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FIR Filter Banks for Hexagonal Data Processing

Qingtang Jiang

Abstract—Images are conventionally sampled on a rectangular
lattice. Thus, traditional image processing is carried out on the * * * *

L] L] L] L] L]
rectangular lattice. The hexagonal lattice was proposed more . . . . .
than four decades ago as an alternative method for sampling. e o o e
Compared with the rectangular lattice, the hexagonal lattice has o o o o
certain advantages which include that it needs less sampling . . . . .
points; it has better consistent connectivity and higher symmety; o . o . o
the hexagonal structure is also pertinent to the vision process. . . . . . . . . .

In this paper we investigate the construction of symmetric FIR
hexagonal filter banks for multiresolution hexagonal image pro- Fig. 1. Rectangular lattice (left) and hexagonal lattice (right)
cessing. We obtain block structures of FIR hexagonal filter banks
with 3-fold rotational symmetry and 3-fold axial symmetry. These
block structures yield families of orthogonal and biorthogonal
FIR hexagonal filter banks with 3-fold rotational symmetry the hexagonal lattice has been used in many areas such as
and 3-fold axial symmetry. In this paper, we also discuss the edge detection [10], [11] and pattern recognition [12]}[16
construction of orthogonal and biorthogonal FIR filter banks The hexagonal lattice has also been applied in Geoscience
with scaling functions and wavelets having optimal smoothness. ) - ; .

and other fields. For example, in the Soil Moisture and

In addition, we present a few of such orthogonal and biorthogonh o o
FIR filters banks. Ocean Salinity (SMOS) space mission led by the European

. Space Agency, the data collected by the Y-shaped antenna of
Index Terms—Hexagonal lattice, hexagonal data, 3-fold rota- he SMOS . is h | d led
tional symmetry, 3-fold axial symmetry, orthogonal and biorthog- € space mission is hexagonal data (sampled on a

onal FIR hexagonal filter banks, orthogonal and biorthogonal hexagonal lattice) [17], [18]. A hexagon-based grid hasnbee
hexagonal wavelets. adopted by the U.S. Environmental Protection Agency for

global sampling problems [19], [20].

Despite numerous advantages of the hexagonal lattice,
multiresolution (multiscale) hexagonal image processgig
I. INTRODUCTION research area with slow pace of activity, as pointed out jn [7

Traditional 2-D data (image) processing is carried out en tfPN€ Probable reason for_ this could be that most researqi!lers [
rectangular lattice since 2-D data is conventionally s@aplthe “Wavelets” community are accustomed to the traditional
at the sites (points) on a square or rectangular lattice.aSefectangular lattice. Another reason is probably that curre
square lattice in the left part of Fig. 1. The hexagonal datti @PProaches have encountered difficulties in the consoructi
(in the right part of Fig. 1) was proposed more than fou@"d de§|gn of _des!rable hexagongl filter banks to be used
decades ago in [1] as an alternative method for samplif§’ Multiresolution image processing. To t_he author’s best
and since then, it has been used in numerous applicatiofRowledge, [4], [21]-{26] are the papers available on the-co
Compared with a rectangular lattice, a hexagonal lattice hgruction/design of hexagonal filter banks with both lovgas
certain advantages, see e.g. [1]-[9]. It was shown in [1],thf_§md highpass filters constructed_. [21] presents a few _FIIRe(fm
for functions band-limited in a circular region in the freqey MPulse response) hexagonal filter banks which achieved nea
domain, the hexagonal lattice needs a smaller number (ab8(ffogonality. [22] provides one 7-channel/7-refinement)
13.4% smaller) of sampling points to maintain equally high!R hexagonal filter bank for image coding. The authors
frequency information than the square lattice. The hexagor [23] designed FIR hexagonal filter banks by minimizing
structure has better consistent connectivity: each eleanen the filter bank error and intra-band aliasing error function
cell of a hexagonal lattice has six neighbors of the sarf@d applied their filters to image compression and orieriati
type while an elementary cell of a square lattice has ngysm. The highpass filters u.sed in [23] are swtat_)leeﬁpat
different types of neighbors. The hexagonal structure guses shifting and frequency modulations of t_he Iowpass filteR FI
higher symmetry: a regular hexagonal lattice has 12-foftpxagonal filter banks was also designed in [24] by the
symmetry while a square lattice has 8-fold symmetry. OthéMe method as in [23] but with a different filter bank error
advantages of the hexagonal structure over the squarem‘euca”d_ mtra-_band aliasing error function. The FIR f||te_r banks
include that it offers greater angular resolution of imageesigned in [21], [23], [24] are not perfect reconstructitier

and it is closely related to the human visual system. Hen&@&nks. Construction of biorthogonal hexagonal filter banks
was fully investigated in [25] and a few biorthogonal FIR
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block structure of orthogonal/biorthogonal FIR hexagditiar
banks with certain symmetry. However, a rigorously mathe-, VYoo, . U o . o .
matical proof of the symmetry and the (bi)orthogonality loé t \ y

. 1 .

filter banks in [4] is desired, and the issue of how to selegt th * e .
free parameters in these filter banks needs to be addressed, ., ., , N—

Though the hexagonal filter banks designed in [23] are U ottt
not perfect reconstruction filter banks, experimental ltesu * e e o o o e

on their applications to image compression and orientation ) _ _

analysis carried out in [23] and their applications to dibit (F'.g-h%)- Regular unit hexagonal lattice (left) and square lattizé
) o (r

mammographic feature enhancement and the recognition of

complex annotations in [12], [13] are appealing. Thereftre s
construction/design of hexagonal filter banks deservabdur . .
investigation. The main objective of this paper is to camstr . b . .

orthogonal and biorthogonal FIR hexagonal filter banks with
certain symmetry which is pertinent to the symmetry striectu
of the hexagonal lattice.

This paper is organized as follows. In Section I, we first
briefly show that the problem of filter construction along
the hexagonal lattice can be transformed into that along the
square lattice ofZ?. After that we discuss the symmetry
of filter banks and review some basic results on orthogbig. 3. Symmetric axes’, Sz, S3 in hexagonal lattice
nal/biorthogonal filter banks. In Section I, we preserddh
structures of orthogonal and biorthogonal FIR filter bank& w - L VAT )
3-fold rotational symmetry. In Section IV, we provide blockVherevi = [1,07,vo = [-3,*]". Let U be the matrix
structures of orthogonal and biorthogonal FIR filter bankg w defined by
3-fold axial symmetry. These structures include that in [4] U — 1 _ ©)

In both Sections Il and IV, we also discuss the construction
of orthogonal and biorthogonal FIR filter banks with ScallnthenU transforms the regular unit hexagonal lattice into the
square latticeZ?. See Fig. 2.
For a hexagonal filtetH (w) = ;> g Hge & with

functions and wavelets having optimal smoothness.
In this paper we use the following notations. Fer =
T « _ T . ; ;

[x%’xﬂ Y =y, x 3 denotes their dot (inner) prOdUC_t(reaI) impulse responsH, (in this paper a factot. is added

x*y. For a functionf onIR”, f denotes its Fourier transform: . ! . 4
for convenience), by the transformation with the matiixwe
have a corresponding filtefi(w) = >, 7. hie &« for
square data (squarely sampled data) with its impulse ragpon

fw) = [ge f(x)e*“dx. For a matrix M, we useM*
hx = Hy-1. Conversely, corresponding to a square filter

to denote its conjugate transpod&’, and for a nonsingular
matrix M, M~T denotes( M 1), Forw = [wy,ws]T, let

iws (1) (filter for square datah(w) = ; ¢z e ™, we have a
hexagonal filterH (w) = § > g huge &%,

The matrix U also transforms the scaling functions and
wavelets along the hexagonal lattice to those along thersqua
In this section, after showing that the problem of filtefattice Z2. For example, ifP is the scaling function associated

construction along the hexagonal lattice can be transfdrmwith a lowpass hexagonal filtef (w) = izgeg Hye g,
into that along the square lattice, we provide some basidtees namely, it satisfies

on the symmetry and the orthogonality/biorthogonality béfi

e et gonalty gonatty o(x) = 3 Hed(2x—g), xeR?,

S2

1
0

I

(v}
w

z1=€e " zg=¢e"

II. PRELIMINARIES

geg
; ; then ¢ defined by¢(x) = ®(U~'x) is the scaling function
A. Transf he h I h I . : : ;
ransforming the hexagonal lattice to the square lat#ce associated with square filteh(w) — 1570 e,

. Most multire_solution analysis theory and algorithms fO\Vyhere hx = Hy-1. Therefore, to design hexagonal filters,
image processing are developed along the square lattit® Wife need only to construct filters along the traditional ¢ati
sitesk € Z%, though they could be established along genergk  Then the matrixtU will transform the filters, scaling

lattices (see e.g. [27] for the shift-invariant theory @onfynctions and wavelets along the latti@ into those along
general lattices). To design hexagonal filter banks, here ¥@ hexagonal lattice.

transform the hexagonal lattice to the square lattice sb tha
we can use the well-developed integer-shift multiresohuti
analysis theory and methods.

Let G be the regular unit hexagonal lattice defined by

B. Symmetry of filter banks

Since the hexagonal lattice has the highest degree of sym-
metry, it is desirable that hexagonal filter banks desigrisd a
G={mivi+ngvy: mny,ng €7}, (2) have certain symmetry pertinent to the symmetric struabdire
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the hexagonal lattice. In this paper, we consider two typesy, — [ (1J 1 } W= [ 1 -1 } S, = { -1 (1) } @
of symmetry: 3-fold rotational symmetry and 3-fold axial 0 0 -1 -1
symmetry which are defined below.

Then one can show tha, QM) , Q) Q®) satisfy (4) if and
Definition 1: A hexagonal filter bank P, Q") Q®), Q®} @@7.Q v 4

is said to have3-fold rotational symmetryf its lowpass filter only if

P(w) is invariant under thg and 4 rotations, and its high-  px \ = proi = i, 00 = ¢4, ¥ = ), k € 2% (8)
pass filtersQ® and Q® are theZr and 4= (anticlockwise) ' ’

rotations of highpass filtef "), resp. and thatP, Q"), Q®, Q) satisfy (5) if and only if

PNk = PWk = PS.k = Pk 9)
1 1 2 1 3 1
qg\/e)k = q1(< ), QI(c) = qﬁsz, ql({) = ql(%)k, k € Z2.

lattice shown in Fig. 3.

Definition 2: A hexagonal filter bank P, Q), Q® Q®)}
is said to have3-fold axial symmetnjif P(w) is symmetric To summarize, we have the following proposition.
aroundsS;, S, andS;, andQ™) is symmetric around the axis Proposition 1: Let {P,Q(), Q) Q®)} be a hexagonal
S1 and Q® and Q©® are theZr and i7 (anticlockwise) filter bank and{p,¢™, ¢, ¢} be its corresponding square
rotations of Q1) resp. filter bank. Then{P,Q™, Q® Q®} has 3-fold rotational

Let Ry, Ro, N.,W and S, be the matrices defined by ~ symmetry if and only if{p, ¢V, ¢®,¢®} satisfies (8); and
{P,QW, QP Q™1 has3-fold axial symmetry if and only if

Let Sy, .52 andS; be the lines in the regular unit hexagonal {

Fol L 2| Rl % {p,a),q®, ¢} satisfies (9).
s 1 i1 In the following, for the convenience, we say a square filter
L 3 bank{p, ¢", ¢®, ¢} has3-fold rotational symmetry3-fold
N, = [ _\/g ? ] LW = { (1) 01 ] , axial symmetryresp.) if it satisfies (8) ( (9) resp.).
22 B
~ 1 V3 , .
S, = [ fg k ] ) C. Biorthogonality, sum rule order and smoothness
T2 2 In this subsection, we review some results on orthogo-
Then one can easily show thap, Q(, ), Q®)} has3-fold nal/biorthogonal (square) filter banks. Denote
rotational symmetry if and only if for al € G, no = [0,01", my = [m,7]", my = [x,0]", ny = [0,7]".
. _p. — @ _ o) HB) _ oD . . (10)
Prig = Prog =Fe Qg" =@ - Qg" =Qp s ) FIR filter banks{p, ¢, ¢, ¢} and{5,¢M, 52, 1 are

. .. said to bebiorthogonalor they are perfect reconstruction filter
and that{P,Q™M,Q®,Q®)} has3-fold axial symmetry if g yarep

ks if

and only if for allg € G, banks i
Pr.g = Pirg = s = I > plw+m)pw+m,) =1, (11)

- — — P,
{ QJ(\If)g _ %% (Seg: Q(}) Q(g) _ Q(}) (5) 0<k<3 -
Neg g e Rig’ 8 Rog’ Z p(w+ )30 (w+mn,,) =0, (12)
Observe thatR, = WN., R, = S.N.. Thus if 0<k<3 " o
{P,QW,Q® Q®)} satisfies (5), then it satisfies (4). There- Z ¢ N(w+n,)7 0 (w+mn,) =00, (13)
fore, if a hexagonal filter bank has 3-fold axial symmetrgrth 0<k<3

it has 3-fold rotational symmetry. . . for 1 < 0,0 < 3, w € R?, whered, is the kronecker-delta
The 3-fold rotational symmetry is considered in [25], Wher%equence. Afilter banfp, ¢, ¢®, ¢} is said to beorthog-

it is called the hexagonal symmetry. Both the 3-fold rotadio 5 if it satisfies (11)-(13) withp = p, ¢© = ¢©,1 < ¢ < 3.

symmetry and the 3-fold axial symmetry are closely related t | ot ¢ and é be the scaling function associated wjtrand

the symmetry structure of the hexagonal lattice. In thisepapﬁ resp. Then (11) is the necessary conditiongaand ¢ to be
we consider filter banks with these two types of symmetryinrihogonal duals:

Compared with filter banks with 3-fold axial symmetry, filter
banks with 3-fold rotational symmetry have less symmetrty bu (x) g(x — k) dx = 65,05, (14)
they provide more flexibility for the construction of filterk R?2

should be up to one’s specific application to choose filteklaarlfor all k —

with 3-fold rotational or axial symmetry. e : S "
) 1) H©@ G satisfies (14) withp = ¢. Under certain mild conditions, the
Fo(rl) a(QE]e)%gorLal tff:lter bank{P,cCiQ. @70 f'ﬁ’ Iebt condition (11) is also sufficient for the biorthogonality ¢f
{p.a™, ¢',¢"} be ne corresponding square Tier améndgb (see e.g. [28]-[30] for the details). For biorthogonal FIR
after the transformation by the matriX/ in (3). Let filter banks {p,q(1),q®,¢®} and {5, 3@, §®1, if the

Ri,Rs, N.,W and S, denote the matricesUR,U !, ' . . :
= e S 1 associated scaling functiors and ¢ are biorthogonal duals,
UR U, UN U, UWU~" andUS.U~" resp., namely, theny(®), (0 defined by

[k1,ko)" € Z?. We say¢ is orthogonal if it

— -

-1 1 0 -1 ~ = =
R e R [ PR C R IS C N T U )
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are biorthogonal wavelets, namele(.ﬁ)( 1 <€ <3,57 € pw)is still given by some (but less) free parameters. (2)
Zk e 22} and {¢\%) : 1 <¢<3,je Zke 7%} are Adjustthe free parameters for the resultin@.) by applying
) ik = = 9 ) . . R
biorthogonal bases af2(IR?), where the algorithms/software in [35]/[36] to achieve the optima
’ Sobolev smoothness fa.
P (x) = 29O (2x — k), §{(x) = 2700 (2x — k).
[1l. ORTHOGONAL AND BIORTHOGONAL FIR FILTER

Similarly, for an orthogonal filter banKp, ¢, ¢, ¢®},
y g Kp.a'®,q™,a™" ) BANKS WITH 3-FOLD ROTATIONAL SYMMETRY

if the associated scaling functiop is orthogonal, then)(®)
defined above are orthogonal wavelets, nam{ad/gé?( 1< In this section we consider the construction of orthogonal
¢ < 3,j € Z,k € Z*} is an orthogonal basis of?(IR?). and biorthogonal filter banks with 3-fold rotational symmyet
The reader is referred to [31] and [32] for the multiresalnti The 3-fold rotational symmetry of filter banks is discussed i

analysis theory and its applications. §lll. A, and block structures of orthogonal and biorthogonal
For a (lowpass) filtep(w) = izkeZQ pre” %« we say FIR filter banks with 3-fold rotational symmetry are preseht
that p(w) has sum rules of ordern. if >~, px =4, and in §lll. B and §lll. C, resp.
> (2k1)* (2k2)**P(2ky 202) . . .
" A. FIR filter banks with 3-fold rotational symmetry
= Z(Zkl + 1) (2k2)** (2, +1,2k2) Suppose p(w), ¢V (w), ¢ (w), ¢ (w) are FIR filters.
k Then filter bank{p, ¢(*), ¢® ¢®} has 3-fold rotational sym-
= Z(le)al(2k2 + 1)%2D(ay 2k 1) metry, namely it satisfies (8), if and only if
k -7 -7
o o p(w) =p(R; " w) =p(R; " w),
= Z(zlﬁ + 1) (2k2 + 1)**p(ak, +1,2k,+1) { 4@ (w) = V(R Tw), ¢®(w) = ¢V (RyTw).

K
for all nonnegative integera, as With 0 < a; + as < m. TS, together with the facts thdt, = R, R} = I, leads to
Under certain mild conditions, sum rule order pfw) is the following proposition. .
equivalent to the approximation order and accuracy of theProposition 2: A filter bank {pa_‘I_(l)»q(_Q)»_q(d)} has 3-fold
scaling functiong associated withp(w). The reader may seerotational symmetry if and only if it satisfies

in [33] for the details. High sum rule order pfw) is also a T

necessary condition for the high smoothness ordet ohder {P, g, ¢, q(?’)} (RIT"—’) =

certain conditions such as the stability ¢f For example, T
for a stableg, if it is in the Sobolev spacéV"(IR?) (see Mo [P(W)a ¢V (w), ¢¥(w), q(g)(w)] :

the definition of the Sobolev space below), then its assediat
lowpass filterp(w) must have sum rules of order at least 1. Where

In the following two sections we obtain block structures (1) 8 ? 8
of orthogonal/biorthogonal FIR filter banks with 3-fold ro- My = 00 0 1 (15)
tational symmetry and with 3-fold axial symmetry. These 01 0 0

orthogonal/biorthogonal filter banks are given by some free
parameters. When a family of filter banks is available (given Next, we consider the filter bankp,q(),q®,¢®}
by free parameters), one can design the filters with desirall .." given by the product of block matrices. As-

properties for one’s specific applications. In this paper W8 me that we can writ p(w), ¢V (W), ¢ (w), ¢ (w)T
consider the filters based on the smoothness of the assnbciadtgA(Qw)[po(w) q(1) ’

: . , w ,q2) w ,q(g) w)]T, where A(w) is

scaling functhnsz). . . a4 x4 matrixovv(ith) t?igéng)mgtri(c )]polynomial (erztries,

In the consideration of smoothnes;, we will compute thaend {po,qél),qf),qé?’)} is another EIR filter bank. If both
Sobolev smoothness of scaling functions. Eor 0, denote 1) ~2) -(3) d 1) @ G have 3-fold rota-
by W*(IR?) the Sobolev space consisting of functiofix) {.p’ql 44 }r‘;’m F;{po,qo_ » 90 N IqO d} ave >-lo _r?_ a
on R2 with Jea 1+ 1w]2) | f(w)2dw < oc. If f € W*(R?) tional symmetry, then Proposition 2 leads to tHétw) satisfies
with s > k+1 for some positive integef, then f < Ck(R?). A(R;Tw) = MyA(w) M, (16)
We use the smoothness formula in [34] to compute the
Sobolev smoothness order of scaling functions. See [35] fmhere M, is the matrix defined by (15). Clearly
the detailed formulas for the Sobolev smoothness of scalifig, e!(“1+<2) =1 ¢~iw21 has 3-fold rotational symmetry
functions/vectors and [36] for algorithms and Matlab roe§ and it could be used as the initial symmetric filter
to find the Sobolev smoothness order. bank, while both diagl,e’(wi1tw2) e~iwr e~iw2)  and

For an FIR lowpass filtep(w) given by some free pa- diag(l,e *(witw2) eiwn civ2) satisfy (16) and they could be
rameters, the procedures to construct the scaling funetionused to build the block matrices. In the following we denote
with the (locally) optimal Sobolev smoothness are desdrise , , ,
follows: (1) Solve the linear equations for the sum rule osde Ip(w) = [1,elrtwn) gmion gmiwn]l (7)
such thatp(w) has the desired sum rule order. The resulting D(w) = diag(1, e’@1twe) gmiwr g=iwz)  (18)
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Next we useAD(w) and AD(—w) as the block matrices, diag(si, s2, s2, $2)Crdiad(ss, s4, s4, $4), Wheres, = £1,1 <
where A is a4 x 4 (real) constant matrix. One can verify that < 4, and
for AD(+w) satisfies (16) if and only ifA has the form:

ar B B Bk
a1 a2 az  ap oy — Br Y M Ck (24)
A— | @1 a2 ax ax 19 Be G v M |’
= . (19)
@21 Qg4 G2 G23 B e Gk Mk
az1 A23 0Aa24 Aa22 with
From the above discussion, we have the following result. 32— 1 2,
Theorem 1:1f {p,qV, ¢ ¢®} is given b ag = ; Bk = Ve = —Q, — Nk — Ck,
{p q q q } g y 1 + 3t2 1 + 31%

(1) (2) (3) T _

[f(w)vq (w), ¢ (w), ¢ (w)]" = (20) e = %(_Ck —ay £ \/0‘% + 451? _ 3@3 — 2(pay). (25)

2 Thus an orthogonal matriK’;, of the form (19) is given by
for somen € Z,, wherely(w) and D(w) are defined by (17) two free parameters, and Ck

and (18) resp., eacH,, is a constant matrix of the form (19), Theorem 2:If {p, ¢, ¢®, ¢} is given by (20) with each
then {p(w), ¢ (w), ¢ (w),¢® (w)} is an FIR filter bank Ak being dla@é’h82,Sz,Sz)delag(53784,S4,84) for some
with 3-fold rotational symmetry. Ck given in (24), then{p,q"),¢®,¢¥} is an orthogonal

In the next two subsections, we show that the block structuréR filter bank with 3-fold rotauonal symmetry.

in (20) will yield orthogonal and biorthogonal FIR filter ey Transforming{p, ¢, ¢®,¢®} given in Theorem 2 with
with 3-fold rotational symmetry. the matrixU to filter banks on the hexagonal lattice, we have

a family of orthogonal FIR hexagonal filter banks with 3-fold
rotational symmetry given by a block structure. For thisifgm
of orthogonal filter banks given by free parametgrs(;, 0 <

In this subsection, we provide a block structure of orthog: < 5, one can design the filters with desirable properties for
onal filter banks Wlth 3- f0|d rotational symmetry. For an FIRyne's specific applications. Here we consider the filteretas

B. Orthogonal filter banks with 3-fold rotational symmetry

filter bank {p, ¢1), ¢'*, ¢'*}, denoteg® (w) = p(w). Let  on the smoothness of the associated scaling functiomgext
Ulw) — [40 we consider two examples based on this structure.
(w) = {q (w+ ﬂk)}ogmgv Example 1:Let {p, ¢, ¢®,¢®} be the orthogonal filter

where 1,,0 < k < 3 are given in (10). Then bank with 3-fold rotational symmetry given by

{p,q¢M,q®, ¢®} is orthogonal if and only if/(w) satisfies Crdiag(1, e~ 2@1ws) g2iwn (2iwa) o [0 (), (26)
U)U(w)" =11, weR” (1) wherely(w) is defined by (17)Cy andC; are given by (24)
Write ¢ (w),0 < £ < 3 as for somety, (o, t1, (1. The lowpass filtep(w) is given by three
T free parametersy, (; andt¢;. With the choice of+ in & for
q([)(w) — 2( (é) (2(.0) + q( )(2(.0) i(w1+twz) + Mo IN (25), and
—iw; —iws 2 13 5—+13 4 13
(K)(Qw) + q(é)(Qw)e ). to = “1‘3\/_, Co = 2:l/_7t1 _ “1‘3\/_7
L(e2t) V(w)(g)enote the polyphase matrix ¢p(w), ¢ (w), the corresponding(w) has sum rule order 2, and the scaling
¢ (W), ¢ (W)} function ¢ is in W%9425(IR?). For p(w) given by (26), the
V(w) = { (é)( )} . (22) maximum order of sum rules it can have is 2. From the
% 0<£,j<3 numerical calculations, we also find thé&4254 is almost
Clearly, the highest Sobolev smoothness orgecan gain.
) Example 2:Let {p, ¢, ¢®, ¢} be the orthogonal filter
(W), ¢ (W), ¢ (W), ¢® ()] = 5V(2<,‘,»)[0(¢,,;), bank with 3-fold rotational symmetry given by
Furthermore, one can show that (21) is equivalent to C2D(2w)C1 D(—2w)Colo(w),
V(w)V(w) =1, welR (23) Where Ip(w) and D(w) are defined by (17) and (18) resp.,

b o (3 Cy, C1,Cs are matrices defined by (24) with free parameters
Therefore, to construct orthogongal, ¢V, ¢, ¢'*}, we need 4, ok = 0,1,2. With the choice+ in + for 1, in (25), and
only to construcl’ (w) such that it satisfies (23).

If {p,q,¢®,¢™} is given by (20), thenV(w) = to = 2.22285908185090, (o = 0.02319874938139,
ApD(fw)A, 1 D(+w) - - A1 D(£w)Ao. Furthermore, since t; = 0.18471231877448, ¢; = 0.60189976981183,
D(w)D(w)* = I, we have that if the constant matri- t, = 0.04160159358460

ces A;,0 < k < n, are orthogonal, ther/(w) sat-
isfies (23). One can obtain that if a constant matdy ({; is a free parameter), we get the smoothéswith ¢ €
of the form (19) is orthogonal, then it can be written a§/'1388(IR?).
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We have considered orthogonal filters with more norene filter bank can be used as the analysis filter bank and the
zero impulse response coefficients by using more blockther can be used as the synthesis filter bank which requires
A D(4+2w) in (20). Unfortunately, in term of the smoothnessmoother scaling function and wavelets.
of the scaling functions, using a few more blocksD (+2w) Example 4:Let {p, ¢, ¢, q(S)} and {p, q(l),q@),q(fﬁ)}
does not yield orthogonal scaling functions with signifitan be the biorthogonal filter banks with 3-fold rotational sysm
higher smoothness order. In the next section, we considertgdr given by Theorem 3 witm = 2:
fold rotational symmetric biorthogonal filter banks, whigive
us more flexility for the construction of perfect reconstioic [p(w), q(l)(w),q@)(w), q® ()T =

filter banks. AsD(2w)A1D(—2w)Aglp(w),

C. Biorthogonal filter banks with 3-fold rotational symmetr [p(‘“;)’ q(l)(w)’g@)(w)’ a (“T’)]T -
Let {p,q", ¢, ¢} and {5, gV, 42,3} be two filter Ae7 DR@)AT D=2 Ay o).
banks,V (w) andV (w) be their polyphase matrices defined by , )
(22). Then one can shows as§hl.B that {pyq(1)7q(2)7q(3)} where Ao,/_ll and A, are nonsingular matrices of the form
and (5,41, 2,3} are biorthogonal to each other if and19)- In this case, we can select the free parameters for

; = ; Ay, A1 and A, such that the resulting scaling functions
only if V andV satis 0, /21 2 oF
y it Viw) (wj fy ¢ € WES294(R?), p € WO-3859(IR?) and the lowpass filters
V(w)V(w)* =1, we R p(w) and p(w) have sum rules of order 2 and order 1 resp.

If {p,qV,¢®,¢®} is the FIR fiter bank given by The selected parameters are provided in Appendix A.

(20) for some4 x 4 real nonsingular matrixA4;, then

V(w) = A,D(xw)A,_1D(f+w)--- A;D(+w)A,. Hence,
(V(w))™t = A, TD(+w) A, T D(+w) - - ATTD(+w) A T V. ORTHOGONAL AND BIORTHOGONAL FIR FILTER
One can easily show that it;, has the form of (19), then so BANKS WITH 3-FOLD AXIAL SYMMETRY
dose A, . Thus, by Proposition 1{},§™",§®,¢®} with _ _ _
its polyphase matrix‘~/(w) = (V(w)*)~! also has 3-fold In this section we study the construction of orthogonal and
rotational symmetry. Therefore, we have the following tesuPiorthogonal filter banks with 3-fold axial symmetry. The 3-
Theorem 3:Let {p, ¢, ¢, ¢®} be the FIR filter bank fold axial symmetry of filter banks is discussed §WI.A,
given by (20) for sé)me7n0n7singulaAk of the form (19). @nd block structures of orthogonal and biorthogonal FiRfilt
Supposel, ¢V, ¢, ¢} is given by banks with 3-fold axial symmetry are presentectifi.B and
R §VI.C, resp.
p(w),§M (w), 7 (@), 7 (w)]" = (27)

lA;TD(j:Qw) - ATTD(F2w) A T I (w),
2 A. FIR filter banks with 3-fold axial symmetry
where Ij(w) and D(w) are defined by (17) and (18) resp.

Then{p,¢",¢®,§®} is an FIR filter bank biorthogonal to  Let {p, ¢V, ¢®,¢®} be an FIR filter bank. Then it has

{p,q,¢®,¢®} and it has 3-fold rotational symmetry.  3-fold axial symmetry, that is it satisfies (9), if and only if
Theorem 3 provides a family of biorthogonal FIR filter

banks with 3-fold rotational symmetry. Compared with the [ p(w) = p(Now) = p(W~Tw) = p(S. T w),

orthogonal filter banks given in Theorem 2, this family of{ ¢V (w) = ¢V (Nw) = ¢P(RTw) = ¢® (Rl w).

biorthogonal filter banks has more flexibility for the design

desired filters. Before we derive a block structure of filter banks with 3-fold
Example 3:Let {p,q™,¢?,¢®} and {p,d",3?,G®} axial symmetry, we first have the following proposition abou

be the biorthogonal filter banks with 3-fold rotational syem the 3-fold axial symmetry property of a filter bank.

try given by Theorem 3 witm = 1: Proposition 3: A filter bank {p, ¢("),¢®,¢®} has 3-fold

[p(w),q(l)(w),q(2) (w)7q(3)(w)]T = A, D(—2w) Ao Ip(w), axial symmetry if and only if it satisfies
[p(w), @ (@), §? (@), §® ()] =

(28)

[ ORC) (3>}T(N )= (29)

ATTD(—2w) Ay T T (w). 4 4 W) =

where 4, and A; are nonsingular matrices of the form (19). M |p(w), P (w), ¢?(w), ¢ (w) T,

We can choose the free parameters fy and A; such - T :

that the resulting scaling functions € W11860(IR?) ¢ e [ , g, ¢, q(S)} W Tw) = (30)

WO-5212(1R?) and the lowpass filters(w) andj(w) have sum i T

rules of order 2 and order 1 resp. Since smoothness order of M; |p(w), ¢ (w), ¢P (W), ¢¥(w)| ,

the scaling functions is still low, the selected parametees . T '

not provided here. [ ,q, ¢, q(?’)} (Se Tw) = (31)
Here and in the next example, we intently construct the - 1T

scaling functions with one smoother than the other so that M; |p(w), ¢V (w), ¢P(w), ¢¥(w)| ,
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where One can check that if a constant matisy, of the form (33)
_ - is orthogonal, then it can be written as (refer to [4])
1 0 0 0 1 0 0 O
Mol Lroo0f {0001 39° -1 29 29 29
“looo0o1|[""™ o0 1 0] _ 1 29 1+¢* -2¢° -2¢° (35)
0010 0100 T 14 3¢2 29 -29° 14+g¢* -2¢
(100 0] 29 2% 25> 1+g°
My = 0 010 or as diag+1,—1,—1,—1)G, whereg € IR.
0100 Theorem 5:1f {p, ¢, ¢, ¢®)} is given by (34), where
L0 0 0 1] eachB; is Gy, or diag+1, -1, -1, —1)G}, with G}, given by

(35) forgi. € R, then{p, ¢V, ¢?, ¢'®} is an orthogonal filter
bank with 3-fold axial symmetry.
Transforming{p, ¢V, ¢»,¢®} given in Theorem 5 with

The proof of Proposition 3 is given in Appendix B.
Next, we consider the filter bankp, ¢, ¢®,¢®} which

can be given byl the pgoduct ?f bICT’Ck matrices. ASme matrixU to hexagonal filter banks, we have a family of
sume that [p(w), ¢' )((Sd%q( )((2‘)")>q( )(g‘f)] can be writ- orthogonal hexagonal filter banks with 3-fold axial symmetr
ten asB(2w)[po(w), ¢y * (@), 45 (w), o (w)]", whereB(w)  given by a block structure. This structure is the one given by
Is a4 x % me;tnx 3W|th trigonometric polynomial entries pjien in [4], and it is referred here as Allen’s structure] [4
and {po, 5", 45", a5”} is another FIR filter bank. If both and [26] constructed several orthogonal filter banks based o
{p, ¢V, ¢, ¢} and {po, ¢\", ¢{?, ¢} have 3-fold axial the compaction of filters. Here we consider the filters based
symmetry, then Proposition 3 implies thB{w) satisfies on the smoothness of the associated scaling functions.

Example 5:Let {p(w), ¢ (w),q?(w),q®(w)} be the
(32) orthogonal filter bank given by

{ B(NeQ)) = MlB(w)Ml, B(WﬁTUJ) = MQB(U))MQ,
Gldiag(L 6_2i(w1 +w2)7 €2iw1 s €2iw2)G()I() ((.d),

B(S. Tw) = M3B(w)Ms.

Iy(w) defined in (17) has 3-fold axial symmetry and it could

be used again as the initial filter bank. FBfw) defined by With Go,G1 given by (35) for somego,g1 € IR. The
(18), since bothD(w) and D(—w) satisfy (32), they could be hexagonal filter bank corresponding to this filter bank isechl

used to build the block matrices. Next we will UgD(w) the L-Trigon of the R-Trigon in [4]. Then with the choices of

and BD(—w) as the block matrices, whei@ is a4 x 4 (real) 1 1
constant matrix. One can verify th@D(+w) satisfies (32) 90 = 9(2 VI3), g1 = 3(4 V13),
if and only if B has the form: the resulting lowpass filtes(w) has sum rule order 2, and the

scaling functiong is in W°9425(IR?). Actually, this resulting
p(w) is the lowpass filter of sum rule order 2 in Example
1. The non-zero impulse response coefficiqmsqff) of the

bll b12 b12 b12
le b22 b23 b23

B = . 33
bot bos bas Do (33)

filters are
b21 b23 b23 b22
13 +3V13 13-13
Based on the above discussion, we reach the following P00 =~ P10 =Po1 = P-1-1= 7
theorem on the filter banks with 3-fold axial symmetry. 19 + /13
Theorem 4:1f {p, ¢, ¢?, ¢} is given by P11 =Po-1=P-10 = — o>
1-13
[p(w),q(l)(w),q(2)(w),q(?’) (w)]T = (34) P22 = po—2 = P—20 = BETI
1
— B, D(+2w) - - - B D(+2w) By lo(w) —5++/13
2 P23 = P32 = P12 = P21 = P-1-3 =P-3-1= — o
for somen € Z, wherely(w) and D(w) are defined by (17) ) 3+V13 1) 55+9V13
and (18) resp., and eady, is a4 x 4 constant matrix of the Qoo =~ 745 91 = 18
form (33), then{p, ¢V, ¢, ¢®} has 3-fold axial symmetry. o 1 W 1- Vi3
410 =401 —9-1-1 = 16
B. Allen’s orthogonal filter banks gy =q"), = _211—785 ”137 ) = _%1—3,
In this subsection, we show that the block structure in a  —17+5V13
(34) will yield 3-fold axial symmetric orthogonal FIR filter do—2 = 4-20 = YT I
banks, which were studied in [4], [26]. For an FIR filter —9+ 13
bank{p, ¢, ¢? ¢}, letV(w) denote its polyphase matrix a5y =ty = BT
defined in (22). 1f{p, ¢, ¢ ¢} is given by (34), then
b ) ) . 11 - 3 13
V(UJ) = B71D(iw)Bn—lD(iw) tee BlD(:l:L«J)BO ThUS, if qgl_)Q = q(_12)1 = q(_11)_3 = q(_lg_l — —48\/_’

the constant matriceB), are orthogonal, theft' (w) satisfies
(23), and hence, (34) gives a family of orthogonal filter lmnkand ql(f), qff’) are given by (8).



8 IEEE TRANS. IMAGE PROC., VOL. 17, NO. 9, SEP. 2008

DAVAVAVAN NS entr.y being a (Laurent) polynomial of;, zo. The possible
MAAVA VAVAVAVAVAN choices are ”
VAVAVAV AVAVA AVAVAV A'AVA ty =ty = —2, (37)
AVAVAVAN VAV NN a
\VAVAN \VAVAVAVAV/ or
\VAVAVAY . _ch
s=tla=—— (38)
Fig. 4. Non-zero impulse response coefficients of filters with Allen’s
structure (left) and those with new structure (right) In these two cases, déf(w)) is %(2‘3 — t4)%(ats + 2aty —

3cty). With £5, 5 given in (37),E(w) = (E(w)*) " is

We have also considered orthogonal filters with more non- B(w) = 2 . (39)
zero impulse response coefficients by using more blocks (ts — ta)(ats + 2aty — 3cty)
By D(+2w) in (34). Again, we find that using a few more a_ bé(z 4+ L L+ 1) bz 29 Zi Z_>
blocks By, D(+2w) does not yield orthogonal scaling functions ~ . i 4

R ! €— 2(Canzm + £ + 4y Gzz 404
with significantly higher smoothness order. _ 1 - R

Let {p,¢™,¢?,¢®} be the FIR filter bank given by (34), e— E(szlzﬁ + Z + g) dz1z2 o =
whereBy, 0 < k < n are4 x4 nonsingular constant real matri- € — g(dzlzg + z% + ;—;) dz1z9 % é
ces of the form (33). Thefp(w), ¢V (w), P (w), §®) (w)}
given by where

lB;TD(j:QW) - BT D(4+2w) By T Iy (w), a = (ts + 2ta)(ts — t4)1 b= —ty(ts — ta),
¢ =atz + aty — 2cty, d = cty — aty, € = —C(t3 — t4),

is biorthogonal to{p, ¢, ¢®,¢®} and it has 3-fold axial )
symmetry. Therefore, by choosing nonsingular matriggs Wwhile if ¢3, ¢4 are given by (38), thelt!(w) = (E(w)*) " is
of the form (33), one has a family of biorthogonal FIR filter _ 9

banks given by free parameters. Compared with the orthdgona F(w) =
filter banks of 3-fold axial symmetry given in Theorem 5, thes

. 4
(t5 — tg)(at5 + 2at2 - 3bt1) ( 0)

biorthogonal filter banks give us more flexibility for the ags a, — Cgl (z1 22 Ly + zz) by by b

of desired filters. However, in terms of the smoothness of the é1— ¢(Grzy 122 +diz + d122) & dv dy
scaling functionsp and ¢, they do not yield smooth, ¢ with &1 — 5((11,21 22 Ly &z + dle) di & di |’
reasonable supports. Because of this, we introduce in tkie ne & — S(die 2t + diz1 +120) dy dy &
subsection another family of biorthogonal filter banks v8th

fold axial symmetry. where

C~l1 = (t5 + 2t2)(t5 — tg), (~31 = at2 + at5 — 2bt1,

C. Biorthogonal filter banks with 3-fold axial symmetry - - ~
bl = —t1(f,5 - tg), dl = btl — atg, ey = —b(t5 — tg).

In this subsection we introduce another family of biorthog-

onal filter banks with 3-fold axial symmetry which is based Thaorem 6:Let (p,qM, ¢, ¢ be the filter bank:
on the following block matrix:
B(w) = (36) [p(w),q™ (W), q‘” (@), P @)" = (a1
1
a b+cnze  bdcex' btez! 5 En(£2w) -+ By (£2w) Io(w),
1|ty ts+it3zize bo+tazy' fo+tazy !
2| t1 todtizize ts+tzzt toFtezgt |7 Where Iy(w) is o_lefined by (17),Ek_(w)20 <k < n are
t1 tottyzize tottazyt s +tzzy given by (36) with parameters satisfying (37) (or (38)). If

where a,b,c,t;,1 < j < 5, are real numbers, and{ﬁ’ q™,4,¢®} is the filter bank given by

z1,%2 are given by (1). One can verify that(w) satis- B(w), i (W), 7 (w),§® (w)]" = (42)
fies (32). E(w) yields primal filter banks{p, ¢V, ¢, ¢®} 1~ N
with denser non-zero impulse response coefficients (and §En(i2w)---Eo(i2w)lo(w),

hence, they will produce smoother scaling functions and B
wavelets). For example, the black dots in the left part efhere Ey(w) = (Ei(w)*)~ !, are given by (39) (or by (40)),
Fig. 4 indicate the non-zero impulse response coefficiehtsthen{p, ¢V, ¢, ¢®} and{p, ¢, §*, 3>} are biorthogo-
p(w) from By D(—2w)By[1,ew1eiw2 e~iw1 e~iw2]T while nal FIR filter banks with 3-fold axial symmetry.
the non-zero impulse response coefficients pofv) from Again, with a family of symmetric biorthogonal FIR filter
Ey(2w)Ep(2w)[1, ereiwz i1 e~2]T gre shown in the banks available in Theorem 6, one can design biorthogonal
right part of Fig. 4 as the black dots. filter banks for one’s particular applications. Here we fpdev

We can choose some specigl such that dét(w)) is a two filter banks based on the smoothness of the associated
constant and hencB(w) = (E(w)*) " is a matrix with each scaling functionsp and ¢.
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Example 6:Let select parameters;; for A; are
[p(w), ¢ (W), ¢ P (w), ¢® ()T = ap; = 1.74210812926244, a1o = 0.41721745109326,
% Er(—2w) By (20) T (w), ag1 = —2.18192416765921, azy = 2.51403080377387,
(). 40 (), 32 (), 4 ()] = ag3 = 0.55679974918931, ags = 0.55661861238169;

and select parametets; for A, are

a11 = 0.51226668946537, a12 = —0.00417155767962,
az1 = —0.83390119661419, ase = —0.33354163795606,

% By (—2w) Eo(26) o (w),

be the biorthogonal FIR filter banks given in Theorem 6 with
n = 1 and the parameters satisfying (37). Then we can

choose free parameters such that the resulting scalingjéasc azz = 1.76565003212551, azq4 = 0.28836976159098.
¢ € WIS (R?) ¢ € WO4067(R?) and the lowpass filters
p(w),p(w) have sum rules of order 2 and order 1 resp. The APPENDIXB

impulse response coefficients of these two resulting filkkekis Proof of Proposition 3UsingR, = WN,, Ry = S.N,, one
are provided in the long version of this paper downloadabigin easily show that (29)-(31) imply (28). On the other hand,

at author's web site. using the following facts (i)-(v) about relationship amoitg
Example 7:Let matricesN., W, S., R1 and Ry, one can show that (28) leads
1) (@) 3) (T — to (29)-(31): (). N. = RTN.R;T; (i)). Ry = NW-T;
[p(w)iq (UJ)7q (w)aq (w)] (|||) Rl_T — NeSe_T; (|V) Rl_TW_T — NeRl_Ty (V)
§E2(2w)E1(—Zw)Eo(2w)Io(w), R;yTW=T = N.R;T. Here we just show the formulas in
- (2), The proof of other formulas in (29)-(31)
~ (1) ~(2) ~3)(, T _ (29)-(31) forg P
[p(w)l’q (@), (w), ¢ (W) = for p,qV and¢® is similar. Forg®®, we have
—FE5(2w)E1(—2w)Ey(2w) I _
2 2( w) 1( w) 0( w) 0(6&)), q(2)(N€w) — q(l) (Rl TNe(.U)

be the biorthogonal FIR filter banks given in Theorem 6 with = ¢/V(N.R; Tw)(by (i) = ¢V (R; Tw) = ¢'¥(w);
? = 2 and the paramﬁtehrs satisfying (37).d'!'hen W(T_ car;!ﬁ::opse OWTw) = ¢ (RTW Tw)

ree parameters such that the corresponding scaling ti 1 7 o D) peT. o (2)
(b c W1'7055(R2),(£ c W0'5869(IR,2), and the IOWpaSS filters Qq( )(‘]_V;Rl w)(lby (Eg)ﬂ) __3{( )(Rl w) - q( )(w)a
p(w), p(w) have sum rules of order 2 and order 1 resp. Again, ¢?(S. Tw) = V(R TS T w)

the corresponding impulse response coefficients are mdvid = ¢ (N, Ry Tw)(by (i) = ¢V (R;Tw) = ¢ (w),
in the long version of this paper.

LS

as desired.
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