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Lightweight Detection of Additive Watermarking

in the DWT–Domain
Roland Kwitt, Peter Meerwald, and Andreas Uhl

Abstract—This article aims at lightweight, blind detection
of additive spread–spectrum watermarks in the DWT domain.
We focus on two host signal noise models and two types of
hypothesis tests for watermark detection. As a crucial point of
our work we take a closer look at the computational require-
ments of watermark detectors. This involves the computation
of the detection response, parameter estimation and threshold
selection. We show that by switching to approximate host signal
parameter estimates or even fixed parameter settings we achieve
a remarkable improvement in runtime performance without
sacrificing detection performance. Our experimental results on a
large number of images confirm the assumption that there is not
necessarily a trade–off between computation time and detection
performance.

Index Terms—Watermarking, Wavelet, Statistical Signal De-
tection, Parameter Estimation

I. INTRODUCTION

WATERMARKING has been proposed as a technology

to ensure copyright protection by embedding an im-

perceptible, yet detectable signal in digital multimedia content

such as images or video. For blind watermarking, i.e. when

detection is performed without reference to the unwatermarked

host signal, the host interferes with the watermark signal.

Many detection approaches for additive watermarks em-

bedded in Discrete Cosine Transformation (DCT) or Discrete

Wavelet Transformation (DWT) coefficients have been pro-

posed in literature so far [1]–[4]. The perceptual characteristics

and distributions of transform domain coefficients have been

extensively studied for image compression [5] and these results

can be applied to watermarking, in order to permit water-

mark embedding in significant signal components through

modeling of human perception. For blind watermarking, the

host transform coefficients are considered as noise from the

viewpoint of signal detection. If we assume Gaussian noise,

it is known that the optimal detector is the straightforward

Linear Correlation (LC) detector [6]. Unfortunately, DCT and

DWT coefficients do not obey a Gaussian law in general,

which renders the LC detector suboptimal in these situations

and modeling the host signal becomes crucial for detection

performance. An approach, exploiting the fact that DCT or

DWT coefficients do not follow a Gaussian law is proposed

in [1]. The authors derive an optimal detector for an additive

bipolar watermark sequence using DCT transform coefficients
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following a Generalized Gaussian Distribution (GGD). In [4],

it is shown that the low– to mid–frequency DCT coefficients

excluding the DC coefficient can be modeled by the family of

symmetric alpha–stable distributions (SαS) [7], and a detector

is derived for Cauchy distributed DCT coefficients (as a special

case of the SαS model) by following the scheme presented

in [1]. However, both approaches are based on the strong

assumption that the watermark embedding power is known

to the detector. In [2], a new watermark detector based on the

Rao hypothesis test [8] was proposed for watermark detection

in Generalized Gaussian distributed noise. The detector is

asymptotically optimal (e.g. for large data records) and does

not depend on knowledge about the embedding power any

more. In [9] the same scheme was employed to derive a

watermark detector in Cauchy distributed noise.

Since detection runtime requirements are important to cer-

tain applications we are not only concerned about the detection

performance of the watermark detectors but also about their

computational behavior. With the objective of lightweight

watermark detection in mind, we compare several state–of–the

art detectors from a computational viewpoint. This includes the

computation of the detection response, parameter estimation

as well as threshold selection. We extend our previous results

[10] with large-scale experiments and focus on the issue of

host signal parameter estimation which is often neglected

in this research area but crucial w.r.t. detection. We show

that a considerable runtime improvement can be achieved by

switching to approximate or even fixed parameter settings

without sacrificing detection performance.

The remainder of this article is structured as follows: In

Section II we review two statistical models for DWT coeffi-

cients and introduce the detection problem from a hypothesis

testing viewpoint. Parameter estimation issues are discussed

in Section III. The impact of fast, approximate parameter

estimation or even fixed settings on the detection performance

is discussed and evaluated in Section IV. We further provide

extensive experimental results over a large database of images

in Section V and a computational analysis including runtime

measurements in Section VI. Finally, Section VII concludes

the paper with a discussion of applications and an outlook on

further research.

II. STATISTICAL MODELS AND DETECTION PROBLEM

First, we introduce some notation and define the watermark

embedding rule. For a J–scale pyramidal DWT we obtain

three detail subbands per decomposition level j ≤ J , denoted
by Hj (horizontal detail subband),Vj (vertical detail subband)

and Dj (diagonal detail subband). The detail subbands are
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given in matrix notation. The number of transform coefficients

of a detail subband on level j is given as Nj (without loss

of generality we assume square images). When it is not

necessary to speak of a specific subband we omit the subscript

j and the coefficients are given as x[1], . . . , x[N ] (vector

notation x). This vector arises by simple concatenation of

the row vectors of the appropriate subband coefficient matrix.

By adhering to this convention, the elements of the bipolar

watermark sequence used for marking an arbitrary subband

are denoted by w[t], 1 ≤ t ≤ N with w[t] ∈ {+1,−1}. For
the rest of the paper, small boldface letters denote vectors,

big boldface vectors denote matrices. The rule for additive

embedding of the watermark sequence in an arbitrary detail

subband transform coefficient is given by

y[t] = x[t] + αw[t], 1 ≤ t ≤ N (1)

where α ∈ R+ denotes the watermark embedding power and

y[t] denotes a watermarked transform coefficient. To derive

a hypothesis test, we assume that the transform coefficients

x[t] represent an i.i.d. random sample drawn from some

underlying Probability Density Function (PDF). In the context

of watermarking the coefficients are referred to as host signal

noise. The concrete noise model is a key element to derive a

watermark detector.

A. Statistical Models for Host Signal Noise

It is commonly accepted that the marginal distributions of

the detail subband coefficients of natural images are highly

non–Gaussian but can be well modeled by a GGD (see [5],

[11]). Employing the parametrization of [12], the PDF of the

GGD with scale parameter a > 0 and shape parameter c > 0
is given by

p(x|a, c) =
c

2aΓ(1/c)
exp

(
−
∣∣∣x
a

∣∣∣c) (2)

with −∞ < x < ∞. In contrast to the Gaussian distribution

(which arises as a special case of the GGD for c = 2), the
GGD is a leptokurtic distribution which allows heavy–tails.

A second model which has recently appeared in literature is

the two–parameter Cauchy distribution, which is a member

of the family of SαS distributions [7] (with α = 1). This
model has already been successfully employed for blind DCT–

domain watermarking utilizing low– to mid–frequency DCT

coefficients [4] and DWT detail subband coefficients [9].

The PDF of the Cauchy distribution with location parameter

−∞ < δ <∞ and shape parameter γ > 0 is given by [13]:

p(x|γ, δ) =
1
π

γ

γ2 + (x− δ)2
(3)

with −∞ < x < ∞. The Cauchy distribution with δ = 0
(which is symmetric around zero) will be abbreviated by

p(x|γ) := p(x|γ, 0). In contrast to the Gaussian distribution,

the tails of the Cauchy distribution decay at a rate slower than

exponential, hence we observe heavy–tails in the PDF.

B. Hypothesis Tests for Watermark Detection

In general, we can follow several ways to derive a wa-

termark detector. First, we restate our watermark detection

problem as a hypothesis testing problem:

H0 :y[t] = x[t] t = 1, . . . , N

H1 :y[t] = x[t] + αw[t] t = 1, . . . , N
(4)

Here, H0 denotes the null hypothesis (no or other watermark)

and H1 denotes the alternative hypothesis (watermarked). In

case of the Neyman–Pearson (NP) approach to signal detec-

tion, it is well–known that the detector which maximizes the

probability of detection to a given probability of false–alarm

(i.e. deciding H1 though H0 is true) is the (log) Likelihood–

Ratio Test (LRT), given by

L(x) := log
(

p(x;H1)
p(x;H0)

)
> log(τ) =: T (5)

where p(x|H0) denotes the PDF under H0, p(x|H1) denotes

the PDFs under H1 and T denotes the detection threshold.

Conditioned on the host signal noise models from Section

II-A, we obtain the LRT statistics for the Generalized Gaussian

model (LRT–GG) [1] as:

ρ(y) =
1
ac

N∑
t=1

(|y[t]|c − |y[t]− αw[t]|c) (6)

and the Cauchy model (LRT–C) [4] as:

ρ(y) =
N∑

t=1

log
(

γ2 + y[t]2

γ2 + (y[t]− αw[t])2

)
(7)

The assumption leading to these detectors is the complete

knowledge of the PDFs under both hypothesis. In a realistic

case however, the PDFs are incompletely specified (missing

knowledge of a,c or γ) and the watermark embedding power α
is unknown at the detection stage. This is the general setup for

composite hypothesis testing. The unknown noise parameters

(denoted by θ) are termed the nuisance parameters since they

are not directly related to the detection problem, but affect

the shape of the PDFs under H0 and H1. On this basis, we

formulate a two–sided parameter test:

H0 : α = 0, θ

H1 : α 6= 0, θ
(8)

In practice, it is assumed that the watermark embedding

process does not alter the noise characteristics significantly

which allows to estimate θ and α from the watermarked image.

The classic approach now is to derive a so called Generalized

Likelihood–Ratio Test (GLRT), where the unknown parameters

are replaced by their Maximum–Likelihood estimates (MLE).

However, ML estimation of α under the alternative hypothesis

is quite difficult in case of non–Gaussian noise [14]. To

overcome this problem, we switch to the Rao hypothesis test

which has the same asymptotic performance as the GLRT

but only requires ML estimates under H0. The derivation

of a Rao test for the hypothesis formulation of Eq. (8) was

first discussed by Kay [15] in case of non–Gaussian noise.

Conditioned on the particular host signal noise models we
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obtain the Rao test statistics for the Generalized Gaussian

model (Rao–GG) [2] as:

ρ(y) =

(∑N
t=1 sgn(y[t])w[t]|y[t]|c

)2

∑N
t=1 |y[t]|2c

(9)

and the Cauchy model (Rao–C) [9] as:

ρ(y) =

[
N∑

t=1

y[t]w[t]
γ2 + y[t]2

]2

8γ2

N
(10)

It is well–known [6] that in case we assume a Gaussian host

signal model, the corresponding LRT, which is a NP detector,

is the Linear Correlator (LC) with the test statistic given by:

ρ(y) =
1
N

N∑
t=1

y[t]w[t] (11)

Note that computation of the Rao and LC detection statistics

in Eqs. (9), (10) and (11) does not require knowledge of the

embedding strength α at all.

C. Threshold Determination

Determining a reasonable detection threshold T differs

depending on the type of hypothesis test and host signal noise

model. Further, the computation of the distribution parame-

ters of the detection responses under H0 has a considerable

impact on the overall runtime performance as we will see

in Section VI. We briefly recapitulate the threshold selection

process for the detectors of Section II-B to get a notion of

the required computational steps. According to [2], [4] the

detection statistics Eqs. (6), (7) and (11) follow a Gaussian

distribution under both H0 and H1 (cf. Fig. 1). Given that

µH1 denotes the mean of the detection statistic under H1

and µH0 denotes the mean under the null hypothesis, it

can easily be shown that µH0 = −µH1 (in case of the

LRT–Cauchy and LRT–GG). For the LC detector we have

µH0 = yw, σ2
H0

= σ2
yw2/N where y and σ2

y denote the

sample mean and variance of the received signal y and w
denotes the sample mean of the watermark (which is ≈ 0
since w[t] ∈ {+1,−1}, hence µH0 ≈ 0 and σ2

H0
= 1/Nσ2

y);

see [16] for further details. Given that y1[t] := y[t] − α and

y2[t] := y[t] + α, the location parameter µH0 in case of the

LRT–C detector is computed [4] as:

µH0 =
N∑

t=1

log

(
γ2 + y[t]2

[(γ2 + y1[t]2)(γ2 + y2[t]2)]
1/2

)
(12)

and σ2
H0

is given by

σ2
H0

=
1
4

N∑
t=1

(
γ2 + y1[t]2

γ2 + y2[t]2

)2

(13)

The LRT–GG detection distribution parameters [1] are:

µH0 =
N∑

t=1

ac|y[t]|c − 1
2

N∑
t=1

ca (|y1[t]|c − |y2[t]|c) (14)

and

σ2
H0

=
1
4

N∑
t=1

a2c (|y2[t]|c − |y1[t]|c)2 (15)
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Fig. 1. Illustration of Gaussian (LRT–C, LRT–GG, LC) and Chi-Square (Rao–
C, Rao–GG) detection response statistics under H0 and H1 (best viewed in
color).

For all LRT detectors, the relationship of the variance under

H0 and H1 is σ2
H0

= σ2
H1

. The probability of false alarm

(denoted by Pf ) can now be formulated as Pf = P(ρ(y) >
T |H0) = 1/2 erfc ((T−µH0)/

√
2σ) which allows to set T accord-

ing to the NP criterion T =
√

2σ erfc−1(2Pf ) + µH0 . Con-

sidering the Rao hypothesis tests, the situation is somewhat

different. As already noted, the Rao test exhibits the same be-

havior as the GLRT for large sample sizes (i.e. asymptotically).

According to [6], test statistics Eq. (9) and Eq. (10) follow a χ2
1

distribution with one degree of freedom under H0 (cf. Fig. 1).

Exploiting the relation Qχ2
1
(x) = 2Q(

√
x) where Q(·) de-

notes the Q–function of the Gaussian distribution and Qχ2
1
(·)

denotes the Q–function of the χ2
1 distribution, we can write

Pf = P(ρ(y) > T |H0) = Qχ2
1
(T ) = erfc

(
(T/2)1/2

)
and set

the desired threshold for a given Pf as T = 2
(
erfc−1(Pf )

)2
.

Under the alternative hypothesis both Rao test statistics follow

a non–central Chi–Square distribution χ2
1,λ with one degree

of freedom and non–centrality parameter λ, see [2] and [9],

respectively. In Section IV we will see how to estimate λ
from the experimental detection responses to analyze the

performance.

III. PARAMETER ESTIMATION

We discuss the parameter estimation issues related to the

Generalized Gaussian and Cauchy host signal noise model

using Maximum–Likelihood and approximative solutions.

A. Generalized Gaussian Distribution

GGD parameters estimation has been extensively covered in

literature, we only provide a brief overview of the main results.

Maximum Likelihood estimation is studied in the work of

Varanasi et al. [17] including both, joint parameter estimation,

and situations where one parameter is already known. Do

and Vetterli provide a Newton–Raphson algorithm to find the

root of the resulting transcendental equation in [18] which

involves computation of the Digamma and Trigamma function.

We refer to their algorithm for any computational discussion.

The starting value for the Newton–Raphson iteration is usually

obtained using the moment estimate of β, presented by Birney

et al. [5] and Mallat [11]. However, even moment matching

is challenging since it requires a numerical solution to the

function inversion problem F−1(m2
1/m2) with
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F (c) :=
Γ2(2/c)

Γ(1/c)Γ(3/c)
(16)

and

m1 =
1
N

N∑
t=1

|x[t]| and m2 =
1
N

N∑
t=1

x[t]2 (17)

This problem can either be solved using the combination of a

lookup–table and some sort of interpolation method (see [18]),

or by employing the approximation of Krupinski [19] where

the author proposes to define an invertible approximation

R(c) = exp(k + lcm) to F (c) and solves a non–linear curve

fitting problem for certain ranges of c. In this work, we do not

split the range of c and obtain k = −0.2667, l = −0.4172
and m = −1.1585 as the corresponding coefficients (using

the MATLAB Curve Fitting Toolbox). Moment matching then

reduces to the simple function evaluation R−1(c) which has

a closed–form expression. It is obvious that from a computa-

tional viewpoint we favor the invertible approximation to F (c).
However, the question arises whether the detection process

actually benefits from an accurate estimate of c, or if it is

possible to set c to a fixed value. This idea is mentioned

by Hernandez et al. [1], however it is not further discussed

there. In Section V we will see that fixed settings actually

lead to good detection results on a large set of images. As a

last point we note that there exists another recently proposed

method to estimate the GGD parameters [20] which is based

on exploiting a convex shape equation. However, this method

again requires to solve a numerical root finding problem,

which is why we omit any further discussion here.

B. Cauchy distribution

Regarding the estimation of the Cauchy distribution param-

eter γ, we start with the ML estimation approach. Given that

x[1], . . . , x[N ] denote realizations of N i.i.d. random variables

following a Cauchy distribution with δ = 0, the ML estimate

of γ is given as the root of (see [13]):

1
N

N∑
t=1

2
1 + (x[t]/γ)2

− 1 =: h(γ) (18)

which has to be solved numerically. For Newton–Raphson

root–finding, we require h′(γ). The first derivative of h(γ)
is given as:

h′(γ) :=
∂h

∂γ
=

4γ

N

N∑
t=1

x[t]2

(γ2 + x[t]2)2
(19)

which leads to γ̂n+1 = γ̂n − h(γ̂n)/h′(γ̂n) as the update step

in the n-th (n > 1) iteration. As starting value γ̂1 we use an

estimation based on the method of sample quantiles xp [13]:

γ̂1 = 0.5(xp − x1−p) tan(π(1 − p)) (20)

with 0.5 < p < 1. A computationally fast algorithm for

approximate biased quantile estimation is presented by Zhang

and Wang [21], since quantile estimation usually requires to

sort the data first. In this work, we use another fast algorithm

originally presented by Trihrintzis and Nikias [22] in the

context of SαS parameter estimation. Given that we assume
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Fig. 2. Histograms of the Cauchy γ and GGD c shape parameter estimated
from the H2 subband of 1000 images (best viewed in color).

δ = 0 and α = 1 (here α denotes the SαS parameter) the

proposed estimator for γ is given by:1

γ̂ =

[√
3

2N

N∑
t=1

|x[t]|1/3

]3

(21)

which can be computed with linear complexity. Last, we

note that moment estimation is not possible in case of the

Cauchy distribution, since the moments do not exist. As with

the approximate GGD shape parameter c, it is of course

possible to use Eq. (21) or Eq. (20) alone to compute the

detection statistics for the detectors conditioned on the Cauchy

distribution. In our experiments we use Eq. (21) and further

evaluate the possibility of setting γ to a fixed value.

In Fig. 2 we plot the histograms of the Cauchy γ and

GGD c shape parameter estimated from the H2 DWT subband

coefficients of 1000 natural images using ML estimation and

the fast, approximative methods described above. The ML and

approximate estimates are in good agreement and the typical

parameter range can be seen.

IV. PARAMETER ESTIMATION AND DETECTION

PERFORMANCE

In this section we study the impact of the different parameter

estimation approaches and fixed parameter settings on the

detection performance by plotting the probability of missing

the watermark as a function of the Cauchy γ and GGD c shape
parameter, an idea first presented in [1]. We decompose the

images using a two–scale DWT with biorthogonal CDF 9/7

filters and select the H2 subband for watermark embedding.

For each image we choose α such that a Data-to-Watermark

Ratio (DWR) of 16 dB is obtained. The DWR is defined

as the ratio between host signal and watermark power [16].

The resulting PSNR values are listed in Table I for three

different DWR settings. To obtain an empirical estimate of

the probability of miss we first fix the desired probability

of false–alarm. We will use Pf = 10−6 throughout this

work. Next, we calculate the detection statistic parameters

under H0 and determine a detection threshold according to

Section II-C. We then estimate the detection statistic param-

eters λ, µH1 and σ2
H1

from the detection responses under H1

when embedding and detecting W = 1000 pseudo-random

1As proposed in [22], we set the fractional moment p to 1/3 which leads
to this simplified expression.
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Algorithm 1 Calculate W detection responses for each image

Ii and each distribution parameter θk

Require: Images I1, . . . , IL; Parameters θ1, . . . , θB

for all I in {I1, . . . , IL} , 1 ≤ i ≤ L do

for 1 ≤ j ≤W do

W ← generateWatermark(j)
E ← embed(I,W)
for all θ in {θ1, . . . , θB} , 1 ≤ k ≤ B do

ρi,j,k ← detect(E ,W , θk)
end for

end for

end for

watermarks. The procedure to obtain the detection responses

for each image and shape parameter is listed in Algorithm 1.

embed() is a procedure selecting the H2 subband of image I
and implementing the watermark embedding rule of Eq. (1).

The detect() routine computes the detection response ρ
(implementing one of the detection statistics presented in

Section II-B) given the marked host signal E , the watermark

W and the host signal signal distribution parameter θk. We

have set θ1, . . . , θB representative for the range of GGD and

Cauchy shape parameters (cf. Fig. 2).

In case of the LRT detectors, we can simply use the sample

mean and sample variance of the detection responses ρi,j,k to

obtain estimates for µH1,i,k and σ2
H1,i,k for each image and

shape parameter. The empirical probability of a miss is then

calculated from P̂m,i,k = 1 − Q ((Ti,k−µ̂H1,i,k)/σ̂i,k). In case

of the Rao detectors, we exploit the fact that a non–central

Chi–Square random variable with one degree of freedom and

non–centrality parameter λ is equivalent to the square of a

Gaussian random variable with mean
√

λ and unit variance.

Hence, we can estimate λi,k from the responses of the i–th
image using shape parameter θk as follows:

λ̂i,k =

 1
W

W∑
j=1

√
ρi,j,k

2

(22)

The empirical probability of missing the watermark is given by

P̂m,i,k = 1−Q(
√

Ti,k−
√

λ̂i,k)+Q(
√

Ti,k +
√

λ̂i,k). Fig. 4
shows a comparison of the LRT–C and Rao–C detector perfor-

mance as a function of the γ parameter for the six test images

of Fig. 3 for Pf = 10−6. The parameter γ varies from 0.1 to 45
with a step size of 0.1. The performance of the detectors w.r.t.

to the MLE and its fast approximation (i.e. quantile estimation)

are marked by a circle ’◦’ and diamond ’♦’, respectively.
We observe that, except for Bridge and Peppers, the MLE

and approximate γ are almost visually indistinguishable. In

general, the approximation is very close to the ML estimate

for all images and the difference has a negligible impact on

watermark detection performance. Further, it is evident that

neither the MLE nor the approximation leads to the minimum

probability of miss. Nevertheless, the parameter estimates are

close enough to achieve good results. Fig. 5 shows the same

type of plot for the LRT–GG and Rao–GG detector. The GGD

shape parameter c varies from 0.02 to 4 with a step size of

Fig. 3. Grayscale test images (from top left to bottom right: Lena, Barbara,
Elaine, Boat, Bridge, Peppers)

TABLE I
DATA–TO–WATERMARK RATIO (DWR) IN DB AND RESULTING

PSNR (DB) FOR THE TEST IMAGES

DWR (dB)
PSNR (dB)

Lena Elaine Barbara Boat Bridge Peppers

16 47.40 50.66 47.70 46.50 46.83 47.30
20 50.86 52.96 51.03 50.19 50.45 50.80
23 52.38 57.52 52.69 51.77 51.95 52.30

0.01. Again, the fast estimate (i.e. invertible approximation

to F (c)) is reasonably close to the ML estimate. In case of

the LRT–GG detector, peak performance is missed by only a

small margin. However, in case of the Rao–GG detector, the

estimates of c are far off the parameter value achieving the

minimum probability of miss.

Based on these experiments, we draw the first conclusion

that fast, approximate estimation of the shape parameter for

both noise models can actually replace the ML estimate with-

out significantly sacrificing detection performance. A second

conclusion is that the parameter estimation approaches are

in many cases not equivalent to searching the parameter

value minimizing the probability of miss (or equivalently

maximizing the probability of detection). This has already

been noted earlier for the LRT–GG detector by Hernandez

et al. [1]. For the Rao–GG detector the estimates do not

achieve good detection performance at all for many images.

In Nikolaidis’ work [2], the detection results for the Rao–GG

detector vary widely across the test images and the detector

performs even worse than the LC detector. We presume that

the reason for the bad results has its roots in the behavior we

observe in our plots here.

Regarding the use of fixed parameter values, an image

independent GGD shape parameter c = 0.8 has already been

proposed for DWT coefficients [1] to save the estimation

effort. Our comparative plots in Fig. 5 allow to immediately

read off the resulting performance and compare with the

performance of the LC detector (i.e. c = 2). In case of the

Rao–GG detector, the shape of the probability of miss curve

indicates a parameter setting of c ≈ 1 as a reasonable choice.

For the Cauchy host signal model, no fixed γ parameter value

has been proposed to the best of our knowledge. A good

candidate for an image independent parameter seems to be
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Fig. 4. Probability of miss comparison of the LRT–C and Rao–C detector
as a function of γ at DWR 16 dB and Pf = 10−6.

γ = 8 for the DWT details subbands. In the next section

we present large–scale experimental results which confirm our

observations.

V. EXPERIMENTAL RESULTS

In this section we evaluate the detection performance of

the detectors as a function of the parameter setting over a

large set of test images. We choose L = 1000 images from

the UCID [23] color image database for our experiments. The

images were first converted to grayscale and scaled down to

50% of the original size (i.e. 512× 384). To compare the per-

formance of the detectors we choose the probability of miss as

the evaluation criterion. The scaling operation is performed to

create a challenging detection scenario, otherwise all detectors

would report zero miss probability due to precision issues.

The procedure to obtain the empirical probability of miss for

each detector and shape parameter range was explained in the

previous section.

In order to get an impression of the impact of the shape

parameters c and γ, we invoke Algorithm 1 and calculate

the empirical probability of miss P̂m,i,k for each image

Ii, 1 ≤ i ≤ L and distribution parameter θk ∈ {θ1, . . . , θB}.
Next, we select the optimal probability of miss P̂ ∗

m,i and

the corresponding optimal parameter value θ∗i for each image

according to Algorithm 2. Since our aim is to compare the

0.5 1 1.5 2 2.5 3 3.5 4

10
−100

10
−50

Lena

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

0.5 1 1.5 2 2.5 3 3.5 4

10
−40

10
−20

Elaine

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

0.5 1 1.5 2 2.5 3 3.5 4

10
−30

10
−20

10
−10

Barbara

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

0.5 1 1.5 2 2.5 3 3.5 4

10
−100

10
−50

Boat

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

0.5 1 1.5 2 2.5 3 3.5 4
10

−20

10
−15

10
−10

10
−5

Bridge

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

0.5 1 1.5 2 2.5 3 3.5 4

10
−150

10
−100

10
−50

Peppers

Shape parameter range

P
ro

b
a
b
ili

ty
 o

f 
M

is
s

 

 

LRT−GG

Rao−GG

Fig. 5. Probability of miss comparison of the LRT–GG and Rao–GG detector
as a function of c at DWR 16 dB and Pf = 10−6.

Algorithm 2 Select optimum P̂ ∗
m,i for each image

Require: P̂m,i,k, 1 ≤ i ≤ L, 1 ≤ k ≤ B
for 1 ≤ i ≤ L do

si ← argmink P̂m,i,k

P̂ ∗
m,i ← P̂m,i,si , θ∗i ← θi,si

end for

performance of the optimal θ∗i to the performance of the MLE

θ◦i , approximate θ♦i and fixed θ†i setting, we determine the

corresponding (sub–optimal) probability of miss P̂ s
m,i for each

case s ∈ {◦,♦, †} according to Algorithm 3.

To obtain comparative plots, we choose the following ap-

proach: first, we sort the optimal probability of miss values

in ascending order to obtain P̂ ∗
m,vi

≤ · · · ≤ P̂ ∗
m,vL

where

v1, . . . , vL denotes the index set of sorted probabilities. Sec-

ond, we arrange the sub–optimal probabilities using this index

set to obtain P̂ s
m,v1

, . . . , P̂ s
m,vL

. Third, we plot both vectors of

probabilities (optimal and sub–optimal) on a semi–logarithmic

scale. Figs. 6–9 show the corresponding plots for the different

detectors and a selection of shape parameter choices. Note that

we have limited the axis scaling to show only the last 600
images since probabilities below 10−100 are less interesting

in practice.

For the LRT–GG detector we observe that the approximate

estimate of c as well as the fixed parameter setting of c = 0.8
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Algorithm 3 Select sub–optimal P̂ s
m,i for each image

Require: Empirical P̂m,i,k, Estimation mode s
for 1 ≤ i ≤ L do

k ← arg mink∈{1,...,B} |θs
i − θk|

P̂ s
m,i ← P̂m,i,k

end for
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Fig. 6. LRT–GG probability of miss comparison over all images for various
choices of c at Pf = 10−6 and DWR 16 dB.

do not lead to great deviations from the optimal curve2.

Especially in the interesting top–right hand area of the plots

the probability of miss is almost at the optimum. A fixed

value of c = 1.2, which is between a Laplace and a Gaussian

distribution, shows the expected worst performance. These

results are in accordance with what we have seen in Fig. 5. In

case of the Rao–GG detector (see Fig. 7) both MLE and the

approximation lead to bad performance. The best results are

obtained from the fixed settings c = 0.8 and c = 1. The good

results for c = 1 confirm our presumption of the last section

(see Fig. 5) where we expected c ≈ 1 to be a good choice.

Regarding the LRT–C detector, shown in Fig. 8, there is no

noteworthy difference between the fixed settings of γ = 3,
γ = 8 and the MLE as well as the approximation. However,

since we favor good performance especially for Pm values

close to 1, we would reject γ = 3 due to slight deviations

from the optimum in the top–right hand area of the plot. Last,

the Rao–C detector shows good performance for both MLE

and the fast approximation. While the fixed setting of γ = 8
deviates only slightly from the optimum, the setting γ = 3
sacrifices performance and turns out to be impractical.

We conclude that for all four detectors, we can find a fixed

parameter setting which leads to good detector performance

over the whole set of natural images and only slightly deviates

from the optimum. This fact is remarkable since it allows to

2Fixed GGD shape parameters c = 0.5 and c = 0.8 are suggested in [1]
for non-DC low-frequency DCT coefficients; both values are also reasonable
for DWT detail subband coefficients, cf. Fig. 5.
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Fig. 7. Rao–GG probability of miss comparison over all images for various
choices of c at Pf = 10−6 and DWR 16 dB.
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Fig. 8. LRT–C probability of miss comparison over all images for various
choices of γ at Pf = 10−6 and DWR 16 dB.

completely eliminate the computationally expensive estimation

step of the detection process.

The image received by the watermark detector might have

been subjected to image processing operations. In Fig. 10 we

test JPEG compression (with compression factor Q = 70)
applied on the watermarked image. We observe the perfor-

mance of the LRT–GG and Rao–GG detector in the left and

right column, resp. As expected, the probability of missing

the watermark increases for both detectors due to the added

noise. The fixed parameter settings still perform well and

the approximate parameter estimates closely match the MLE

approach in both cases. In Fig. 11 we turn to the detectors

based on the Cauchy host signal model and observe that γ = 8
is still a reasonable fixed host signal parameter setting, even

under moderate JPEG compression. Comparing the LRT and

Rao detectors, however, we notice that the performance of
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Fig. 9. Rao–C probability of miss comparison over all images for various
choices of γ at Pf = 10−6 and DWR 16 dB.
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Fig. 10. Probability of miss after JPEG compression (Q = 70) for the
LRT–GG (left) and Rao–GG (right) detector at Pf = 10−6 and DWR 16
dB.

the Rao–C and Rao-GG detector increase relative to the LRT

methods and the Cauchy shape parameter estimates are closer

to their optimal value than the GGD parameter estimates. We

conjecture that the Cauchy model might be more robust and

a better fit for the wavelet coefficients of a JPEG-compressed

image.
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Fig. 11. Probability of miss after JPEG compression (Q = 70) for the
LRT–C (left) and Rao–C (right) detector at Pf = 10−6 and DWR 16 dB.

VI. COMPUTATIONAL ANALYSIS

In order to quantify the term lightweight detection, we take

a closer look at the computational effort which is required

to employ the various detectors. This includes a discussion

of the number of required arithmetic operations to calculate

the detection statistics, parameter estimation issues and the

determination of detection thresholds. By arithmetic operations

we understand the number of additions & subtractions (+,−),
multiplications & divisions (×,÷), logarithms & exponentia-

tions (log,xr) with floating point numbers as well as absolute

& signum (| · |, sgn) operations.
In Table II we provide the number of operations as a

function of the input vector length N (constant terms are

omitted). From these numbers it is obvious that the LC

detector is by far the simplest in terms of arithmetic operations,

since it involves only summations and multiplications of

floating point numbers. Only the watermarked coefficients

and the watermark sequence itself are involved. However, the

Rao–C detector is only slightly more expensive, since Eq.

(10) merely involves exponentiations with integer exponents

(can be formulated as multiplications), additions as well as

multiplications which can be very efficiently performed with

few CPU cycles. In contrast to that, the LRT–C, LRT–GG and

Rao–GG detector require computations of the logarithm or

exponentiations with floating point numbers, which are both

expensive in terms of CPU cycles.

Regarding parameter estimation effort, we have seen that
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TABLE II
NUMBER OF ARITHMETIC OPERATIONS

Detector
Operations

+,− ×,÷ xr , log | · |, sgn
LC, Eq. (11) N N
LRT–GG [1], Eq. (6) 3N N 2N 2N
LRT–C [4], Eq. (7) 4N 4N N
Rao–GG [2], Eq. (9) 2N 3N N 2N
Rao–C [9], Eq. (10) 2N 3N
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Fig. 12. Runtime measurement (using MLE) for a signal of length N =
67600 (V1 subband of the 512 × 512 version of Lena).

fixed parameter settings and approximate solutions lead to

quite good results. However, for the sake of completeness we

take a look at the computational effort required to compute

the MLE. The LC detector defined in Eq. (11) is the simplest

one, since it requires no parameter estimation at all, followed

by the Rao–C and LRT–C detector, which both require an

estimate of the shape parameter γ of the Cauchy distribution.

The Rao–GG and LRT–GG detectors are most affected by the

estimation procedure, since the Newton–Raphson update steps

in case of the GGD are more expensive than the update steps

in case of the Cauchy distribution. We also note that there is

almost no difference in the number of required iterations to

reach our predefined convergence bound that the next estimate

in the iteration is in a range of 10−6 of the last estimate.

Finally, we cover the effort for the determination of de-

tection thresholds. In case of the LC, LRT–GG and LRT–

C detector, we have to compute the mean and variance of

the normally distributed detection statistic under the null–

hypothesis H0 to determine a suitable threshold (see Sec-

tion II-C). Since detection statistic parameters depend on

the noise–model parameters, threshold determination is signal

dependent and has to be performed for each image. In contrast

to that, the Rao detectors do not require to compute detection

statistic parameters at all, since the detection statistic under

H0 follows a Chi–Square distribution with one degree of

freedom. This perfectly fits into the lightweight idea since we

can precompute a detection threshold for a desired probability

of false–alarm and use this threshold for all images.

To quantify the computational differences in practice, we

perform a comparative runtime measurement for all five

detectors, implemented in the MATLAB programming envi-

ronment3. The runtime is measured on a Intel Core2 Duo

3Source code is available at http://www.wavelab.at/sources.
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Fig. 13. Runtime measurement (using fast estimation) for a signal of length
N = 67600 (V1 subband of the 512 × 512 version of Lena).

2.66 GHz system with 2 GB of memory running MAT-

LAB 7.6. We emphasize that the focus is more on relative

runtime differences than on absolute values. We choose a real–

world signal (V1 subband of 512 × 512 Lena) and average

the runtimes over 100 runs. The plots in Figs. 12 and 13

illustrate the three main runtime contributions, namely host

signal model parameter estimation, threshold selection and

computation of the detection statistic. In Fig. 12 we use ML

estimation in the estimation step, whereas in Fig. 13 we use

the fast approximations. Of course, in case of fixed parameter

settings, we can ignore the contribution of the estimation step.

As we can see, for the LRT–C, LRT–GG and LC detector the

threshold selection dominates the computation of the actual

detection responses. Further, the runtime differences in the

detection response calculation are in good agreement with

the analytical results of Table II. As expected, the estimation

process in the ML case has the greatest runtime impact in

all cases. Comparing the fast parameter estimation methods,

we observe that the GG shape estimation is more efficient

than the fast Cauchy estimation approach, since we only need

to insert the sample moments m1 and m2 in Eq. (17). In

contrast to that, the Cauchy model parameter estimation in

Eq. (21) requires exponentiation with a floating point number.

For the Rao–GG and LRT–GG detector, the computation of

the detection response is computationally more expensive

than the estimation procedure. Overall, the Rao–C detector

provides the best compromise between detection performance

and computational effort.

VII. CONCLUSION

In this article, we have taken a closer look at four state–

of–the–art detectors in the field of additive spread–spectrum

watermarking in the DWT domain. We reviewed the a–priori

requirements and assumptions which are taken as a basis for

the derivation of each detector. We then discussed parameter

estimation issues in a Maximum–Likelihood framework as

well as some approximate solutions. Our first experimental

results showed that neither ML estimation nor the approxima-

tions lead to the optimal detection performance over a set of

test images. More extensive experiments on a large number

of images revealed that it is actually possible to find fixed

parameter settings for each host signal noise model which
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allow competitive or even better detection performance then

the approaches using estimates. This is in accordance with

the idea of lightweight detection since the parameter estima-

tion process poses a computational bottleneck. Regarding the

computational effort to compute the detection statistics itself

as well as detection thresholds, we favor the Rao–C detector

due to a small number of arithmetic operations and one–time

threshold determination.

We believe that a lightweight detection approach is a

good match when the resources of the embedding side are

constrained and thus allow only a simple embedding strategy,

such as the scenario described by Nelson et al. [24] where

the watermark is added by CMOS sensor hardware. Further,

fast detectors might be useful when trying to combat water-

mark desynchronization (e.g. due to geometric transformation

attacks) with exhaustive search over the transform space [25].

Perceptual shaping of the watermark or multiplicative em-

bedding [26] complicate the formulation of the detection

statistics. Liu et al. [27] propose to transform the cover signal

into a perceptually uniform domain where simple additive

embedding can be employed and derive a locally-optimum

detector for the GGD host signal model. Fast parameter

estimation is directly applicable to Liu’s framework, but we

have not derived alternative detectors based on the Cauchy

model or Rao test. However, we caution that the effort to

compute the perceptual model or the respective transform may

outweigh the actual detection effort.
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