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Abstract
In image reconstruction gated acquisition is often used in order to deal with blur caused by organ
motion in the resulting images. However, this is achieved almost inevitably at the expense of
reduced signal-to-noise ratio in the acquired data. In this work, we propose a reconstruction
procedure for gated images based upon use of discrete Fourier transform (DFT) basis functions,
wherein the temporal activity at each spatial location is regulated by a Fourier representation. The
gated images are then reconstructed through determination of the coefficients of the Fourier
representation. We demonstrate this approach in the context of single photon emission computed
tomography (SPECT) for cardiac imaging, which is often hampered by the increased noise due to
gating and other degrading factors. We explore two different reconstruction algorithms, one is a
penalized least-square approach and the other is a maximum a posteriori approach. In our
experiments, we conducted a quantitative evaluation of the proposed approach using Monte Carlo
simulated SPECT imaging. The results demonstrate that use of DFT-basis functions in gated
imaging can improve the accuracy of the reconstruction. As a preliminary demonstration, we also
tested this approach on a set of clinical acquisition.

Index Terms
Cardiac single photon emission computed tomography (SPECT); discrete Fourier transform
(DFT); gated reconstruction; spatiotemporal reconstruction

I. Introduction
In this work we propose a joint estimation approach for reconstruction of images from a
gated data acquisition. In a gated study, the imaging period is divided into a number of
smaller time intervals, the purpose being to reduce motion blur in the resulting images. The
gating can be either cardiac or respiratory or both. For example, in gated cardiac imaging,
the cardiac cycle is divided into a number of smaller intervals (typically between eight and
16) based upon the recorded electrocardiogram (ECG) signal, and the image is reconstructed
for each interval. This not only alleviates the blur caused by cardiac motion, but also can
provide valuable information about the ventricular function, including wall motion, ejection
fraction and left ventricle volume [1]. However, due to reduced data counts (or shortened
exposure time) within individual gate intervals, the resulting images often suffer from
increased noise.
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In recent years, there have been significant interests in development of spatiotemporal
methods to combat the increased noise associated with gated imaging. To name a few, in [2]
multislice CT scans are simultaneously collected with digital spirometry to correct for
breathing motion; in [3], a reconstruction procedure based upon respiratory motion
correction was proposed using PET list mode data; in [4], heart motion was imaged using
isolated spectral peaks in SPAMM-tagged MR images; in [5], a nonrigid image summing
method was proposed via optical flow over different gates in gated PET; in [6] a Fourier
filtering OSEM with a binomial model was applied in gated single photon emission
computed tomography (SPECT); in our previous work [7], spatiotemporal reconstruction
methods based upon motion compensation were developed to reduce noise and motion blur
in gated SPECT.

A common theme among these spatiotemporal methods is to exploit the statistical
correlation among the different gate frames in a sequence in which the observed noise is
typically uncorrelated along the gate dimension. For example, the different gate frames in a
cardiac sequence would be identical if it were not for the cardiac motion. Thus, it would be
most effective to enforce smoothing along the motion trajectories in the gate frames during
reconstruction. A challenge in such an approach, however, is that the relative motion
between the different gates is not known a priori; consequently, it has to be estimated from
the noisy data either by applying motion estimation or image registration which could be
challenging by itself.

In this work, we explore an alternative approach for spatiotemporal reconstruction, which
can obviate the explicit need for motion estimation. Instead of relying on a prior that is
explicitly based upon image motion, we model at each spatial location the image intensity
across the different gates by a set of Fourier harmonic basis functions. This is motivated by
the fact that the image function is essentially periodic over the gating intervals owning to the
periodic nature of underlying motion. In the resulting image representation, the image
motion is modeled implicitly by the temporal variation in image intensity at a given spatial
location. For example, consider the case of a gated cardiac sequence. The image intensity at
a spatial location that experiences wall motion will vary across the different gates in a
periodic fashion during the cardiac cycle, which can be modeled efficiently by a Fourier
harmonic function of the gate intervals.

With a Fourier representation model, reconstruction of the different gate frames is obtained
in a collective fashion by estimating the model coefficients. This can be potentially
beneficial in that it can take advantage of the statistics of all the acquired data. Moreover, by
varying the number of high-order basis functions used in the representation model, one can
directly incorporate a temporal smoothing scheme that is spatially adaptive into the
reconstruction procedure. For example, in regions that experience more motion higher order
harmonic components can be used than in a background region with little or no motion.

For reconstruction, we develop two different methods for estimating the model coefficients:
one is based upon penalized least-squares (PLS) estimation, and the other is based upon
maximum a posteriori (MAP) estimation. In the PLS method, the model coefficients are
estimated independently for the different Fourier harmonics, whereas in the MAP method
they are determined in a simultaneous fashion by taking into account the noise statistics of
the acquired data. While in theory being suboptimal, the PLS method can be favorable in
terms of its computational complexity. This is particularly true when the gated sequence can
be represented well with only a few lower order harmonic components. In such a case, one
may simply discard higher order components without significantly sacrificing the
reconstruction quality, leading to faster reconstruction.
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To facilitate development in the rest of the paper we will present our methods in the context
of cardiac imaging using single-photon emission computed tomography (SPECT), which is
currently the most frequently performed study in clinical nuclear medicine. However, it is
noted that the proposed approach should be equally applicable to other imaging modalities
as well, including positron emission tomography (PET), CT, or MRI, where the gating can
be either cardiac or respiratory.

The concept of the proposed approach was first developed in our previous work [8], [9],
where it was demonstrated with preliminary results using 2-D image slices. In this work, we
further develop and demonstrate this approach by extending it to fully 3-D volumetric
reconstruction, where two important degradation factors, namely attenuation and scatter, are
also included in the reconstruction process. In our experiments, the proposed approach was
first demonstrated using Monte Carlo simulated SPECT imaging. The use of simulated
images allowed us to quantitatively evaluate the reconstructed images where the ground
truth was known. As a preliminary demonstration, we also tested our approach on a set of
clinical acquisition.

The rest of the paper is organized as follows: the imaging model, Fourier harmonic
representation, and reconstruction methods are described in Section II. Evaluation methods
are presented in Section III. The results and discussions are given in Section IV.
Conclusions are given in Section V.

II. Reconstruction of Gated Image Sequence
A. Imaging Model

In gated imaging, the acquired projection data are binned into K gate intervals. The imaging
data are described by the following model:

(1)

where gk, fk, and rk are vectors representing the acquired data (sinogram), original image,
and expected scatter component, respectively, in gate k, H is the system matrix describing
the imaging process in which each element hij represents the probability that a photon
emitted at voxel location j is detected at detector bin i without being scattered, and E[·] is the
expectation operator.

In this study, the system matrix H is modeled after SPECT imaging, of which the elements
hij include both the distance-dependent point spread function (PSF) and the attenuation
effect.

Our goal is to estimate the images fk given the sinogram data gk, k= 1, 2, … K. Due to the
low count level in the data and ill-conditioned nature of the system matrix H, a direct
inversion of the imaging equation in (1) would lead to very noisy images. Instead, we
explore a joint reconstruction approach in which the different gate frames are reconstructed
in a collective fashion. The goal is to exploit the fact that the different gate frames are
essentially similar to each other except for the motion. Specifically, we will make use of a
discrete Fourier transform (DFT) basis representation to regulate the time activities at each
spatial location across the different gates, which are periodic owing to the periodic motion.

B. DFT Basis Function Model
We model the image activity at voxel j over different gate intervals by using a Fourier series
as following:
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(2)

where fk(j) represents the image intensity at voxel j in gate interval k, em(k) denotes the mth

DFT basis function in the form , dm(j)denotes its
corresponding coefficient, and N denotes the number of voxels in a gate frame.

Substituting the representation in (2) into the imaging model in (1), we obtain

(3)

where dm is a vector representing the collection of the mth frequency coefficients dm(j) over
all voxels.

Equation (3) directly relates the projection data to the frequency domain representation of
the gated frames. Our goal is to estimate the unknown coefficients dm associated with the
different DFT basis functions.

As can be seen, by varying the number of high-order harmonics (i.e., high frequency
components) in the representation in (2), we can achieve different degrees of smoothing
along the gate dimension. Thus, such a DFT basis representation model offers the flexibility
that one can directly incorporate a temporal smoothing scheme (i.e., across the gates) into
the reconstruction procedure in a spatially adaptive manner. For example, the AC
coefficients can be treated as zero at background voxels that are not associated with any
motion. This will lead to fewer unknowns to estimate, and consequently, faster
reconstruction algorithms.

Next, we describe two methods for estimating the unknown coefficients dm. The first
method is based upon a PLS approach, in which the unknown coefficients are estimated
separately for the different basis functions. The second method is based upon MAP
estimation, in which the unknown coefficients are estimated in a collective fashion.

C. PLS Estimate
Due to the unitary property of the harmonic basis functions, we can obtain from (3) the
following:

(4)

where ēm(k) denotes the complex conjugate of em(k).

Let , which is noted to be the DFT of the projection data taken along the

gate dimension; similarly, let . Then, the above can be rewritten as

(5)
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From (5) it can be seen that the unknown coefficients dm are now decoupled from each other
for the different basis functions. Thus, they can be estimated in a separate fashion. A note is
that when the activity function in (2) is real-valued, the coefficients dm are conjugate
symmetric, i.e., dm = d̄K−m. In such a case, we need to estimate about only one half of the
unknown coefficients.

Observe that (5) bears the same form as the imaging model in (1). Therefore, it can be
solved in the same fashion as in standard image reconstruction.

Specifically, note that the data term  is formed by a weighted average of K independent
measurements. We can approximate its noise statistics by a Gaussian distribution model, and
apply a least-squares approach to estimate dm. To compensate for the ill-conditioned nature
of the system matrix H, we introduce a Gibbs prior to impose spatial smoothing on dm. This
leads to the following penalized quadratic objective function:

(6)

where Q is a spatial operator used to enforce local smoothness, and βs is a scalar parameter
used to control the degree of spatial smoothing.

The unknown dm is estimated as

(7)

In our experiments, the first-order difference operator was used for Q. Specifically, the
penalty term ||Qdm||2 is given by

(8)

where  denotes a 26-voxel neighborhood around voxel j. As can be seen, this quantity is
used to impose a penalty when the signal at a voxel is significantly different from that of its
immediate neighbors.

Note that both operators H and Q are real-valued. Thus, the real and imaginary parts of dm
can be solved separately from their respective counterparts of Rm and . It is noted that the
optimization in (7) is of the form of a standard PLS problem. In our experiments, a
preconditioned gradient descent algorithm was used, where a diagonal positive-definite
preconditioner was used to adjust the gradient as in [10], [11]. For convenience, this method
is referred to as DFT-PLS.

D. MAP Estimate
Alternatively, the unknown coefficients of the different DFT basis functions {dm, m = 0, …,
K − 1} can be determined in a collective fashion by making use of the statistics of the image

data. For convenience, define , which is a vector denoting the

collection of acquired (sinogram) data in all K gates; similarly, let ,
the collection of unknown coefficients of all K harmonic components.

We seek a MAP estimate of the unknown coefficients, i.e.,
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(9)

where p(G;D)is the likelihood function of G parameterized by D, and p(D) is a prior
distribution on D.

The prior term p(D) in (9) is used to enforce spatial smoothness in the reconstructed images,
thereby to further reduce the impact of noise. Specifically, we use a Gibbs prior of the form

(10)

where Us(D) is an energy term defined in terms of the images as

(11)

where  denotes a 26-voxel neighborhood around voxel j. In (10), βs is a scalar weighting
parameter used to control the degree of spatial smoothing; it is noted that, for convenience,
here the same notation βs is used as previously in (6) for the weighting parameter, though in
principle they may not necessarily assume the same value.

Substituting the representation model in (2) into (11) and applying the Parserval’s identity,
we can rewrite (11) as

(12)

From (12), we observe that the energy term in (11) is now expressed directly in terms of the
unknown harmonic coefficients. Moreover, it is worth noting from (8) that

.

In SPECT, the projection data are characterized by Poisson noise. Thus, the log-likelihood
function in (9) has the following form:

(13)

where fk is parameterized by D as in (2), (Hfk) (i) denotes the ith component of (Hfk), rk(i)
is the ith component of rk and M is the total number of detector bins used.

With all the terms defined, the MAP estimation in (9) can be solved by minimizing the
following objective function:

(14)

That is
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(15)

It is noted that, since the images fk are linearly parameterized by D, the objective function
J(D) in (14) has essentially a similar mathematical form to that of MAP estimation in
emission tomography. Indeed, when all the AC components are included in the
representation model, i.e., no temporal regulation is used, the objective function J(D) in (14)
simply amounts to independent reconstruction of individual gates by conventional MAP
estimation with a spatial prior. Thus, we can employ a similar approach, such as generalized
EM [12], for the optimization in (15). As noted earlier, when the activity function in (2) is
real-valued, the coefficients dm are conjugate symmetric, i.e., dm = d̄K−m. In such a case, we
can explicitly substitute the coefficients dm, m = K/2+1, …, K − 1, by their conjugate
symmetric counterparts d̄K−m in the objective function J(D) in (14); as a consequence, J(D)
becomes a function of only dm, m = 0,…, K/2. In our experiments, we applied an iterative
coordinate descent (ICD) algorithm [13] in which the unknown coefficients dm(j)are updated
sequentially for each voxel. For completeness, we furnish the details of this algorithm in the
Appendix. This algorithm is referred to as DFT-MAP.

III. Evaluation Methods
In our experiments, we evaluated the proposed reconstruction approach in the context of
cardiac gated SPECT imaging. We tested both the DFT-PLS and DFT-MAP reconstruction
methods described in Section II. To demonstrate the effect of the Fourier representation
model, we varied the number of harmonics used, which plays the role of regulating the
degree of temporal smoothing across the different gates; in addition, we also varied the
spatial parameter βs to optimize the degree of spatial smoothing. In the following, we
describe the details involved in this study, including quantification of reconstruction results
and the datasets used.

A. Image Datasets
1) Phantom Data—We first tested the reconstruction algorithms using simulated imaging
in a setting that is typical of realistic clinical acquisitions. The use of simulated data allows
us to conduct extensive quantitative analyses of the reconstruction results through multiple
noise realizations. In our experiments, the 4D NURBS-based cardiac-torso (NCAT) 2.0
phantom [14] was used to generate the source and attenuation distribution, which was
derived from real patient anatomy. The SIMIND Monte Carlo package [15] was used to
simulate gated SPECT imaging with Tc99m labeled sestamibi as the imaging agent. The
SPECT system simulated was the Picker Prism3000 with a low-energy high-resolution
(LEHR) collimator. The projections were 64 by 64 bins with a voxel size of 0.634 cm. For a
circular camera rotation of 28.5 cm radius, 64 projection sets were collected for each gate
frame. A total of 16 gates were used. Two energy windows were used in SIMIND as in [16]:
the photo-peak window was 20% (28 keV) centered at 140 keV, and a 3.5 keV window
abutted to the lower side of the photopeak window. Poisson noise was introduced at a level
of 8 million total counts as in a typical clinical acquisition. The scattered counts were about
34% of the total counts.

As an example, Fig. 1(b) shows an anterior projection of the NCAT phantom in the
photopeak window obtained using SI-MIND, where the heart region is notably very noisy.

To estimate the scatter component in the projection data, the filtered TEW method [17], [18]
was used. First, an estimate of the scatter counts within the photopeak window was obtained
by multiplying the counts in the 3.5 keV window by 4. This estimate was further filtered
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with an order-3 2-D Butterworth lowpass filter with a cutoff frequency of 0.2 cycles/cm as
suggested in [18]. For attenuation correction, the attenuation map generated by the NCAT
program was used.

2) Clinical Data—As a preliminary demonstration, we also tested the reconstruction
algorithms on a set of clinical data. This dataset was acquired from a female patient by an
IRIX system [19] with 68 projections (3-degree steps) and a 128×128 matrix. The voxel size
was 0.467 cm. The acquisition started from right anterior oblique, passed through anterior
and left anterior oblique, and ended at left lateral oblique. A total of eight gates were used.
The photopeak window was 15% centered at 147.5 keV, and a second 5% window centered
at 133.2 keV was used. The total number of counts acquired was 23.8 millions. For
attenuation correction, the attenuation map was estimated from the transmission images of
the patient.

B. Evaluation Criteria
In cardiac gated SPECT, the main goal is to obtain the image activities concerning the heart.
Thus, our evaluation is mainly focused on the accuracy of the reconstructed heart volume.
We applied several quantitative criteria, including: 1) the overall accuracy of the
reconstructed myocardium measured by signal-to-noise ratio (SNR); 2) bias versus variance
analysis for quantifying the regional accuracy of the heart wall; 3) the reconstructed time-
activity curve (TAC) of a region of interest (ROI) selected on the heart wall. As explained in
the following, the TAC is used to measure the potential effect of temporal smoothing on
cardiac motion.

1) Myocardium Reconstruction Accuracy—To quantify the overall accuracy of the
reconstructed myocardium, we computed the SNR of a 30 × 28 × 20 volumetric region
containing the entire left ventricle (LV), of which a 2-D slice is shown in Fig. 1(a).
Specifically, it is defined as

(16)

where  and , which denote the reference and
reconstructed images, respectively. The SNR defined previously is computed for the
myocardium ROI over all the K gates.

2) Regional Bias-Variance Analysis—To quantify the regional accuracy of the
reconstructed myocardium, we conducted a bias-variance analysis of an ROI defined on the
LV wall [as indicated in Fig. 1(a)]. In cardiac imaging the key interest is to evaluate the
tracer distribution of the heart wall, which is used for the diagnosis of the myocardium. The
use of “regional bias-variance analysis” is to quantify the accuracy of the reconstructed heart
wall [20]. It allows one to decompose the reconstruction error into two terms, namely bias
and variance, which are estimated from many different noise realizations. By plotting the
variance (or the standard deviation) versus the bias, one can obtain the tradeoff between
these two error terms over the operating range of the parameters. Therefore, a bias-variance
plot allows one to compare the variance of the different methods at a selected bias, or vice
versa.

As explained in the following, this ROI was deliberately selected on the edge of the heart
wall in order to quantify any potential smoothing effect on the wall motion by reconstruction
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(which would exhibit as a bias in image intensity). Specifically, let f̄ROI denote the mean
intensity of the ROI in the noiseless reference f, i.e.,

(17)

where M is the total number of voxels within the ROI. Our goal is to quantify the statistical
accuracy of this quantity from different noisy reconstructions.

Let f̂(q), q = 1, 2,…, Q denote the estimates of f̄ROI obtained from Q different noise
realizations. The mean estimate is computed as

(18)

Then the bias and standard deviation (std) of this mean estimator are, respectively, estimated
as

(19)

(20)

In our experiments, a total of Q = 30 noise realizations were used.

3) Time Activity Curves (TACs)—To demonstrate the potential effect of temporal
smoothing on cardiac motion, we also computed the TAC of the ROI on the LV wall as
defined previously [Fig. 1(a)]. As noted previously, this ROI was deliberately selected on
the edge of the wall. Thus, as the heart wall moves in and out of this ROI during the cardiac
cycle, its image intensity will vary accordingly, which, therefore, serves as a good indicator
of the degree of wall motion in the reconstructed images. In our experiments, the image
intensity of this ROI was computed and plotted as a function of the different gates.

Finally, as reference for comparison, the gated images were reconstructed from simulated
projection data of the phantom under the condition of no noise and without attenuation and
scatter (by turning off attenuation and scatter in the simulation) using the ML-OSEM
algorithm [21] (10 iterations, 16 subsets). These images were then used as reference for
quantifying the accuracy of reconstructed images as described above. Such a choice was
based upon the following considerations. In the simulated imaging study, we used a setting
that is typical of realistic clinical acquisitions. That is, the projection data were obtained
from the SIMIND Monte Carlo package [15] which simulates the generation, propagation,
scattering and detection of photons. It is important to note that this is more realistic than
simulation with a discretized analytical projector, as it would remove any potential bias that
may arise if the same analytical projection model were used for both data generation and
reconstruction. In reality, there always exists a modeling error between the actual data
acquisition process and the analytical projector used for the reconstruction. Because of this
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potential mismatch in the projector model, the noiseless reconstruction represents what
would be achievable in the ideal scenario of both perfect attention and scatter correction and
perfect noise filtering. By comparing to this noiseless reconstruction, we will learn how far
the proposed method is from this ideal situation.

IV. Results and Discussions
A. Overall Reconstruction Accuracy

In Fig. 2, we summarize the SNR results of the reconstructed myocardium by the proposed
DFT-PLS and DFT-MAP methods with different parametric settings. In the figure, each
curve was obtained by varying the order of Fourier representation (abscissa) while the
spatial parameter βs was held at a constant. The results were shown for several different
values of βs for each method, namely, [0,1,3] × 10−3 for DFT-PLS and [0,1,2] × 10−4 for
DFT-MAP. These results were obtained from an average of 30 different noise realizations.

From Fig. 2, we see that both methods achieved nearly the same highest SNR level
(approximately 17 dB) with one AC component. For both methods the SNR of the
reconstructed myocardium decreases monotonically as the order of the AC components in
Fourier representation further increased in the reconstruction. This shows that the noise level
becomes increasingly dominant over the signal at higher order AC components. Note that
when the model order is eight, the DFT-MAP is equivalent to that of independent
reconstruction of individual gates by using MAP with a spatial prior.

The results in Fig. 2 indicate that, as far as the overall noise level in the entire myocardium
is concerned, the best SNR results were achieved when the model order is at one. However,
this setting may not be optimal as far as the regional wall motion is concerned, as our
regional analysis results in the following will indicate. In Fig. 3, we show the power
spectrum of the signal in the entire myocardium ROI (computed from the noiseless reference
images), which shows that up to 89.87% of the AC signal power can be captured by the first
harmonic component. Thus, inclusion of additional higher-order coefficients has little effect
on further improving the SNR of the entire ROI. However, the overall SNR measure does
not provide an adequate assessment of the accuracy of the heart wall associated with
regional wall motion, which is important in diagnostic cardiac imaging. Because of this, we
have also used additional measures such as regional bias-variance analysis and time-activity
curves which are shown in the following.

In order to speed up the reconstruction, in our experiments we first estimated the extent of
the heart volume by a bounding box, and only the DC component was used in the
representation model for background voxels outside this bounding box. This is because in a
gated sequence there is little motion outside the heart volume among the different gates
(hence, little image intensity variations).

B. Regional Bias-Variance Results
In Fig. 4, we show plots of bias versus standard deviation for the ROI on the heart wall [Fig.
1(a)] from reconstruction by the different methods. In the figure, each curve was obtained by
varying the spatial smoothness parameter βs ([0, 0.5,1,3] ×10−3 in DFT-PLS; [0, 0.5,1,2] ×
10−4 in DFT-MAP) while the order of Fourier representation was held at a constant in the
reconstruction. A total of 30 noise realizations were used; the bias and variance values were
computed as in (19) and (20).

From Fig. 4, we see that each curve shows that as βs increases the variance (ordinate)
decreases while the bias (abscissa) increases. Furthermore, increasing the order of the
Fourier representation will decrease the bias, but the variance will increase; the smallest bias
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is reached once the model order is increased to four. Beyond that there seems to be little
additional benefit. On the other hand, the largest bias is achieved when the model order is at
one. This increased bias is attributed to the overly smoothing effect of the temporal
regulation in this case.

For comparison, we also tested against a clinical spatiotemporal processing method [22]. In
this method, the different gates were first reconstructed by using the filtered backprojection
(FBP) method, then processed spatially with a Butterworth filter of order 2.4 and cutoff
frequency of 0.2 cycles/voxel, and further processed with a temporal filter with impulse
response 1/4, 2/4, 1/4. This method is referred to as ST121. As can be seen in Fig. 4, the
ST121 method could achieve a smaller variance but with a much larger bias.

C. TAC Results
In Fig. 5, we show the TAC of the ROI on the heart wall [Fig. 1(a)] from reconstruction by
the different methods. The order of Fourier representation used was three. These results
were obtained from an average of 30 different noise realizations.

For comparison, the TAC obtained with ST121 is also shown in Fig. 5. As can be seen, the
TACs of both DFT-PLS and DFT-MAP on average are much closer to that of the reference
TAC (hence, smaller bias) than that of ST121. Note that this is consistent with the bias
versus variance results shown earlier in Fig. 4. These results indicate that the use of the
Fourier representation model did not cause significant blurring of the wall motion in the
reconstructed images.

D. Reconstructed Images
In Fig. 6, we show a set of typical images reconstructed by the different methods, namely,
DFT-PLS, DFT-MAP, ST121, and the noiseless reference. These images are in fully 3-D.
For clarity, only one transverse slice (#36) of the LV myocardium is shown for several
selected gates; in addition, in Fig. 7 we show a short-axis view of these reconstructed
images.

From these results it can be seen that the DFT-PLS and DFT-MAP images suffer from far
less blur than that of ST121; the LV wall in DFT-PLS and DFT-MAP is notably better
defined, particularly near the ES phase (gate #9). The images in Fig. 6 show that the septal
wall of the LV is also more accurate in DFT-PLS and DFT-MAP.

Finally, in Fig. 8, we show a plot of the objective function versus the number of iterations
for DFT-PLS and DFT-MAP in a typical run for the simulated data. For DFT-PLS, the plot
is shown for the case of reconstruction of the DC component when spatial parameter βs = 0;
for DFT-MAP, the plot is shown for the case of reconstruction with model order at one and
the spatial parameter βs = 0.

E. Clinical Data
As a preliminary demonstration, in Fig. 9, we show the reconstructed images from the set of
clinical data by the different methods. Owing to the lack of ground truth, the parameters for
DFT-PLS and DFT-MAP were empirically chosen (for DFT-PLS βs = 5 × 10−4; for DFT-
MAP βs = 2 × 10−6; the order of Fourier representation was two for both). As can be seen,
the LV wall is better defined in DFT-PLS and DFT-MAP, and the heart wall is better
resolved from the high bowel activities nearby.

Finally, it is noted that from all the results in this section the two reconstruction methods,
DFT-PLS and DFT-MAP, achieved very similar reconstruction results when evaluated with
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different criteria. While in theory the DFT-PLS approach is only suboptimal compared to
DFT-MAP, the reconstruction results show that it can be nearly as accurate as DFT-MAP.
We believe that this is largely because the DFT representation could effectively decouple the
statistical dependency among the different harmonics, as a result, reconstructing them jointly
may offer little advantage over otherwise. Among the two, the DFT-PLS method is noted to
be more efficient computationally.

V. Conclusion
We developed a reconstruction procedure for gated imaging by using Fourier harmonic basis
functions. A PLS estimation method and a MAP estimation method were applied for the
reconstruction, in which the Fourier representation plays the role of an implicit temporal
prior. We demonstrated the proposed approach in the context of gated cardiac SPECT
imaging, where the image data are deteriorated by the increased noise due to gating,
distance-dependent blur, attenuation and scatter. Our quantitative results show that the
proposed approach can yield more accurate reconstruction of the gated images compared to
a clinical post-temporal filtering approach. We also demonstrated our approach on a set of
real patient data. Interestingly, our proposed DFT-PLS and DFT-MAP methods performed
similarly in reconstructing gated heart image sequences. Encouraged by these promising
results, we plan to further evaluate this approach on the detection of heart perfusion defect
and cardiac motion tracking in future studies.
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Appendix Iterative DFT-MAP Algorithm
For the optimization in (15), we applied a generalized EM algorithm [12]. First, as in EM,
introduce the complete data as the set of random variables sij, each being the number of
photons emitted from within pixel j and detected in projection bin i. Then the estimate D of
is updated at each iteration as

(21)

In SPECT, the log-likelihood of the complete data is given by

(22)

where it is understood that the quantity fk is parameterized by D as in (2).

As in EM, define the Q function as

(23)

By ignoring the term log(sij!) which is not related to D, the function Q can be written as

(24)

where
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(25)

Then the update in (21) can be rewritten as

(26)

In our experiments, we implemented an iterative coordinate descent (ICD) algorithm [13]
for computing the update in (26), in which the unknown coefficients dm(j) are updated
sequentially for each voxel. Specifically, consider voxel j. Let vector d denote the collection
of unknown coefficients associated with j, i.e., d ≜ [d0(j), d1(j),…, dK−1(j)]T, and let h(d)
denote the objective function in (26) restricted to only d, with the rest of the voxels fixed at
their current estimate. The unknown d is then solved from minimization of h(d). To ensure
that the resulting image intensity is nonnegative, we applied the barrier method [23] for the
minimization of h(d). Specifically

(27)

where the second term is the barrier function of which the role is to keep the solution from
leaving the feasible region. Again, note that in (27) fk(j) is parameterized by d. In our
experiments, the Newton’s method was used for solving (27). As starting point, the DC
component was set as a uniform (positive) constant as in standard EM reconstruction, and
the AC components were set to zero. Such a choice was to insure that the initial iterate
resides in the feasible region. The barrier parameter was set to be μ = 5/(n + 1) with n
representing the iteration number.
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Fig. 1.
(a) Region of interest (ROI) used for bias-variance (BV) analysis and TAC. (b) Interior
projection of NCAT obtained using SIMIND.
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Fig. 2.
Signal-to-noise ratio (SNR) of the reconstructed LV myocardium with different settings of
βs and different numbers of harmonics for DFT-PLS and DFT-MAP. These results were
obtained from 30 noise realizations.
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Fig. 3.
Power spectrum of the signal in the myocardium ROI.
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Fig. 4.
Bias-standard deviation plots for DFT-PLS and DFT-MAP with different settings of βs and
numbers of harmonics. These results were obtained from 30 noise realizations. For reference
the result is also shown for ST121.

Niu and Yang Page 19

IEEE Trans Image Process. Author manuscript; available in PMC 2013 July 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Mean time activity curves across 16 gates obtained with different methods: DFT-PLS, DFT-
MAP, and ST121. A total of 30 noise realizations were used.
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Fig. 6.
Reconstructed images of a transverse slice of four gates by different reconstruction methods:
ST121, DFT-PLS (βs = 5 × 10−4), and DFT-MAP (βs = 1 × 10−4).
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Fig. 7.
Reconstructed images of four gates by different reconstruction methods in short-axis view:
ST121, DFT-PLS (βs = 5 × 10−4), and DFT-MAP (βs = 1 × 10−4).
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Fig. 8.
Objective function values versus the number of iteration for DFT-PLS and DFT-MAP.
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Fig. 9.
Reconstructed images of four gates from a set of patient data with ST121, DFT-PLS (βs = 5
× 10−4), and DFT-MAP (βs = 2 × 10−6).
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