1:3)
1

)
. (50)

Next, it decodes X(3)
1 by treating other codewords as noise

and removes hdX
(3)
1 from the received signal. This can be

5Note that X(3,b)
1 is a function of the cooperative common message of

transmitter 2, i.e., W (2,b−2)
2 , hence, it does not contain any new information

and it is not considered in the sum-rate.

decoded with arbitrary small error probability if

R
(3)
1 ≤ log

(
1 +

SNRP
(3)
1

1 + INRP2 + SNRP
(1:2)
1

)
. (51)

We proceed by decoding the non-cooperative common mes-
sage of transmitter 2, i.e., X(3)

2 by treating other codewords
as noise. This can be decoded with arbitrary small error
probability if

R
(3)
2 ≤ log

(
1 +

INRP
(3)
2

1 + INRP
(1:2)
2 + SNRP

(1:2)
1

)
. (52)

It then removes hcX
(3)
2 from the received signal, having

now access to hdX
(2)
1 + hcX

(2)
2 + hdX

(1)
1 + hcX

(1)
2 + Z1.

We decode the lattice index of hdX
(2)
1 + hcX

(2)
2 , i.e., I(b)

Λ1,2
,

by treating other codewords as noise. It then sends back(
I

(b)
Λ1,2

mod 2NCFB

)
to transmitter 1. From Lemma 2, decod-

ing with arbitrary small error probability is feasible if

R
(2)
1 ≤

[
log

(
SNRP

(2)
1

1 + INRP
(1)
2 + SNRP

(1)
1

)]+

,

R
(2)
2 ≤

[
log

(
INRP

(2)
2

1 + INRP
(1)
2 + SNRP

(1)
1

)]+

.

(53)

After decoding and removing hdX
(2)
1 + hcX

(2)
2 , receiver

1 decodes X(1)
1 . This can be done with arbitrary small error

probability if

R
(1)
1 ≤ log

(
1 +

SNRP
(1)
1

1 + INRP
(1)
2

)
. (54)

Similar to the previous case, receiver 2 removes X(3)
1 from

its received signal. The decoding at receiver 2 proceeds as
follows. Receiver 2 decodes X(3)

2 by treating other codewords
as noise and removes hdX

(3)
2 from the received signal. Next,

X
(2)
2 , the non-cooperative common message of transmitter

1, will be decoded while treating other codewords as noise.
Receiver 2 removes hdX

(2)
2 from the received signal and then,

decodes X
(4)
1 by treating other codewords as noise. After

removing hcX
(4)
1 , we now decode the private message of

transmitter 2, i.e., X(1)
2 . This can be done with arbitrary small

error probability if

R
(3)
2 ≤ log

(
1 +

SNRP
(3)
2

1 + SNRP
(1:2)
2 + INR(P1 − P (3)

1 )

)
,

R
(2)
2 ≤

[
log

(
SNRP

(2)
2

1 + SNRP
(1)
2 + INR(P1 − P (3)

1 )

)]+

,

R
(4)
1 ≤ log

(
1 +

INRP
(4)
1

1 + INRP
(1:2)
1 + SNRP

(1)
2

)
,

R
(1)
2 ≤ log

(
1 +

SNRP
(1)
2

1 + INRP
(1:2)
1

)
.

(55)
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The decoding strategy presented above describes a set of
constraints on the rates, which is summarized as follows:

R
(1)
1 ≤ log

(
1 +

SNRP
(1)
1

1+INRP
(1)
2

)
R

(2)
1 ≤ min

{[
log

(
SNRP

(2)
1

1+INRP
(1)
2 +SNRP

(1)
1

)]+

, CFB

}
R

(3)
1 ≤ log

(
1 +

SNRP
(3)
1

1+INRP2+SNRP
(1:2)
1

)
R

(4)
1 ≤ log

(
1 +

INRP
(4)
1

1+INRP
(1:2)
1 +SNRP

(1)
2

)
R

(1)
2 ≤ log

(
1 +

SNRP
(1)
2

1+INRP
(1:2)
1

)
R

(2)
2 ≤ min

{[
log

(
INRP

(2)
2

1+INRP
(1)
2 +SNRP

(1)
1

)]+

, CFB

}
R

(3)
2 ≤ log

(
1 +

INRP
(3)
2

1+INRP
(1:2)
2 +SNRP

(1:2)
1

)
.

(56)
Therefore, we can achieve a sum-rate R(b)

SUM = R
(1)
1 +R

(2)
1 +

R
(4)
1 +R

(1)
2 +R

(2)
2 +R

(3)
2 , arbitrary close to6

R
(b)
SUM = log

(
1 +

SNRP
(1)
1

1 + INRP
(1)
2

)
(57)

+ min


[

log

(
SNRP

(2)
1

1 + INRP
(1)
2 + SNRP

(1)
1

)]+

, CFB


+ log

(
1 +

INRP
(4)
1

1 + INRP
(1:2)
1 + SNRP

(1)
2

)

+ log

(
1 +

SNRP
(1)
2

1 + INRP
(1:2)
1

)

+ min


[

log

(
INRP

(2)
2

1 + INRP
(1)
2 + SNRP

(1)
1

)]+

, CFB


+ log

(
1 +

INRP
(3)
2

1 + INRP
(1:2)
2 + SNRP

(1:2)
1

)
.

Case (c) 2 log (SNR) ≤ log (INR):
In this case, there is no need to decode the superposition of

the two messages. So set R(1)
1 , R

(2)
1 and R

(1)
2 equal to zero.

We then get

Y1 = hd

(
X

(3)
1 +X

(4)
1

)
+ hc

(
X

(2)
2 +X

(3)
2

)
+ Z1, (58)

Y2 = hd

(
X

(2)
2 +X

(3)
2

)
+ hc

(
X

(3)
1 +X

(4)
1

)
+ Z2. (59)

As for the feedback strategy, receiver 1 decodes X(2)
2 by

treating other codewords as noise, and sends the lattice index
of W (2)

2 back to transmitter 1 during the following block.
Transmitter 1 later encodes this message as X(3)

1 and transmits
it. It is worth mentioning that in this case, it is in fact receiver
2 who wants to exploit the feedback link of user 1 to get
part of its message. In other words, we have two paths for

6Note that X(3,b)
1 is a function of the cooperative common message of

transmitter 2, i.e., W (2,b−2)
2 , hence it is not considered in the sum-rate.

information flow from transmitter 2 to receiver 2; one through
the direct link between them and the other one through receiver
1, feedback link and transmitter 1. The decoding works very
similar to what we described above and we get the following
set of constraints to guarantee small error probability at the
decoders.

R
(3)
1 ≤ log

(
1 +

INRP
(3)
1

1+SNRP2

)
R

(4)
1 ≤ log

(
1 +

SNRP
(4)
1

1+SNRP
(3)
1

)
R

(2)
2 ≤ min

{[
log

(
INRP

(2)
2

1+SNRP1

)]+

, CFB

}
R

(3)
2 ≤ log

(
1 +

SNRP
(3)
2

1+SNRP
(2)
2

)
(60)

As before X(3,b)
1 is a function of W (2,b−2)

2 . Therefore, we
can achieve a sum-rate R(c)

SUM = R
(4)
1 +R

(2)
2 +R

(3)
2 , arbitrary

close to

R
(c)
SUM = log

(
1 +

SNRP
(4)
1

1 + SNRP
(3)
1

)

+ min


[

log

(
INRP

(2)
2

1 + SNRP1

)]+

, CFB


+ log

(
1 +

SNRP
(3)
2

1 + SNRP
(2)
2

)
. (61)

Case (d) 2
3 log (SNR) ≤ log (INR) ≤ 2 log (SNR):

As we will show in Appendix D, in this regime feedback can
at most increase the sum-rate capacity by 4 bits/sec/Hz. Hence,
we ignore the feedback and use the non-feedback transmission
strategy in [35] (i.e., having only one private and one common
message at each transmitter and jointly decoding at receivers).

3) General Feedback Assignment: We now describe our
achievable scheme for general feedback capacity assignment
based on a combination of the achievability schemes for the
extreme cases. Let CFB1 = λCFB and CFB2 = (1−λ)CFB, such
that 0 ≤ λ ≤ 1. We call the achievable sum-rate of the extreme
case CFB1 = CFB and CFB2 = 0 by RCFB2=0

SUM , and similarly,
we refer to the achievable sum-rate of the other extreme case
by RCFB1=0

SUM . We split any block b, b = 1, 2, . . . , B − 2, of

N

λ N

Feedback Transmission
for the previous block

N

λ N

Block b Block b+1

Fig. 6. Achievability strategy for CFB1 = λCFB and CFB2 = (1− λ)CFB.

length N into two sub-blocks: b1 of length λN and b2 of
length (1− λ)N . See Figure 6 for a depiction. During block
b1, we implement the transmission strategy of the extreme case
CFB1 = CFB and CFB2 = 0, with a block length of λN ; and
during block b2, the achievability scheme of the extreme case
CFB1 = 0 and CFB2 = CFB, with a block length of (1− λ)N .
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At the end of each sub-block, receivers decode the messages
as described before and create the feedback messages. During
block b + 1 the feedback messages of sub-blocks b1 and b2
will be sent back to corresponding transmitters, as shown in
Figure 6. Note that we use CFB1 during the entire length of
block b+ 1, hence the effective feedback rate of user 1 (total
feedback use divided by number of transmission time slots),
would be

Ceff
FB1 =

NCFB1

λN
=
λNCFB

λN
= CFB. (62)

Hence, we can implement the achievability strategy corre-
sponding to the extreme case CFB1 = CFB and CFB2 = 0.
Similar argument is valid for the other extreme case. With
this achievability scheme, as N goes to infinity, we achieve a
sum-rate of λRCFB2=0

SUM + (1− λ)RCFB1=0
SUM .

4) Power Splitting: We have yet to specify the values of the
powers associated with the codewords at the transmitters (i.e.,
P

(i)
k : k ∈ {1, 2}, i ∈ {1, 2, 3, 4}). In general, one can solve

an optimization problem to find the optimal choice of power
level assignments that maximizes the achievable sum-rate.
We have performed numerical analysis for this optimization
problem. Figure 7 shows the gap between our proposed
achievable scheme and the outer-bounds in Corollary 1 at (a)
SNR = 20dB, (b) SNR = 40dB, and (c) SNR = 60dB, for
CFB = 10 bits. In fact through our numerical analysis, we
can see that the gap is at most 4, 5, and 5.5 bits/sec/Hz for
the given values of SNR, respectively. Note that sharp points
in Figure 7 are due to the change of achievability scheme for
different values of INR as described before.

In Appendix D, we present an explicit choice of power as-
signments such that the gap between the achievability scheme
and the outer-bounds does not scale with SNR. As a result,
we get the following Theorem.

Theorem 5: The sum-rate capacity of the Gaussian IC with
rate-limited feedback is within at most 14.8 bits/sec/Hz of the
maximum R1 +R2 satisfying

0 ≤ R1 +R2 ≤ 2 log (1 + SNR) + CFB1 + CFB2 (63a)

0 ≤ R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
(63b)

+ log
(

1 + SNR + INR + 2
√
SNR · INR

)
0 ≤ R1 +R2 ≤ 2 log

(
1 + INR +

SNR

1 + INR

)
(63c)

+ CFB1 + CFB2.

Remark 7: Note that the given choice of power assignment
in Appendix D is not necessarily optimal, and our analysis
is pessimistic in the sense that we consider the worst case
scenario, and we calculate the gap for the worst case.

As a corollary, we characterize the symmetric capacity
of the two-user Gaussian IC with rate-limited feedback, as
defined below, to within a constant number of bits.

Definition 1: The symmetric capacity is defined by

Csym = sup{R : (R,R) ∈ C}, (64)

where C is the capacity region.
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Fig. 7. Numerical analysis: gap between achievable scheme and the outer-
bounds in Corollary 1 at (a) SNR = 20dB, (b) SNR = 40dB, and (c)
SNR = 60dB for CFB = 10 bits.

Corollary 2: For the symmetric Gaussian IC with equal
feedback link capacities, i.e., CFB1 = CFB2, the pre-
sented achievability strategy achieves to within at most 7.4
bits/sec/Hz/user to the symmetric capacity Csym defined in
(64), for all channel gains.

Proof: Theorem 5 says that we can achieve to within at
most 14.8 bits/sec/Hz of the outerbounds in Corollary 1 for
any feedback assignment. Therefore, in symmetric IC with
equal feedback link capacities CFB1 = CFB2 = 1

2CFB1, the
gap between the achievability and the symmetric capacity is
at most 7.4 bits/sec/Hz/user.

VII. CONCLUDING REMARKS

We have addressed the two-user interference channel with
rate-limited feedback under three different models: the El
Gamal-Costa deterministic model [11], the linear deterministic
model [12], and the Gaussian model. We developed new
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achievable schemes and new outer-bounds for all of the three
models. We showed the optimality of our scheme under the
linear deterministic model. Under the Gaussian model, we
established new outer-bounds on the capacity region with rate-
limited feedback, and we proposed a transmission strategy
employing lattice codes and the ideas developed in the first
two models. Furthermore, we proved that the gap between the
achievable sum-rate of the proposed scheme and the outer-
bound is bounded by a constant number of bits, independent
of the channel gains.

One of the future directions would be to extend this result
to the capacity region of the asymmetric two-user Gaussian
interference channel with rate-limited feedback. The same
achievability scheme can be applied there, however, the gap
analysis will be cumbersome. Therefore, one interesting direc-
tion is to find out new techniques to bound the gap between the
achievable region and the outer-bounds on the capacity region
of the asymmetric two-user Gaussian interference channel with
rate-limited feedback.

APPENDIX A
PROOF OF THEOREM 2

Proof of (21a) (cutset bound): Starting with Fano’s in-
equality, we get

N(R1 − εN ) ≤ I(W1;Y N1 ) ≤
∑

H(Y1i),

where the second inequality follows from the fact that con-
ditioning reduces entropy. If (R1, R2) is achievable, then
εN → 0 as N → ∞. Thus we obtain the left term of the
bound. Notice that this is a cutset bound, as the bound is
obtained assuming that the two transmitters fully collaborate.

To obtain the right term, we consider

N(R1 − εN ) ≤ I(W1;Y N1 , Y N2 ,W2)

(a)
=
∑

H(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 , Xi
2)

=
∑

H(Y1i|W2, Y
i−1
1 , Y i2 , X

i
2)

+
∑

H(Y2i|W2, Y
i−1
1 , Y i−1

2 , Xi
2)

(b)
=
∑

H(Y1i|W2, Y
i−1
1 , Y2i, X2i, U1i)

+
∑

H(Y2i|W2, Y
i−1
1 , X2i, U1i)

(c)

≤
∑

H(Y1i|X2i, Y2i, U1i) +
∑

H(Y2i|X2i, U1i)

(d)

≤
∑

H(Y1i|V1i, V2i, U1i) +
∑

H(Y2i|X2i, U1i),

where (a) follows from the fact that W1 is independent from
W2, and Xi

2 is a function of (W2, Y
i−1
2 ); (b) follows from

the fact that U1i := (Xi−1
2 , Ỹ i−1

2 ) and Ỹ i−1
2 is a function

of Y i−1
2 ; (c) follows from the fact that conditioning reduces

entropy; (d) follows from the fact that (V1i is a function of
(X2i, Y2i), Y2i is a function of (X2i, V1i) and V2i is a function
of X2i. Thus we get the right term of the bound. Notice that
this is a cutset bound, as the bound is obtained assuming that
the two receivers fully collaborate.

Proof of (21b) (cutset bound): Starting with Fano’s in-
equality, we get:

N(R1 − εN ) ≤ I(W1;Y N1 , Ỹ N2 ,W2)

(a)
=
∑

H(Y1i, Ỹ2i|W2, Y
i−1
1 , Ỹ i−1

2 , Xi
2)

=
∑

H(Y1i|W2, Y
i−1
1 , Ỹ i−1

2 , Xi
2)

+
∑

H(Ỹ2i|W2, Y
i
1 , Ỹ

i−1
2 , Xi

2)

(b)

≤
∑

H(Y1i|X2i, U1i) +
∑

H(Ỹ2i|Y1i, X2i)

(c)

≤
∑

H(Y1i|X2i, U1i) +NCFB2,

where (a) follows from the fact that W1 is independent from
W2, and Xi

2 is a function of (W2, Ỹ
i−1
2 ); (b) follows from

the fact that conditioning reduces entropy; (d) follows from
H(Ỹ2i|Y1i, X2i) ≤ CFB2. Therefore, we get the desired bound.

Proof of (21e): Starting with Fano’s inequality, we get

N(R1 +R2 − εN ) ≤ I(W1;Y N1 |W2) + I(W2;Y N2 )

= H(Y N1 |W2) + I(W2;Y N2 )

= H(Y N1 |W2) +H(Y N2 )

−
{
H(Y N1 , Y N2 |W2)−H(Y N1 |Y N2 ,W2)

}
= H(Y N1 |Y N2 ,W2)−H(Y N2 |Y N1 ,W2) +H(Y N2 )

(a)
=
∑

H(Y1i|W2, Y
i−1
1 , Y N2 , Xi

2, V1i) +H(Y N2 )

(b)

≤
∑

[H(Y1i|V2i, V1i, U1i) +H(Y2i)] ,

where (a) follows from the fact that Xi
2 is a function of

(W2, Y
i−1
2 ) and V1i is a function of (X2i, Y2i); (b) follows

from the fact that U1i is a function of (Xi−1
2 , Y i−1

2 ) and
conditioning reduces entropy.

Proof of (21h):

N(2R1 +R2 − εN )

≤ I(W1;Y N1 ) + I(W1;Y N1 |W2) + I(W2;Y N2 )

(a)

≤ [H(Y N1 )−H(Y N1 |W1)]

+ I(W1;Y N1 , V N1 |W2) + [H(Y N2 )−H(Y N2 |W2)]

(b)
= [H(Y N1 )−H(V N2 |W1)] +H(V N1 |W2)

+H(Y N1 |W2, V
N
1 ) + [H(Y N2 )−H(V N1 |W2)]

= H(Y N1 ) +H(Y N1 |W2, V
N
1 )

+H(Y N2 )− [H(V N2 )− I(W1;V N2 )]

(c)

≤ I(W1;V N2 ) +H(Y N1 ) +H(Y N1 |W2, V
N
1 )

+H(Y N2 , V N2 )−H(V N2 )

(d)

≤ I(W1;V N2 ,W2, Ỹ
N
2 ) +H(Y N1 )

+H(Y N1 |W2, V
N
1 ) +H(Y N2 |V N2 )

(e)
= I(W1; Ỹ N2 |W2) +H(Y N1 )

+H(Y N1 |W2, V
N
1 , XN

2 , Ỹ
N
2 ) +H(Y N2 |V N2 )

(f)

≤ NCFB2 +
∑

H(Y1i) +
∑

H(Y2i|V2i)

+
∑

H(Y1i|V1i, V2i, U1i),
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where (a) follows from the fact that adding information
increases mutual information; (b) follows from Claim 1; (c)
follows from providing V N2 to receiver 2; (d) follows from
the fact that adding information increases mutual information;
follows from the fact that V Nk is a function of (Wk, Ỹ

N−1
k );

(e) follows from the fact that XN
2 is a function of (W2, V

N−1
1 )

(by Claim 2) and Ỹ N2 is a function of (XN
2 , V

N
1 ); (f ) follows

from the fact that U1i := (Xi−1
2 , Ỹ i−1

2 ), U2i := (Xi−1
1 , Ỹ i−1

1 ),
H(Ỹ N2 |W2) ≤ NCFB2 and conditioning reduces entropy.

To complete the proof, we will show that given Ui :=
(U1i, U2i), X1i and X2i are conditionally independent. Re-
member that our input distribution is of the form of
p(u1, u2)p(x1|u1, u2)p(x2|u1, u2).

Claim 5: Given Ui := (U1i, U2i) =
(Xi−1

2 , Ỹ i−1
2 , Xi−1

1 , Ỹ i−1
1 ), X1i and X2i are conditionally

independent.
Proof: The proof is based on the dependence-balance-

bound technique [27], [28]. For completeness we describe
details. We first show that I(W1;W2|Ui) = 0, implying that
W1 and W2 are independent given Ui. We will then show that
X1i and X2i are conditionally independent given Ui.

Consider

0 ≤ I(W1;W2|Ui)
(a)
= I(W1;W2|Ui)− I(W1;W2)

(b)
= −H(W1)−H(W2)−H(Ui) +H(W1,W2)

+H(W1, Ui) +H(W2, Ui)−H(W1,W2, Ui)

(c)
= −H(Ui) +H(Ui|W1) +H(Ui|W2)

(d)
=

i−1∑
j=1

[
−H(X1j , X2j |Xj−1

1 , Xj−1
2 )

+H(X1j , X2j |W1, X
j−1
1 , Xj−1

2 )

+H(X1j , X2j |W2, X
j−1
1 , Xj−1

2 )
]

(e)
=

i−1∑
j=1

[
−H(X1j , X2j |Xj−1

1 , Xj−1
2 )

+H(X2j |W1, X
j
1 , X

j−1
2 ) +H(X1j |W2, X

j−1
1 , Xj

2)
]

=

i−1∑
j=1

[
−H(X1j |Xj−1

1 , Xj−1
2 ) +H(X1j |W2, X

j−1
1 , Xj

2)

−H(X2j |Xj
1 , X

j−1
2 ) +H(X2j |W1, X

j
1 , X

j−1
2 )

] (f)

≤ 0,

where (a) follows from I(W1;W2) = 0; (b) follows
from the chain rule; (c) follows from the chain rule and
H(Ui|W1,W2) = 0; (d) follows from the fact that (Ỹ1j , Ỹ2j) is
a function of (X̃1j , X̃2j); (e) follows from the fact that Xkj is
a function of (Wk, X

j−1
1 , Xj−1

2 ); (f ) follows from the fact that
conditioning reduces entropy. Therefore, I(W1;W2|Ui) = 0,
which shows the independence of W1 and W2 given Ui.

Notice that Xki is a function of (Wk, X
i−1
1 , Xi−1

2 ).
Hence, it easily follows that I(X1i;X2i|Ui) =
I(X1i;X2i|Xi−1

1 , Xi−1
2 ) = 0. This proves the independence

of X1i and X2i given Ui.

APPENDIX B
ACHIEVABILITY PROOF OF THEOREM 3

With the choice of distribution given in (23), we have

δ1 = I(Ŷ1;Y1|U,U2, X1) = 0, (65a)
δ2 = I(Ŷ2;Y2|U,U1, X2) = 0, (65b)
I(U, V2, X1;Y1) = max(n11, n21), (65c)
I(U, V1, X2;Y2) = max(n22, n12), (65d)
I(X1;Y1|U, V1, V2) = (n11 − n12)+, (65e)
I(X2;Y2|U, V1, V2) = (n22 − n21)+, (65f)
I(U2;Y1|U,X1) = min(n21, CFB1), (65g)
I(U1;Y2|U,X2) = min(n12, CFB2), (65h)
I(X1;Y1|U,U1, V2) = (n11 − n12)+

+ min
{
n11, (n12 − CFB2)+

}
, (65i)

I(X2;Y2|U,U2, V1) = (n22 − n21)+

+ min
{
n22, (n21 − CFB1)+

}
, (65j)

I(X1, V2;Y1|U, V1, U2) = (65k)

(n21 − CFB1)+ +
[
(n11 − n12)+ − n21

]+
+ min

{
(n11 − n12)+,min(n21, CFB1)

}
,

I(X2, V1;Y2|U, V2, U1) = (65l)

(n12 − CFB2)+ +
[
(n22 − n21)+ − n12

]+
+ min

{
(n22 − n21)+,min(n12, CFB2)

}
,

I(X1, V2;Y1|U,U1, U2) = (65m)
(n11 − n12)+ + min

{
n11, (n12 − CFB2)+

}
+ [n21 −max {n11,min(n21, CFB1)}]+

+
[
min

{
n21,

[
n11 − (n12 − CFB2)+

]+}
−max

{
min(n21, CFB1), (n11 − n12)+

}]+
,

I(X2, V1;Y2|U,U1, U2) = (65n)
(n22 − n21)+ + min

{
n22, (n21 − CFB1)+

}
+ [n12 −max {n22,min(n12, CFB2)}]+

+
[
min

{
n12,

[
n22 − (n21 − CFB1)+

]+}
−max

{
min(n12, CFB2), (n22 − n21)+

}]+
.

Using this computation, one can show that the inequalities of
(10g) and (10h) are implied by (10b), (10d), (10e) and (10f);
the inequality (10k) is implied by (10b), (10d) and (10j); and
the inequality (10m) is implied by (10b), (10d) and (10l). We
omit the tedious calculation. With further computation, we get:

R1 ≤ max(n11, n21) (66a)
R1 ≤ (n11 − n12)+ + min

{
n11, (n12 − CFB2)+

}
+ min(n12, CFB2) (66b)

R2 ≤ max(n22, n12) (66c)
R2 ≤ (n22 − n21)+ + min

{
n22, (n21 − CFB1)+

}
+ min(n21, CFB1) (66d)

R1 +R2 ≤ (n11 − n12)+ + max(n22, n12) (66e)
R1 +R2 ≤ (n22 − n21)+ + max(n11, n21) (66f)
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R1 +R2 ≤ max
{

(n11 − n12)+, n21

}
(66g)

+ max
{

(n22 − n21)+, n12

}
+ min

{
(n11 − n12)+, n21, CFB1

}
+ min

{
(n22 − n21)+, n12, CFB2

}
2R1 +R2 ≤ (n11 − n12)+ + max(n11, n21) (66h)

+ max
{

(n22 − n21)+, n12

}
+ min

{
(n22 − n21)+, n12, CFB2

}
R1 + 2R2 ≤ (n22 − n21)+ + max(n22, n12) (66i)

+ max
{

(n11 − n12)+, n21

}
+ min

{
(n11 − n12)+, n21, CFB1

}
.

We will show that the inequalities developed above are
equivalent to the capacity region in Theorem 3. Note that (66b)
can be written as

R1 ≤
{
n11 + CFB2, n11 + CFB2 ≤ n12;
max(n11, n12), otherwise.

This shows that this inequality is implied by (22a) and (22b).
Similarly, (66d) is implied by (22c) and (22d). Next consider
(66g),
• if CFB1 ≤ min {(n11 − n12)+, n21},
CFB2 ≤ min {(n22 − n21)+, n12}:

R1 +R2 ≤ max
{

(n11 − n12)+, n21

}
(67)

+ max
{

(n22 − n21)+, n12

}
+ CFB1 + CFB2,

• if CFB1 > min {(n11 − n12)+, n21},
CFB2 > min {(n22 − n21)+, n12}:

R1 +R2 ≤ max(n11, n12) + max(n21, n22), (68)

• if CFB1 ≤ min {(n11 − n12)+, n21},
CFB2 > min {(n22 − n21)+, n12}:

R1 +R2 ≤ max
{

(n11 − n12)+, n21

}
+ CFB1 + n12 (69)

+ (n22 − n21)+,

• and finally, if CFB1 > min {(n11 − n12)+, n21},
CFB2 ≤ min {(n22 − n21)+, n12}:

R1 +R2 ≤ max
{

(n22 − n21)+, n12

}
+ CFB2 + n21 (70)

+ (n11 − n12)+.

Note that the first case is implied by (22g); and the second
case is implied by (22a) and (22c). Also notice that the third
case is implied by (22c) and (22i); and the last case is implied
by (22a) and (22h). Lastly, we consider (66h):

2R1 +R2 ≤



(n11 − n12)+ + max(n11, n21)
+ max {(n22 − n21)+, n12}+ CFB2,

if CFB2 ≤ min {(n22 − n21)+, n12};
max(n11, n12) + max(n11, n21)
+(n22 − n21)+,

if CFB2 > min {(n22 − n21)+, n12}.

Note that the first case is implied by (22h); and the second
case is implied by (22a) and (22f). Similarly, it can be shown
that (66i) is implied by (22i), (22c) and (22e). Therefore, the
inequalities of (66a)-(66i) are equivalent to those of (22a)-
(22i), thus proving the achievablity of Theorem 3.

APPENDIX C
PROOF OF THEOREM 4

Proof of (26a) and (26b): Starting with Fano’s inequality,
we get

N(R1 − εN ) ≤ I(W1;Y N1 )

≤
∑

[h(Y1i)− h(Y1i|W1, Y
i−1
1 , X1i)]

=
∑

[h(Y1i)− h(Z1i)],

where the second inequality follows from the fact that condi-
tioning reduces entropy and X1i is a function of (W1, Y

i−1
1 );

and the third equality follows from the memoryless property
of the channel. If (R1, R2) is achievable, then εN → 0 as
N → ∞. Assume that X1 and X2 have covariance ρ, i.e.,
ρ = E[X1X

∗
2 ]. We can then obtain (26a).

To obtain (26b), consider

N(R1 − εN ) ≤ I(W1;Y N1 , Y N2 |W2)

=
∑

h(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 )− h(Y N1 , Y N2 |W1,W2)

(a)
=
∑

h(Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 , X2i)

−
∑

[h(Z1i) + h(Z2i)]

(b)
=
∑

h(Y2i|W2, Y
i−1
1 , Y i−1

2 , X2i)

+
∑

h(Y1i|W2, Y
i
2 , X2i, S1i)−

∑
[h(Z1i) + h(Z2i)]

(c)

≤
∑

[h(Y2i|X2i)− h(Z2i)]

+
∑

[h(Y1i|X2i, S1i)− h(Z1i)] ,

where (a) follows from the fact that Xi
2 is a function of

(W2, Y
i−1
2 ) and h(Y N1 , Y N2 |W1,W2) =

∑
[h(Z1i) + h(Z2i)]

(see Claim 6 below); (b) follows from the fact that Si1 :=
h12X

i
1 + Zi2 is a function of (Y i2 , X

i
2); (c) follows from the

fact that conditioning reduces entropy. Hence, we get

R1 ≤ h(Y2|X2)− h(Z2) + h(Y1|X2, S1)− h(Z1)

(a)

≤ log
(
1 + (1− |ρ|2)INR12

)
+ log

(
1 +

(1− |ρ|2)SNR1

1 + (1− |ρ|2)INR12

)
,

where (a) follows from the fact that

h(Y2|X2) ≤ log 2πe
(
1 + (1− |ρ|2)INR12

)
, (71)

h(Y1|X2, S1) ≤ log 2πe

(
1 +

(1− |ρ|2)SNR1

1 + (1− |ρ|2)INR12

)
. (72)

The inequality of (72) is obtained as follows. Given (X2, S1),
the variance of Y1 is upper-bounded by

Var [Y1|X2, S1] ≤ KY1 −KY1(X2,S1)K
−1
(X2,S1)K

∗
Y1(X2,S1),
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where

KY1
= E

[
|Y1|2

]
= 1 + SNR1 + INR21 + ρh∗11h21 + ρ∗h11h

∗
21,

KY1(X2,S1) = E [Y1[X∗2 , S
∗
1 ]]

= [ρh11 + h21, h
∗
12h11 + ρ∗h21h

∗
12] ,

K(X2,S1) = E

[[
|X2|2 X2S

∗
1

X∗2S1 |S1|2
]]

=

[
1 ρ∗h∗12

ρh12 1 + INR12

]
.

(73)

By further calculation, we can get (72).
Claim 6: h(Y N1 , Y N2 |W1,W2) = h(Y N1 , SN1 |W1,W2) =∑
[h(Z1i) + h(Z2i)].

Proof:

h(Y N1 , Y N2 |W1,W2) =
∑

h(Y1i, Y2i|W1,W2, Y
i−1
1 , Y i−1

2 )

(a)
=
∑

h(Y1i, Y2i|W1,W2, Y
i−1
1 , Y i−1

2 , X1i, X2i)

(b)
=
∑

h(Z1i, Z2i|W1,W2, Y
i−1
1 , Y i−1

2 , X1i, X2i)

(c)
=
∑

[h(Z1i) + h(Z2i)] ,

where (a) follows from the fact that X1i is a function of
(W1, Y

i−1
1 ) and X2i is a function of (W2, Y

i−1
2 ); (b) follows

from the fact that Y1i = h11X1i + h21X2i + Z1i and S1i :=
h12X1i + Z2i; (c) follows from the memoryless property of
the channel and the independence assumption of Z1i and
Z2i. Similarly, one can show that h(Y N1 , SN1 |W1,W2) =∑

[h(Z1i) + h(Z2i)].
Proof of (26c): Starting with Fano’s inequality, we get

N(R1 − εN ) ≤ I(W1;Y N1 , Ỹ N2 |W2)

=
∑

h(Y1i, Ỹ2i|W2, Y
i−1
1 , Ỹ i−1

2 )− h(Y N1 , Ỹ N2 |W1,W2)

(a)

≤
∑

h(Y1i, Ỹ2i|W2, Y
i−1
1 , Ỹ i−1

2 , X2i)−
∑

h(Z1i)

=
∑

H(Ỹ2i|W2, Y
i−1
1 , Ỹ i−1

2 , X2i)

+
∑

h(Y1i|W2, Y
i−1
1 , Ỹ i2 , X2i)−

∑
h(Z1i)

(b)

≤ NCFB2 +
∑

[h(Y1i|X2i)− h(Z1i)],

where (a) follows from the fact that h(Y N1 , Ỹ N2 |W1,W2) ≥∑
h(Z1i) (see Claim 7 below) and X2i is a function of

(W2, Ỹ
i−1
2 ); (c) follows from the fact that H(Ỹ2i) ≤ CFB2

and conditioning reduces entropy. So we get

R1 ≤ h(Y1|X2)− h(Z1) + CFB2

≤ log
(
1 + (1− |ρ|2)SNR1

)
+ CFB2.

Claim 7: h(Y N1 , Ỹ N2 |W1,W2) ≥
∑
h(Z1i).

Proof:

h(Y N1 , Ỹ N2 |W1,W2) = H(Ỹ N2 |W1,W2)

+ h(Y N1 |W1,W2, Ỹ
N
2 )

(a)

≥
∑

h(Y1i|W1,W2, Y
i−1
1 , Ỹ i−1

2 , X1i, X2i)

=
∑

h(Z1i|W1,W2, Y
i−1
1 , Ỹ i−1

2 , X1i, X2i)

(b)
=
∑

h(Z1i),

where (a) follows from the fact that entropy is nonnegative
and X1i is a function of (W1, Y

i−1
1 ) and X2i is a function of

(W2, Ỹ
i−1
2 ); (b) follows from the memoryless property of the

channel.
Proof of (26h):

N(R1 +R2 − εN ) ≤ I(W1;Y N1 ) + I(W2;Y N2 )

(a)

≤ I(W1;Y N1 , SN1 ,W2) + I(W2;Y N2 )

(b)
= h(Y N1 , SN1 |W2)− h(Y N1 , SN1 |W1,W2) + I(W2;Y N2 )

(c)
= h(Y N1 , SN1 |W2)−

∑
[h(Z1i) + h(Z2i)] + I(W2;Y N2 )

(d)
= h(Y N1 |SN1 ,W2)−

∑
h(Z1i) + h(Y N2 )−

∑
h(Z2i)

(e)
= h(Y N1 |SN1 ,W2, X

N
2 )−

∑
h(Z1i) + h(Y N2 )−

∑
h(Z2i)

(f)

≤
N∑
i=1

[h(Y1i|S1i, X2i)− h(Z1i) + h(Y2i)− h(Z2i)] ,

where (a) follows from the fact that adding information
increases mutual information (providing a genie); (b) follows
from the independence of W1 and W2; (c) follows from
h(Y N1 , SN1 |W1,W2) =

∑
[h(Z1i) + h(Z2i)] (see Claim 6);

(d) follows from h(SN1 |W2) = h(Y N2 |W2) (see Claim 3); (e)
follows from the fact that XN

2 is a function of (W2, S
N−1
1 )

(see Claim 4); (f ) follows from the fact that conditioning
reduces entropy. Hence, we get

R1 +R2 ≤ h(Y1|S1, X2)− h(Z1) + h(Y2)− h(Z2).

Note that

h(Y2) ≤ log 2πe
(

1 + SNR2 + INR12 + 2|ρ|
√

SNR2 · INR12

)
.

(74)

From (72) and (74), we get the desired upper bound.
Proof of (26j):

N(2R1 +R2 − εN ) ≤ I(W1;Y N1 )

+ I(W1;Y N1 |W2) + I(W2;Y N2 )

(a)

≤ [h(Y N1 )− h(Y N1 |W1)] + I(W1;Y N1 , SN1 |W2)

+ [h(Y N2 )− h(Y N2 |W2)]

(b)
= [h(Y N1 )− h(Y N1 |W1)] + h(Y N1 , SN1 |W2)

−
∑

[h(Z1i) + h(Z2i)] + [h(Y N2 )− h(Y N2 |W2)]

(c)
= [h(Y N1 )− h(SN2 |W1)] + h(Y N2 ) + h(Y N1 |W2, S

N
1 )

−
∑

[h(Z1i) + h(Z2i)]

= h(Y N1 )−
∑

[h(Z1i) + h(Z2i)] + h(Y N1 |W2, S
N
1 )

+ I(W1;SN2 )− h(SN2 ) + h(Y N2 )
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= h(Y N1 )−
∑

[h(Z1i) + h(Z2i)] + h(Y N1 |W2, S
N
1 )

+ I(W1;SN2 ) + I(SN2 ;Y N2 ) + h(Y N2 |SN2 )

− I(SN2 ;Y N2 )− h(SN2 |Y N2 )
(d)

≤ h(Y N
1 )− h(ZN

1 )− h(ZN
2 ) + h(Y N

1 |W2, S
N
1 ) + h(Y N

2 |SN
2 )︸ ︷︷ ︸

T

+ I
(
SN2 , Ỹ

N
2 ,W2;W1

)
− h

(
SN2 |Y N2 ,W2, Ỹ

N
2

)
= T + I

(
Ỹ N2 ;W1|W2

)
+ I

(
SN2 ;W1|W2, Ỹ

N
2

)
− h

(
SN2 |Y N2 ,W2, Ỹ

N
2

)
= T + I

(
Ỹ N2 ;W1|W2

)
+ I

(
ZN1 ;W1|W2, Ỹ

N
2

)
− h

(
ZN1 |SN1 ,W2, Ỹ

N
2

)
= T − h(ZN1 )︸ ︷︷ ︸

T ′

+I
(
Ỹ N2 ;W1|W2

)
+ h(ZN1 )

− h
(
ZN1 |W1,W2, Ỹ

N
2

)
+ I(ZN1 ;SN1 |W2, Ỹ

N
2 )

(e)
= T ′ + I(ZN1 ;SN1 |W2, Ỹ

N
2 ) + I

(
Ỹ N2 ;W1, Z

N
1 |W2

)
= T ′ + I(ZN1 ;SN1 , Ỹ

N
2 |W2) + I

(
Ỹ N2 ;W1|W2, Z

N
1

)
(f)

≤ T ′ + I
(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I(ZN1 ; Ỹ N2 ,W1, Ỹ

N
1 , ZN2 |W2)

(g)
= T ′ + I

(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I(ZN1 ; Ỹ N1 |W1,W2, Z

N
2 )

(h)
= h(Y N1 )− h(ZN1 ) + h(Y N2 |SN2 )− h(ZN2 )

+ h(Y N1 |W2, S
N
1 , X

N
2 )− h(ZN1 )

+ I
(
Ỹ N2 ;W1|W2, Z

N
1

)
+ I(Ỹ N1 ;ZN1 |W1,W2, Z

N
2 )

(i)

≤ NCFB1 +NCFB2 +
∑

[h(Y1i)− h(Z1i)]

+
∑

[h(Y1i|S1i, X2i)− h(Z1i)]

+
∑

[h(Y2i|S2i)− h(Z2i)], (75)

where (a) follows from the non-negativity of mutual infor-
mation; (b) follows from h(Y N1 , SN1 |W1,W2) =

∑
[h(Z1i) +

h(Z2i)] (by Claim 6); (c) follows from Claim 3; (d) follows
from the non-negativity of mutual information and the fact that
conditioning reduces entropy; (e) is true since ZNk , W1, and
W2 are mutually independent; (f ) follows from the fact that
SN1 is a function of (W1, Ỹ

N
1 , ZN2 ); (g) can be obtained by

taking similar steps as in (28); (h) follows from Claim 4; (i)
follows from the fact that H(Ỹ Nk ) ≤ NCFBk and conditioning
reduces entropy.

Also note that

h(Y1|X2, S1) ≤ log 2πe

(
1 +

(1− |ρ|2)SNR1

1 + (1− |ρ|2)INR12

)
. (76)

Therefore, we get the desired bound.

APPENDIX D
GAP ANALYSIS OF THEOREM 5

We show that our proposed achievability strategy in Sec-
tion VI-B2 results in a sum-rate to within at most 14.8
bits/sec/Hz of the outerbounds in Corollary 1. It is sufficient
to prove this for the extreme case of feedback capacity
assignment, i.e., where CFB1 = CFB and CFB2 = 0 (or
symmetrically CFB1 = 0 and CFB2 = CFB). The reason is
as follows. Consider our achievability strategy for the general
feedback strategy described previously, and let CFB1 = λCFB

and CFB2 = (1 − λ)CFB, such that 0 ≤ λ ≤ 1. Under these
assumptions, for any value of λ, the outerbounds on sum-
rate in (33a),(33b), and (33c) would be the same, call the
minimum of them C∗. Assuming that we can achieve to within
14.8 bits/sec/Hz of this outer-bound in the extreme cases, then,
with the described achievability scheme for general feedback
assignment, we can achieve

RSUM = λRCFB2=0
SUM + (1− λ)RCFB1=0

SUM (77)
≥ λ (C∗ − 14.8) + (1− λ) (C∗ − 14.8) = (C∗ − 14.8) .

We now prove our claim for the extreme cases. By sym-
metry, we only need to analyze the gap in one case, say
CFB1 = CFB and CFB2 = 0. We assume that INR ≥ 1, since
for the case when INR < 1, by ignoring the feedback and
treating interference as noise, we can achieve a sum-rate of

2 log

(
1 +

SNR

1 + INR

)
, (78)

which is at most within 2.6 bits of outerbound (33b) in
Corollary 1:

log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
− 2 log

(
1 +

SNR

1 + INR

)
(INR≤1)

≤ log
(

1 + SNR + INR + 2
√
SNR · INR

)
− log

(
1 +

SNR

2

)
(INR≤1)

≤ log (2 + 3SNR)− log (1 + SNR) + 1

= log

(
2 + 3SNR

1 + SNR

)
+ 1

≤ log (3) + 1 ≤ 2.6. (79)

We consider five different subcases.
Case (a) log (INR) ≤ 1

2 log (SNR):
For this case, we pick the following set of power levels7:

P
(1)
1 =

(
1

INR −
1

SNR min{2CFB , INR− 1}
)+

P
(2)
1 = 1

SNR min{2CFB , INR− 1}
P

(3)
1 = 1

INR min{2CFB , INR− 1}
P

(1)
2 = 1

INR

P
(2)
2 = 1

2INR min{2CFB , INR− 1}

(80)

7Remember that starting the beginning of Section VI-B2, we have assumed
that INR ≥ 1. Hence, we are not encountering division by zero in power
assignments of (80).
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Note that the power levels are non-negative, and at trans-
mitter 1, we have

P1 = P
(1)
1 + P

(2)
1 + P

(3)
1

=

(
1

INR
− 1

SNR
min{2CFB , INR− 1}

)+

+
1

SNR
min{2CFB , INR− 1}+

1

INR
min{2CFB , INR− 1}

(a)
=

1

INR
− 1

SNR
min{2CFB , INR− 1}

+
1

SNR
min{2CFB , INR− 1}+

1

INR
min{2CFB , INR− 1}

=
1

INR
+

1

INR
min{2CFB , INR− 1}

≤ 1

INR
+

INR− 1

INR
≤ 1, (81)

where (a) follows from the fact that

1

SNR
min{2CFB , INR− 1} ≤ INR− 1

SNR

(INR2≤SNR)
≤ 1

INR
.

(82)

At transmitter 2,

P2 = P
(1)
2 + P

(2)
2

=
1

INR
+

1

2INR
min{2CFB , INR− 1}

≤ 1

INR
+

INR− 1

INR
≤ 1. (83)

By plugging the given values of power levels into our
achievable sum-rate R(a)

SUM defined in (48), we get

R
(a)
SUM = log

(
1 +

SNRP
(1)
1

1 + INRP
(1:2)
2 + SNRP

(2)
1

)

+ log

(
SNRP

(2)
1

2

)+

+ log

(
1 +

SNRP
(1)
2

2

)

+ log

(
INRP

(2)
2

1 + INRP
(1)
2

)+

= log

(
2 + INRP

(2)
2 + SNRP

(1:2)
1

2 + INRP
(2)
2 + SNRP

(2)
1

)

+ log

(
SNRP

(2)
1

2

)+

+ log

(
1 +

SNR

2INR

)

+ log

(
INRP

(2)
2

1 + INRP
(1)
2

)+

(a)

≥ log

2 + INRP
(2)
2 + SNRP

(1:2)
1

2
(

1 + SNRP
(2)
1

) × 1 + SNRP
(2)
1

4


+ log

(
1 +

SNR

2INR

)
+ log

(
INRP

(2)
2

1 + INRP
(1)
2

)+

= log
(

2 + INRP
(2)
2 + SNRP

(1:2)
1

)
+ log

(
1 +

SNR

2INR

)
+ log

(
min{2CFB , INR− 1}

4

)+

− 3

≥ log
(

2 + INRP
(2)
2 + SNRP

(1:2)
1

)
+ log

(
1 +

SNR

INR

)
+ min{CFB, log (INR− 1)

+} − 6

≥ log
(

2 + INRP
(2)
2 + SNRP

(1:2)
1

)
+ log

(
1 +

SNR

INR

)
+ min{CFB, log (1 + INR)} − log (3)− 6, (84)

where (a) follows from the assumption SNR ≥ INR ≥ 1, and
the last inequality holds since

log (INR− 1)
+ ≥ log (1 + INR)− 3 ∀ INR ≥ 1. (85)

• If CFB ≤ log (1 + INR): Considering the outerbound in
(33c), in this case we can write

R1 +R2 ≤ 2 log

(
1 + INR +

SNR

1 + INR

)
+ CFB

≤ 2 log

(
1 + INR +

SNR

INR

)
+ CFB

= 2 log

(
1 +

INR2 + SNR

INR

)
+ CFB

(INR2≤SNR)
≤ 2 log

(
1 +

2SNR

INR

)
+ CFB

≤ 2 log

(
1 +

SNR

INR

)
+ CFB + 2. (86)

The gap between the achievable sum-rate of (84) and the
outerbound in (86), is upper bounded by

8 + log (3) + 2 log

(
1 +

SNR

INR

)
+ CFB

− log
(

2 + INRP
(2)
2 + SNRP

(1:2)
1

)
− log

(
1 +

SNR

INR

)
− CFB

≤ 8 + log (3) + log

(
1 +

SNR

INR

)
− log

(
2 +

SNR

INR

)
≤ 8 + log (3) .

• If CFB > log (1 + INR): Considering the outerbound in
(33b), in this case we can write

R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
≤ log

(
1 +

SNR

INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
. (87)

The gap between the achievable sum-rate of (84) and the
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outerbound in (87), is upper bounded by

6 + log (3) + log

(
1 +

SNR

INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
− log

(
1 +

SNR

INR

)
− log

(
2 +

SNR

INR

)
− log (1 + INR)

≤ 6 + log (3)− log

(
2 +

SNR

INR

)
+ log

(
1 +

SNR + 2
√
SNR · INR

INR

)

≤ 6 + log (3)− log

(
2 +

SNR

INR

)
+ log

(
1 +

3SNR

INR

)
≤ 6 + 2 log (3) .

Hence, we conclude that the gap between the inner-bound
and the outer-bound is at most 8 + log (3) ≤ 9.6 bits/sec/Hz.
Case (b) 1

2 log (SNR) ≤ log (INR) ≤ 2
3 log (SNR):

For this case, we pick the following set of power levels8:

P
(1)
1 =

(
1

INR −
1

SNR min{2CFB , SNR2

INR3 − 1}
)+

P
(2)
1 = 1

SNR min{2CFB , SNR2

INR3 − 1}
P

(3)
1 = 1

INR min{2CFB , SNR2

INR3 − 1}
P

(4)
1 =

(
1− P (1:3)

1

)+

P
(1)
2 = 1

INR

P
(2)
2 = 1

2INR min{2CFB , SNR2

INR3 − 1}
P

(3)
2 =

(
1− P (1:2)

2

)+

(88)

All the power levels are non-negative. Also, we have

P
(1)
1 + P

(2)
1 + P

(3)
1

=

(
1

INR
− 1

SNR
min{2CFB ,

SNR2

INR3 − 1}
)+

+
1

SNR
min{2CFB ,

SNR2

INR3 − 1}+
1

INR
min{2CFB ,

SNR2

INR3 − 1}

(a)
=

1

INR
− 1

SNR
min{2CFB ,

SNR2

INR3 − 1}

+
1

SNR
min{2CFB ,

SNR2

INR3 − 1}+
1

INR
min{2CFB ,

SNR2

INR3 − 1}

=
1

INR
+

1

INR
min{2CFB ,

SNR2

INR3 − 1}

≤ SNR2

INR4

(
√

SNR≤INR)

≤
√
SNR

INR
≤ 1, (89)

where (a) follows from the fact that

1

SNR
min{2CFB ,

SNR2

INR3 − 1} ≤ 1√
SNR

≤ 1

INR
. (90)

8INR ≥ 1.

Since P
(4)
1 =

(
1− P (1:3)

1

)+

, we conclude that P1 ≤ 1.
Similarly, we can show that P2 ≤ 1.

By plugging the given values of power levels into our
achievable sum-rate R(b)

SUM defined in (57), we have

R
(b)
SUM = log

(
1 + INRP

(1)
2 + SNRP

(1:2)
1

1 + INRP
(1)
2

)

+ log

(
2INR + SNR + INR2 − 2INR

2INR + SNR

)
+ log

(
1 +

SNR

2INR

)
+ log

(
2INR + SNR + INR2 − 3/2INR

2INR + SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 3

≥ log

(
2 + SNRP

(1:2)
1

2

)

+ log

(
1 +

SNR

2INR

)
+ 2 log

(
INR2

3SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 3

≥ 2 log

(
1 +

SNR

2INR

)
+ 2 log

(
INR2

3SNR

)
+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 3

≥ 2 log

(
1 + SNR

2INR

)
+ 2 log

(
INR2

)
− 2 log (3SNR)

+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 3

= 2 log (1 + SNR)− 2 log (INR)

+ 4 log (INR)− 2 log (3SNR)

+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 3

≥ 2 log (1 + INR)

+ min{CFB, log

(
SNR2

INR3 − 1

)+

} − 5− 2 log (3) . (91)

We first simplify the outerbounds in (33b) and (33c).
Considering the outerbound in (33c), for this case we can write

R1 +R2 ≤ 2 log

(
1 + INR +

SNR

1 + INR

)
+ CFB

≤ 2 log

(
1 + INR +

SNR

INR

)
+ CFB

(SNR≤INR2)

≤ 2 log (1 + INR + INR) + CFB

= 2 log (1 + 2INR) + CFB

≤ 2 log (1 + INR) + CFB + 2, (92)
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and for the outerbound in (33b), we have

R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
(INR≤SNR)

≤ log (1 + INR + SNR)− log (1 + INR)

+ log (1 + 4SNR)

(INR≤SNR)

≤ 2 log (1 + SNR)− log (1 + INR) + 3. (93)

We consider two possible scenarios based on CFB,

(1) CFB ≤ log
(

SNR2

INR3 − 1
)+

:
With this assumption, we have

R
(b)
SUM ≥ 2 log (1 + INR) + CFB − 5− 2 log (3) , (94)

note that, in this case

CFB ≤ log

(
SNR2

INR3 − 1

)+

≤ log

(
1 +

SNR2

INR3

)
(
√

SNR≤INR)

≤ log (1 + INR) , (95)

therefore, from (92) we get

R1 +R2 ≤ 2 log (1 + INR) + CFB + 2. (96)

Hence, the gap between the achievable sum-rate of (94)
and the outer-bound in (96) is at most 7 + 2 log (3) ≤ 10.2
bits/sec/Hz.
(2) CFB ≥ log

(
SNR2

INR3 − 1
)+

:
We have

R
(b)
SUM ≥ 2 log (1 + INR) + log

(
1 +

SNR2

INR3

)+

− 5− 3 log (3)

≥ 2 log (1 + INR) + 2 log (SNR)

− 3 log (INR)− 5− 3 log (3) (97)
≥ 2 log (1 + INR) + 2 log (1 + SNR)

− 3 log (1 + INR)− 7− log (3)

= 2 log (1 + SNR)− log (1 + INR)− 7− 3 log (3) .

Hence, the gap between the achievable sum-rate of (97)
and the outer-bound in (93) is at most 10 + 3 log (3) ≤ 14.8
bits/sec/Hz. As a result, the gap between the inner-bound and
the minimum of the outer-bounds in (33b) and (33c) is at most
14.8 bits/sec/Hz.
Case (c) 2 log (SNR) ≤ log (INR):
• If SNR ≤ 1, pick

P
(2)
2 = P

(3)
1 =

1

INR
min{2CFB , INR},

and set all other power levels equal to zero. By plugging
the given values of power levels into our achievable sum-rate
R

(c)
SUM defined in (61), we get

R
(c)
SUM = log

(
min{2CFB , INR}

2

)
= min{CFB, log (INR)} − 1

≥ min{CFB, log (1 + INR)} − 2. (98)

Consider the outerbounds in (33a) and (33b), under the
assumptions of case (c) and SNR ≤ 1, we have

R1 +R2 ≤ min{2 log (1 + SNR) + CFB,

log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
}

≤ min{2 log (2) + CFB, log (2) + log (2 + 3INR)}
≤ min{2 + CFB, 1 + log (3) + log (1 + INR)}
≤ min{CFB, log (1 + INR)}+ 2.6. (99)

Therefore, with the given choice of power levels the achiev-
able sum-rate of (98) is within 2.6 bits/sec/Hz of the minimum
of the outerbounds in (33a) and (33b).
• If SNR ≥ 1, pick

Pick the following set of power levels:

P
(1)
1 = 0

P
(2)
1 = 0

P
(3)
1 = SNR

INR min{2CFB , INR
SNR2 }

P
(4)
1 = 1− P (3)

1

P
(1)
2 = 0

P
(2)
2 = 1

INR min{2CFB , INR
SNR2 }

P
(3)
2 = 1− P (2)

2

(100)

It is straight forward to check that the power levels are
non-negative and they satisfy the power constraint at the
transmitters. By plugging the given values of power levels
into our achievable sum-rate R(c)

SUM defined in (61), we get

R
(c)
SUM = log

(
1 +

SNR(1− 1
SNR )

2

)
+ log

(
1 +

SNR(1− 1
SNR )

2

)
+ log

(
min{2CFB , INR

SNR2 }
2

)

≥ 2 log (1 + SNR) + min{CFB, log

(
INR

SNR2

)
} − 3

= min{2 log (1 + SNR) + CFB,

2 log (1 + SNR) + log

(
INR

SNR2

)
} − 3

≥ min{2 log (1 + SNR) + CFB, log (1 + INR)} − 4. (101)

Consider the outerbounds in (33a) and (33b), under the
assumptions of case (c), we have

R1 +R2 ≤ min{2 log (1 + SNR) + CFB,

log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
}

≤ min{2 log (1 + SNR) + CFB,

log (2) + log (1 + 4INR)}
≤ min{2 log (1 + SNR) + CFB, 3 + log (1 + INR)}
≤ min{2 log (1 + SNR) + CFB, log (1 + INR)}+ 3. (102)

Therefore, with the given choice of power levels the achiev-
able sum-rate of (61) is within 7 bits/sec/Hz of the minimum
of the outerbounds in (33a) and (33b).



25

Case (d) 2
3 log (SNR) ≤ log (INR) ≤ log (SNR):

In this case feedback is not needed. The achievability
scheme of [35] for Gaussian IC without feedback, results in a
sum-rate to within 1 bit/sec/Hz of

log (1 + SNR) + log

(
1 +

SNR

1 + INR

)
. (103)

For the outerbound in (33b), in this case we have

R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
≤ log

(
1 +

SNR

1 + INR

)
+ log (1 + 4SNR)

≤ log

(
1 +

SNR

1 + INR

)
+ log (1 + SNR) + 2.

(104)

Therefore, the achievable sum-rate of [35] is within 3
bits/sec/Hz of the outerbound in (33b).
Case (e) log (SNR) ≤ log (INR) ≤ 2 log (SNR):

In this case feedback is not needed. The achievability
scheme of [35] for Gaussian IC without feedback, results in a
sum-rate to within 1 bit/sec/Hz of

log (1 + SNR + INR) . (105)

For the outerbound in (33b), in this case we have

R1 +R2 ≤ log

(
1 +

SNR

1 + INR

)
+ log

(
1 + SNR + INR + 2

√
SNR · INR

)
(SNR≤INR)

≤ log (2) + log (1 + 4INR)

≤ log (1 + INR) + 3. (106)

Therefore, the achievable sum-rate of [35] is within 4
bits/sec/Hz of the outerbound in (33b).
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