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Statistical Tools to Evaluate the Performance of
Current Control Strategies of Power Converters and

Drives
Gustavo Rivas, Jorge Rodas, Senior Member, IEEE, and Jesus Doval Gandoy, Member, IEEE

Abstract—The proposal of new current control techniques for
power converters and electric motor drives has been one of the
main research topics in the fields of power converters and drives
during the past years. Usually, when evaluating and comparing
the performance of current controllers, various figures of merit
(FMs) are used, e.g. the mean squared error or the absolute
error between the reference and the measurement. Here it is
shown that such FMs have a random nature. Nevertheless, only
one result is reported in many published articles, for each FMs.
Also, it is not indicated whether or not more than one trial
has been performed to obtain the FM. In that case, opposite
conclusions can be reached when two current controllers are
compared, depending on the chosen results. In this sense, the
number, n, of experimental runs required to accurately compare
any FM, is proposed in order to address this problem. Likewise,
a statistical comparison procedure is introduced to evaluate the
relative performance of two controllers using any FM. Also, based
on the proposed statistical comparison methodology compared
to other criteria, an exhaustive simulation analysis is presented
comparing the accuracy of decision-making. Finally, a real data
set application based on experimental results is used to illustrate
the proposed procedure.

Index Terms—Central limit theorem, current controller
performance, hypothesis test, interval estimation, power
converters and drives.

I. INTRODUCTION

Power converters and drives are widely used in many
applications including electric vehicles, ship propulsion,
wind energy conversion systems, distributed generation,
among others [1], [2]. As a consequence, high-performance
closed-loop current control strategies are constantly proposed
and compared in the literature [3]. According to the existing
literature, new current controllers are usually validated
experimentally and then compared with a known or traditional
control strategy [4], [5].

A common way to compare the performance of current
controllers is to use a, so-called, figure of merit (FM). For
instance, in [6] the mean square tracking error of the phase
currents (MSE) and the total harmonic distortion in the phase
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currents (THD) are used as FMs. In [7] the performance
criteria are related to the MSE of the currents in several
sub-spaces such as d − q and x − y. References [8]red-[11]
also use THD as an FM but [8] includes the average error
between the measured current and its reference, [9] uses the
harmonic distortion, [10] uses switching frequency and [11]
includes the torque ripple.

Typically, when two current controllers are compared using
an FM, only one value is reported. If several experiments
were to be conducted for each current controller, then
random numbers for the FMs will be obtained from an
unknown probability distribution function (PDF). Such random
variations may be due to several reasons, e.g. temperature,
noise, measurements, among others. An exhaustive review of
the sources of errors in the measures can be seen in [12].
As will be shown later in this paper, based on experimental
results, an FM can vary by up to 56% between one trial and
another. According to the best of the authors’ knowledge, no
criteria has previously been published to treat this issue. A
single trial has the potential to give an unfair comparison
between controllers. Thus, the results of many published
articles that present a comparison of performance between
current controllers based on FM may not be reproducible. In
this context, the main questions to be answered in this paper
are:

1) How to confidently determine which controller has the
best performance.

2) How to quantify how much better it is.
3) How many experimental runs are necessary to validate

the conclusions.
4) How reliable the comparison based on statistical

performance criteria is.
FMs are random variables since they varies from trial to

trial. So, a statistical treatment to experimental measurements
is allowed [12], [13]. The objective of this paper is to introduce
the use of traditional statistical techniques to make robust
comparisons between two current control techniques.

Thus, the main contributions of this work are to establish the
random nature of FMs and to provide an easy-to-understand
methodology to rigorously deal with this randomness. The
procedure also gives the minimum experimental runs (n)
necessary to make robust comparisons between two current
control methods based on FMs.

The rest of the paper is organized as follows. Statistical
concepts as well as the comparison methodology are explained
in Section II. The system, control techniques, experimental
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setup, and FMs used to demonstrate the proposal are explained
in Section III. In Section IV, an exhaustive analysis based
on experimental results obtained from two predictive current
controllers (PCC) applied to a motor drive is presented. Then,
the detailed procedure based on a real data set is shown and
explained in Section V. Finally, conclusions are summarised
in Section VI.

II. THEORETICAL ENVIRONMENT

This section introduces the statistical concepts that will
be used in the sequel. Most of the proposal takes
the recommendations for Type A evaluation of standard
uncertainty ([12] section 4.2 p. 10) as a starting point.
Specifically, the estimation of a confidence interval (CI) will
be first introduced. The CI gives a range of values that, with
high probability, contain the true value of a PDF parameter.
Furthermore, with this estimation, as will be explained next,
it is possible to determine the current controller with the best
performance as well as how much better (or worse) it is. FMs
generally measure the deviation between the current prediction
and the theoretical reference. Therefore, the lower these values
are, the greater the efficiency of the current controller will be.

The estimation of the CI consists of determining two values,
lower limit (LL) and upper limit (UL), denoted by a and b,
respectively, as shown in Fig. 1. Given the interval [a, b] and
fixing a probability 1−α, also known as confidence level (CL)
(see Fig. 1) the following can be verified:

P(a ≤ δ ≤ b) = 1− α, (1)

where δ denotes the parameter to estimate, P(·) denotes the
probability and α ∈ (0, 1).

Let X and Y be two random variables representing the
same FM for two different current control methods A and B,
respectively. Suppose that they have an unknown PDF with
mean µx and µy and variance σ2

x and σ2
y , respectively. Then,

to treat the problem of comparison on the efficiency of two
current control strategies by the estimation of a CI by the
difference in means

δ = µx − µy, (2)

and the estimation of a CI by the means µx and µy .
For this purpose, the central limit theorem (CLT) is now

introduced. By considering X1, X2, ..., Xn as a succession of
independent and identically distributed random variables of
a probability distribution with mean µ and with a variance
σ2 6= 0. Then, if n→∞, the random variable

X =
1

n

n∑
i=1

Xi (3)

converges to a normal distribution with mean and variance

µx = µ, σ2
x =

σ2

n
, (4)

respectively.
By CLT, the standardized asymptotic distribution of the

sample mean Z = X−µ
σ√
n

converges in distribution to the
standard normal N (0, 1).

Fig. 1. CL, LL and UL for a generic δ parameter.

A. CI estimation

The distribution Z converges to a N (0, 1) for an infinite
(large) number of repetitions of an experiment under the same
conditions. In a real application, it is not possible to perform
infinite experimental runs. Therefore, based on a sample of xi
observations 1 ≤ i ≤ n, a valid estimate of µ can be obtained.
Here the objective is to estimate an interval that contains the
true value of the parameter µx (or µy) and with an acceptable
CL probability and precision.

The CL represents a probability that for a specific sample
size n, based on the sample distribution of the selected
estimator, the true parameter be contained. On the other hand,
the precision is related to the length of the CI. For instance,
if the CI is [a, b] (see Fig. 1), then the shorter the length, the
more accurate the estimate of µx will be.

According to (4), µx = µ, the expected value of the
sample distribution of the mean converges with the value
of the population mean. Therefore, after estimating a CI by
the sample mean, the population’s mean is indirectly being
estimated. This purpose is shown below.

By applying the CLT, the bilateral CI with 1−α CL for µx
is:

CI1−α(µx) = x± zα/2
σ√
n

(5)

being zα/2 the percentile α/2 of the standard normal
distribution and x = 1

n

∑n
i=1 xi. Note that as zα/2 =

−z1−α/2, for simplicity the first one is used in this paper.
Remark 1. In most of the real applications σ2 is unknown, so
in this situation, if X ∼ N (µx, σ) even for small n (n < 30)
the way of applied (5) providing better results is what follows:

CI1−α(µx) = x± tα/2,n−1
Ŝx√
n

(6)

where tα/2,n−1 is the α/2 percentile of a t-distribution with
n−1 degrees of freedom and Ŝx is an estimator of σ, defined
by

Ŝx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2. (7)

Now, the estimation of the CI for δ is presented. The random
variable to consider in this case is the difference in means
X−Y . Similar to the previous case for µx, now the goal is to
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estimate CI1−α(µx−y). The variance of the difference of the
means in independent samples (assuming n and σ equal) is:

σ2
x−y = σ2

x + σ2
y =

σ2

n
+
σ2

n
=

2σ2

n
. (8)

Assuming equal variances, the CI1−α(µx−y) is:

CI1− α(µx−y) = x− y ± zα/2σ
√

2

n
. (9)

Remark 2. Assuming equality but unknown variance σ2, in
relation to Remark 1, (9) must be:

CI1−α(µx−y) = x− y ± tα/2,2n−2
Ŝp√
n

(10)

where tα/2,2n−2 denotes the α/2 percentile of a t-distribution
with 2n − 2 degrees of freedom and Ŝp is an estimator of a
pooled standard deviation (SD), defined by

Ŝp =
√
Ŝ2
x + Ŝ2

y (11)

where Ŝy is defined analogously as (7).
Remark 3. Assuming inequality and unknowns variances, (9)
must be:

CI1−α(µx−y) = x− y ± tα/2,ν
Ŝp√
n

(12)

where tα/2,ν is the α/2 percentile of a t-distribution
with ν degrees of freedom, being ν approximately by
Welch-Satterthwaite equation [22] as

ν ≈ (n− 1)

(
Ŝ2
x + Ŝ2

y

)2
Ŝ4
x + Ŝ4

y

. (13)

B. Proposed number of experimental runs (n)

The comparison between controllers, using the statistical
method described in this article, starts from a lack of
knowledge between the efficiencies of both controllers, known
as the null hypothesis Ho. On the other hand, there is the
hypothesis that the researcher wishes to validate (or discard),
which corresponds to the alternative hypothesis H1. In this
case, these hypotheses are:

H0 : δ = 0

vs.
H1 : δ = τ, τ ∈ {R− 0}

The Ho assumes that both controllers (A and B) are equally
efficient based on some FMs. While the H1 establishes the
superiority of one of them.

The decision rule will be that if the 0 ∈ CI1−α(µx−y), it
is not possible to reject the H0. To accept the H1 it must be
fulfilled that τ ∈ CI1−α(µx−y) and 0 /∈ CI1−α(µx−y).

This method of decision is not foolproof. Note that a
decision is going to be made based on a sample. So, there
is the possibility of making mistakes. Table I summarizes the
cases of errors to consider. When a true H0 is rejected, the
Type I error is committed, whose probability of occurrence

TABLE I
TYPE I AND TYPE II ERRORS

Real situation
δ = τ (H0 false) δ = 0 (H0 true)

Decision δ = τ No error Type I error α
based on sample δ = 0 Type II error β No error

is complementary of the CL, and therefore represented by α.
While the Type II error, whose probability is represented by
β, occurs when a H0 is not rejected when it is false.

Fig. 2 shows the distribution of the mean difference under
H0 (the left distribution centered on δ = 0) and under H1 (the
right distribution centered on δ = τ ). When τ is near to 0 the
CIs under H0 and H1 could be intercepted. The probability
that this does not occur is known as the power 1− β.

For a bilateral 1− α CL, under H0 (see Fig. 2), the UL of
the CI is:

UL = z1−α/2σ

√
2

n
(14)

and for unilateral power 1− β, under H1 (see Fig. 2), the LL
of the CI is:

LL = τ − z1−βσ
√

2

n
. (15)

The required sample size n is the one that allows the
overlapping of the statistic distributions under H0 and under
H1 to provide the specified α and β values. Note that if
n increases, the distributions become more pointed and the
overlap decreases, therefore, the risks α and β. In Fig. 2, the
vertical solid line marks the value from which one or the other
decision will be made. The criterion is that the limits defined
in (14) and (15) do not overlap, that is:

z1−α/2σ

√
2

n
≤ τ − z1−βσ

√
2

n
. (16)

The difference τ proposed in H1 can be established (for
example) in relative terms to µx, given a ε ∈ (0, 1), thus,
τ = εµx , isolating the n in the previous inequality is:

n ≥
2(z1−α/2 + z1−β)2σ2

µ2
xε

2
. (17)

Fig. 2. Distribution of the mean difference under Ho and H1.
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Note that in (17) z1−α/2, z1−β and ε are quality
comparisons parameters related to CL, Power and precision,
respectively (later will be used in Table V). Moreover, in (17)
the value of σ and µx are unknown. So, a practical solution
to this situation is to conduct a pilot test run based on n0
experimental runs, and estimate µx by following the classical
arithmetic mean x while σ is estimated as the pooled standard
sampling error Ŝp defined in (11) and Ŝx and Ŝy as in (7)
replacing n by n0. Finally, (17) can be rewritten as:

n ≥
(z1−α/2 + z1−β)2(Ŝ2

x + Ŝ2
y)

x2ε2
. (18)

Remark 4. The way to narrow the CI is when ε → 0. Note
that based on (18) this implies a sample size increases. But
unlike other areas, for the context of this article, getting a high
sample number is not a problem, so we can be as precise as
we want.

C. Practical considerations

The application of the described method is subjected to the
compared and continuous FMs and meets the following:

• Normality. The FM to be compared follows a normal
distribution for each current controller.

• Homoscedasticity. Current controllers to be compared
should have the same FM variations. If the FM variations
are different, the Welch [22] two-sample t-test should be
used.

• Independence. The FMs used to make the comparison
must be obtained independently between the current
controllers to be compared.

When the conditions mentioned above are fulfilled, the
application of the described methods is appropriate.

One of the main objectives of this article is to facilitate the
application of the described statistical method. To this end,
let x and y, denote two vectors containing the n values of
some FM, for two different current control methods A and B,
respectively. All computations required will be performed by
using programs written in the R language [37].

Step I. Normality test
The estimation of the CIs in (6), (10) and (12) have in

common that when it is working with samples (specially with
moderate size) the accuracy of the calculations depends on
the FMs to have a normal distribution. The way to check
this assumption is through a hypothesis test. The normality
hypotheses are established as follows

Ho : x (or y) has normal distribution

vs.
H1 : x (or y) has not a normal distribution.

Note that the value of α should be chosen before the test.
This also means that the maximum Type I error that can get
has a probability equals to α. Then, the Shapiro-Wilk statistical
test will be used. The decision criterion will be as follows:
if the p-value is bigger than α, then the Ho is not rejected;

otherwise, H1 is accepted and the CIs cannot be computed
with (18). The R-code is:
shapiro.test(x)$p.value

Step II. Homoscedasticity test.
The CI estimation by (10) assumes equal variances for the

same FM of both current controllers. Then, as in the previous
case, this supposition must be checked. The hypothesis is
established as follows

Ho : x and y have equal variances

vs.
H1 : x and y do not have equal variances.

If there is insufficient statistical evidence to reject the
hypothesis of normality, the statistical test to be used will be
the F-test as follows
var.test(x,y)$p.value

If the null hypothesis of equality of variances is rejected,
(12) should be used instead of (10).

Step III. CIs estimation.
Following is shown how to find the CIs using the t.test

() function of R. In the context of Remark 1, to find the
CI0.95(µx) (or CI0.95(µy)), the code is
t.test(x,conf.level = 0.95)$conf.int

Likewise, in the context of Remark 2, to find the
CI0.95(µx−y), the code is
t.test(x,y, paired=FALSE,
var.equal=TRUE,conf.level = 0.95)$conf.int

In the same way, according to Remark 3, to find the
CI0.95(µx−y), the code is
t.test(x,y, paired=FALSE,
var.equal=FALSE,conf.level =
0.95)$conf.int

D. Scalability of the proposed method

.
Suppose it is necessary to compare a large number of

variables, say k variables from two different controllers. The
computation of a large number of variables does not imply any
complication other than the iterative repetition of the proposed
method as shown below.

Let xi1, xi2, 1 < i ≤ k be vectors representing the i-th
variable of two controllers 1 and 2, respectively. Let ni be a
k-dimensional vector of n-size that contains the results of the
sample size calculations for a 95% CL, a power equal to 80%
and a relative error of 5%. The R-code for each ni is:

ni=(qnorm(0.975)+qnorm(0.80))2
*(sd(xi1)

2

+sd(xi2)2)/(mean(xi1*0.05)
2)2

Then, the R-code to decide the sample size to compare the
k variables is:
max(ni)

It should be noted that when selecting the maximum of ni,
the restriction of (18) is fulfilled, this establishes that the n
found is the minimum value that ensures it meets the quality
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criteria, in the comparisons for specific values of: CL, power
and precision.

Similarly, for the comparison of the k variables we proceed
as follows: Let pi be a k-dimensional vector that contains the
results of the CI for the difference of means at a 95% CL. The
R-code for each pi is:
pi = t.test (xi1, xi2, paired = FALSE,
var.equal = TRUE, conf.level = 0.95) $
conf.int

The following section introduces the context in which a
case study will be shown for the practical application of the
concepts developed in this section.

III. MULTIPHASE MACHINE DESCRIPTION AND CONTROL

The system, that will be used as a showcase is a multiphase
machine (more than 3 phases). This type of machine is capable
of continuous operation even if one or more phases are open
or with faults [24]. Moreover, the possibility to split the power
into more phases allows the use of reduced components as well
as leads, for a more efficient use of the cable cross-sectional
area [25]. All these advantages have been the motivation for
industrial applications of multiphase machines in propulsion
systems [26], wind energy conversion systems [27], among
others. However, a higher number of phases leads to control
challenges.

Advanced control strategies of multiphase machines have
been a main research topic for more than a decade [28].
Most of the control approaches are extensions of well-known
techniques for conventional three-phase machines such as
direct torque control [29] or field-oriented control [30],
and nonlinear controllers like sliding mode control [31]
and MPC [32]. The extension of the aforementioned
control techniques to the post-fault operation has been
also proposed [33]. Fig. 3 shows the field-oriented control
technique applied to a multiphase machine which consists of
a proportional-integral (PI) outer speed control with an inner
current controller. This schematic is considered in this paper
with MPC as a current controller.

VSI

Fig. 3. Schematic diagram of the field-oriented control for a six-phase IM.

The most popular type of multiphase machine, namely
asymmetrical six-phase induction machine (IM), is considered
in this paper. This machine is driven by a 2-level
voltage source inverter (VSI). By using first-order Euler
approximation, the discrete form representation of the state

variable can be expressed in the form:
isα[k+1]

isβ[k+1]

isx[k+1]

isy[k+1]

irα[k+1]

irβ[k+1]

 = A.


isα[k]
isβ[k]
isx[k]
isy[k]
irα[k]
irβ[k]

+ B.


vsα[k]
vsβ[k]
vsx[k]
vsy[k]

 (19)

where isα, isβ are the α − β stator current, isx, isy are the
x − y stator current and irα, irβ represent the unmeasurable
α − β rotor currents. The input voltages are denoted by
vsα, vsβ , vsx, vsy and finally, A and B are defined in [31].

A. Conventional MPC-based current control of Six-Phase IM

MPC is a technique based on the model of the system. For
power converters, MPC takes advantage of the discrete nature
of the model. A cost function shown below in (20) is used
to define the desired behavior, such as current tracking. For a
six-phase IM, the cost function is typically evaluated 49 times,
and then, the voltage vector that minimizes the cost function
is selected and applied to the six-phase machine through the
VSI during the next sample time.

J = |i∗sαβ[k+1] − îsαβ[k+1]|2 + λxy.|i∗sxy[k+1] − îsxy[k+1]|2.
(20)

Readers are referred to [34] for more details regarding MPC
applied to power converter and drives, and [32], [35] for MPC
applied to multiphase machines.

B. Modulated Model Predictive Control of Six-Phase IM

The second current controller that will be used in this
paper is modulated model predictive control (M2PC) proposed
in [36]. The M2PC uses a modulation stage based on a
switching pattern to generate a fixed switching frequency. The
duty cycles are generated by using two active vectors and a
null vector which are applied to the converter using a given
switching pattern.

IV. COMPARATIVE AND SENSITIVE ANALYSIS

This section focuses on the numerical and experimental
analysis of the results obtained with the proposed method,
and also compares the efficiency of other alternatives, in order
to compare the performance of current controllers based on
FMs, i.e. the average of the values obtained and/or the most
favorable value.

A. Experimental setup

To compare the two current control techniques, the test rig
shown in Fig. 4 was used. This system consisted of a six-phase
IM fed by a commercial VSI while a constant Vdc voltage
is used from a direct current (dc) power supply system. The
current controllers are implemented in the dSPACE MABXII
DS1401 rapid prototyping platform. The results obtained have
been captured and processed using MATLAB/Simulink script.
The experimental tests have been performed with current
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sensors LA 55-P s, which had a frequency bandwidth from
dc up to 200 kHz. The current measurements have been then
converted to digital form using a 16-bit analog to digital
converter. The six-phase IM position has been obtained with
a 1024-pulses per revolution incremental encoder to estimate
the rotor speed. Also, a 5 HP (3.7285 kW) eddy current brake
has been used to introduce a variable mechanical load on the
system.

Six-phase IM

Mechanical load

2L-VSI

dSPACE

PC Control

Encoder signals

Hall-effect
Current Sensors

Fig. 4. Six-phase IM experimental setup.

The performance of both controllers were evaluated by
using MSE and THD as FMs. The MSE between the reference
and the measured stator currents in the (α-β) and (x-y)
sub-spaces is performed by using the following equation

MSE(iσs) =

√√√√ 1

n

n∑
j=1

(iσs − i∗σs)2 (21)

where n is the quantity of studied samples, i∗σs the stator
current reference, iσs the measured stator current taking into
account that σ ∈ {α, β, x, y}. While, the THD is obtained
as follows:

THD(is) =

√√√√ 1

i2s1

n∑
k=2

(isk)2 (22)

where is1 corresponds to the fundamental stator current and
isk is the harmonic stator current (multiple of the fundamental
stator current).

B. FM’s random behavior

The random nature of the FM’s is first demonstrated based
on a total of 400 experimental tests, obtained for 200 tests for
each MPC [32] and M2PC [36] current controllers, under the
same condition: 16 kHz sampling time, 1500 rpm rotor speed,
iq = 1 A and id = 1 A. Applying (21)-(22), the following
FMs are computed: MSE in α − β and x − y sub-space
while the THD is computed for the α − β sub-space. The
measure used to synthesize the dispersion of the results with
respect to the mean is the coefficient of variation (CV), defined
as the percentage that represents the SD in relation to the
mean. The most relevant statistical parameters obtained from
the FMs, based on the experimental results, are presented in
Tables II-IV.

By analyzing the obtained statistical results in Tables II-IV,
the range of variation (between the minimum and the
maximum) of the results for the MSE is less than for the THD.
For the MSE in both sub-spaces, it is between 9% to 16%
while for THD it is between 25% to 56%. These results show

TABLE II
DESCRIPTIVE STATISTICAL PARAMETERS FOR THE FMS MSEα AND

MSEβ , BASED ON 200 EXPERIMENTAL TEST FOR EACH MPC AND M2PC
CONTROLLERS.

Descriptive statistical MSEα MSEβ
parameters MPC M2PC MPC M2PC

Minimum 0.0615 0.0933 0.0616 0.0963
Maximum 0.0678 0.1087 0.0684 0.1120

Variation (%) 10.244 16.506 11.039 16.303
Mean 0.0654 0.1019 0.0649 0.1045

SD 0.0011 0.0030 0.0014 0.0030
CV (%) 1.7540 2.9860 2.2170 2.8380

TABLE III
DESCRIPTIVE STATISTICAL PARAMETERS FOR THE FMS MSEx AND

MSEy , BASED ON 200 EXPERIMENTAL TEST FOR EACH MPC AND M2PC
CONTROLLERS.

Descriptive statistical MSEx MSEy
parameters MPC M2PC MPC M2PC

Minimum 0.4802 0.0804 0.4767 0.0844
Maximum 0.5241 0.0877 0.5244 0.0922

Variation (%) 9.1420 9.0800 10.0060 9.2420
Mean 0.5013 0.0844 0.5020 0.0880

SD 0.0086 0.0013 0.0081 0.0014
CV (%) 1.7230 1.5760 1.6150 1.6440

TABLE IV
DESCRIPTIVE STATISTICAL PARAMETERS FOR THE FMS THDα AND

THDβ , BASED ON 200 EXPERIMENTAL TEST FOR EACH MPC AND M2PC
CONTROLLERS.

Descriptive statistical THDα THDβ
parameters MPC M2PC MPC M2PC

Minimum 5.9080 7.7730 5.9440 8.1870
Maximum 9.2270 9.7540 8.9810 10.4810

Variation (%) 56.1780 25.4860 51.0940 28.0200
Mean 7.3760 9.0080 7.2810 9.1980

SD 0.8082 0.3428 0.8188 0.4142
CV (%) 10.9570 3.8050 11.2460 4.5030

the dispersion between different experiments. Then justifies
the treatment of FMs as random variables. Another important
aspect to highlight is the CV in relation to the mean. In
accordance with the range of variation, for the obtained MSE,
the CV is between 1% and 3%, while for THD it is between
4% and 11%. The different range of variation observed in
MSE and THD is because they are calculated with different
equations, see (21) and (22). Also, it will be shown that the
results of the MSE are more homogeneous than those of the
THD. This dispersion has an impact on the computation of the
required sample size (n), since the greater the variability, the
larger n is needed, keeping the quality parameters constant as
will be shown next.

C. Quality parameters impact

Next, the impact of the quality parameters (CL, power,
and ε) of comparisons and the variability of each FM on
the calculation of the n is presented. In this context, a pilot
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number of experimental runs n0 = 20 is used in (18). For
a very high CL (99%), a high power (90%) and a very
small relative error (ε = 0.01) the n can be very large,
reaching values of 1220 necessary experiments as shown in
Table V. Note that in addition to the quality parameters in
the comparisons, the variability inherent to FM affects the
calculation of the n as shown in (18). In the case of THD,
as shown in Table IV, the variability is much greater than for
MSE, therefore a larger n is required to satisfy the quality
parameters in the imposed comparisons. On this basis, the
required n will differ depending on the FM used to compare
controllers. As a compromised value between the required
n and quality parameters, it is suggested to use CL = 95%
(z0.975 = 1.96), power = 80% (z0.80 = 0.84) and ε = 0.05,
which corresponds to the last line of Table V.

TABLE V
CALCULATION OF THE n FOR DIFFERENT FMS AND QUALITY

PARAMETERS.

Quality parameters Calculation of n
CL Power ε MSEα MSEx THDα Max.

99% 90% 0.01 246 21 1220 1220
99% 80% 0.01 193 16 958 958
95% 90% 0.05 7 1 35 35
95% 80% 0.05 6 1 26 26

D. Accuracy analysis comparisons

In this subsection, in order to analyze the properties of
the proposed method, Type I errors and power for different
scenarios are compared to other comparisons criteria.

One of the main issue addressed in this work is the
lack of publication of the criteria used to conclude that one
controller is better than another based on the measurements
of the FMs obtained in experimental trials. Typically, FMs are
used to evaluate a current controller performance where the
lower value implies better performance. With this premise,
four different criteria are presented that are very plausible of
application.

Define x = (x1, . . . , xn) and y = (y1, . . . , yn) as two n-size
vectors of the same FM for two controllers A and B.

To establish the first criterion (denoted C1) let us first
suppose that the minimum value of vector x is less than
the minimum value of vector y. So far, it could be said
that controller A is better than B. However, as previously
demonstrated, the dispersion in the experimental results can
be very large. Therefore, it could be that the maximum value
of vector x is greater than the maximum of vector y. Based
on the previous result, controller B is better than A. Finally,
by joining the two situations, the C1 criterion arises where
it is not possible to decide which of the two controllers is
better, which is equivalent to saying that there is not sufficient
evidence that one is better than the other.

The second criterion (denoted C2) is possibly the most
common. This is that when the average value of the FM of
one controller is less than another, this one is better than the
other.

One possible situation is that all the values of the FM of
controller A are less than all the values obtained by controller
B (or vice versa). In this case, ensuring that controller A is
better than controller B (or vice versa) is a very consistent
conclusion. This criterion will be denoted as C3.

The last criterion (denoted as C4) is very similar to
C3. The difference is that not all the results are minor,
but the intersection is partial. If the elements of x outside
the intersection are all less than the minimum of y, then
controller A is better. Whereas, if the elements of x outside
the intersection are all greater than the maximum of y, then
B is the best controller.

Next, the algorithm involved in the definition of each
described criterion is presented.

• Criterion C1: If min(y) > min(x) and max(y) <
max(x) or min(x) > min(y) and max(x) < max(y),
then neither is better than the other, based on FM
analyzed; otherwise one is more efficient than the other.

• Criterion C2: If x̄ < ȳ, then A is better than B.
• Criterion C3: If max(x) < min(y), then A is better

than B.
• Criterion C4: If min(x) < min(y) and max(x) <
max(y), then A is better than B.

To estimate Type I error, 10,000 observations of two random
variables X and Y with normal distribution with mean equal to
10 and for different CV=(1%, 3%, 7%, 11%) were generated.
In the case of unequal variances, the relationship between
them is Vx/Vy = (1.2, 1.5). Based on 1000 Monte Carlo
simulations, the Type I error was estimated as the fraction
of trials that rejected the null hypothesis of equality of means
between the two controllers proposed method the difference
did not exist. In all simulations, the value α = 0.05 is used
for the proposed method. The obtained results are presented in
the Tables VI to X for different n values. Tables VI-VIII show
the estimation of Type I error for the proposed method and C1
criterion. Note that C1 is the only criterion that considers the
possibility of equality in comparisons. The estimated Type I
error is very close to the nominal one for all cases and sample
sizes for the proposed method. For C1, for the case of equal
variances (Table VI), it commits a very high Type I error,
around 50%. However, for unequal variances C1 is a little
more effective, committing a Type I error for large samples
around 40% and 15% according to Tables VII and VIII,
respectively. One of the main advantages of the proposed
method is that it is possible to control the Type I error since
this estimate is around the nominal one. Also, it is possible
to control Type II error and its associated measure, known as
the power of the test.

Now, the proposed method is compared with C2, C3, and
C4 criteria. For the estimation of power, 10000 observations of
two random variables X with normal distribution with µ = 10
and Y with normal distribution with µ equals to 10.3 and 10.5
and equal variances for different CV=(1%, 3%, 7%, 11%) were
generated. For the case of unequal variances, the following
relationship Vx/Vy = 1.2 was considered. In this sense, the
simulations carried out to consider two distributions that differ
by 3% and 5% from the mean. The experiment, based on 1 000
Monte Carlo simulations, estimates the power as the fraction
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TABLE VI
ESTIMATION OF TYPE I ERROR UNDER EQUAL VARIANCES, FOR

PROPOSED METHOD (PM) AND C1.

CV n = 5 n = 20 n = 35 n = 65
PM C1 PM C1 PM C1 PM C1

1% 5% 57% 6% 51% 5% 50% 5% 54%
3% 5% 57% 6% 52% 4% 54% 5% 54%
7% 5% 57% 5% 50% 5% 50% 5% 54%

11% 4% 53% 5% 50% 5% 50% 5% 54%

TABLE VII
ESTIMATION OF TYPE I ERROR UNDER UNEQUAL VARIANCES

(Vx/Vy = 1.2), FOR PROPOSED METHOD (PM) AND C1.

CV n = 5 n = 20 n = 35 n = 65
PM C1 PM C1 PM C1 PM C1

1% 5% 56% 5% 43% 5% 42% 5% 38%
3% 4% 53% 5% 46% 5% 43% 6% 40%
7% 5% 56% 5% 43% 4% 42% 6% 40%

11% 5% 55% 5% 44% 5% 42% 6% 40%

TABLE VIII
ESTIMATION OF TYPE I ERROR UNDER UNEQUAL VARIANCES

(Vx/Vy = 1.5), FOR PROPOSED METHOD (PM) AND C1.

CV n = 5 n = 20 n = 35 n = 65
PM C1 PM C1 PM C1 PM C1

1% 4% 48% 5% 27% 4% 21% 6% 14%
3% 5% 50% 5% 28% 5% 21% 5% 16%
7% 5% 50% 5% 27% 4% 21% 6% 14%

11% 5% 49% 5% 27% 5% 19% 6% 14%

of trials that rejected the null hypothesis of equality of means
between the two controllers when there is a difference. For
the proposed method, the values of α = 0.05 and a power =
0.80 (β = 0.2) were used. The results are shown for a sample
size calculated with the following quality parameters in the
comparisons: CL = 95%, power = 80%, ε = (0.03, 0.05)
based on a pilot sample n0 = 20. In Tables, IX and X it is
verified that the estimated power for the proposed method is
around the nominal 80%. In the case of equal variances (Table
IX), C2 is the most powerful, reaching almost an estimated
power of 100%. In other words, C2 rejected the null hypothesis
practically every time it had to do so (the means generated
are different). C3 criterion has good power properties only
for the case where CV = 1%, that is, for very small and
homogeneous samples. As the heterogeneity in the sample
increases, the C3 criterion is practically incapable of detecting
the existing differences. C4 criterion is more powerful in
relation to the proposed method for very homogeneous and
moderately homogeneous samples. For CV above 7%, the
proposed method is more powerful. For the case of unequal
variances (Table X), the results are similar to the case of equal
variances.

TABLE IX
POWER ESTIMATION UNDER EQUAL VARIANCES, USING THE PROPOSED

METHOD (PM), C2, C3 AND C4 CRITERIA.

ε CV n PM C2 C3 C4

3% 1% 3 77% 100% 88% 100%
3% 5% 19 85% 100% 1% 85%
3% 7% 47 86% 100% 1% 70%
3% 11% 91 80% 100% 1% 64%
5% 1% 2 74% 100% 100% 100%
5% 5% 6 74% 100% 19% 91%
5% 7% 13 70% 99% 1% 83%
5% 11% 27 78% 100% 1% 68%

TABLE X
POWER ESTIMATION UNDER UNEQUAL VARIANCES, USING THE PROPOSED

METHOD (PM), C2, C3 AND C4 CRITERIA.

ε CV n PM C2 C3 C4

3% 1% 4 86% 100% 75% 100%
3% 3% 15 73% 100% 0% 72%
3% 5% 50 75% 100% 0% 52%
3% 7% 95 72% 99% 0% 38%
5% 1% 3 85% 100% 99% 100%
5% 3% 9 84% 100% 3% 91%
5% 5% 18 75% 100% 0% 73%
5% 7% 45 85% 100% 9% 62%

V. REAL DATA SET APPLICATION

Now, a step by step procedure will be carried out to explain
the proposed comparison procedure between two controllers,
in this case, MPC [32] and M2PC [36].

A. Number of experimental trials

For this step, it is necessary to choose the quality parameters
for the comparison. The suggested values in Subsection IV-C
will be used. As the n calculation in (18) contains unknown
parameters, a pilot test is carried out with n0 = 20. The
obtained values for both controllers are shown in Table XI.

TABLE XI
n CALCULATION BY USING (18).

FM MPC (X) M2PC (Y ) n calculation
Ŝx x Ŝy Eq. (18)

MSEα 0.000891 0.064825 0.002476 6
MSEx 0.005677 0.000932 0.492535 1
THDα 0.585782 7.127265 0.270637 26

Note that, as it was already demonstrated in the previous
section, for each FMs to be compared, different n values
are obtained. Then, the highest n obtained must be used to
evaluate the FMs of both controllers, being n = 26 in this
case. This is due to the fact that the n calculation gives
us the minimum value for which the quality criteria in the
comparisons are satisfied. Therefore, increasing the n value
does not affect the quality performance.
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Fig. 5. Normal distribution plots for the FMs mean for MPC and M2PC PCCs (a) MSEα and (b) MSEx.

B. Statistical comparisons

Now, it is followed by the same steps described in
subsection II-C applying to the case study.

Step I. Normality test
It is used α = 0.05. The H0 are not rejected due to all

p-values are greater than 0.05. The H0 and H1 are established
as follows:
H0 : The FM (i.e. the MSEα) has a normal distribution for

both controllers (MPC and M2PC).
H1 : The FM (i.e. the MSEα) does not have a normal

distribution for both controllers (MPC and M2PC).
Based on the obtained results show in Table XII, THDα

does not meet the assumption of normality. A good alternative
in these cases is to raise the quality of the comparison
parameters to increase the sample size and re-apply the
normality test. If the lack of normality persists, the proposed
statistical procedure cannot be applied to compare the THDα.
In particular, in this case, if you want to compare the THDα, it
is necessary to perform a non-parametric test. This is however
beyond the scope of this paper and not discussed further.

TABLE XII
NORMALITY TEST

FM Controller p-value Normal distribution

MSEα MPC 0.4371 Yes
MSEα M2PC 0.7289 Yes
MSEx MPC 0.9852 Yes
MSEx M2PC 0.5739 Yes
THDα MPC 0.0417 No
THDα M2PC 0.8437 Yes

Note that α-axis is representative of the α − β plane, the
results for the β-axis are virtually the same. A similar remark
can be made regarding the x-axis, representing the x−y plane.
Therefore, the comparing procedure will continue with MSEα
and MSEx.

Step II. Homoscedasticity test.
As in the previous step, α = 0.05. The hypotheses are:
H0 : The variance of the FM are equal for both controllers.
H1 : The variance of the FM are not equal for both

controllers.
The obtained p-values shown in Table XIII are less than

0.05. Therefore, the equal variance hypothesis is rejected.
Note that this result is consistent with the results presented in
Table II where the variance (SD2) for the MSEα of the M2PC
(0.00302) is around 7 times greater than the MPC (0.00112).

Table III even shows that the variance for the MSEx of the
MPC (0.00862) is around 44 times greater than the variance
of M2PC (0.00132). This has an impact on the CI estimation,
as shown in (12).

TABLE XIII
HOMOSCEDASTICITY TEST

FM p-value Equal variance

MSEα 0.0001 No
MSEx 0.0001 No

Step III. CI estimation.
As it was introduced in the first paragraph of Section II, the

estimation of the CIs, allows to know which current controller
is better as well as how much better it is. By following
Step III of subsection II-C, the CI for the mean of each
FM for both controllers is computed, see Table XIV. Now,
it is then possible to identify which controller is better (or
not) according to the FM. It is important to highlight that a
controller will not always be better for all FMs considered
since each one captures different characteristics. In our case
study, according to Table XIV and Fig. 5(a), by comparing
MPC and M2PC current controllers regarding MSEα as FM,
it is possible, with sufficient statistical evidence, to conclude
at the 95% CL that the MPC is better than the M2PC. From
the same table and from Fig. 5(b), it can also be concluded,
at the 95% CL, that the M2PC is better than the MPC, based
on the MSEx as FM. Note that the simultaneous control of
α − β and x − y planes is still an open issue in the field of
MPC applied to multiphase machines. As it can be seen from
the case example, MPC gives better α − β at the expense of
a worse x− y current tracking. While MP2C performance is
opposite. Both conclusions derive from the fact that the CIs
estimated for the different controllers are not intercepted, as
shown in Fig. 5. This indicates that its average efficiency for
the FM considered is different. Furthermore, the CI with the
lowest values is the best, since what is being sought is to
follow a current and this is better when the measured current
is closer to the reference current.

According to Remark 3, it is estimated the CI for the
difference of the means between both controllers in Table XV
to understand how much better the controller is on average
concerning the FM considered. Based on MSEα, MPC is
on average 57% to 61% more efficient than M2PC at 95%
confidence level. On the other hand, the M2PC is on average
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TABLE XIV
95% CI FOR THE FM MEAN.

Controller FM Mean CI
(n = 26) LL UL

MPC MSEα
0.0647 0.0643 0.0651

M2PC 0.1029 0.1019 0.1038
MPC MSEx

0.4928 0.4906 0.4949
M2PC 0.0855 0.0851 0.0858

4.74% to 4.79% more efficient than MPC regarding the MSEx.
Fig. 6 summarizes the normal distribution for the difference
of the means.

TABLE XV
95% CI FOR THE FM MEAN DIFFERENCES.

Controller FM Mean difference CI
(n = 26) LL UL

MPC MSEα 0.0382 0.037 0.0392
M2PC
MPC MSEx 0.4073 0.4051 0.4095
M2PC

Fig. 6. Normal distribution plots for the difference of the means (δ) for both
FMs for MPC and M2PC PCCs (a) MSEα and (b) MSEx.

VI. CONCLUSION AND FUTURE WORK

As the first contribution of this paper, the random nature of
FMs has been proven. Based on obtaining a large number
of experimental tests and on the calculation of descriptive
statistics, it is shown that FMs can differ both in the central
value and in the dispersion and these characteristics are related
to the definition adopted in their calculation.

The second contribution is that given the need to
adopt scientific criteria that allows establishing a precise
comparability procedure between current controllers applied
to power converters and electric drives, a well-established and
simple statistical method has been proposed. It consists of the
estimation of a CI for the mean of the FM considered and
also for the difference of means. The theoretical and practical
development have been adequate so that it can be clear and
understandable for non-statistical researchers working on the
control of power electronics and electric motor drives.

Then, the contributions of the article have allowed:
• In case there is a difference between the performance

of the current controllers, correctly decide the best

controller based on FM. This provides the advantage that
although another criterion could be very powerful when
two equally efficient controllers are compared, since this
criterion always chooses the one with the lower sample
mean, it will commit a 100% Type I error. Therefore,
this criterion is not admissible since it is not robust in
the face of situations that may occur in reality and that
are unknown in advance.

• Establish a rank of supremacy according to the FM
considered when the difference is detected.

• Regardless of the variability in the observations, the
conclusions obtained will continue to be valid for the
sample size calculated according to quality parameters.
A remarkable disadvantage of all the other study criteria,
is that the amount of sample necessary to ensure
the achievement of certain quality standards in the
comparisons is not known.

• The robustness of the proposed statistical methodology is
established by taking into account the estimated Type I
error and the estimated power. It allows to conclude that
the proposed method is capable of meeting the quality
criteria based on the quality parameters.

Note that the proposed procedure can be used to compare
sensor-based controllers such as current control, torque
control, speed control and so on. Also it can be applied
to any power converters (i.e. multilevel converters, matrix
converters, etc) and drives (i.e. conventional or multiphase
IMs). Moreover, the same procedure can be used for other
FMs and different experimental conditions.

A limitation of the proposed method is that it can be applied
only to FMs that comply with the assumption of normality.
This gives rise to another line of research on non-parametric
methods for comparing the efficiency of FM-based controllers
that do not have a normal distribution that can be addressed
in future research.
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