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Abstract-Semantic communication holds promise for integra­
tion into future wireless networks, offering a potential enhance­
ment in network spectrum efficiency. However, implementing 
semantic communication in aerial-aided edge networks (AENs) 
introduces unique challenges. Within AENs, semantic communi­
cation strategically substitutes part of the communication load 
with the computation load, aiming to boost spectrum efficiency. 
This departure from traditional communication paradigms intro­
duces novel challenges, particularly in terms of energy efficiency. 
Furthermore, by adding complexity, the use of a semantic coder 
based on machine learning (ML) in AENs encounters real-time 
updating challenges, further amplifying energy costs in these 
complex and energy-limited environments. To address these chal­
lenges, we propose an energy-efficient semantic communication 
system tailored for AENs. Our approach includes a mathemat­
ical analysis of semantic communication energy consumption 
within AENs. To enhance energy efficiency, we introduce an 
energy-efficient game-theoretic incentive mechanism (EGTIM) 
designed to optimize semantic transmission within AENs. More­
over, considering the accurate and energy-efficient updating of 
semantic coders in AENs, we present a game-theoretic efficient 
distributed learning (GEDL) framework, building upon the 
foundations of the renewed EGTIM. Simulation results validate 
the effectiveness of our proposed EGTIM in improving energy 
efficiency. Additionally, the presented GEDL framework exhibits 
remarkable performance by increasing model training accuracy 
and concurrently decreasing training energy consumption. 

Index Terms-Semantic communication, energy efficiency, 
game theoretic, distributed learning. 

I. INTRODUCTION

T
HE 6G wireless communication is considered a three­

dimensional (3-D) communication network fully assisted 

by edge cloud facilities [l]. The aerial facilities with edge 

clouds, i.e., aerial edge clouds (ABCs), are anticipated to pro­

vide abundant storage and computing resources to subscribers 

alongside the terrestrial edge clouds (TECs). Subscribers are 

allowed to access these edge facilities to offload computation­

ally sensitive tasks for rapid processing or acquire massive 

image/video information etc. [2]. 

Aerial-aided edge networks (ABNs), however, introduce un­

precedented spectrum resource and energy challenges [3]. The 
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deployment of edge networks poses a significant volume of 

task interactions and hence dramatically increases the volume 

of communication transmission tasks [4]. It means the network 

needs to provide more data transmission within the limited 

spectrum resources to ensure network quality of service (QoS). 

How to optimize the spectrum efficiency of the ABN s therefore 

becomes an urgent concern. 

Semantic communication [5] looks promising in improving 

spectrum efficiency. It utilizes the semantic coder largely based 

on machine learning (ML) instead of the conventional commu­

nication coder. The ML-based semantic encoder extracts the 

specific meaning of the input data, thus significantly reducing 

communication transmission bits [6]. Several studies have in­

vestigated the application of semantic communication in trans­

mitting images [7]/text [8]/video [9]/speech [10], etc. These 

studies have all demonstrated the effectiveness of semantic 

communication in improving spectrum efficiency and network 

QoS. Semantic communication is hence also considered to be 

one of the essential applications of 6G communication [11]. 

Several studies already investigated the employment of 

semantic communication for ABC devices. Kang et. al [12] 

proposed a new aerial semantic image transmission paradigm 

based on deep reinforcement learning (DRL) to improve the 

transmission accuracy of unmanned aerial vehicles (UAVs). 

In [13], semantic communication was integrated into their 

presented DRL framework for increasing communication relia­

bility and decreasing the latency of air-ground networks. Kang 

et. al [14] introduced a task-oriented semantic communication 

framework for UAVs. The UAV sends only the necessary im­

ages to the required users rather than all images, thus reducing 

its energy consumption. However, these existing studies for 

semantic communication concentrate more on ABC devices 

and end-to-end semantic coder design. They also neglect to 

take into account the influence of semantic communication 

applications for ABNs. 

There are some outstanding challenges for semantic com­

munication in ABNs. First, the utilization of trained semantic 

coders in ABNs raises the sophisticated network energy opti­

mization challenge. Optimizing energy efficiency for ABN s 

becomes a crucial concern as semantic communication re­

distributes communication load onto computational resources, 

thereby enhancing spectral efficiency. This shift necessitates 

addressing energy optimization challenges associated with 

the transformation of energy utilization patterns. Developing 

an energy-efficient semantic communication framework is 

paramount to effectively manage this issue and ensure optimal 

energy utilization in ABN s. 
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Fig. 1: Proposed system model. 

In [15] and [16], different semantic communication frame­

works were proposed, they, however, ignore the energy cost 

of semantic communications. Yang et. al [17] proposed an 

energy saving semantic coder utilization scheme over wireless 

networks with rate splitting. Moreover, the optimization of 

semantic communication energy cost over 2-D edge networks 

was investigated in [18], [19]. Nonetheless, these approaches 

did not account for the unique scenario and challenges of 

AENs. For instance, mobile network operators (MNOs) incur 

additional monetary and energy costs to implement the AECs. 

A certain percentage of AEC energy is inevitably consumed 

in air hover. How to improve the energy efficiency of semantic 

communication over AENs thus remains a challenge. 

Semantic communication also requires real-time updating 

ML-based semantic coders for various specific content [20].

Designing various distributed learning frameworks for seman­

tic coder updating in different networks is one of the main

challenges of semantic communication in networks [21]. The

existing studies are limited. Shi et. al [22] proposed a semantic

communication framework for general 2-D edge networks

and utilized federated learning (FL) to update the ML-based

semantic coder. Similarly, Qin et. al [23] investigated the

FL framework in semantic communication enabled networks.

Furthermore, considering the properties of vehicular networks,

e.g., dynamic, an MSFTL [24] framework was designed and

tailored for semantic coder updating in vehicular networks.

Nevertheless, these 2-D FL frameworks for updating semantic

coders are not suitable to be deployed on the AENs directly.

Updating semantic coders faces several unique challenges in

AENs. For instance, the distributions of training data from

different coder owners are frequently not independent and 

identically distributed (non-11D) [25]. Furthermore, as the 

AECs are energy-limited, the energy efficiency of the learning 

framework has to be considered. How to timely update the 

semantic coder accurately and energy-efficiently in an AEN 

with non-IID training data is one of the challenges for semantic 

communication to apply in AENs. To the best of our knowl­

edge, designing an effective learning framework to update the 

semantic coders in AENs has not been widely studied. 

To address semantic coder updating challenges in AENs 

while optimizing the energy efficiency of semantic commu­

nication, in this paper, we propose a novel energy-efficient 

semantic communication system for AENs. We then discuss 

the resource allocation problem during semantic communi­

cation usage. A new energy-efficient game theoretic incen­

tive mechanism (EGTIM) based on the proposed semantic 

communication system is presented to optimize the network 

energy efficiency in a fair way. In addition, we propose a game 

theoretic efficient distributed learning (GEDL) framework for 

semantic coders updating in AENs. It renews the proposed 

EGTIM and combines EGTIM with a conventional distributed 

learning approach to update semantic coders accurately and 

energy efficiently. 

The major contributions of this paper are summarized as 

follows: 

• We propose a novel energy-efficient semantic communi­

cation system to support AENs. In this system, AECs and

TECs provide edge services to users via employed ML­

based semantic coders. Moreover, it enables edge devices

to schedule the processing locations of computational



tasks due to semantic communication intelligently to 
improve the energy efficiency of the ABN. The AENs' 
spectral efficiency and the QoS thus can be improved. 

• In particular, we present a new EGTIM in the proposed
semantic communication system to further improve the
energy efficiency of AENs. The computational and com­
munication workload of the ABC and TECs to perform
semantic communication are developed as a Stackelberg
game. It is designed to maximise the energy efficiency
of the ABN while proportional fairness maximising the
service revenue of each edge device in the network.

• A GEDL framework is proposed for semantic coder
updating in ABNs. It is based on our designed renewed
EGTIM for semantic coder updating. Compared to FL,
it significantly improves the semantic coder accuracy in
11D/non-IID scenarios and improves the training energy
efficiency by retraining the model after federated aggre­
gation in the ABC.

The remainder of this paper is organized as follows. We 
describe the proposed system model in Section IL In Section 
ill, the game problem formulation and the proposed EGTIM 
are presented. Section IV describes the presented GEDL 
framework for semantic coder updating in ABNs. Simulation 
results are shown in Section V. Finally, we conclude this paper 
in Section VI. 

II. SYSTEM MODEL 

In this paper, we consider a three-dimensional edge network 
aided by an ABC j (Fig. 1). The TECs provide edge services 
via semantic coders to subscribers on the terrestrial. An 
ABC j with semantic coders hovers in the air and assists 
TECs in providing edge services to subscribers. The semantic 
communication task processing can be performed in TECs and 
ABC j. Furthermore, to optimize the allocation of network 
energy resources, semantic extraction task locations allow 
for replacement. For instance, in the case of a TEC with 
insufficient computational resources, a part of the semantic 
extraction tasks can be provided to the AEC via conventional 
communication. The semantic extraction tasks are calculated 
in new locations and the semantic information is then trans­
mitted to the subscribers. In addition, the semantic coders in 
TECs and ABC j need to be updated in real-time according 
to different tasks. 

We assume that the energy power of ABC j hovers in 
the air is PJ. The free computational capability (free CPU­
cycle frequency) of ABC j is /j. Moreover, there are I TECs 
within the service range of ABC j that provide edge service 
to subscribers. We denote the data size of tasks that each TEC 
i prepares to transmit semantic extraction tasks to ABC j as 
mi,i bits. The semantic encoder execution latency of TEC i 
for these tasks can be expressed as: 

(1) 

where Ji is the CPU-cycle frequency of TEC i to process these 
semantic extraction tasks and the unit is cycles/s. Further, a is 

the pure number of CPU-cycle consumed to calculate each 1-
bit [26]. According to [27], the computing power of the TEC 
i can be denoted by 

(2) 

where /'i, is the CPU architecture-related coefficient and is 
considered to be the same across various devices [27]. We 
thus have the execution energy consumption of TEC i for 
these semantic extraction tasks as: 

(3) 

Similarly, in the case of the TEC i provides the mi,i bits 
semantic extraction task to the ABC j, the execution latency 
and energy consumption of ABC j can be expressed as: 

T<; _ ami,i
J - !·. ' 

J,• 

E9 = K,am,· 3·/2 . J ' J,i , 

(4) 

(5) 

where hi is the CPU-cycle frequency that ABC j allocate 
to the task bits mi,j· To ensure the QoS and subscribers' 
satisfaction, in this paper, we assume hi = 

fi -
In addition, during the semantic extraction task providing 

process, the data transmission rate of the TEC i to the ABC 
j can be denoted by 

T B l (l Pi9i
) ri = i og2 + -2- , 

(T 

(6) 

where Bi is the bandwidth of the communication channel 
between the TEC i and the AEC j. Further, Pi, 9i and u 
are the transmission power, channel gain and additive white 
Gaussian noise (AWGN) power in this channel, respectively. 
We then can have the transmission delay as: 

TT = mi,i = mi,j 
• r'[ B;log2 (1 + �)" 

Thus, the transmission energy consumption is 

ET TT Pimi,i 
i =Pi i = Bilog2 (l + �)" 

(7) 

(8) 

As the completed semantic extraction task result size is 
much smaller than the task size, resembling [28], [29], we 
ignore the transmit delay and energy consumption of trans­
mission tasks after semantic extraction. 

For easy reference, the main parameters and their descrip­
tion used throughout this paper are presented in Table I. 

III. STACKELBERG GAME THEORETIC INCENTIVE
MECHANISM DESIGN 

To improve the ABN energy efficiency, the fairness optimiz­
ing assignment of the number of semantic compression tasks 
processed by the TECs and the ABC is essential. Because we 
found that when ABC edge resources are underutilized, the 
hovering of airborne devices takes longer for the same amount 
of energy. This results in a significant amount of energy being 
wasted for hover rather than performing economically efficient 
semantic message computing/transmission. Therefore, we con­
struct the TECs and the ABC interaction as a Stackelberg game 
[30] from the economic perspective. Its objective is to enable



TABLE I: NOTATION DEFINITION

Definition 

CPU-cycle frequency 
Bits of transmitted data 
Bits of transmitted data during coder updating 

Semantic execution latency 

Transmission delay 

Semantic execution energy consumption 

Transmission energy consumption 
Available hover energy of AEC j 

Energy power of AEC j hover in the air 

Energy power of AEC j utilizing with no economic benefit 

Unit bonus price 
CPU architecture-related coefficient 
Net income monetary parameter 
Cost price monetary parameter 
Sale price monetary parameter 

energy wasted for AEC hovering to be utilized for semantic 
extraction task processing to improve the network energy 
efficiency. It thus incentivises TECs to additionally provide 
partial semantic extraction tasks to the AEC in fairness, where 
the AEC is trusted. The Stackelberg game is comprised of a 
leader and followers, where the followers change their policies 
according to the policies developed by the leader. Thus, the 
proposed incentive mechanism consists of the game at the 
AEC (leader) and the game at TECs (followers), which we 
elaborate on in detail in the following two subsections. 

A. Game at the AEC

We elaborate on the game of the AEC in this subsection.
First, AEC j can reaps more processing revenues when more 
semantic extraction tasks from TECs are processed. The 
energy used to process these tasks can be thought of as saved 
hover energy. Correspondingly, the reduced hovering time also 
reduces the revenue of the AEC j for processing regular tasks, 
e.g., computing offloading, and computing tasks from TECs.
Furthermore, a portion of the total revenue of the AEC j is also
required to be paid to the TEC to create incentives. Without
loss of generality, we define the monetary utility U1 of the
AEC j as:

(9) 

where N1 is the net income of AEC j to transmit semantic 
extraction tasks to subscribers. The R1 is the cost price of AEC 
j's energy to process semantic tasks. This energy is originally 
wasted for the hover. Moreover, B1 is the bonus paid to TECs 
providing the tasks and G 1 is the revenue loss of AEC j

due to the transfer of some holdup energy to the additional 
semantic extraction execution resulting in a reduction of the 
holdup time. We consider the net income N1 and cost price 
R1 as the energy consumption similar to the previous study 
[31]. We have 

I 

Ni(miJ) = a LE[, (10) 
i=l 

I 

Rj (iliJ) = f3LEf, (11) 
i=l 

where a > 0 is the net income monetary parameter and /3 > 0 
is the cost price monetary parameter of energy. We further set 
'Y is the sale price monetary parameter and 'Y =a+ /3. 

The revenue loss G i depends on the aerial hover time and 
we define it as revenue loss of not performing its regular tasks. 
To obtain the G 1, we first formula the residence time of AEC 
j without additional semantic compression tasks as: 

T�(m· ·) - Ei 
J I,J - pl 

+ 
p,:, 

+ y;,f?o '
J J J 

(12) 

where E1 is the available hover energy of AEC j and /jo is 
the CPU-cycle frequency required for the AEC j to perform 
its regular tasks. Further, Pj is the AEC power for hovering in 
the sky and Pp is the AEC utilizing power with no economic 
benefit. We then have the residence time of AEC j with 
additional semantic compression tasks as: 

Tl( ) Ej - ej 
j 

m;J = 
p! 

+ 
p,:, 

+ y;,f?o '
J J J 

(13) 

where e1 = L{=1 Ef is the energy consumption of the AEC 
j to execute the provided tasks. This is due to the energy 
consumption e1 of processing semantic tasks reducing the total 
energy E1 of the AEC. Therefore, we can find the G1 as: 

(14) 

where 'Y is the sale price monetary parameter as energy here 
is not sold and receives zero economic benefit. 

In addition, we set the unit bonus price of each task bit 
being transmitted from the TEC to the AEC to b. The bonus 
paid B1 to TECs providing the tasks can be expressed by 

I 

Bi(b, m;J) = L bmi,i• 

Therefore, we have 
I I 

i=l 

(15) 

U1(b,m;J) = 'Y LE[ - Lbmi,j -,yy;,f]0 (T1
° -T}).

i=l i=l 

(16) 

Mathematically, the ABC's game problem can be presented 
as: 
Problem 1: 

I I 

m� 'Y L Ef - L bmi,j -,yy;,f]0(Ti° - TJ) 

s.t.

i=l i=l 

I 

! ·o + L 1- - < 1-J J,• - J 
i=l 

b>O
E1 > e1 

if mi,j = 0, li,i = 0

(17a) 

(17b) 

(17c) 
(17d) 
(17e) 

where constraint (17b) ensures the CPU-cycle used for seman­
tic processing is less than the total AEC computational capac­
ity. Furthermore, constraint (17c) guarantees the semantic task 
unit price is greater than O and constraint (17d) is intended to 



ensure the ABC has sufficient energy to process the semantic 
task. Constraint (17e) shows the relationship between mi ,j and 
/j , i • 

B. Game at TECs
Similarly, based on energy variation, we can define the

utility of a TEC i as: 

(18) 

where Bj is the bonus gain of TEC i from the ABC j and Ni is 
the net income of processing semantic tasks. These parameters 
are the same as Eq. (9). Moreover, Cf is the transmission cost 
from the TEC i to the ABC j. In particular, Si is the potential 
decrease in subscriber satisfaction due to the change in the 
location of the semantic transmission service. First, based on 
Eq. (15), we have Bj as: 

(19) 

The Ni from Eq. (18) is the net income forgone of TEC 
i to transmit semantic compression tasks to subscribers. The 
net income is transferred to the ABC. Therefore, similar to 
Eq. (10), we have the net income forgone of TEC i as: 

(20) 

In addition, Cf is the transmission energy revenue loss from 
the TEC i to the ABC. As no economic benefit is generated 
from this energy, we denoted the Cf by 

Ct(mi ,i ) = -yE'f. (21) 

In Eq. (17) Si is set as the satisfaction revenue change 
of TEC i due to the semantic transmission tasks transfer 
from the TEC to the ABC. The lower satisfaction results 
in a lower motivation for subscribers to access the edge 
services, resulting in lower gains. In this paper, we argue that 
subscriber satisfaction is related to task processing delay. We 
hence model the satisfaction revenue as a logarithmic function 
related to execution delay. Because the logarithmic function 
based on execution delay precisely expresses the satisfaction 
of subscribers with the edge services [32], [33]. The Si can 
be denoted by 

Si (mi ,j ) = <p(ln(l + 0-TP) -ln(l + 0-TP -Tt)), (22) 

where <p 2': 0 is the monetary parameter and 0 2': TP + TT to 
ensure the satisfaction is positive. Therefore, we have 

Algorithm 1 EGTIM 

1: Initialization: semantic transmission tasks mi
j

, CPU-cycle 
frequency fi , the maximum number of iteration K, the 
stopping criterion threshold e > 0, and learning rate <;" 

2: for each i = 1, 2, ... , I 
3: Derive optimal mt,3-, i.e., fi (b) by 8�;. = 0

,,3 

4: end for 

5: Substitute fi (b) in Uj (b) 
6: while k < K 
7: b

1 

= b - <;" V Ui (b) 
8: b

11 

= b, b = b
1 

9: until b
11 

- b < e

10: end while

11: Derive optimal mi ,j according to optimal b 
12: return b and mi ,j 

where mi is the number of training data that TEC i have. 
Hence, we can have the upper bound of transfer tasks bits 
m'f:r via Pi<(. 

The TECs' game problem can be expressed as: 
Problem 2: 

b f2 

Pimi ,j 
max mi ,i - aK-ami ,i i - 'Y

B
· l (l 'Ei.!l.i)m,,3 • og2 + a2 

- <p(ln(l + 0 -TP) - ln(l + 0 -TP -Tt))
s.t. 0 � mi ,j � m'f:t"

C. Nash equilibrium for the game

(25a) 
(25b) 

The game of TECs and the ABC can model as a Stackelberg
game. To guarantee fairness, the objective of the TECs is to 
maximise their utility by simultaneously selecting the most ap­
propriate mi ,j when given the known unit price b. Meanwhile, 
the ABC's objective is to maximise its utility by varying b, for 
a known mi ,j . The game can be expressed by 

(26) 

(27) 

where b* and mi,j are solutions in which the parties jointly 
pursue the optimal strategies, i.e., the Nash equilibrium (NE) 
point(s). We demonstrate the existence of NE in this game. 
Existence of NE: 

ui (b, mi,j) = bmi ,j - aK-ami ,j fl - 'YE'[ 
- <p(ln(l + 0 - TP) - ln(l + 0 -TP - TT)).

The second-order partial derivative of Ui (b*, mi,j) can be 
(23) denoted by

In addition, we also need to consider the privacy leakage of 
TECs. Because even though the ABC is trusted, setting a TEC 
privacy breach tolerance threshold ( is necessary to prevent 
possible attacks. According to [34], we have the relationship 
between transfer tasks bits and privacy leakage value Pi as: 

(24) 

Since 0 - TP + l > 0 - TP - Tl + l and _f
a
· < _f

a
· + 4-,,

2 

i i ri 

we can observe that gmff'. < 0. Hence, Ui is concave in mi,j. 
,,3 

As the strategy set of the TEC i is also compact and convex, 



based on the Debreu-Glicksberg-Fan theorem [30], the NE of 
this game exists. 

In order to achieve NE, we utilize the backward induction 
approach in game theory and obtain the optimal strategies of 
followers (TECs) first. Subsequently, based on these TECs' 
strategies, the leader's (AEC's) optimal strategy is developed. 
Thus, we first derive the first-order partial derivative of Ui as: 

(f. - am· · + 0f·)(rTf· - f·m· · - rTam· · + rT0f·) ·t t,J i 1, 1, 1, i,J 'l, t,J i 'l, 

(29) 

As Ui is concave in mi ,j , the maximum of Ui and cor­
responding mi ,j thus can be derived by a�i. = 0. Due 
to it being hard to express, we simply denotecl the optimal 
mi,j 

= fi(b). Therefore, the utility function of Uj can be 
rewritten as: 

I I 

Uj(b) ="f L r;,afi(b)J],i - L bfi(b) 
i=l i=l 

- 'Yr;,f]0 (TJ - TJ ). (30) 

If we can derive the maximum Uj and corresponding b, we 
therefore can obtain the corresponding mi,

j 
in a closed-form 

based on Eq. (29). However, due to the complexity of the Eq. 
(30), we cannot derive the NE closed form. Fortunately, b and 
mi ,j both have boundaries. The NE thus can be obtained by 
performing a gradient descent method [35] over b and mi ,j . 
The solution step is shown in Algorithm 1. 

IV. EFFICIENT DISTRIBUTED LEARNING DESIGN
The application of semantic communication significantly

improves the network QoS. Nevertheless, how to update users' 
ML-based semantic coders efficiently and accurately in real­
time becomes one of the biggest challenges of semantic com­
munication studies. FL is a potential approach to cope with
the challenge of semantic coder updates in the network [23].
Nevertheless, the 3-D network environment is sophisticated,
and energy limited. In particular, the case where the users'
training data are non-IID significantly reduces the semantic
communication QoS. To address these challenges, we propose
a GEDL framework for AENs (Fig. 2). Specifically, TECs
first transmit some semantic communication transmission tasks
to the AEC based on our proposed renewed EGTIM for
semantic coder updating. The TECs then update the semantic
coder based on their training data and transmit the new coder
model to the AEC for the federated aggregation. Subsequently,
the AEC performs the federated aggregation and retrains the
aggregated model utilizing the tasks provided by TECs. This
is because AEC is flexible in terms of data collection, it is
often used as a federated aggregation node [36]. Finally, the
AEC sends back the model to participated TECs and completes
one training epoch. The model accuracy thus can be improved
while maximising energy efficiency. We will demonstrate these
in our simulations.

1. TECs provide some semantic transmission tasks to the AEC 

I 
_!u_""'_""_m"°'_·l_! ->----+ 
I updated model I 

2. TECs update semantic coders and transmit it to the AEC 

3. The AEC perform federated aggregation 

Scndback 

4. The AEC retrain the aggregated model 

Fig. 2: The process of proposed GEDL. 

We first renew the EGTIM for semantic coder updating. As 
increased semantic coder accuracy can improve the network 
QoS, it enhances network revenue. Similar to [37], we utilize 
a logarithmic function to model the relationship between 
training accuracy and training task size. The revenue of model 
accuracy improvement thus can be denoted by 

I 

A; = o(ln(l + L mtj) + rJ), (31) 
i=l 

where mtj is the proving task bits from the TEC i to the
AEC j. The difference between mi ,j and mL is that mi ,j is 
the providing tasks during trained semantic coder transmission 
and mtj is the providing tasks during semantic coder training.
Further, o is the monetary parameter and 'T/ is the basic 
accuracy of FL. 

Therefore, we should update the utility function of the AEC 
j as: 

(32) 

Similar to Eq. (9), in Eq. (32), R} = f3r;,aff L{=
1 

mtj is the
energy cost revenue of AEC j gained for additional training 
mL data and Bj is the bonus paid from the AEC j to TECs 
providing the tasks. Further, Gj is the gain loss of the AEC 
j due to the transfer of some holdup energy to additional 
training. 

Therefore, the game problem for AEC j when coder training 
can be presented as: 



Problem 3: 

I I 

m:,x 8(ln(l + L mL) + 77) + /31wff L mL 
i=l i=l 

I 

- L bmL - 'Y�f]o (Tl -T}) (33a) 
i=l 

s.t. ho + !J :s: h (33b) 
b>0 (33c) 
E >e· J - J (33d) 
if mt

j 
= 0, JJ = 0 (33e) 

where JJ is the CPU-cycle frequency of the AEC j to perform 
the additional training after federated aggregation. Due to the 
requirement to perform federated aggregation, the power of 
AEC j for the regular task without economic benefit also needs 
to be plus the aggregation power. Furthermore, the reduction 
in training sample size reduces the model accuracy and thus 
affects the accuracy of the model after federated aggregation 
[38]. Therefore, TECs still train the number of new tasks they 
have. 

The utility function of proving semantic transmission tasks 
thus can be changed from Eq. (18) by 

(34) 

where Bf is the training bonus gain of TEC i from the AEC 
j and era is the transmission energy consumption. Further, 
Sf is the revenue change due to the satisfaction change. As 
satisfaction is associated with training time, we have 

Sf= <p(ln(l + 0t - Tn - ln(l + 0t - TJ - Tt)), (35) 

where Tf is the distributed learning training computing time 
without AEC additional training, i.e., FL training computing 
time. Further, Tt is the AEC additional training time. Since the 
training time tends to be much greater than the training data 
transmission time, we ignore the variation in satisfaction due 
to the transmission time. Hence, we have the game problem 
for the TEC i during training new coders as: 
Problem 4: 

. t 

t p,mi,j ( ( t t) mpc bmi,j - 'Y B · l ( Ei1li) 
- <p ln 1 + 0 - Ti 

mi,i , og2 1 + "2 

- ln(l + 0t - Tf -Tt)), (36a) 
S t O < 

m
t . < 

m
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(36b) 
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where m!;;Jwx is the maximum available providing training 
data considering the risk of privacy leakage arising. Further­
more, mf is the total training task bits of the TEC i. It can 
be found from Problem 4 that the strategy set of the TEC i is 
also compact and convex as same as Problem 2. In addition, 
the second differentiation of Uf is similar to Ui and concave 
in mt

j
. Thus, the NE of this game is still existing and the NE 

point can be achieved by Algorithm 1. 

V. SIMULATION RESULTS
In this section, we provide simulation results to validate 

the performance of the proposed EGTIM and GEDL. First, 
we elaborate on the energy efficiency of our EGTIM. The 
advantage of our GED framework is then assessed by compar­
ing it with baseline distributed learning in image transmission 
scenarios [22], [23]. 

A. EGTIM

To the best of our knowledge, there is little previous research 
on the study of energy-efficient semantic communication in 
AEN networks. Therefore, in simulations, we demonstrate 
the effectiveness of EGTIM compared to the straightforward 
employment of semantic communication in AENs. We first 
elaborate on the simulation settings in assessing the perfor­
mance of our proposed EGTIM. We assume there are 5 TECs 
in the service range of the AEC j. To better demonstrate our 
proposed mechanism, we assume that all TECs have the same 
conditions. Similar to [27] and [29], we set a = 120; Pi = 0.2 
w; � = 10<-26); Ji = 0.5 x 109 cycles/s; ho = 0.5 x 109 

cycles/s. Further, if not mentioned specifically, we assume 
the monetary parameter a = 1, /3 = 1 and thus 1' = 2. The 
hold-up power of the AEC is set as 1 w and by default the 
constraints are all satisfied. 
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Fig. 3: NE existence under the proposed EGTIM. 

In Fig, 3, the existence of NE is demonstrated. It can be 
observed that as the unit reward value increases, the optimal 
task size that TECs are willing to provide also increases. This 
is due to the increased transfer task size allowing TECs to 
earn greater benefits as the unit rewards increase. However, 
the utility function of the AEC shows an increasing trend 
followed by a decreasing trend. There is therefore an NE point 
that maximises the utility of the AEC while ensuring that the 
utilities of TECs are maximised (i.e., optimal transfer task 
size). 

Fig. 4 illustrates the energy savings in joules (J) at different 
amounts of TECs and different hover consumption power. 
We define energy saving as the reduction in wasted hover 
consumption minus the lost energy consumption for regular 
AEC tasks and the power consumption of TECs transmitting. 



Mathematically, the energy saving equals 7f- - a,�c: As 
can be observed, more energy can be saved as the number of 
TECs increases. This is due to the fact that the increase in the 
number of TECs decreases the energy consumption in hover 
and outweighs the resulting loss raise. It is notable that the 
number of TECs does not grow indefinitely as the AEC has 
a finite computing capacity. In addition, the higher the hover 
power, the greater the energy saving, but the magnitude of 
the increase is decreasing. Because the hover power increase 
means consuming the same energy for additional semantic 
transmission tasks, the AEC can be maintained on air for a 
longer time. The corresponding cost loss thus falls and the 
magnitude of the increase is decreasing as the percentage of 
hover energy consumption of the AEC becomes larger. 
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Fig. 4: Energy saving of proposed EGTIM in various scenar­
ios. 
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Fig. 5: Effect of different CPU-cycle on providing task size. 

In Fig. 5, we evaluate the influence of different CPU-cycle 
on providing task size from TECs to the AEC. It is observed 
that more CPU-cycle frequency required for semantic task 
transmission makes TECs more inclined to transfer more task 
bits. However, the increase in CPU-cycle frequency required 
for regular tasks results in lower providing task sizes. This 
is because the increased CPU-cycle frequency required for 
tasks increases the efficiency of AEC hover energy utilization. 
Therefore, TECs are biased towards providing more tasks for 

more revenue. Further, the increased ho increases the hover 
time reduction benefit loss and therefore reduces the overall 
data transfer revenue and hence the unit reward. 

B. GEDL

To estimate our GEDL, we employ the convolutional neural 
network (CNN) as the semantic coder and set the appli­
cation scenario as an image transmission environment. The 
semantic coder setting is the same as the previous semantic 
communication study, i.e., [7]. Further, we train models on the 
CIFAR-10 [39] dataset with 60000 training data and 10000 
test data, which all have 10 class images. As in the same 
previous subsection, we assume there are 5 TECs involved 
in the training. To create the non-11D training environment, 
we enable each TEC in training to have only four classes of 
the training data in the different 10000 CIFAR-10 data. The 
transmission accuracy is determined by the PSNR, which is 
a criterion for the quality of image transmission in semantic 
communication [7]. We have 

PSNR = 10l 
MAX2 

g llx - xill
2

' 

(37) 

where MAX is the maximum value for a pixel and x is the 
input of the image and x j is the output via the semantic coder. 
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Fig. 6: The accuracy of various training frameworks with the 
AEC input samples grows. 

Fig. 6 demonstrates the comparison of accuracy under 
different learning frameworks. We compare the different learn­
ing frameworks together when the training data is non-HD. 
Furthermore, we also add the FL model with 11D training data 
as a reference. Since the input data of AEC remains 0 in FL­
based frameworks, the PSNR of FL-based frameworks did not 
change as the AEC input samples grows. It is seen that as 
the training data obtained by the AEC increases, the coder 
accuracy also increases. In particular, the trend of the increase 
exhibits a trend of the logarithmic function, thus verifying our 
hypothesis in Eq. (31). In addition, with the increase in the 
volume of data, the accuracy of the proposed GEDL increased 
and even exceeded the performance of FL trained with the 11D 
model. The accuracy of our proposed GEDL without FL also 
rapid growth. This is because the greater the amount of data 
AEC has, the more the training process approaches central 



learning. The training data is mixed together for training and 
therefore the accuracy increases. Nevertheless, it is noteworthy 
that due to privacy, AEC's available computing resources and 
energy constraints, the data AEC obtains is limited. However, 
our proposed GEDL is always more accurate than FL with the 
non-IID training scenario. 
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Fig. 7: Convergence speed of different training frameworks. 
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Fig. 8: Energy saving of proposed GEDL in various scenarios. 

Fig. 7 shows the comparison of the convergence speed of 
FL and our proposed distributed learning. We also included FL 
trained with the IID data as a reference. It can be observed 
that all learning eventually reaches convergence and the time to 
reach convergence is almost the same. However, our proposed 
GEDL is always more accurate than FL after each communica­
tion round. This is because our proposed GEDL is based on the 
FL for accuracy improvement and thus it increases the training 
accuracy but needs the FL process to reach convergence. 

In Fig. 8, the energy savings in joules (J) at different 
amounts of TECs and different hover consumption power are 
shown. We set the training epoch is 200. We can see that in 
contrast to Fig. 4, there is a declining trend in energy savings 
as the number of TECs increases. This is because accuracy 
revenue shows a logarithmic function trend. Providing more 
data when there are more TECs may increase energy savings, 
but not the corresponding accuracy gains. As a result, the 
total task size provided by TECs is decreasing and thus 

decreases the total energy saving. However, the GEDL we 
propose can always improve energy efficiency and save energy. 
Furthermore, the magnitude of the energy saving increase with 
the hover power increase varies from Fig. 4. It is likewise due 
to the existence of the trend in the logarithmic function of 
accuracy revenue. The decrease in regular task revenue due 
to time reduction makes the task size increase dramatically in 
order to reach the NE point. 
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Fig. 9: The impact of j3 value on energy saving. 

Fig. 9 illustrates the impact of changes in j3 value on 
energy saving. We evaluate this by adjusting the size of the 
energy cost monetary factor j3. The smaller j3 means a higher 
energy cost price. We can observe that as the cost price 
grows, the overall energy saving of the network also rises 
exponentially. Due to the reduction in net income, the network 
members are more inclined to save energy for monetary 
benefits. Consequently, mt

j 
from the TEC i increases sharply 

in order to reach the NE point, thus making the energy saving 
increase. 

VI. CONCLUSIONS

In this paper, we first proposed a novel energy-efficient 
semantic communication system in AENs. We then presented 
an EGTIM based on the Stackelberg game. In our EGTIM, 
the edge facilities on the terrestrial are incentivised to transfer 
part of their semantic transmission tasks to the AEC via the 
traditional communication encoder. The AEC performs the 
semantic feature extraction of these tasks and transmits the 
semantic information to the subscribers. The energy efficiency 
of the aerial devices thus can be improved. In addition, we 
further proposed a GEDL framework based on the renewed 
EGTIM for energy-limited 3-D networks updating semantic 
coders with non-IID training data. The simulation results 
demonstrated the effectiveness of our mechanism and learning 
framework. 
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