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Seamless View Synthesis Through Texture
Optimization

Wenxiu Sun∗, Member, IEEE, Oscar C. Au, Fellow, IEEE, Lingfeng Xu, Member, IEEE Yujun Li, Member, IEEE,
Wei Hu, Member, IEEE

Abstract—In this paper, we present a novel view synthesis
method named Visto which uses a reference input view to
generate synthesized views in nearby viewpoints. We formulate
the problem as joint optimization of inter-view texture and depth
map similarity, a framework that is significantly different from
other traditional approaches. The advantage of Visto is that the
virtual view tends to implicitly inherit the image characteristics
from the reference view without the explicit use of image priors
or texture modeling. Visto uses a Gauss-Seidel-like iterative
approach to minimize the energy function. Simulation results
suggest that Visto can generate seamless virtual views and
outperform other state-of-the-art methods.

Index Terms—view synthesis, non-local, Gauss-Seidel-like, tex-
ture optimization.

I. INTRODUCTION

IN recent years, there have been many researches on 3D

related image and video processing. One problem is called

view synthesis in which one aims to generate virtual views

from one or more captured views. This problem occurs in

many applications such as 3D video coding [1][2], free

viewpoint video [3][4], 2D-to-3D video conversion [5][6], 3D

movie production [7], virtual reality [8], etc. This paper is

about view synthesis using one view and one depth.

Given a set of pre-captured images or views of a real

scene, view synthesis is to synthesize photo-realistic novel

views of the same scene from a virtual camera by processing

the real images. This is also called Image-Based Rendering

(IBR), especially in early papers. While the term image-

based rendering first appeared in the papers [9] and [10],

the earlier paper [11] on view interpolation is considered

as a seminal work on IBR. IBR methods vary with the

3D representations (i.e. how the 3D world is represented in

recordable data). Previous works on 3D representation and

associated rendering techniques can be classified into three

categories according to how much geometric information is

used [12]: rendering without geometry, rendering with implicit

geometry, and rendering with explicit geometry.

Typically, early IBR methods belonged to the category of

rendering without geometry which is the class of methods

that use many aligned images from different view angles in a

scene to generate the virtual view using ray-space geometry

without requiring any geometric information. They were often

used in light field rendering[13], lumigraph [14], and plenoptic

modeling[?]. According to the plenoptic sampling theory [15],

The authors are with the Department of Electronic and Computer Engi-
neering, The Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong (email:{eeshine,eeau,lingfengxu,liyujun,huwei}@ust.hk).

the minimum view sampling rate (camera spacing) for light

field rendering is less than 1 pixel for quality plenoptic

modeling. But it is impossible to place cameras that close.

Thus, they could only place the cameras as close as possible

and apply IBR to generate the missing views using the

relatively sparsely sampled views. Compared with rendering

with explicit geometry, rendering without geometry has much

higher view sampling density with a huge amount of redundant

data.

The category of rendering with implicity geometry consists

of methods that rely only on implicit geometry without any 3D

geometry explicitly available. These implicit geometries are

typically expressed in terms of feature correspondence among

images. For example, Chen and William’s view interpolation

method [11] generates novel views by moving pixels in

the reference image with interpolated offset vectors between

the two or more reference views. The offset vectors of the

corresponding pairs are automatically determined by cam-

era transformation and image range data. Similarly, another

method called view morphing [16] reconstructs any viewpoint

along the camera baseline by using a linear combination of

the corresponding pairs in their rectified parallel views.

The category of rendering with explicit geometry contains

methods in which explicit 3D geometry is available, often

in the form of depth map or 3D coordinates. In general,

IBR with explicit geometry offers most flexibility in view

synthesis among the three categories, as it allows almost any

camera positions and angles to be synthesized but the other

two categories allow only limited choices. When explicit 3D

geometry information is available for every pixel in one or

more images, 3D warping [17] can be used to render views

from any nearby camera positions and angles. In 3D warping,

an image pixel is projected to their 3D locations, and then re-

projected onto the new view. If the original and new views are

rectified, 3D warping degenerates to simple horizontal shifting

of pixels, with the shifting amount being their disparity values,

each of which being a function of the corresponding depth

value. In this category, when the 3D geometry used is depth,

the methods are also called Depth-Image-Based Rendering

(DIBR) [2].

In general, the existing DIBR view synthesis methods offer

“piece-meal” solutions with individual tools to address individ-

ual problems, often resulting in unnatural virtual views. In this

paper we propose a novel DIBR-based view synthesis method

called Visto. In Section II, we give a review of existing DIBR

methods. In Section III, we propose the novel integrated DIBR

method called Visto. In Section IV, we present simulation
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results of Visto followed by complexity analysis in Section

V. In Section VI, we draw the final conclusion.

II. RELATED WORKS

In rendering with explicit geometry and in DIBR in partic-

ular, there are many challenges associated with 3D warping

including inaccurate depth map, occlusions, dis-occlusions (or

holes), ringing artifacts, etc. The existing DIBR methods often

use some preprocessing steps to detect and refine the inaccu-

rate depth maps, modify 3D warping to handle occlusions, and

use some postprocessing steps to handle the holes, to suppress

ringing artifacts and to remove unnaturally sharp edges.

DIBR methods assume the availability of a depth map which

is often obtained by a procedure called depth estimation.

Unfortunately, depth estimation is not perfect and the resulting

depth map can be inaccurate, especially at object (i.e. depth)

boundaries. Most depth estimation algorithms use a procedure

called stereo matching in which two corresponding points in

two views are matched with a vector specifying their coor-

dinate disparity. While stereo matching works well in texture

regions, it is well known to be inaccurate in textureless regions

due to the availability of many almost identical candidates,

and in occlusion regions due to the loss of correspondence

when the object is visible in one view but not visible in the

other. Although there are a lot of work to improve stereo

matching [18] by using different matching costs, aggregation

and global optimization, the estimated depth map still tends

to be inaccurate in textureless regions and occlusion regions

near depth boundaries. In 3D warping, the inaccurate depth

map can cause pixels to be projected to wrong locations in the

virtual view. Such wrong projections tend to be acceptable in

textureless regions but can cause severe visual artifacts in and

around occlusion regions. To minimize the impact of depth

map error, Kauff [19] detects possible depth map mismatch

by using a pair-wise consistency check between each pair of

correspondence so that remedial depth map refinement can be

performed. However, the checking may not be robust as it is

applied on the estimated disparity map only without requiring

the object boundaries in the depth map and the texture image

to match. Besides, Min [20] performs depth denoising based

on a joint histogram of texture image and depth map.

Depth map can be ambiguous. Often texture images are

captured with edges that are slightly blurred, if not severely

blurred, due to imperfect lens with low-pass characteristics,

large aperture with narrow field-of-depth, out-of-focus, object

and camera motion, etc. The transition regions of the blurred

edges tend to have ambiguous edge locations and depth values,

often causing part of the foreground color to appear in the

background during 3D warping, and vice versa. This tends to

result in some perceptually disturbing ringing artifacts around

depth boundaries. To handle the ringing artifacts, one common

approach is to perform reliability-based classification and

generate the virtual views by blending only the reliable regions

from its reference views. Zitnick [21] divides a reference

view into two regions (or layers), boundary and non-boundary

regions, and renders them separately. Boundaries are extracted

based on the depth map and are treated as unreliable due to

the often ambiguous edge locations. On the other hand, Sun

[22] labels the dilated dis-occlusion regions in the virtual view

as the unreliable regions.

Even when the depth map is accurate, two problems natu-

rally occur during 3D warping: occlusion and dis-occlusion.

Occlusion occurs when a pixel (e.g. background) is visible

in the reference view but becomes occluded by a pixel of

shallower depth (e.g. foreground) and thus invisible in the

virtual view. In such case, there are at least two candidate

values for the pixel in the virtual view during 3D warping:

one from the background, one from the foreground. To handle

occlusion, Chen [11] uses Z-buffering and selects always

the front-most pixel. However, problems can occur when the

depth information is inaccurate or even unavailable. McMillan

[10] uses ordered warping based on epipolar geometry and

provide an alternative solution that is relatively robust to depth

errors. Dis-occlusion occurs when invisible pixels behind some

foreground pixels in the reference view become dis-occluded,

i.e. they become visible as the foreground pixels are “moved”

to a different location in the virtual view. In the virtual view,

such dis-occluded pixels would have no candidate values and

effectively create hole regions which need to be filled. The

width of a hole region (or dis-occlusion area) tends to be

large when the disparity difference (or depth difference) of

the corresponding neighboring pixels in the reference frame

is large. To reduce the hole width, Zhang [23] preprocesses

the depth map using an asymmetric filter to smoothen the

sharp changes at depth boundaries. In this way, the width of

the hole region tends to decrease. Although this method can

reduce the amount of work in the hole-filling process, it can

also suffer from geometric distortion in the virtual view due

to the distorted depth map. In an innovative way to reduce the

size of hole regions, Shade [24] uses a method called Layered

Depth Images (LDI) to store not only what is visible in the

input image but also some layers of ”hidden” surfaces behind

the front surface at some selected depths. Such hidden surfaces

help to provide candidate values for some disoccluded pixels,

effectively reducing the hole regions. Chang [25] improves

LDI by introducing LDI-tree and considers the sampling rate

and the LDI density.

To fill the holes, classical image inpainting methods such as

fast inpainting [26] or exemplar based inpainting by Criminisi

et al. [27] can be used. Starting from the surrounding areas

around the holes, they iteratively use existing texture pixels

to generate new texture pixels and gradually fill the holes.

However, straight-forward applications of these techniques

tend to perform worse in virtual views than in general images

because the starting area of the inpainting is on the depth

boundaries with ambiguous edges which can greatly affect

the accuracy of inpainting. Another problem is that they

use both foreground and background pixels to fill the holes,

which is inappropriate. As the holes should correspond to the

background, only background pixels should be used to fill the

hole, not the foreground. To overcome these problems, Oh et

al. [28] consider the depth values and manipulate the holes and

its surrounding area such that the surrounding areas contain

only background pixels, with no foreground pixels. Then

regular inpainting is applied. Daribo et al. [29] and Gautier et
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al. [30] extend traditional exemplar-based inpainting to depth-

exemplar-based inpainting [27] by considering both depth and

texture information. [31][32] fill the dis-occluded regions by

considering the temporal consistency in video frames.

In spite of all the above DIBR methods, the overall look of

the synthesized images often have unnaturally sharp bound-

aries. Hasinoff et al. [33] represent each boundary as a 3D

curve and apply boundary matting, in which alpha matting

is applied to smooth the sharp boundaries. Criminisi and

Blake [34] also propose a Split-Patch Search with emphasis

on recovering the continuity of object boundaries and faithful

synthesis of transparency effects.

In this paper we propose a view synthesis method called

Visto which belongs to the category of rendering with explicit

geometry. In Visto, we use a dense depth map and thus it is

a DIBR method.

III. PROPOSED VIEW SYNTHESIS WITH TEXTURE

OPTIMIZATION (VISTO)

In this section, we describe the proposed novel View

Synthesis with Texture Optimization, which we call Visto.

Visto focuses on the bottomline performance requirement: the

reference view and the synthesized view should have similar

texture and depth. Visto seeks to address the problems of

inaccurate depth map, occlusion, disocclusion, ringing and

unnaturally sharp edges in an integral manner. In Visto, we

formulate DIBR view synthesis as an energy optimization

problem in which we maximize the inter-view texture simi-

larity while preserving its geometric structure by minimizing

the inter-view depth map error.

Given a reference image (color or gray-scale) captured by

a camera with certain camera parameters (including camera

location) together with a corresponding estimated depth map,

Visto seeks to estimate a virtual view at another location with

different camera parameters. Although the reference view and

the virtual view are from different angles or positions, the two

views should be similar to each other as they are from the same

scene and at the same time. Assuming each local patch in the

virtual view could find a correspondence in the reference view,

we will define an energy function to describe the similarity

between local patches and seek to minimize it iteratively using

a Gauss-Seidel like approach. The advantage of this approach

is that the virtual view tends to implicitly inherit the image

characteristics from the reference view without the explicit use

of image priors or texture modeling.

A. Visto: Problem formulation

Let Z = (Zt, Zd) be the reference view and X = (Xt, Xd)
be the virtual view to be synthesized. In this paper, we use

superscript t and d to denote the corresponding texture image
and depth map, respectively. For simplicity, we assume that the

texture images are gray-scale images with only the luminance

component, though our method can be easily extended to color

images. We assume Zt, Zd, Xt, Xd are all of the same size,

M×N . In practical situations, Xt may be the principle output

with Xd optional. Let p = (i, j) be a pixel location. Let Zt
p,

Zd
p , Xt

p, Xd
p be the corresponding values at p. Let Np be a

rectangular patch around p of size m × n. The local texture

of p is captured by Np. We represent Np in Zt, Zd, Xt, Xd

as row-ordered mn× 1 vectors ztp, zdp, xtp, xdp, respectively.

We define a correspondence map C = (Cx, Cy), where

both Cx and Cy are of size M × N , and are the x- and y-

component of the offset of the ‘corresponding’ locations in

Z. Let Cx(p) and Cy(p) be the elements of Cx and Cy at p
such that Cp = (Cx(p), Cy(p)). The C maps the patch Np at

location p in X to the patch at location p+Cp = (i+Cx(p), j+
Cy(p)) in Z. When both the reference and virtual views are

rectified, the Cx of the correspondence map is similar to the

regular disparity map (denoted as D) and most of the Cy

values are zero. But the correspondence map is different from

the disparity map because, for any dis-occluded pixel p (visible

in the virtual view but not the reference view) such that the

disparity is not defined, we will still force p to be mapped to

some pixels in Z in the correspondence map. In other words,

we will assign some values for Cx(p) and allow Cy(p) to be

non-zero. Actually, Visto has a refining process in which we

allow both Cx(p) and Cy(p) to change. With this, it is possible

for Visto to generate a non-rectified virtual view with arbitrary

camera parameters.

Fig. 1. Comparison of correspondence map and disparity map for rectified
views. (a) Reference texture image Zt. (b) Reference disparity map for
Zt. Brighter intensity means larger disparity. (c) Virtual image Xt after
pixel-based 3D warping is applied to (a) and (b). White regions are dis-
occlusion regions. (d) Disparity map for (c) during 3D warping. White
regions have undefined disparity values. (e) Ground truth for Xt. (f) A
possible correspondence map. Every pixel has correspondence though it is
not physically meaningful for some.

We now define the normalized patch energy Et
p(xt

p, Cp|Zt)
and Ed

p(xd
p, Cp|Zd) for texture patch and depth patch, respec-

tively, which is a measure of mismatch between the patch at p
in X and its corresponding patch in Z through correspondence

map C.

Et
p(x

t
p, Cp|Zt) =

1

mn
‖xtp − ztp+Cp

‖2 (1)

Ed
p(x

d
p, Cp|Zd) =

1

mn
‖xdp − zdp+Cp

‖2 (2)

As can be seen, Et
p(xt

p, Cp|Zt) and Ed
p(xd

p, Cp|Zd) are the

normalized (i.e. per-pixel) Euclidean distances between the
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two texture patches, and between the two depth map patches,

respectively. The normalized values are used here so that they

can be compared meaningfully when m and n are changed.

Here Z, but not X and C, is written after a vertical bar because

Z would not change in Visto. But X and C are variables and

would be iteratively updated. We further define the normalized
total energy Et(Xt, C|Z) and Ed(Xd, C|Z) for texture image

and depth map:

Et(Xt, C|Zt) =
1

K

∑
p∈P

Et
p(x

t
p, Cp|Zt)

=
1

mnK

∑
p∈P

‖xt
p − ztp+Cp

‖2

Ed(Xd, C|Zd) =
1

K

∑
p∈P

Ed
p(x

d
p, Cp|Zd)

=
1

mnK

∑
p∈P

‖xd
p − zdp+Cp

‖2

(3)

where P = {p1, p2, ..., pK} is a set of selected locations, and

K is the cardinality of P. Let P† be the collection of all the

pixel locations in the images. Then P ⊂ P†. Let P0 be the

collection of hole regions in the virtual view after 3D warping.

In this paper, P is obtained by performing morphological

dilation on P0, and we will call P the untrusted region. In

our algorithm, Xt, Xd and C will be allowed to change in P.
Intuitively, the view synthesis problem can be formulated

as the following constrained optimization problem:

minimize
{Xt

p,X
d
p ,Cp:p∈P}

Et(Xt, C|Zt)

subject to Ed(Xd, C|Zd) ≤ ε,
(4)

where Et(Xt, C|Zt) is the objective function, Ed(Xd, C|Zt)
is the depth constraint function, ε is the allowance of the depth

constraint term. In this paper, we solve the equivalent uncon-

strained optimization problem by minimizing E(X,C|Z)

E(X,C|Z) = Et(Xt, C|Zt) + λEd(Xd, C|Zd) (5)

with λ serving as the Lagrange multiplier.
Starting with large patch size (m,n), we will perform

optimization in a series of steps (which we call levels) in

which the patch size is gradually decreased from one step

to the next. In other words, (m,n) is large in level 0 and

is decreased monotonically in subsequent levels. For every

level, Visto will find iteratively the X and C that minimize

E(X,C|Z).
In the rest of the paper, we will use Et

p, Ed
p and E to mean

Et
p(xtp, Cp|Zt), Ed

p(xd
p, Cp|Zd) and E(X,C|Z) for the sake

of simplicity.

B. Visto: Energy Optimization
In the proposed Visto, we will perform optimization at mul-

tiple levels. Within each level, several iterative optimizations

will be performed. We start with level 0 with an initial choice

of the patch size (m,n). As we progress from level l to level

l+1, we will allow (m,n) to decrease gradually. In each level,

we find the optimal choices of X and C to minimize E at the

selected locations P, using the optimized X and C from the

previous level.

1) Initialization of Correspondence Map C, Texture Image
Xt and Depth Map Xd: Initialization is needed in level 0.

Although algorithms should be robust to any initializations, a

good initialization can often lower the amount of computation

and avoid the result of being trapped in a local minimum.

In this section, we propose a simple but effective method

to initialize the correspondence map, though other methods

are possible. The texture image and depth map in the virtual

view are initialized based on the correspondence map. If

the reference and virtual images are rectified, each pair of

correspondent pixels are in the same horizontal line in the

two images. Otherwise, a pre-warp technique [16] could be

applied as pre-processing to make the images rectified with

known camera parameters, and as post-processing to un-rectify

the resulting virtual image. In the rest of the paper, we will

assume the images are rectified.

Recall that P is the untrusted region, and the rest of the

regions are trusted region. The amplitude of Cx in the trusted

regions is identical to the warped disparity map D but in

the opposite direction, as shown in Fig. 1 (d) and (f), with

zero in the corresponding Cy . For the untrusted region, D is

untrustable or undefined, we will initialize both Cx and Cy

with some reasonable values.

The disparities of pixels in P0 are undefined because those

pixels are generally newly appeared pixels in the virtual view,

and occluded in the reference view. Thus, the pixels in P0

cannot be the foreground and we assume they belong to the

background. As for pixels outside P0 but still in P, these

are untrusted pixels. While the disparities are defined for

these pixels, we do not trust them, so we simply group them

together with pixels in P0 and initialize them in the same way.

Typically the pixels on the left and right of any hole regions

would contain the foreground on one side and background

on the other side. Thus our simple initialization method is

to find the side with the background and guess some Cx

values so that pixels in the undefined regions correspond to the

background. Since the two views are assumed to be rectified,

each horizontal line in the virtual view corresponds to the same

line in the reference view. Consider one such line pair in Fig.

2. The top line is a line in the reference view with grey pixels

being foreground and black pixels being background. The

bottom line is in the virtual view in which the grey foreground

pixels are shifted to the left by an amount (disparity) larger

than the background pixels. With the different shifting, or

disparity, two disoccluded pixels are created and they are in the

undefined region P with undefined disparity. Our initialization

is to find some reasonable guess of the Cx for the white pixels,

with corresponding Cy = 0. Our desire is to fill up the two

pixels with two pixels from the background. We note that if

we force Cx to take on the background disparity, the white

pixels will be essentially copied from the foreground, which

is wrong. Instead, if we force Cx to take on the foreground

disparity, the white pixels will be essentially copied from

the background, which is right. We thus want to find the

foreground disparity from the trusted neighboring pixels. We

note that the foreground, by definition, would have a larger

disparity in its amplitude than the background. Thus we simply

examine the disparity of the defined neighboring pixels on the
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left and on the right of the untrusted pixel and choose the one

which is larger.

Let rnd(a, b) be a random number between positive a and

b. For each pixel in the untrusted region, we will add a random

number to the chosen disparity, avoiding the untrusted regions

adhering to its neighboring foreground when viewing in stereo

displays. Typically, we choose a = 3, b = 10.

Mathematically,

Cx(i, j) =

{
−D(i, j) if (i, j) /∈ P
−D(̃i, j)− sgn(D) ∗ rnd(a, b) if (i, j) ∈ P

(6)

ĩ = argmax
il,ir

{|D(il, j)|, |D(ir, j)|} (7)

il = max{i′|i′ < i, (i′, j) /∈ P} (8)

ir = min{i′|i′ > i, (i′, j) /∈ P} (9)

Cy(i, j) = 0 (10)

where sgn(D) is the sign of the warped disparity.

Fig. 2. A line of pixels in the reference view (top line) shift to the virtual view
(bottom line) by the amount of their disparity values, with grey pixels being
foreground, black pixels being background, white pixels being undefined.

After initializing C, in all image regions p ∈ P†, Xt and

Xd are easily obtained by applying (12) and (13) respectively,

which will be explained later. This process is equivalent to

patch-wise backward mapping, where neighboring patches

overlap with each other.

2) Optimization Within One Level: For a given level with

fixed (m,n), we seek to find three sets of variables, Xt,

Xdand C, to minimize E. For any location p ∈ P, Cp is an

indexing term to map the patch xt
p and xd

p in the virtual view to

the patch ztp+Cp
and zdp+Cp

in the reference view, respectively.

Effectively, the collection of all the patches {ztq, zdq |q ∈ P†}
in the reference view forms a patch dictionary. Each patch

in the dictionary carries some local image characteristics of

the reference view. In Visto, we do not enforce any image

prior in synthesizing the virtual view because the image prior

is implicitly inherited from the chosen patches in the patch

dictionary. Because Cp is an indexing term, most popular

optimization methods will not work for our energy formulation

which contains both values and their indexing terms. Instead,

motivated by the Gauss-Seidel optimization method, we opti-

mize our energy function E in an iterative manner. We will

give a proof that this optimization procedure will converge.

Within one iteration, one set of variables (e.g. C) is derived

by minimizing (5) while keeping the other two sets (e.g. Xt,

Xd) unchanged, as described in Algorithm 1. Let Xt,l,r, Xd,l,r

and Cl,r be the corresponding Xt, Xd and C in the rth

iteration of level l. When the iterative optimization converges,

we use the symbols Xt,l,∞, Xd,l,∞ and Cl,∞ to represent the

converged values. The Xt,l,0, Xd,l,0 and Cl,0 are the initial

values at the beginning of level l optimization. We choose the

converged values from the previous level as the initial values of

the current level, i.e. Xt,l,0 = Xt,l−1,∞, Xd,l,0 = Xd,l−1,∞

and Cl,0 = Cl−1,∞.

Algorithm 1 Energy minimization at Level l

Initialization: Xt,l,0 = Xt,l−1,∞, Xd,l,0 = Xd,l−1,∞,

Cl,0 = Cl−1,∞.

for r = 1 → R do
Compute Cl,r

p for all p ∈ P using (11);

Compute Xt,l,r(p) for all p ∈ P using (12);

Compute Xd,l,r(p) for all p ∈ P using (13);

if (14) is true then
break;

end if
end for

In iteration r, we fix Xt at Xt,l,r−1, Xd at Xd,l,r−1 and

perform a search to find a better C within some corresponding

search windows around Cl,r−1. Then we fix C at Cl,r and

find a better Xt and Xd.

Consider a pixel location p ∈ P ⊂ P†. Recall that Cl,r−1
p is

the correspondence vector for the pixel at p after the (r − 1)
th

iteration. In the rth iteration, we allow the correspondence

vector to move within a search window of (±wx,±wy) around

Cl,r−1
p such that

Cl,r
p = Cl,r−1

p

+ argmin
|�Cx|≤wx,|�Cy|≤wy

[Et
p(x

t,l,r−1
p , Cl,r−1

p +�C|Zt)

+ λEd
p(x

d,l,r−1
p , Cl,r−1

p +�C|Zd)]

(11)

where �C = (�Cx,�Cy) is the change in the correspon-

dence vector from one iteration to the next, and xt,l,r−1
p ,

xd,l,r−1
p are the column vector xtp, xdp in the (r−1)th iteration

of level l, respectively. Typically, we choose wx = αm,wy =
αn for some constant α. Then we fix C at Cl,r and solve for a

better Xt and Xd by minimizing (5). Since (5) is a quadratic

function of Xt
p for any location p, we take the derivative of

it with respect to Xt
p and set the result to zero to obtain the

following closed-form optimal Xt at p

Xt,l,r
p =

1

Q

∑
q∈N̂p

Zt
p+Cl,r

q
(12)

where N̂p = {p′|p ∈ Np′ , p′ ∈ P†} is a collection of

neighboring points in P† whose patches contain p, and Q is

the cardinality of N̂p such that X l,r
p is effectively the average

of the corresponding Zt values. In a similar way, we obtain

Xd
p for any location p:

Xd,l,r
p =

1

Q

∑
q∈N̂p

Zd
p+Cl,r

q
(13)

The iteration will stop in level l if the decrement percentage

of E is less than a threshold T , i.e.

E(Xt,l,r, Xd,l,r, Cl,r|Z)− E(Xt,l,r−1, Xd,l,r−1, Cl,r−1|Z)

max{E(Xt,l,r−1, Xd,l,r−1, Cl,r−1|Z), θ} ≤ T

(14)
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where θ is a small constant. We also impose a maximum

number of iterations R. We now prove that the iteration will

converge.

Theorem 1. The energy E(X l,r, Cl,r|Z) is a monotonic
decreasing function of r (r ∈ �), i.e.

E(Xt,l,r, Xd,l,r, Cl,r|Z) ≤ E(Xt,l,r−1, Xd,l,r−1, Cl,r−1|Z)
(15)

Proof: With Xt,l,r−1 and Xd,l,r−1 fixed, Cl,r
p is the cor-

respondence map within a search range (±wx,±wy) around

Cl,r−1
p with minimum energy E, for any p. Thus for Cl,r with

all the Cl,r
p ,

E(Xt,l,r−1, Xd,l,r−1, Cl,r|Z) ≤ E(Xt,l,r−1, Xd,l,r−1, Cl,r−1|Z).
(16)

With Cl,r fixed, Xt,l,r
p and Xd,l,r

p are the pixel values at p that

minimizes E for any p. Thus for Xt,l,r with all the Xt,l,r
p and

Xd,l,r with all the Xd,l,r
p ,

E(Xt,l,r, Xd,l,r, Cl,r|Z) ≤ E(Xt,l,r−1, Xd,l,r−1, Cl,r|Z).
(17)

such that

E(Xt,l,r, Xd,l,r, Cl,r|Z) ≤ E(Xt,l,r−1, Xd,l,r−1, Cl,r|Z)

≤ E(Xt,l,r−1, Xd,l,r−1, Cl,r−1|Z).
(18)

As E(Xt,l,r, Xd,l,r, Cl,r|Z) is lower-bounded by zero and

is a monotonic decreasing function, it has to converge. Again,

we note that our algorithm is somewhat similar to the Gauss-

Seidel optimization.

Intuitively, our algorithm tries to find reasonable texture

to “inpaint” the dis-occluded region. In each iteration, the

correspondence map (pointing to the best match) is firstly

chosen from Z patch-by-patch based on the latest estimate of

the texture image. Then, Xt and Xd are solved based on the

refined C. Consider a pixel location p. It is in the neighborhood

N̂p′ of many p′. There are m× n such p′. Each p′ suggests a

candidate correspondence map value (i.e. Cp′ ) for p. Thus, the

new Xt and Xd are the average of the candidate Zt and Zd

values corresponding to these m×n candidate correspondence

map values respectively. The resulting Xt and Xd may be

initially blurred, if the candidate Zt and Zd values are very

different. However, the Xt and Xd will help to give better C
which in turn helps to reduce the blurrness in Xt and Xd as

the iterations continue.

3) Visto: Optimization Across Levels : The algorithm de-

scribed in the previous subsection allows us to find the optimal

Xt and Xd and C for a given level (i.e. the patch size of

m × n). There is a trade-off between large and small patch

size. A larger patch size allows more texture to be captured

in the patch that would help to avoid being trapped in local

minima, which is desirable. But a large patch size tends to

give relatively blurred texture Xt and depth Xd, which is

undesirable. On the other hand, a small patch size tends to

give sharper texture and depth, which is desirable, but it

can be trapped in local minima which is undesirable. Thus

Visto uses a multi-level optimization procedure, as described

in Algorithm 2, in which the patch size is large in the

initial level but is decreased gradually with some schedule
in the subsequent levels. Optimization is performed in each

level. The patch size reduction schedule helps to approach the

global minima, similar to the temperature reduction schedule

in Simulated Annealing - a well known multi-level global

optimization algorithm.

Algorithm 2 Energy Minimization Across Levels

for l = 0 → L do
if l == 0 then

Initialize C0,0.

Compute Xt,0,0 from (12) using C0,0.

Compute Xd,0,0 from (13) using C0,0.

Initialize (m0, n0). Compute (w0
x, w

0
y) = α(m0, n0).

else
Xt,l,0 = Xt,l−1,∞,Xd,l,0 = Xd,l−1,∞,

Cl,0 = Cl−1,∞

(ml, nl) = (ml−1, nl−1)/β
(wl

x, w
l
y) = α(ml, nl)

end if
Solve [X l,∞, Cl,∞] = argmin

X,C
E(X l,0, Cl,0) using Algo-

rithm 1.

end for

IV. SIMULATION RESULTS

In this section, we simulate the proposed algorithm, Visto, to

study its behavior as the iteration progresses within each level

(patch size) and as the patch size decreases. We then test the

performance of Visto with different baseline distances. Lastly,

we compare its performance with some existing state-of-the-

art methods.

TABLE I
TEST SEQUENCES

Seq. Name Res. Cam. Provider
S1 Poznan Street 1920× 1088 4 → 3 Poznan
S2 Undo Dancer 1920× 1088 2 → 3 Nokia
S3 Champagne 1280× 960 39 → 40 Nagoya
S4 Pantomime 1280× 960 39 → 40 Nagoya
S5 Balloons 1024× 768 3 → 4 Nagoya
S6 Newspaper 1024× 768 4 → 5 GIST
S7 Mobile 720× 540 5 → 6 Philips

Some selected MPEG test sequences ([35]), including

Poznan Street, Undo Dancer, Champagne tower, Pantomime,

Balloons, Newspaper, and Mobile as listed in Table I and

shown in Fig. 3 of the texture images and their corresponding

depth maps, are used in the experiment. Undo Dancer and

Poznan Street are Class A test sequences with a resolu-

tion of 1920 × 1088 and a camera spacing of 13.75cm.

Champagne tower and Pantomime are Class B test sequences

with a resolution of 1280×960 and a camera spacing of 5cm.

Balloons and Newspaper are Class C test sequences with a

resolution of 1024× 768 and camera spacing of 5cm. Mobile

is a Class D test sequence with a resolution of 720×540 and a
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Fig. 3. 1st frame of test sequences. From left to right: PoznanStreet, Undo Dancer, Champagne tower, Pantomime, Balloons, Newspaper, Mobile. Top row:
Texture image; Bottom row: Depth map.

Fig. 4. The decreasing energy in each optimization step by starting
at patch size of 16× 16 and using two shrink schedules. Fig. 5. Synthesized texture image and depth map at selected iterations (i.e. iteration

0, 3, 17, 27, 31) by starting at patch size of 16× 16 and using shrink schedule 1.

camera space of 5cm. Undo Dancer and Mobile are synthetic

videos with ground truth depth data. The other 5 sequences

are natural videos. All views in these test sequences have been

rectified. The first frame of each video sequence is used in our

simulation. For convenience, these YUV420 texture sequences

are converted to YUV444 before view synthesis is applied.

For the test sequences, many texture views are available

but the depth maps are only available for a few selected

views. Comparing texture images and their corresponding

depth maps in Fig. 3, it can be observed that the depth maps

are imperfect as some depth boundaries do not align with the

corresponding object boundaries (e.g. Poznan Street, Balloon-

s, Newspaper). The depth maps of some background regions

with visually uniform depth can have highly fluctuating values

(e.g. Champagne tower, Balloons, Newspaper). Sometimes the

depth values of the background can be even bigger than the

foreground objects (e.g. Champagne tower, Balloons, News-

paper). The inaccurate depth map is a challenge to all view

synthesis methods. When examined closely, the edges in the

texture images can also be observed to be blurred in all

sequences, to different degrees in different sequences. Such

blurred edges help to make the images look natural, but is

another challenge to view synthesis methods as they can cause

ringing artifacts during 3D warping as explained before.

In our experiments, we use one original view (e.g. view

3 of Balloons) and its depth map to synthesize an adjacent

view (e.g. view 4 of Balloons) with a baseline distance of

approximately 5cm, corresponding to the distance between

the two human eyes. The original and synthesized view pairs

shown in Table I are chosen according to the MPEG test

conditions.

Firstly, we do experiments to study the behavior of the

proposed Visto. For Visto, we use square patches such that

m = n. We set T = 0.95 and R = 10. To test the behavior

of Visto, we start with certain initial patch size and allow

the patch size to decrease using two schedules. In Schedule 1,

(ml, nl) = (ml−1, nl−1)−1 and the patch size reduces slowly.

In Schedule2, (ml, nl) = (ml−1, nl−1)/2 such that the patch

size reduces quickly. The results using the two schedules for

Mobile are shown in Fig. 4 in which the initial patch size

are 16 × 16. In the figure, the vertical axis is the energy

EY +EU+EV +λED. The λ is set as 2.0 such that the texture

energy EY +EU+EV and the depth energy are of comparable

importance. The horizontal axis is the iteration number with

iteration 0 being the initial condition. For example, in Fig. 4,

there are 3 iterations for patch size 16 × 16, and 2 iterations

for each of the remaining patch sizes.

As expected, the energy is monotonically decreasing as the

iteration progresses using either schedules. We note that the

shrinking of patch size is very important, as the converged

energy of patch size 16 × 16 is rather large at 15.75, but

can be greatly reduced to 1.28 at iteration 31 after the patch

size is gradually reduced to 2× 2 under Schedule 1. We note

that the two schedules have different number of iterations but

manage to reach similar converged energy: 31 iterations for

Schedule 1 to reach the converged energy of 1.28, and 9

iterations for Schedule 2 to reach a similar converged energy of

1.30. The results for the other sequences are similar. It appears

that Schedule 2, with lower iteration number and complexity

and similar converged energy, is better than Schedule 1. The

This is the Pre-Published Version 



8

0 2 4 6 8
0.48

0.5

0.52

0.54

0.56

0.58

(a) Poznan Street

0 2 4 6 8
0.7

0.75

0.8

0.85

0.9

(b) Undo Dancer

0 2 4 6 8
0.82

0.84

0.86

0.88

0.9

(c) Champagne tower

0 2 4 6 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(d) Pantomime

0 2 4 6 8
0.65

0.7

0.75

0.8

0.85

0.9

(e) Balloons

0 2 4 6 8

0.65

0.7

0.75

0.8

(f) Newspaper

0 2 4 6 8
0.4

0.45

0.5

0.55

0.6

0.65

(g) Mobile (h) Configurations of figure (a-g)

Fig. 6. SSIM values at untrusted regions of tested images by starting with four starting patch sizes of 16×16, 8×8, 4×4, 2×2 and two shrink schedules.
The lower end, upper end, lowest dot, highest dot, middle dot in each vertical line are the minimum, maximum, initial, final, and average SSIM values of all
iterations respectively.
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Fig. 7. PSNR values at untrusted regions of tested images by starting with four starting patch sizes of 16 × 16, 8 × 8, 4 × 4, 2 × 2 and two shrink
schedules. The lower end, upper end, lowest dot, highest dot, middle dot in each vertical line are the minimum, maximum, initial, final, and average PSNR
values respectively.

synthesized texture image and depth map using shrink sched-

ule 1 for Mobile are shown in Fig. 5 for selected iterations:

iterations 0, 3, 17, 27, 31 for Fig. 4. Iteration 0 is the initial

condition (Xt,0,0, Xd,0,0 obtained in the initialization phase)

and both the synthesized texture image and depth map contain

significant ringing artifacts at the hole region (the right side of

the mobile phone). During the initialization phase, occlusion

is handled by the ordered 3D-warping [36]. Unlike other hole

filling methods that tend to generate unnaturally sharp edges,

our Xt,0,0 and Xd,0,0 tend to be blurred in the untrusted

regions due to the averaging effect in (12) and (13). Iterations

3, 17, 27 and 31 are the results upon the convergence at patch

size of 16× 16, 8× 8, 4× 4, and 2× 2 respectively. We can

observe that the ringing artifacts at the hole region in both the

texture image and depth map are progressively improved as

the patch size reduces. The edges in the untrusted regions are

becoming sharp also. The results using schedule 2 behaves

very similarly and thus are not shown here. A typical final

correspondence map is shown in Fig. 8. Note that, while the

correspondence vectors in the trusted regions are horizontal

and pointing to the right as expected, some in the untrusted

regions are not horizontal and can be pointed to any directions.

To study the sensitivity to the initial patch size, we simulate

Visto using four choices of initial patch size: 16× 16, 8× 8,

4 × 4, and 2 × 2. For each patch size, we test two shrink

schedules: Schedule 1 and Schedule 2 defined above. The
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Fig. 8. Final correspondence vector C plotted over the synthesized image.
For ease of visualization, the vectors are scaled and only one vector is plotted
for each 8× 8 block.

SSIM [37] and PSNR values of the untrusted regions (hole

region with dilation) of the synthesized view of the seven test

sequences are shown in Fig. 6 and Fig. 7 respectively. The

regions outside the untrusted regions are not compared as the

Visto iterations do not change them and they are identical

for all initial patch sizes and shrink schedules. In Fig. 6, the

horizontal axis indicates various combination of initial patch

size and shrink schedule. The initial patch size is 16× 16 for

1 and 2, 8 × 8 for 3 and 4, 4 × 4 for 5 and 6 and 2 × 2
for 7. Schedule 1 (slow) is used for 1, 3, and 5. Schedule

2 (fast) is used for 2, 4, 6. For 7, no shrinking is applied.

For each of these cases, five values are shown: initial, final,

maximum, minimum and average. According to Fig. 4, there

are 31 iterations after iteration 0 for the Mobile sequence, for

initial patch size of 16 × 16 and Schedule 1. For this case

(horizontal coordinate=1), a vertical line with three dots are

shown in Fig. 6(g). The lowest dot is the initial SSIM (0.4884)

at iteration 0 and the highest dot is the final SSIM (0.5614)

at iteration 31. The middle dot is the average SSIM (0.5478).

The lower and upper ends of the vertical line indicate the

minimum and maximum SSIM. For Mobile, the initial SSIM is

the minimum. The maximum SSIM is 0.5618 which is higher

than the final SSIM. The final converged synthesized image

(at patch size of 2) are shown in Fig. 9 for the four choices of

initial patch sizes under Schedule 2. The results for Schedule

1 are similar and thus not shown.

Fig. 9. Synthesized texture image by starting at patch size of 16×16, 8×8,
4× 4, 2× 2 using shrink schedule 2.

In our experiments, we observe that SSIM tends to reflect

our subjective perception of the synthesized views more close-

ly than PSNR. However, for completeness sake, we include

the PSNR results in Fig. 7. Similar to Fig. 6, a vertical line

with 3 dots are shown for each case in Fig. 7. Again the

three dots represent the initial, final and average PSNR and the

lower and upper ends of a vertical line represent the minimum

and maximum PSNR respectively. The PSNR tends to exhibit

some large fluctuations as the maximum and minimum may

be significantly different from the initial and final values.

Occasionally, it exhibits some apparently erratic behavior in

the large initial patch size cases (16× 16 and 8× 8), contrary

to what we expect, by having maximum PSNR in the initial

iteration and minimum PSNR as in the final iteration. Note

that, Mobile sequence has relatively lower SSIM and PSNR

values, because its disoccluded region contain something (such

as a new cow) that cannot be predicted or guessed using the

nearby information.

In Fig. 6 and 7, we observe that the initial patch size

of 2 × 2 always lead to significantly lower initial, final

and average SSIM and PSNR, probably because it can be

easily trapped in local minima. It appears that small patch

size tends to capture and generate small repeatable patterns

(with significant high frequency details), but tends not to

capture large repeatable patterns. On the other hand, large

patch size tend to capture large repeatable patterns, with small

details smoothed out. And as the patch size reduces using

Schedule 1 or 2, it can capture the texture details (including

the small repeatable patterns) in addition. For Poznan Street,

Undo Dancer, Champagne tower, Pantomime, and Balloons,

the initial patch size of 16× 16 and final patch size of 4× 4
appear to work slightly better. For Balloons and Mobile, the

initial patch size of 8× 8 and final patch size of 4× 4 seems

to be slightly better.

Secondly, we test Visto under different baseline situations

for all the test sequences. For each test sequence, we choose

the most centered view as the reference view (with view offset

= 0) and synthesize 3 virtual views at both the left side (with

negative view offset of -3, -2 and -1) and right side (positive

view offset). The global SSIM (i.e. SSIM of the entire image)

for the test sequences with 7 or more consecutive original

views (i.e. S1, S3, S4, S5, S6) are averaged and shown in Fig.

11, and the local SSIM (i.e. SSIM of the untrusted regions) are

shown in Fig. 12. Selected untrusted regions of some typical

synthesized views (Views 0,2,4,6 for Balloons with View 3

being reference) are compared with the corresponding original

views in Fig. 13. To test the effectiveness of the random

initialization in Eqn. 6, we also test Visto with the random

initialization replaced by

Cx(i, j) =

{
−D(i, j) if (i, j) /∈ P
−D(̃i, j) if (i, j) ∈ P

(19)

which we mark as Visto RndOff in the figures. Visto is

an extension of an early version in [38], which we mark

as Visto RndOff oldP in Fig. 11. Visto RndOff oldP is

basically Visto RndOff with the optimization applied to

the whole image. As the computation of Cl,r
p is inten-

sive, Visto RndOff oldP divides the whole image into non-

overlapping 2×2 blocks and assumes that all 4 pixels in each
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Fig. 10. Synthesized virtual view of tested sequences. 1st column: 3D warped virtual view with holes colored green and red squared regions to be enlarged;
2nd column: Original images in the virtual viewpoint; 3rd column: Criminisi’s method (M1); 4th column: Gautier’s method (M2); 5th column: VSRS 3.5
(M3); 6th column: Proposed method (Visto).
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block have the same Cl,r
p . It then computes the Cl,r

p only once

for each 2×2 block, thus achieving a computation reduction

factor of 4.
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0.85

0.9

0.95

View Offset
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Visto_RndOff
Visto_RndOff_oldP

Fig. 11. Average SSIM score of
the entire image for selected test se-
quences at 6 virtual viewpoints.
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Fig. 12. Average SSIM score at
the untrusted regions for selected test
sequences at 6 virtual viewpoints.

Fig. 13. Bottom row: Typical synthesized virtual views (Views 0,2,4,6 of
Balloons synthesized from view 3). Top Row: Corresponding original images.

In general, it is observed that the SSIM of Visto is consid-

erably higher than Visto RndOff in Fig. 12, which suggests

that the random initiation in Eqn. 6 is useful in the untrusted

regions. In Fig. 11, Visto and Visto RndOff are very similar

because the trusted region dominates when the entire image is

considered, and the two methods are identical in the trusted

regions. Fig. 11 suggests that Visto and Visto RndOff are

considerably better than Visto RndOff oldP, probably because

the texture in the trusted regions is allowed to be changed in

Visto RndOff oldP which is not reasonable.

When comparing the synthesized images with the original

images in Fig. 13, we can observe significant differences in the

musical note patterns in the background when the synthesized

views are far away (View 0 and View 6). When the synthesized

views are near (Views 2 and 4), there are smaller differences in

the musical note patterns. These subjective observations agree

with the downward trend of the SSIM score in Fig. 11 when

the view offset increases in magnitude. But the overall quality

of Views 0 and 6 still appear to be reasonable, as expected.

Thirdly, we compare the proposed Visto with the VSRS 3.5

view synthesis software (M3) used in MPEG 3D experiments

[39]. The newer VSRS-1Dfast MPEG software [40] is not used

because it does not support rendering from a single reference

view. In addition, we also compare with two state-of-the-art

image hole filling (inpainting) methods that can be used for

view synthesis: Criminisi (M1) which is based on exemplar-

based inpainting [27], and Gautier (M2) which is based on

depth-based inpainting [30]. For both Criminisi and Gautier

hole filling, we apply 3D warping and feed the output to the

programs supplied by the authors. The results are shown in

Table II and Fig. 10. It is clear that VSRS 3.5, Criminisi and

Gautier are not perfect, each with their difficult situations.

Visto tends to achieve significantly higher SSIM and PSNR

than other methods in Table II, and to produce more natural

results with significantly fewer artifacts, as demonstrated in

Fig. 10.

TABLE II
SSIM AND PSNR OF Y COMPONENT IN THE UNTRUSTED REGIONS OF

SYNTHESIZED SEQUENCES S1-S7 USING DIFFERENT METHODS.

SSIM PSNR
M1 M2 M3 Visto M1 M2 M3 Visto

S1 0.5179 0.4683 0.4274 0.8009 15.98 15.33 11.92 21.62
S2 0.4617 0.4724 0.5124 0.5501 19.41 20.18 20.68 21.51
S3 0.4850 0.7542 0.7439 0.8942 12.69 20.17 21.98 23.27
S4 0.6812 0.7287 0.8548 0.9534 21.38 22.44 24.88 30.22
S5 0.5653 0.6006 0.8215 0.8043 17.02 18.91 22.97 21.75
S6 0.5735 0.6182 0.7280 0.7534 19.1 20.92 21.73 22.72
S7 0.1764 0.4105 0.4305 0.5851 12.46 16.86 15.19 17.94

Avg 0.4944 0.5789 0.6455 0.7631 16.86 19.26 19.91 22.72

V. COMPLEXITY ANALYSIS

When Visto is applied, Algorithm 1 is run for each level

(or patch size). For an initial patch size of 16× 16 and shrink

Schedule 2, Algorithm 1 is run for each of the 4 levels (16×16,

8×8, 4×4 and 2×2). In each level, after initialization, Visto

goes into a loop for up to R times. In each iteration, there

are 3 main steps. In step 1, it applies (13) to each pixel in the

untrusted region by performing a brute-force full search within

a search window size of wx × wy in the reference image, in

order to find the new optimal correspondence map value with

minimum energy. For each search point, the cost function (5)

is computed for the whole patch. Thus the complexity of step

1 is O(Nuwxwymn), where Nu is the number of pixels in the

untrusted region. In step 2, it applies (14) to compute the new

texture image pixel in the untrusted region with a complexity

of O(Numn). Similarly, Visto applies (15) to compute the new

depth map value in the untrusted region, with a complexity of

O(Numn). Therefore, the total complexity is O(Nuwxwymn)
for each iteration in the loop in Algorithm 1. Total complexity

of Algorithm 1 is O(RNuwxwymn) for level l.
In our simulation, we choose m = n, and wx = wy = αm.

Thus, the complexity is O(Num
4). In the worst case, the

loop will have R iterations. Thus the worst case complexity

is O(Num
4). For patch size shrink Schedule 1, the total

complexity of Visto is O(Num
5
0) because

∑m0

m=2 m
4 ∼

O(m5
0), where initial patch size is m0 × m0. For Sched-

ule 2, the total complexity of Visto is O(Num
4
0) because∑

m=2,4,8,...,m0
m4 =

∑log2(m0)
i=1 (2i)4 ∼ O(m4

0). Thus

Schedule 2 can be significantly faster than Schedule 1. Using

the starting patch sizes mentioned in Section IV, the running

time of Visto on our PC (Win64, intel Core i3 CPU at 3.07

GHz, 8GB RAM) for both Schedules when α = 2 is shown

in Table. III. Schedule 2 can be about 3 to 4 times faster than

Schedule 1.

VI. CONCLUSION

In this paper, we propose a novel view synthesis method

called View Synthesis through Texture Optimization (Visto).

This is the Pre-Published Version 
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TABLE III
RUNNING TIME (SECONDS) OF VISTO WITH DIFFERENT SHRINK

SCHEDULES

S1 S2 S3 S4 S5 S6 S7

Schedule 1 245.08 232.70 217.02 104.46 27.61 178.87 12.16
Schedule 2 83.07 64.34 63.15 37.46 13.63 41.46 5.664

By formulating the view synthesis problem in depth-image

based rendering (DIBR) as an energy optimization problem,

Visto generates iteratively a virtual view that maximizes the

inter-view texture similarity and minimizes the inter-view

depth map error simultaneously. Simulation results suggest

that Visto can produce seamless (i.e. natural-looking and

perceptually reasonable) views as compared with other state-

of-the-art algorithms.
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