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Calibration of Miniature Inertial and Magnetic

Sensor Units for Robust Attitude Estimation
Zhi-Qiang Zhang and Guang-Zhong Yang, Fellow, IEEE

Abstract—Attitude estimation from miniature inertial and
magnetic sensors has been used in a wide variety of applications,
ranging from virtual reality, underwater vehicles, handheld
navigation devices, to biomotion analysis. However, appropriate
sensor calibrations for accurate sensor measurements are essen-
tial to the performance of attitude estimation algorithms. In this
paper, we present a robust sensor calibration method for accurate
attitude estimation from 3-axis accelerometers, gyroscopes and
magnetometer measurements. The proposed calibration method
only requires a simple pan-tilt unit. A unified sensor model
for inertial and magnetic sensors is used to convert the sensor
readings to physical quantities in metric units. Based on the
sensor model, a cost function is constructed, and a two-step
iterative algorithm is then proposed to calibrate the inertial
sensors. Due to the difficulties of acquiring the ground-truth
of the Earth magnetic field, a simplified pseudo-magnetometer
calibration method is also presented based on an ellipsoid fitting
algorithm. The calibration method is then applied to our sensor
nodes, and the good performance of the orientation estimation
has illustrated the effectiveness of the proposed sensor calibration
method.

Index Terms—Miniature Sensors, Calibration, Orienta-
tion/Attitude, Kalman Filter, Optimization

I. INTRODUCTION

With continuing development of micro-electro-mechanical

system (MEMS) technology, micro-inertial/magnetic sensors

have been widely used to acquire attitude information for a

wide variety of applications [1]. Extensive research has been

performed on how to fuse inertial/magnetic sensor measure-

ments for accurate attitude estimation. For example, Yun et

al. [2] presented the design of an extended Kalman filter to

estimate the orientation of human limbs using a combination

of inertial sensors and magnetic sensors. We also had the

similar work [3] [4]. Robertson et al. [5] and Floor-Westerdijk

et al. [6] further extended the orientation estimation using

inertial sensors, and they proposed to estimate the sensor

displacement as well in pedestrian self-navigation. However,

the achievable accuracy is highly dependent on the quality

of the inertial/magnetic sensor measurements. In general,

the main sources of sensor error include bias, scale factor

and misalignment; therefore, appropriate sensor calibration is

critical to the accuracy and overall system performance.

Thus far, most existing inertial/magnetic sensor calibration

methods rely on additional instruments, such as mechanical

platforms or optical tracking devices. By turning the sensor

unit in different orientations with known turn rates, the sensor

model parameters can be estimated from the sensor output and
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pre-calculated acceleration, magnetic field and turn rates [7]

[8] [9]. Unfortunately, these mechanical platforms and optical

tracking systems tend to be expensive and impractical for

routine applications. For this reason, alternative methods that

do not require these additional platforms have been pursued.

To this end, Marioli et al. [10] and Lötters et al. [11] applied

the gravity vector twice to each axis of the accelerometer to

estimate the offset and scale factors by relying on the fact

that the modulus of the acceleration vector measured by a

triaxial accelerometer should be g. Wu et al. [12] constructed

a nonlinear function to describe the relationship between

gravity and sensor parameters. A Taylor expansion was used to

linearize the nonlinear function and linear unbiased estimators

with minimum variance were used as the offset and gain.

However, the main disadvantage of these methods is that

they ignored the misalignment error. Skog et al. [13] further

extended their work by incorporating misalignment errors for

inertial sensor calibration. A cost function was first constructed

and then minimized with respect to the unknown sensor model

parameters using Newton-Raphson method. Syed et al. [14],

Shen et al. [15] and Li et al. [16] also presented similar work

for accelerometer and gyroscope calibration. Although some

improvements have been achieved, they are still susceptible

to misalignment errors. Due to the difficulties of acquiring

the ground-truth of the magnetic field, the above mentioned

inertial sensor calibration methods are not applicable to the

magnetometer calibration. For this reason, a number of so-

lutions based on the ellipsoid fitting have been proposed

to calibrate erroneous magnetometers. For instance, Gebre-

Egziabher et al. [17] attempted to find an ellipsoid which

best fit the measured magnetometer data based on a simplified

sensor error model. Renaudin et al. [18] further improved the

error model and presented an adaptive least squares estimator

which provided a consistent solution to the ellipsoid fitting

problem. Similarly, Vasconcelos et al. [19] proposed an itera-

tive Maximum Likelihood Estimator (MLE) to fit the sensor

measurements to an ellipsoid manifold. A separate closed-

form optimal algorithm was then presented to estimate the

misalignment matrix. Unfortunately, all these methods still

require some magnetic field information in advance.

The motivation of this paper is to tackle the misalignment

problem for inertial sensor calibration using a simple pan-tilt

unit. It aims to provide an accurate attitude estimation scheme

from micro inertial/magnetic sensors based on minimum-order

linear Kalman filers [20]. In our method, a unified sensor

model is presented to convert sensor readings to physical

quantities in metric units. Based on the sensor model, a cost

function is constructed, and a two-step iterative algorithm is
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then proposed to calibrate the inertial sensors. Due to the

difficulties of acquiring the ground-truth of the Earth magnetic

field, a simplified pseudo-magnetometer calibration is also

presented based on the ellipsoid fitting method. To demonstrate

the practical value of the proposed technique, detailed lab-

oratory experiments with known ground-truth measurements

have been performed. The derived results demonstrate that the

proposed method can provide accurate orientation estimation

after the sensor calibration.

The rest of the paper is organized as follows. The proposed

sensor calibration procedures, including the unified sensor

model, the two-step iterative method, and the ellipsoid fitting

method are elaborated in section II. Experimental results and

conclusions are provided in sections IV and V of the paper,

respectively.

II. OUR METHOD

A. Unified sensor model

For the description of the MEMS sensors, all sensor read-

ings need to be converted to physical quantities in metric units.

Meanwhile, the three sensor sensitivity axes should ideally

be orthogonal to each other, and the triad constructed by the

three axes must be aligned to a reference coordinate system.

In practice, this is difficult to achieve. A unified triaxial

sensor model is therefore used, with which all these issues

are considered.

Mathematically, the triaxial sensor model can be written

in a vector form, where index k represents the sensor type

(i.e., a, g or m for accelerometer, gyroscope or magnetome-

ter respectively). Due to inevitable sensor errors, the three

sensitivity axes are not always orthogonal to each other, so

orthogonalization of the axes is necessary. Denote Tk as the

Gram-Schmidt orthogonalization matrix, so Tk can be written

as:

Tk =





1 0 0
αk 1 0
βk γk 1



 . (1)

As shown in Fig. 1, the new sensor sensitivity axes may

not be aligned to the reference coordinates perfectly after

Gram-Schmidt orthogonalization, so the rotation matrix R
transforming the sensor reading in orthogonal sensitivity axes

to the reference coordinates can be written as :

Rk = RZ(ψ)RY (θ)RX(φ) (2)

where

RX(φ) =





1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)



 , (3)

RY (θ) =





cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)



 (4)

and

RZ(ψ) =





cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 . (5)

(a) (b)

Figure 1. Schematic illustration of sensor misalignment. (a) The nonorthog-
onal axes xs, ys and zs can be aligned to the orthogonal axes x2, y2 and
z2. (b) The x2, y2 and z2 can then be aligned to a reference system xref ,
yref and zref .

Before orthogonalization and coordinates alignment, the

output of the MEMS sensors should be converted to physical

quantities in metric units. The typical relationship between the

output and physical quantities can be described by a linear

equation, typically given in the manufactures data sheet, but

the exact linear equation parameters (scale factors and bias)

for each sensor can have minor variations. Define the scale

factor matrix

Sk =





skx 0 0
0 sky 0
0 0 skz





and bias vector bk = [bkx, bky, bkz]
T

, the sensor unified

model can be written as:

uk = RkTkSk(yk − bk), (6)

where uk is the measured physical quantities in metric unit,

and the yk is sensor voltage readings.

B. Inertial Sensor Calibration

The purpose of the sensor calibration is to estimate the value

of parameter vector

ζ = [αk, βk, γk, φ, ψ, θ, skx, skx, skx, bkx, bky, bkz]
T

(7)

given J pairs of physical quantities ujk and the corresponding

yjk, where j = 1, 2, · · · , J . The estimation of ζ can be written

as:

ζ̂ = argmin
ζ

{L(ζ)} (8)

where

L(ζ) =

J
∑

j=1

∥

∥

∥
ujk −RkTkSk(y

j
k − bk)

∥

∥

∥

2

. (9)

and ‖·‖ is the Frobenius norm. Here, j is the index of different

orientation or rotation that the pan-tilt calibration unit is set

to. Due to the nonlinearity of (9), it is difficult to find a

globally optimized solution for ζ in practice. In this paper,

we propose a two-step parameter estimation scheme to ease

the optimization process, i.e., 1) the sensor bias bk is estimated

separately; 2) Unlike Bonnet. et al [21] estimating the other

9 parameters (αk, βk, γk, φ, ψ, θ, skx, skx, skx) individually,
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we estimate matrix Hk = RkTkSk instead, which can also

take the other unmodelled linear time invariant errors and

distortions into account.

1) Accelerometer Calibration:

Lemma 1: Denote: Ya =
(

y1a, y
2
a · · · , yJa

)

as the sensor

reading matrix, Ua =
(

u1a, u
2
a · · · , uJa

)T
as the corresponding

physical quantity matrix, and Ba = R(ba) as the bias matrix

which has J columns and each column is set to ba. Given an

initial value ba,0, the Ha and ba can be estimated as:

1. Set index i=1;

2. Constructing the bias matrix Ba,i−1 as:

Ba,i−1 = R(ba,i−1) (10)

3. Calculate Ha,i as:

Ha,i = Ua · (Ya −Ba,i−1)
+

(11)

where (Ya−Ba,i−1)
+

is the pseudoinverse of Ya−Ba,i−1.

4. Calculate ba,i as

ba,i =E(Ya −H+
a,i · U)

=

∑J

j=1

(

yja −
(

H+
a,i · U

)

(j)

)

J

(12)

where E(·) is the mean value operator, and
(

H+
a,i · U

)

(j)

is the jth column of matrix
(

H+
a,i · U

)

.
5. set i = i + 1 and repeat steps 2 − 5 until Ha and ba

converge.

The purpose of the accelerometer calibration is to minimize
∥

∥

∥
Ua −Ha(Ya −Ba)

∥

∥

∥
. (13)

To make sure Ha and ba converge, we need to prove in each

iteration that:
∥

∥

∥
Ua−Ha,i(Ya−Ba,i−1)

∥

∥

∥
6

∥

∥

∥
Ua−Ha,i−1(Ya−Ba,i−1)

∥

∥

∥
(14)

and
∥

∥

∥
Ua −Ha,i(Ya −Ba,i)

∥

∥

∥
6

∥

∥

∥
Ua −Ha,i(Ya −Ba,i−1)

∥

∥

∥
. (15)

The proofs for equation (14) and (15) are give in the

Appendix at the end of this paper.

2) Gyroscope Calibration: Similar to accelerometer cali-

bration, we also estimate the gyroscope bias bg and trans-

formation matrix Hg separately. Unlike the accelerometer

calibration process, no iteration is required for gyroscope

calibration as the bias bg can be estimated accurately. For this

reason, the gyroscope calibration mainly consists of two steps:

1. The sensor node is placed at J1 different orientations

and remain stationary, which means that ujg = 0, j =

1, 2 · · · , J1. Denote Ug =
(

u1g, u
2
g · · · , uJ1

g

)T
= 0,

and the corresponding gyroscope readings as Yg =
(

y1g , y
2
g · · · , yJ1

g

)

, and the gyroscope bias Bg = R(bg),
we can then get:

Hg · (Yg −Bg) = Ug = 0 (16)

As det(Hg) = det(Rg)det(Tg)det(Sg) 6= 0 (here det
means determinant), so Hg is a full rank matrix. We

should have

Yg −Bg = 0. (17)

By taking sensor noise into account, we set bias bg as

the mean value:

bg =

∑J1

j=1 y
j
g

J1
. (18)

2. Rotate the sensor node using the pan-tilt unit at J2 =

J − J1 different angular rates Ug =
(

u1g, u
2
g · · · , uJ2

g

)T
.

Denote the corresponding gyroscope output as Yg =
(

y1g , y
2
g · · · , yJ2

g

)

, we can get Hg as

Hg = Ug · (Yg − R(bg))
+

(19)

For simplicity, we still used symbols Yg and Ug to

represent the new sensor output and angular rate.

C. Pseudo-Magnetometer Calibration

Similar to accelerometer calibration, we define: Ym =
(

y1m, y
2
m · · · , yJm

)

as the sensor reading matrix,Um =
(

u1m, u
2
m · · · , uJm

)T
as the corresponding matrix for physical

quantities. However, it is difficult to acquire magnetic quan-

tities ujm without a complex platform, but the norm of the

magnetometer vector measurement ujm should be equal to the

magnitude of the Earth magnetic field in a perturbation-free

environment. Denote the magnitude of the Earth magnetic field

as M , we have

‖Hm ·
(

yjm − bm
)

‖ = ‖ujm‖. (20)

By expanding the above equation, we can get:

(

yjm − bm
)T · (Hm)

T ·Hm ·
(

yjm − bm
)

=M2. (21)

As the Earth magnetic field itself is spatially varying, it is diffi-

cult to get the exact value of M. In this paper, the magnitude M
is normalized. Another advantage of the normalization process

is that the precondition of perturbation free-environment is

no longer necessary. When the magnetometer is calibrated,

perturbation is permitted as long as it is constant. The above

equation can then be written as:

(

yjm − bm
)T ·

(

Hm

M

)T

· Hm

M
·
(

yjm − bm
)

= 1. (22)

This equation represents an arbitrarily oriented ellipsoid,

centered at bm. Meanwhile, the eigenvectors of the inverse

matrix of
(

(

Hm

M

)T · Hm

M

)

define the principal directions of

the ellipsoid and the square root of the eigenvalues are the

corresponding equatorial radii.

The magnetometer calibration problem now becomes find-

ing an arbitrarily oriented ellipsoid which fits the J points

y1m, y
2
m · · · , yJm best. There is abundant literature addressing

this problem [22] [23] [24]. For this study, the least squares

ellipsoid fitting method proposed in [25] is used. We can derive

ellipsoid center vc, the eigenvectors v1e , v
2
e , v

3
e for the inverse

matrix of
(

(

Hm

M

)T · Hm

M

)

and the equatorial radii r1, r2, r3.

Therefore, we have

bm = vc (23)
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and
(

(

Hm

M

)T

· Hm

M

)+

=
(

r21v
1
e , r

2
2v

2
e , r

2
3v

3
e

) (

v1e , v
2
e , v

3
e

)+
,

(24)

so
(

(Hm)
T ·Hm

)

=M2Q, (25)

where Q =
(

(

r21v
1
e , r

2
2v

2
e , r

2
3v

3
e

) (

v1e , v
2
e , v

3
e

)+
)+

. As Q is

a positive definite matrix, an eigen-decomposition can be

applied:

Q = ΛDΛT (26)

where Λ corresponds to the eigenvectors of Q, and D is the

diagonal matrix containing the eigenvalues, so we can define

another Matrix B as

B =MΛ
√
DΛT (27)

and B satisfies

BTB =MΛ
√
DΛTMS

√
DΛT

=M2ΛDΛT

=M2Q.

(28)

Given any rotational matrix Ω, we can have

(ΩB)
T
ΩB =MS

√
DΛTΩTΩMΛ

√
DΛT

=M2ΛDΛT

=M2Q.

(29)

The above equation illustrates that Hm can be any matrix

in the form of ΩB, so it is impossible to acquire the exact

magnetometer parameter Hm, while bm can estimated ac-

curately; therefore, we empirically set Hm according to the

magnetometer datasheet for orientation estimation.

III. EXPERIMENTAL AND SIMULATION RESULTS

In order to evaluate the performance of the proposed sensor

calibration method, detailed simulation and laboratory exper-

iments were conducted. For the simulation study, we selected

Monte Carlo simulation to illustrate the performance of the

sensor calibration method. For the results presented in this

paper, we used the Body Sensor Network (BSN) platform [26]

developed by our lab, which consists of three stackable

daughter boards: the sensor board, the main processor board,

and the battery board. They are connected via a stackable

(a) (b)

Figure 2. The BSN hardware platform used for this study. (a) BSN Sensor
Node and its stackable sensor daughter boards. (b) The bespoke housing for
the BSN Sensor Node.

connector design as shown in Fig. 2(a). Each BSN node used

is equipped with an Analog Devices ADXL330 [27] for 3D

acceleration measurement, an InvenSense ITG-3200 digital

gyroscope [28] for 3D angular velocity measurement, and a

Honeywell HMC5843 [29] for 3D magnetic field measure-

ment. In order to calibrate the BSN node, a bespoke housing

for the BSN node is designed as shown in Fig. 2(b). The

unique feature of the box is that all six sides of the box feature

the same mounting mechanism. After applying the sensor

calibration method to our BSN node, we then used the node

for attitude estimation, and compared the estimated attitude to

reference measurements by the BTS SMART-D optical motion

tracking system [30]. The BTS system used in our experiment

consisted of 9 cameras installed on the ceiling as shown in

Fig. 3. By capturing the positions of the 3 reflective markers

on the rigid body that the BSN housing is attached to, an error

less than 0.267mm on a volume of 2.95× 1.65× 3.08m was

achieved by the BTS system.

Figure 3. The BTS SMART-D system used for this study and the BSN node
mounted with reflective markers for orientation accuracy evaluation.

A. Sensor Calibration Performance Evaluation

In this step of the evaluation process, as the calibration

procedures of the accelerometer and gyroscope are similar,

we only present the simulation results for the accelerometer

here. In the simulation, the estimation of the accelerometer

sensor model parameters were studied when the sensor node

was rotated into randomly selected 20 different orientations.

However, a zero mean Gaussian distributed error with variance

0.01m/s2 was added to the measured physical quantities ua
to reflect sensor noise. In Table I, the settings used in the

simulation are summarized.

Table I
MODEL PARAMETERS USED FOR ACCELEROMETER CALIBRATION

Misalignment. Rotation Scaling (m/s2) Base

αa = 0.1 φa = 0.1 sax = 9.8/467 bax = 2429

βa = 0.1 θa = 0.1 say = 9.8/412 bay = 2318

γa = 0.1 ψa = 0.1 saz = 9.8/438 baz = 2368

After setting the parameters, the true value for Ha and ba
are

Ha =





0.0207759 0.0002280 0.0044495
0.0020845 0.0238093 0.0004390
−0.0020950 0.0021253 0.0221503




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and ba = (2429, 2318, 2368)
T
. The simulation results for

ba and Ha are given in Fig. 4 and Fig. 5 respectively. The

estimation results by the optimization method [13] are also

presented for comparison. As we can see from the figures, it

is evident that:

• The iterative parameter estimation method is relatively

fast to converge. After 6 iterations, the estimations for ba
and Ha are close to their respective ground-truth values.

• More specifically, the estimation of ba is

(2428.0, 2318.3, 2367.7)
T

after 6 iterations, while

ba converges to (2428.9, 2318.0, 2367.9)
T

after 10

iterations. The error between ba true value and

estimated value is less than 0.1, which demonstrates the

effectiveness of the proposed method for inertial sensor

bias parameter estimation. The optimization method can

also converge to the ground-truth of the bias, but with

much slower convergence.

• Meanwhile, Ha also converges to




0.0207788 0.0002256 0.0044509
0.0020850 0.0238117 0.0004396
−0.0020943 0.0021244 0.0221500





after 10 iterations. Comparing this matrix to the ground-

truth of Ha, the error is less than 0.015%, which is neg-

ligible. As we have mentioned earlier, the optimization

method is not able to estimate the misalignment error,

which caused the non-convergence of Ha estimation.
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Figure 4. Estimation results for ba, showing that the estimation value
converges after 6 iterations using the proposed method and the optimization
method proposed in [13].

Table II
ITERATIVE RESULTS OVER 100 SIMULATIONS (SHOWN AS MEAN±STD)

bax bay baz
∥

∥Ha−Ĥa

∥

∥×103

Iteration 2 2398.2±0.74 2330.5±0.69 2360.9±0.91 2.09±0.005

Iteration 5 2426.9±1.20 2318.8±1.09 2367.4±1.44 0.32±0.006

Iteration 10 2429.0±1.24 2318.0±1.12 2367.9±1.48 0.02±0.005

Iteration 20 2429.0±1.24 2318.0±1.12 2367.9±1.48 0.02±0.005

The simulation was repeated for another 100 times, and

statistical results for ba and Ha are given in Table II. It can

be seen that the proposed iterative method converges after 10

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

∥ ∥

H
a
−
Ĥ

a

∥ ∥

 

 

Our method
Opt method

Figure 5. Estimation results for matrix Ha, showing that after 6 iterations,

the Frobenius norm
∥

∥Ha − Ĥa

∥

∥ converges to 0, i.e., Ha = Ĥa.

iterations with negligible errors (< 0.07%). In conclusion, the

above analysis has shown that the proposed accelerometer

calibration method can estimate the accelerometer sensor

model parameters accurately.

For the second simulation, we evaluated the magnetometer

sensor model parameters estimated when we randomly put

the sensor at 20 different orientations. A zero mean Gaussian

distributed error with variance 0.1mg was added to the voltage

readings ym to simulate sensor noise. Table III summarizes the

settings used.

The bm estimation results calculated from 100 simulated

calibrations using the proposed magnetometer calibration

method are shown in Fig. 6. As we can see from the figure,

the mean errors between the estimated bm and the true bm
are less than 1, and the maximum estimation error is less

than 0.049%, which is small and imperceptible. In conclusion,

the above analysis has shown that the proposed magnetometer

calibration method can estimate the bias values accurately.

It should be noted, however, one limitation of the proposed

magnetometer calibration method is that the Hm cannot be

determined. In the next part of our evaluation, we will show

that the proposed calibration method can still improve the

attitude estimation accuracy significantly without the need of

knowing the exact value of Hm.

B. The Performance of Attitude Estimation

After applying the calibration method to our sensor nodes,

we then fused the sensor measurements for attitude estimation

using our previous method [20]. Since it is well known that

the inertial sensor cannot sense the absolute rotation about the

vertical axis accurately due to inertial drift, magnetometers

are used to compensate the inertial sensor and measure the

Table III
MODEL PARAMETERS FOR MAGNETOMETER SENSOR CALIBRATION

Misalignment. Rotation Scaling (mg) Base

αm = 0.1 φm = 0.1 sax = 1/1300 bax = 32768

βm = 0.1 θm = 0.1 say = 1/1380 bay = 32877

γm = 0.1 ψm = 0.1 saz = 1/1320 baz = 32908
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orientation relative to the vertical. In order to qualitatively

illustrate how the magnetometer calibration affects the ori-

entation estimation, a simple experiment was designed using

calibrated inertial sensors. In this experiment, we put the BSN

sensor node on a platform and then rotate the sensor node

around the vertical axis for about 90◦, waited for about 7s

and then rotated for another 90◦.

In this experiment, we only evaluated the rotated angle

of the sensor node, which is shown in Fig. 7. In general,

the sensor node attitude information and the rotated angle

should be constant when the sensor node is stationary. In our

experiment, the BSN node was always kept still during the

experiment except the two short periods when the sensor node

was rotated, so the rotated angle should only change during

these short periods. It is evident from the figure that the rotated

angle still has noticeable changes after the sensor node is

still if the magnetometer is not calibrated. After magnetometer

calibration, the rotated angle become accurate and is consistent

with the experiment settings and BTS measurements.

To further illustrate the strength of the proposed BSN

calibration method, we compare the sensor based attitude

estimation result with the reference measurement from the

BTS optical motion tracker quantitatively. In our experiment,

the BSN sensor node was placed on a rigid body affixed and

rotated arbitrarily. Fig. 8 shows the estimated Euler angles by

using our proposed method as compared to the ground-truth

measurements from the BTS system. It is evident that the pro-

posed sensor calibration can estimate the BSN sensor model

parameters accurately, and there are significant estimation er-

rors between the BTS measurements and the estimation before

calibration. This is mainly due to the gyroscope suffering from

serious integration drift without calibration. Furthermore, the

un-calibrated magnetometer cannot compensate for the drift,

so the estimated attitude has a significant distortion in the

vertical axis. The estimated pitch angle after the optimization

calibration [13] also got significant errors, this is mainly due to

the inaccurate misalignment estimation during the calibration.

The quantitative comparison results between the BTS system

and BSN sensor platform are shown in Table IV. From

the results derived, it is evident that the proposed method
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Figure 6. The box-and-whisker error diagram for magnetometer bias
estimation, showing the mean error being less than 0.003%, and the maximum
error less than 0.049%
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Figure 7. The 90◦ rotation experiment result showing the improvement in
the rotated angle estimation after magnetic calibration.

significantly reduces the root mean square (RMS) errors. There

is an excellent correlation between the calibrated result with

that of the BTS system.

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

100

R
ol

l [
D

eg
re

e]

0 2 4 6 8 10 12 14 16 18 20
−20

0

20

40

60

P
itc

h 
[D

eg
re

e]

0 2 4 6 8 10 12 14 16 18 20
−100

−50

0

50

100

Y
aw

 [D
eg

re
e]

Time(s)

 

 

BTS
Before Cal.
After Cal.
After Opt Cal.

Figure 8. The Euler angle estimation results compared to the BTS measure-
ments after sensor calibration.

Table IV
THE RMS, MEAN, SD AND CORRELATION COEFFICIENTS OF THE

ESTIMATED ATTITUDE COMPARED TO THE BTS OPTICAL SYSTEM.

Optimization Calibration [13] Our calibration

RMS Correlation RMS Correlation
(Mean,SD) Coefficient (Mean,SD) Coefficient

Roll
0.0380

0.9976
0.0213

0.9992
(0.0035±0.0379) (-0.0019±0.0212)

Pitch
0.0919

0.9112
0.0240

0.9862
(0.0378±0.0838) (0.0028±0.0238)

Yaw
0.0557

0.9921
0.0231

0.9984
(-0.0172±0.0530) (0.0035±0.0228)

The above analyses have shown that the proposed inertial

and magnetometer calibration method can significantly im-

prove the attitude estimation accuracy, which suggests that the

calibration method can estimate the underlying sensor model

parameters accurately. Based on the derived sensor model,

the sensor readings can be converted to physical quantities

in metric units for accurate attitude estimation.
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IV. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a method for calibrating

micro inertial/magnetic sensors for accurate attitude estima-

tion. A unified sensor model for inertial and magnetic sensors

is presented and a novel sensor model parameters estimation

method for accelerometer, gyroscope and magnetometer is

proposed. The calibration method was applied to the BSN

sensor node to acquire accurate acceleration, angular rate and

pseudo-magnetic field measurements, which could be fused by

a quaternion-based linear Kalman filter to accurately derive the

attitude information. The experimental results show that more

accurate orientation information can be derived after effective

sensor calibration. It is expected that the method can be used

for a range of motion estimation applications including robotic

navigation and human biomotion analysis.

In this paper, the temperature related sensor drift has not

been addressed yet. Therefore, further work is required for

continuous self-calibration with consideration of different tem-

poral characteristics of the sensors combined with the use of

temperature controlled casing designs to minimise these errors.

It is also possible to model and incorporate temperature related

drift characteristics as the prior combined with real-time tem-

perature monitoring to cater for these changes. Furthermore,

more accurate magnetometer calibration method will also be

studied.

APPENDIX

A. Proof of equation (14)

Proof:

∥

∥

∥
Ua −Ha,i(Ya −Ba,i−1)

∥

∥

∥

=
∥

∥

∥
Ua − Ua · (Ya −Ba,i−1)

+
(Ya −Ba,i−1)

∥

∥

∥

=
∥

∥

∥
Ua

(

I − (Ya −Ba,i−1)
+
(Ya −Ba,i−1)

)∥

∥

∥

(30)

For any matrices Υ and A,

∥

∥

∥
I − Υ+Υ

∥

∥

∥
<
∥

∥

∥
I − A+Υ

∥

∥

∥
is

always satisfied unless Υ = A, so

∥

∥

∥
Ua −Ha,i(Ya −Ba,i−1)

∥

∥

∥

6

∥

∥

∥
Ua

(

I − (Ya −Ba,i−2)
+
(Ya −Ba,i−1)

)∥

∥

∥

=
∥

∥

∥
Ua − Ua · (Ya −Ba,i−2)

+
(Ya −Ba,i−1)

∥

∥

∥

=
∥

∥

∥
Ua −Ha,i−1(Ya −Ba,i−1)

∥

∥

∥

(31)

B. Proof of equation (15)

Proof:

Denote:

Ûa,i = Ha,i(Ya −Ba,i−1) (32)

we can get:

ba,i = E
(

Ya −H+
a,i · Ua

)

= E

(

Ya−H+
a,i ·

(

Ûa,i+Ua−Ûa,i

))

= E

(

Ya−H+
a,i · Ûa,i

)

−E
(

H+
a,i ·
(

Ua−Ûa,i

))

= ba,i−1 − E

(

H+
a,i ·

(

Ua − Ûa,i

))

(33)

and then,

Ha,i(Ya −Ba,i)

=Ha,i

(

Ya−R

(

ba,i−1−E
(

H+
a,i ·

(

Ua−Ûa,i

))))

=Ha,i

(

Ya−Ba,i−1+R

(

E

(

H+
a,i ·

(

Ua−Ûa,i

))))

=Ûa+Ha,i

(

R

(

E

(

H+
a,i ·

(

Ua − Ûa,i

))))

=Ûa + R

(

E

(

Ua − Ûa,i

))

.

(34)

We can then get
∥

∥

∥
Ua −Ha,i(Ya −Ba,i)

∥

∥

∥

=
∥

∥

∥
Ua −

(

Ûa + R

(

E

(

Ua − Ûa,i

)))∥

∥

∥

=
∥

∥

∥
Ua−Ha,i(Ya−Ba,i−1)−R

(

E

(

Ua−Ûa,i

))∥

∥

∥

6

∥

∥

∥
Ua −Ha,i(Ya −Ba,i−1)

∥

∥

∥

(35)
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