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Abstract—Despite the fact that DeepFake forgery detection algorithms have achieved impressive performance on known
manipulations, they often face disastrous performance degradation when generalized to an unseen manipulation. Some recent works
show improvement in generalization but rely on features fragile to image distortions such as compression. To this end, we propose
Diff-ID, a concise and effective approach that explains and measures the identity loss induced by facial manipulations. When testing on
an image of a specific person, Diff-ID utilizes an authentic image of that person as a reference and aligns them to the same
identity-insensitive attribute feature space by applying a face-swapping generator. We then visualize the identity loss between the test
and the reference image from the image differences of the aligned pairs, and design a custom metric to quantify the identity loss. The
metric is then proved to be effective in distinguishing the forgery images from the real ones. Extensive experiments show that our
approach achieves high detection performance on DeepFake images and state-of-the-art generalization ability to unknown forgery

methods, while also being robust to image distortions.

Index Terms—Face forgery detection, identity difference, generalization ability.

1 INTRODUCTION

RECENT advancements in deep generative models, es-
pecially Generative Adversarial Networks (GANSs), are
making generating fake faces more convenient while rec-
ognizing them more challenging. Face swapping, which
replaces someone’s face with another, is the most popular
among the DeepFake manipulations. Abuse of this technol-
ogy may cause serious harm to individuals and our society,
e.g., DeepFake is being used for defaming the personality of
celebrities and spreading fake content [1], [2], [3], [4]. There-
fore, it is imperative to develop intelligent face-swapping
detection technologies.

During the past few years, many CNN-based classifiers
[5], [6], [7], [8] have been proposed to train on known Deep-
Fake images in a supervised way to detect fake faces. These
classifiers work pretty well and achieve impressive results
on the seen manipulations. However, they usually suffer
significant performance degradation when generalized to
a new DeepFake manipulation. For example, methods [6],
[7], [8] trained on Deepfakes, one dataset generated by
the synthesis algorithm named Deepfakes, have reached
around 95% AUC scores within the dataset but degraded
to about 65% on CelebDF, another dataset generated using
an improved DeepFake synthesis algorithm.
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Detecting DeepFake samples is tricky. On the one hand,
there are many image synthesis and manipulation ap-
proaches, such as Deepfakes [9], FaceSwap [10], Face2Face
[11], NeuralTexture [12], FSGAN [13], and DF-VAE [14], pro-
ducing forgery images of various quality and with diverse
artifacts. On the other hand, these approaches have defined
different mask blending templates, e.g., full face, center
face, or only mouth part, causing fake artifacts of distinct
shapes and sizes. In a nutshell, forgery traces that remained
in DeepFake samples are very unpredictable, making it
difficult for detection models trained on certain types of
DeepFake samples to generalize to samples with different
fake traces.

To tackle this problem, there have been intense studies
to improve the generalization ability of the detection model,
like data augmentations [15], domain adaptation [16], [17],
and patch-based classification to model local patterns [18].
However, these image-level methods are still overfitted to
the seen manipulations. A few studies that propose to
mine the universal difference [19], [20] between the forgery
images and the real ones or simulate it by blending specially
transformed real faces [21], [22], [23]. These works have
achieved a clear generalization improvement. However,
they use prior knowledge of existing forgery methods or
specific datasets to summarize a set of universal forgery
traces. With the advancement of forgery manipulations,
these seemingly ubiquitous traces may not be well applica-
ble to detecting unknown forgery samples. For example, the
recently proposed head-swapping approach HeadSwapper
[24] leaves no such blending traces in the central face.
In addition, image compression and other distortions can
easily destroy these low-level forgery traces, which weakens
the models’ practicability.
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Fig. 2. Face swapping examples generated by SimSwap [31] and
Facelnpainter [30]. Red boxes outline the most significant changes in the
identity feature. For illustration purposes, we select the most significant
examples to reflect the identity loss. In real scenarios, DeepFake identity
loss is hard to distinguish from the naked eye.

Another line of research focuses on video-level detection.
Since fake faces in video are replaced frame by frame, it
can result in discontinuity of the successive frames. Some
approaches detect the irregular jitter [25], [26], [27] of fake
videos on the time series. Recently, there are studies proving
the superior generalization ability of the continuous high-
level semantic information [28], [29], i.e., Natural Talking.
Unfortunately, they cannot detect single images, which are
the main form of communication in social media.

Considering that the low-level traces of DeepFake im-
ages proposed so far are not competent in manipulation
generalization and compression robustness at the same
time, a natural question arises, “is there a high-level seman-
tic feature discriminating between real and fake images?”
Will it be robustly retained in the process of media prop-
agation and show general forgery traces under different
methods? We find that the identities of the fake images
inevitably suffer from a non-negligible loss over the
authentic identity. In the process of face swapping, shown
in Figure 1, the identity of the target image is replaced by the
source, while the attributes of the target face, including head
pose, expression, lighting, occlusions, hairstyle, and other
background contents, are preserved [30]. However, we ob-
serve that identity features and some attribute features are
deeply entangled. For example, the shape of eyebrows is an
identity feature. It is simultaneously involved with attribute
features like face shape and expression. Fusing the attribute
features of the target may conflict with those entangled with
the identity features of the source, causing identity loss of
the source. Figure 2 shows forgery examples generated with
the same source image using the latest methods [30], [31].
The red boxes outline the prominent identity feature, the
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nose in the example, which shows differences in the result
forgery images. Due to the natural conflicts between the
source identity features and the target attribute features,
it is universal that the forgery image shows identity loss
compared to the original identity features provided by the
source image.

Intuitively, comparing the similarity of the identity em-
beddings of a test image and the reference image can infer
whether the test image is forged. For example, we assume
that there is a real reference face. If the identity embedding
distance between the test face and the reference face is
smaller than a set threshold, it is a real image; otherwise, it
is a fake image. However, the extracted identity embedding
is impure as it is deeply entangled with facial expressions,
poses, age, and other attribute features [32], [33]. We for-
mulate the identity embedding of three face images of a
particular person:

(I)id(Ireall) = ,Ufid +é1
(I)id(IreQIZ) = Nld + €2 (1)
iq(Tane) = (' + d,id) + €3

where ®;4 is the face recognition model, M‘i denotes the
ideal identity embedding of the person, ,:« denotes the
identity loss in the fake face, and ¢; denotes the addi-
tional attribute factors of each faces. It is possible that
the additional attribute factors lead to greater discrepancy
than the identity loss from fake faces. Since the attribute
factors are variable and hard to estimate, detecting fake faces
directly by identity embedding distance will bring a large
error. Later in Section 4.3, we will demonstrate this through
experiments.

Therefore, we introduce Diff-ID, which incorporates a
reconstruction process that maps attribute factors ¢, in iden-
tity embeddings to the same values € as in the reference or
test image. In this case, the identity differences are compared

’

between ®,4(1,..,;) = p*?+e and (bid(I}ake) = 46 i +e.
Thus, the identity loss J,,:« caused by face-swapping manip-
ulations could be well quantified. Specifically, we provide
Diff-ID with an authentic reference image owning the same
identity as the one under the test without constraints of
special attribute features. Obtaining such reference images
is practical in the real world, as a forgery image usually
has a claimed identity whose genuine photo is commonly
available. For example, on LinkedIn [34], every user has a
registered photo, making protecting LinkedIn users practi-
cal. Some online platforms, e.g., Weibo [35], require users to
authenticate their accounts with their national IDs, making
referencing their ID photos possible. Besides, some social
platforms such as Tinder [36], Bumble [37], and Badoo [38]
(the most popular dating apps in Google Play), require
registered users to take a selfie that matches a random
pose on the screen for authentication (eliminate fake profile
registrations). Correspondingly, these platforms can assume
the responsibility of detecting whether there are DeepFake
pictures of registered users spreading on the platform. Then,
by applying a face-swapping generator, Diff-ID aligns the
test and reference images to the same identity-insensitive
attribute space, including background, expression, posture,
etc. The identity losses are well disclosed and visualized
in pixel-level differences of the aligned generation results.
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Besides, the noise unrelated to the subtle identity loss is
minimized by applying an adaptive fine-tuning scheme and
a face-dedicated mask. Lastly, we designed a customized
metric for identity loss to distinguish the forgery images
from the real ones.

Overall, our main contributions are summarized as fol-
lows.

o We reveal that the identities of fake faces suffer a non-
negligible loss compared to real identities, which is
then used as an explainable feature for detecting fake
images.

o We propose a method that visualizes and quantifies the
identity difference between the forgery and authentic
images of the same person for face-swapping detection.

o Extensive evaluations indicate that our method has
good generalization performance to unseen forgery
samples and is robust to image distortions.

e Our method is easy to deploy and resource-friendly.
It requires only simple fine-tuning of the pre-trained
generator and does not rely on fake samples or a large
number of samples for training.

2 LITERATURE REVIEW

In this section, we discuss the related work that constitutes
our present work’s foundations and motivation.

2.1 DeepFake Generation

Common DeepFake generation techniques include entire
image synthesis, modification of facial attributes, face iden-
tity swap, video puppeteering, etc. Face identity swap is
one of the most popular used in recent years. It aims to
integrate the identity of a source face into a target face while
preserving the attribute of the target face, including head
pose, expression, and other background contents.

The early approaches can only swap faces with similar
postures [39], [40]. After that, some 3D-based [13], [41], [42],
[43] methods were proposed to fit a 3D morphable face
model (3DMM) [44] and apply the expression components
of one face to the other. In particular, Nirkin et al. [13], [41]
proposed a superior method using a fixed 3D face shape
as the proxy and an occlusion-aware face segmentation
network for face swapping.

Recently, GAN-based [9], [30], [31], [45], [46], [47], [48],
[49] approaches have shown great ability to generate vivid
fake images. Early works like Deepfakes [9] and Kor-
shunova et al. [48] model different source identities sep-
arately. However, these subject-specific methods are time-
consuming as they require training specific decoders. To
address this limitation, a line of subject-agnostic techniques,
such as FaceShifter [45], SimSwap [31], Facelnpainter [30],
and HifiFace [49], are proposed to fuse the attribute of a
target face and the identity of a source face in latent features
for arbitrary face swapping. Furthermore, MegaFS [46] and
HiRes [33] use the pre-trained StyleGAN as a decoder to
improve the forgery result to the Megapixel level.

With the advancement of DeepFake generation tech-
nology, the visual quality of the generated fake faces is
improving, and the artifacts of blending two faces are al-
most undetectable. However, the phenomenon of identity
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and attribute entanglement on facial characteristics exists
objectively. Therefore, identity loss exists in these forgery
samples.

2.2 DeepFake Detection

DeepFake has attracted much attention over the past few
years, with many works devoted to DeepFake detection.
Early works capture visual clues like warping artifacts [7],
[50], inconsistent head poses [51], and color disparities
[52] of fake images. However, these visual flaws can be
easily fixed as generation techniques improve. Then, some
works are proposed to detect more indiscernible clues like
digital GAN fingerprints [53], [54] or spectral distortions
[19], [55], [56], [57]. Yet these works are easily overfit-
ted on training data and perform unsatisfactorily on new
forgery examples. Therefore, recent research has focused
on finding more generalized clues for forgery detection. To
tackle this, some methods propose using pristine images
to reproduce common forgery artifacts [21], [22], [23], like
blending boundaries and statistical inconsistencies, whereas
they are too fragile to image degradations. There are also
studies focusing on fake video detection, which explore the
dynamic behavior between consecutive frames, e.g., face ge-
ometry consistency [27], [58], [59], heartbeat [60], [61], [62],
lip movement [28], [29], [63]. These methods have achieved
noticeable improvements in the generalization of detection,
but they cannot be applied to detect image frames. Our
approach is a great addition to the image detection scene.

Another notable direction to improve generaliza-
tion is verifying whether the behaviors/features of the
videos/images to be tested are consistent with a given set
of example real videos/images. We call this kind of study
the reference-assisted forgery detection approach, where
the reference specifically refers to the real, additional input
with the same identity as the test sample. Our method
is one such. The most related works are DISC [64], ID-
Reveal [65], and ICT [66]. Specifically, DISC [64] uses the
spatial correlation within the query and reference images
to generate an identity attention map and then digs deeper
into these identity-related areas to extract forgery clues. ID-
Reveal [65] estimates a temporal embedding of biometri-
cal characteristics as a distance metric to distinguish fake
videos. ICT [66] calculates the distance between a suspect
face’s inner or outer identity vector and a reference to detect
forgery. Such reference-assisted methods usually only pro-
tect specific groups of people (e.g., celebrities) and require
relevant data of them for training. On the contrary, Our
proposed method can be adapted to detect fake images of
ordinary people, requiring only one real reference image of
them. At the same time, our model does not depend on
the images of the test persons for training. Therefore, it can
generalize well on the open-set scenarios.

3 PROPOSED METHOD

In this section, we first formulate the insight of the design
and then give a brief overview of our method, Diff-ID. As
aforementioned, DeepFake generators adaptively integrate
the source person’s identity into the target’s attributes. We
find out that some features entangled in the source identity may
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Fig. 3. Overview of Diff-ID. First, the reference and test image are sent
to the image reconstruction module, where attribute-aligned generation
results are obtained. Then the generations are sent to the Identity Dif-
ference Quantification Module to calculate a customized Diff-ID metric
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Fig. 4. The Image Reconstruction Module. Through reconstruction, the
reference and test images can be aligned to either the attribute space of
the reference image or that of the test image.

conflict with the target attributes and cause an identity loss in the
generated fake image. Inspired by this, we explore and exploit
the minor difference between the identity characteristics of
the specific person in a test image and an authentic image,
i.e., reference.

As depicted in Figure 3, Diff-ID consists of two modules:
an image reconstruction module and an identity difference
quantification module. When a suspected image is under
test, an authentic image of the person it claims to be is
selected as the reference. Then these two images are sent to
the image reconstruction module to obtain attribute-aligned
generations, which are all the possible face-swapping results
of the identity feature and attributes features from both the
test and reference images. After that, the identity difference
quantification module calculates the identity loss by a cus-
tomized metric, distinguishing a fake image from the real
one.

In the following, we will describe the two modules in
detail in Section 3.1 and Section 3.2. Section 3.3 presents how
to fine-tune an off-the-shelf face-swapping generator used
in the image reconstruction module to fit our framework
better.

3.1 Image Reconstruction Module

Figure 4 displays the image reconstruction module. It aligns
the test image and the reference to the same attribute space,
including background, facial expression, posture, etc. The
core function is provided by a face-swapping generator,
which is represented as G below. It extracts identity embed-
ding from the source image and attribute embedding from
the target image and then makes an adaptive fusion of them
to generate the face-swapping result.

Real Examples

diff
IRef

Fake Examples

I Test

diff

Fig. 5. Examples of diff(lidfref,attf'ref’ Iidftest,attfref) when the
test images are real/fake. The diff images are magnified five times for
better visual display.

For a test image I7.s claiming to be a specific person,
taking Aamir Khan, an actor from Indian Bollywood, as an
example, we choose an authentic image of him as the refer-
ence I .. Following the process depicted in Figure 4, we ex-
tract the attribute embedding Z,;; and identity embedding
Ziq from both Ir.¢ and Ipes:. We use Z;q_,cf to represent
the identity embedding extracted from the reference image
Igey. Similarly, Zqi—test denotes the attribute embedding
extracted from the test image Ir.s:. Then, we select one
identity and one attribute embedding and feed the embed-
ding pairs (e.g., (Zid—ref, Zatt—test)) into the generator G.
As there are one reference and one test image, we can extract
two identity embeddings and two attribute embeddings in
all, resulting in four different embedding pair combinations
and, thus, four generated images. We denote them by:

Iz’d—ref,att—?“ef = G(sz refyZatt ref)

Iid—test,att—ref - id—test att 'ref)

@)

G(Z
Iid—test,att—test— ( id—test att—test)
G(zZ

Iidfreﬁattftest - id—ref att test)

As an example, [;q_ref att—test Tepresents the generation
result of the identity embedding provided by Igr.s and
the attribute embedding provided by Ircs. Among the
generations, I;g_rcfatt—ref and Ijg_test.att—res share the
same attribute feature as Ir.r. However, the two images
show slight differences in facial details, as they are from
two slightly different identity embedding inputs. Given
that the reconstruction process is symmetrical, similar ob-
servations can be obtained among I7cst, lid—test,att—tests
and I;q—ref att—test- The following section introduces how
to evaluate the identity difference using the interrelation
between these images.

3.2

The identity difference quantification module assesses how
large the identity features of the test and reference images
differ.

Empirical study. As clarified before, liq—ref att—ref
(a self-reconstruction of the reference image) and

Identity Difference Quantification Module
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Iig—test,att—rey share the same attribute while showing dif-
ferences in identity in terms of facial details. We consider
calculating the pixel differences between the two genera-
tions. We formulate the pixel differences of two images I;
and I as follows:

dif f(Ih,12) = [I1 — L] ®)

We also refer to the image pixel differences as di f f for short.
In this way, we formulate the image differences of the two
generated images as dif f(lia—ref,att—refs Lid—test,att—ref)
which reveals the identity differences under the same at-
tribute space from the reference image. In the following, we
use some example test images to visualize the calculated
dif f. In Figure 5, take Aamir Khan as an example, we select
one real image of him as the reference and some real and
fake images of him as the test images. Then we generate
Iig_test,att—rey following the process in the image recon-
struction module and display the five times pixel differences
diff(jidfref,attfref; Iidftest,attfref) (labeled dsz in the
figure) below the example test images. A large value, ie., a
bright pixel in the di f f image, indicates a noticeable gap be-
tween the identities of reference and test images. Compared
to the real images, we notice that the fake images show more
evident differences with the reference image in sideburns,
eyebrows, forehead, or other identity characteristics. This
aligns with our intuition: for a specific person, the difference in
identity features of real faces is usually smaller than that between
real and fake. As a result, a simple accumulation of pixel-level
differences (i.e., L2 norm) can empirically classify real and
fake images.

Formulation. Based on the empirical study, the pixel
differences of images visualize the face region where the
identity features have differences, as we have aligned im-
ages to the same attribute space. The accumulation of it
explains how large the identity features of the reference
and the test image differ. However, an isolated difference
may not represent the loss of identity characteristics well.
Therefore, we consider a normalized identity loss. We find
that the image reconstruction loss positively correlates with
and reflects the richness and granularity of the identity
feature. Therefore, we divide the identity loss by the image
reconstruction loss to evaluate the normalized identity loss.
In the meanwhile, we also observed that the generator
has difficulty reconstructing complex textures, which would
introduce much noise in accumulating pixel differences.
Hence, we deliver a mask matrix to filter out the noise
outside the face region and focus on capturing identity dif-
ferences. In this way, we formulate a set of image differences
as pixel-level L2 distances:

lref:recon = ||Mref © (Iidfref,attfref - IRef)H2

lrej':recon+id = ||Mref © (Iid—test,att—ref - IRef)HZ

lref:id = ||Mref © (Iid—ref,att—ref - Iid—test,att—ref)”Q
(

Where ©® means dot product, M,..¢ is the binary mask of
image Irc¢ in which value 1 denotes the face region and
value 0 denotes the outer identity-independent background.
To get the mask, we apply the face parsing tool [67] to
detect the face area and use the Gaussian kernel to dilate
the area slightly. We label /,.; to denote the image dis-
tances calculated on the attribute space of Irct. lrefirecon

lia- rest,mfej:\

L, lia—test,att-ref
lyef:id

lia-ref,att—rer

liest:ia  lia-ref.att—test

Fig. 6. Relationship of aligned generation results and identity loss.

represents the image distance caused solely by the image
reconstruction loss of the generator. /,.f.;q represents the
distance caused by the difference between input identity
embeddings of the generator. I ¢f.recon+ida cOVers both two
causes. lrcfiid/lrefirecon depicts the normalized identity
loss.

In the same way, we define:

ltest:recon - HMtest © (Iid—testﬂtt—test - ITest)HQ
ltest:recon+id = ||Mtest ®© ([idfref,attftest - ITest)||2

ltest:id = ||Mtest O] (Iidftest,attftest - Iidfref,attftest)||2

where M;.q: is the mask of image I7est, ltest denotes the
image distances calculated on the attribute space of Ir,s:.

In addition to the L2 representation of identity loss, we
also consider measuring identity loss in angular space since
the angular distance is typically a good indicator to evaluate
the similarity between identity embeddings.

When vectorizing an image into the vector space, by
flattening it from RGB space to a high dimensional vector,
the image difference is reformulated as [, f::econ = M;e FO
(Iid,ref:’att,mf - IR;f), there b means the vector form.
Accordingly, we have l,¢f.recon + lrefiid = lrefirecontid- The
specific relationship between them is displayed in Figure 6.
We introduce the angle between I, f.recon and lref:recontid
as Orcf.id, representing the distance of identity character-
istics in angular space. We calculate the value of 0,.7.iq
following the cosine law.

lref:reconQ + l'r‘ef:TeconJrid2 - l'r‘ef:id2
Orefiia = arccos( ) (6)

2- lref:recon . lref:recon—i-id

In the same way, we get 0;.4:.i4, an identity distance repre-
sentation from the attribute space of image Ir,s:.

Since the reference and the test image provide different
attributes, we fuse the identity difference calculated from
four different spaces and therefore design the Diff-ID metric
to distinguish real and fake images as:

. oref:id + atest:id

lref:id ltest:id

M:

@)

lref:recon ltest:recon 2

Among them, the normalized losses lrcf.iq/lref:recon
and liest:id/liest:recon indicate identity differences in Eu-
clidean space. 0,cf.iq and 0yesi:50 represent the differences
in the angular space. The identity differences are calculated
on the attribute space of both the reference image Ig.f
and the test image I7¢s. All parts together give a more
representative view of identity loss.
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3.3 Adaptive Fine-tuning Scheme for Face-swapping
Generator

The face-swapping generator is the core function of the
image reconstruction module. It transfers the identity of a
source face into a target face while keeping the attributes
(e.g., expression, posture, lighting, etc.) of the target face
unchanged. The formulation of this process can be written
as follows:

Iresult = G(Zid—sour(:67 Zatt—target) (8)

Off-the-shelf face-swapping generators can be easily de-
ployed into our Diff-ID framework.

While the existing generators can function on any two
unknown images in the general face-swapping scene, in
our Diff-ID framework, the generator is applied in the
scenario of face changing between two very similar iden-
tity characteristics. Therefore, we expect the generator to
capture the identity change more sensitively. As mentioned
in Section 3.2, the customized metric M does better in as-
sessing identity loss when the generated result I, meets
these two demands: 1) the identity characteristics of I;.csyis
should be highly consistent with that of the input Isyce; 2)
Ir¢suit should be highly consistent with the input I;4.ge: in
attributes that are unrelated to the identity characteristics,
such as facial color consistency, texture, etc. Therefore, we
fine-tune a generator to improve these two consistencies.
And we split the fine-tuning task into identity constraint
and attribute constraint.

Identity constraint. For the identity constraint task, we
use an identity preservation loss to preserve the identity of
the source image. It is formulated as follows:

Zid—result : Zid—source

Lia=1 )

‘ |Zid7result| |2 | ‘Zidfsource | |2
where Z;q—source represents the identity embedding of the
input Isource, Zid—result represents the identity embedding
of the generation result ,¢gy1z-

Attribute constraint. For the attribute constraint task, we
require the input source face and the target face to have the
same identity. In this case, the generated result should look
the same as the target face. We calculate the reconstruction
loss and use LPIPS [68] for the perceptual loss to capture
fine details of images. It is formulated as follows:

Eatt = leesult - Itarget”l + Elpips (10)

4 EXPERIMENT
4.1 Experiment Setting
4.1.1 Dataset Setting

For the task of the generator fine-tuning, we select the first
1,000 images from the CelebA [69] as the training set. We
perform experiments on four well-known face-swapping
datasets to evaluate the generalization ability of Diff-ID.
FaceForensics++ (FF++). FF++ [6] is a forensics dataset
comprising 1000 real and 4000 fake videos. The fake videos
are manipulated with four DeepFake methods: Deepfakes
[9], Face2Face [11], FaceSwap [10], and NeuralTextures [12].
Two compressions are used on the original videos, and
two counterparts are generated, resulting in three kinds
of video quality: raw, high-quality (HQ), and low-quality
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(LQ). Among them, lower-quality fake videos are more
challenging to detect because the forgery traces may be lost
in the compression process. To evaluate the detection of the
face-swapping forgeries, we use Deepfakes and FaceSwap
to constitute the fake part of the FF++ dataset. Since the
other two methods in FF++ belong to the face-reenactment
method, which is not within the scope of our approach.

Google DeepFake Detection (DFD). DFD [70] collects
363 real videos of 28 actors in various scenes and generates
over 3000 manipulated videos from them.

CelebDF. CelebDF [71] includes 590 original videos and
5639 corresponding fake videos of 59 celebrities of different
ages, ethnic groups, and genders collected from YouTube.

DeeperForensics-1.0 (DFo). DFo [14] contains source
videos collected from 100 paid actors and proposes a Deep-
Fake method to manipulate 1,000 fake videos whose target
faces are from the FF++ dataset.

Since Diff-ID does not need the DeepFake dataset for
training, we do not split the dataset into training or testing
but take the whole dataset as the test set. For the image-level
evaluation, we sample 20,000 frames from each dataset’s
real and fake parts. To ensure all the subjects are covered,
we sample the same number of images for each identity. For
the video-level evaluation, we average the prediction results
of the randomly sampled 20 frames as the video detection
result. In the following experiments, we report AUC(%) as
the performance metric.

4.1.2 Implementation Detail

We set SimSwap [31] as the default face-swapping generator.
We use MTCNN [72] to detect the face region in the image.
Then, we crop, align, and resize the face at a resolution of
the generator’s input size. To get the face mask, we use the
modified BiSeNet [73] to parse the face region, which is then
dilated with the OpenCV [74] library.

4.1.3 Reference Image Sampling

We randomly select one reference image for each identity.
Since the FF++ dataset has only one real video per identity,
we randomly sample one frame from the real video as the
reference image and exclude it from the test set. As for
the other three datasets, each identity contains multiple real
videos. Therefore, we randomly sample one frame from one
real video as the reference image and take the remaining
videos as the test set.

4.2 Comparisons with Previous Methods

In this section, the performance of the proposed method is
analyzed and compared with other state-of-the-art methods.
We test the performance of the proposed method on the four
datasets.

4.2.1 Comparison on Frame-level Detection

In this section, we compare Diff-ID with the classic and
recently proposed methods that focuses on frame-level de-
tection. (1) Xception [6] is a DeepFake detection method
based on XceptionNet model [75]. (2) DSP-FWA [7] uses
a CNN model to detect face-warping artifacts introduced
by the resizing and interpolation operations in the basic
DeepFake manipulation algorithms. This work is trained
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TABLE 1
Generalization comparison with SOTA frame-level and video-level methods. Results are reported in AUC scores (%).

Method Training Set FF++ DFD CelebDF DFo
Frame-Level Result
Xception [75] FF++ 99.4 83.1 59.4 69.8
DSP-FWA [7] self collected 93.0 81.1 64.6 -
Face X-ray [21] FF++ (real)} 98.77 93.51 74.8 72.3
Luo et al. [19] FF++ 99.4 91.9 79.4 73.8
SPSL [55] FF++ 98.3 - 76.9 -
Diff-ID (ours) - 99.1 98.5 91.1 98.3
Video-Level Result
PEL [76] WildDeepfake 61.61 86.8 82.9 -
DCL [77] FF++ 99.3 91.7 82.3 -
PCL+12G [22] FF++ (real)t 99.9} 99.01 90.0 99.4
LipForensics [28] LRW & FF++ 949 - 82.4 97.6
RealForensics [29] LRW & FF++ 98.6 86.9 99.3
Diff-ID (ours) - 99.5 98.9 93.1 99.2

Data with { indicates the model was trained or tested on the raw version of video frames. Data with { indicates the model was trained
or tested on the low-quality compressed video frames. Others not specifically marked are tested on high-quality compressed video frames.

Top-2 best results are in bold and underlined.

on self-collected face images. (3) Face X-ray [21] reveals
the blending boundaries in the forged face images. The
training data of this algorithm consists of two parts, in
which the real images come from the FF++ dataset, and
the fake images are self-generated by blending two real
images with similar facial landmarks. (4) Luo et al. [19]
designed functional modules to extract multi-scale high-
frequency features and residual guided spatial features to
concentrate more on generalizable forgery traces. (5) SPSL
[55] combines spatial image and phase spectrum to capture
the up-sampling artifacts of face forgery to improve the
transferability of forgery detection. Methods unspecified are
trained on the FF++ dataset of high quality. The input for
the above five methods is only a query face image. For
our approach Diff-ID, the input is a query image and one
reference image of that subject.

As shown in Table 1, all methods achieve impressive
performance on FF++. It means that the network has the
ability to learn discriminative features for known manipu-
lations. However, the performance drops when the network
is tested on an unseen manipulation. For example, Xception
trained on FF++ and reports the highest AUC (99.4%) on
FF++. It also behaves well in DFD since the fake samples
in DFD are manipulated using Deepfakes, a known forgery
method in FF++. However, when tested on the two other
datasets, CelebDF and DFo, Xception faces a catastrophic
performance drop (lower than 60% on CelebDF). The fol-
lowing four studies, DSP-FWA, Face X-ray, Luo et al., and
SPSL, claim to extract common features in forgery images to
improve their generalization ability. Compared to Xception,
they indeed enhance the detection of unseen manipulations.
Luo et al. improved the AUC result by 20% on CelebDF and
4% on DFo over Xception. However, all four methods get
at most 80% AUC scores on CelebDF and DFo, showing
unsatisfactory cross-dataset generalization ability.

In contrast, our method achieves good performance on
all four datasets. DIff-ID’s performance on the FF++ dataset
is on par with the best one. Besides, it achieves the best

results on the other three datasets, with 98.5% on DFD,
91.1% on CelebDF, and 98.3% on DFo. The satisfactory
result of DIff-ID mainly benefited from extracting high-
level facial identity-inconsistency features as forgery traces
and avoiding any facial forgery dataset for training. As a
result, Diff-ID behaves well on numerous datasets. It seems
unfair since we obtain additional information from a real
image to achieve considerable performance. Nevertheless,
getting such a reference image is feasible and conducive for
platforms with authenticated users. In a later section, we
will compare Diff-ID with other approaches using auxiliary
reference information to prove its effectiveness further.

4.2.2 Comparison on Video-level Detection

In this section, we compare Diff-ID with the recently pro-
posed methods that focuses on video-level detection. (1)
PEL [76] exploits pixel-level and fine-grained frequency-
level clues. It uses a progressive enhancement process to
facilitate the learning of discriminative face forgery features.
We chose the WildDeepfake-trained model for compari-
son as it has better generalization ability than the one
trained on the FF++ (LQ) dataset. (2) DCL [77] performs
designed contrastive learning on the constructed positive
and negative pairs at different granularities. The method is
trained on the FF++ dataset. (3) PCL+I12G [22] hypothesizes
that a forged image contains different source features at
different locations. It detects forgery samples by extracting
the local source features and measuring their pairwise self-
consistency. The algorithm uses an image synthesis ap-
proach called inconsistency image generator (12G) to pro-
vide richly annotated training data. Therefore, it needs only
real videos from the original videos in FF++ to train the
model. (4) LipForensics [28] targets high-level semantic ir-
regularities in mouth movements. Through natural lipread-
ing learning, it identifies mouth movements that have un-
dergone facial manipulations as abnormal. (5) RealForensics
[29] exploits the natural correspondence between the visual
and auditory modalities in real videos. It learns temporally
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dense video representations in a self-supervised way and
then uses these representations to make real/fake decisions
about test videos. The above two methods are trained on
the FF++ and the LRW dataset [78], which contains 500,000
videos of talking faces with hundreds of different identities.
We also provide video-level results of Diff-ID for better
comparison with these studies.

The results are shown in Table 1. All the methods
achieved over 80% AUC on the CelebDF dataset and over
95% on the DFo dataset, showing better generalization
ability than the frame-level detection methods. These meth-
ods use numerous real videos in the training process to
learn feature representations, such as facial movements,
expressions, and identity, on the continuity and consistency
between video frames. As a result, they have achieved good
generalization on multiple datasets. Among these methods,
PCL+12G and our Diff-ID are the two best performers. Both
of them have reached remarkable results of almost 99%
AUC on the FF++, DFD, and DFo datasets and about 90%
on the CelebDF. It is worth noting that PCL+I2G is trained
and tested on the original uncompressed videos of FF++
and DFD datasets. In comparison, Diff-ID gets the score
on the compressed high-quality videos, which are much
harder to distinguish. Even so, Diff-ID achieves a very close
performance on these two datasets, indicating our excellent
detection capabilities. In addition, Diff-ID gets the best result
on CelebDF, outperforming PCL+I2G by 3.1% AUC. The
results demonstrate that although our approach does not
utilize the inter-frame information, it still performs better
than those that utilize the inter-frame information, confirm-
ing that our assessment of identity loss is an effective clue
for DeepFake detection.

4.2.3 Comparison with Reference-assisted Methods

In this section, we compare our method with reference-
assisted studies. We consider two frame-level detection
methods, DISC [64] and ICT [66], and one video-level detec-
tion method ID-Reveal [65]. (1) DISC constrains the network
to focus on the identity-related facial areas, guided by a
real reference image, to exploit the intrinsic discriminative
forgery clues. The algorithm is trained on Deepfakes, a
subset of the FF++ dataset. (2) ICT proposes an identity
consistency transformer to detect whether a suspect face
has identity inconsistency in inner and outer face regions.
The network is trained on the MS-Celeb-1M [79] dataset
that contains 10 million images of 1 million identities. This
method can detect forgery either with or without reference
images. We will refer to the version with reference images
as ICT-Ref in the following. (3) Based on reference videos of
a person, ID-Reveal estimates a temporal biometric embed-
ding of video and uses the embedding to estimate a distance
metric to detect fake videos. This approach is trained using
the VoxCeleb2 [80] development dataset.

The result in Tabel 2 reveals that all methods show good
generalization on different face forgery datasets, owing to
the additional information provided by the reference. DISC
provides the detector with an additional real image, which is
consistent with our method. In contrast, ICT-Ref randomly
samples ten real images for each identity and constructs a
reference set. For a fair comparison, we retested the official
ICT-Ref model under our reference setting, one real image
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for each identity. The corresponding result is displayed in
the line of ICT-Ref*. Under the same reference setting, Diff-
ID achieves the best performance on various datasets and
different video qualities. The results of ICT-Ref under dif-
ferent reference settings prove the importance of additional
semantic information. For example, comparing the results
of the CelebDF dataset, there is a 10% AUC drop from the
ten reference-assisted ICT to the one reference-assisted ICT.
The performance drop can be explained by the fact that the
videos of each identity contain various scenes of different
ages, hairstyles, makeups, or backgrounds, causing diverse
representations of inner and outer identity. Therefore, the
restricted reference images in ICT-Ref could have limited
effects on identity feature consistency comparison. In con-
trast, Diff-ID aligns the images of a specific identity to the
same attribute space before identity feature comparison,
thus reducing the interference of factors such as hairstyles,
makeups, and backgrounds on the identity characteristics.
ID-Reveal is evaluated at the video level using a leave-one-
out strategy to constitute the reference dataset. Although
with more reference information, its performance on these
face-swapping datasets is inferior to our method. Overall,
Diff-ID shows a preferable performance with the least refer-
ence information.

4.3 Analysis of the method

In this section, we first compare our method with its naive
version “identity embedding similarity”. Then, we discuss
the impact of some settings in the method: reference, gener-
ator finetuning, mask matrix, and Diff-ID metric selection.

4.3.1 Advantages over Identity Embedding Similarity

First, we define the specifics of the naive identity embedding
similarity approach which is called IESim.

Face recognition model ®;;. We apply ArcFace [81] to
extract the identity embeddings of face images, which is also
the identity extractor of Diff-ID.

Reference selection. Same as Diff-ID that one frame of
one real video is randomly sampled as the reference image.

Method of IESim. We introduce the identity loss of the
test image I7.,; and the reference image I,y as:

Lig=1—cos(®iq(Ires)s Pia(ITest))

This identity loss L;4 is then used for DeepFake detection.
The larger the identity loss is, the more chance the test is a
forgery face.

The comparison results of IESim and Diff-ID are reported
in Table 3. Diff-ID performs better than IESim on all three
datasets, especially on the DFo dataset. The real images
in the DFo dataset are obtained by filming hired actors in
short time intervals, excluding the influence of age on the
identity characteristics. Ideally, it is reasonable that these
real images should have the same identity characteristics
and be easily distinguished from fake images. However,
due to the large variances in poses and expressions in real
images, the similarity of identity embeddings between real
images could be even more confusing than that with fake
images. In comparison, our method introduces the recon-
struction process to align face poses, expressions, etc., to the
same attribute space as the reference or the test image. This

(11)
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TABLE 2
Generalization comparison with reference-assisted methods.

Method Training Set I}z ifgfﬁar]}git FE DFD CelebDF DFo
HQ LQ HQ LQ
Frame-Level Result
DISC [64] FF++/DF one image 95.7 - 98.4 87.5 84.4 97.0
ICT-Ref [66] MS-Celeb-1M ten images 98.6 - 93.2 - 94.4 99.3
ICT-Ref* [66] MS-Celeb-1M one image 98.0 96.9 92.4 87.6 85.5 98.6
Diff-ID (ours) - one image 99.1 97.6 98.5 96.1 91.1 98.3
Video-Level Result
ID-Reveal [65] VoxCeleb2 videos 99.0 97.0 96.0 94.0 84.0 -
Diff-ID (ours) - one image 99.5 96.6 98.9 95.6 93.1 99.2
TABLE 3 TABLE 5
Performance comparison of IESim and Diff-ID. Performance evaluation of proposed gain strategies.
Method DFD CelebDF DFo Variant fine-tuning  mask DFD CelebDF DFo
IESim 95.9 89.8 95.0 1) - - 98.1 90.3 97.2
Diff-ID 98.5 91.1 98.3 2) - v 98.3 90.2 97.6
gain +2.6 +1.3 +3.3 3) v - 98.3 90.5 97.5
4) v v 98.5 91.1 98.3
TABLE 4

Analysis of different reference selection strategies on DFD.

Select Strategy AUC mean
random 98.1 /979 /982 98.1
frontal 98.7 / 98.3 / 98.8 98.6

same orientation 98.2 /979 /985 98.2

measure effectively reduces the impact of attribute features
that are difficult to disentangle in facial features on identity
similarity comparisons. In addition, Diff-ID can visualize
the face regions where the identity is different by capturing
the pixel differences between the aligned generation results,
providing more explainable detection results.

4.3.2 Reference Sensitivity

Given the diversity of the images in the dataset, it is rea-
sonable to suspect that the selection of reference images will
affect the experimental results. In this section, we discuss the
impact of different choices of reference images on detection
performance. We mainly consider the influence of head
orientation in the reference image, as it will affect facial
feature extraction. Specifically, we estimate the orientation
of a human head using OpenCV [74] and Dlib [82]. The
estimated yaw value can reflect the head orientation. We
evaluate the sensitivity of reference image selection on the
DFD dataset, as it contains videos in various poses for each
subject. For example, scenes named “hugging happy” and
“secret conversation” are profile videos. Other scenes, such
as “walking **,” show a dynamic process and contain video
frames in various poses. Therefore, this dataset meets our
needs for face videos with diverse head orientations.

We randomly select one real video of each identity as
the reference pool and then sample 100 real and 100 fake
images from the remaining videos to form a test set. Then,
we choose one reference image from the reference pool for
each test image according to three different yaw selection

strategies: 1) The “random” strategy, we randomly sample
one image from the pool as the baseline; 2) The “frontal”
strategy, we sample one image with detected yaw between
[-5, 5] since a front head orientation usually falls into this
range; 3) The “same orientation” strategy, we pick one
image whose yaw value deviation from the test image is
not greater than five.

Table 4 shows the results of three random experiments.
We find that the “frontal” strategy consistently performs
best. It is reasonable since more facial features can be
revealed and benefit our detection when reconstructing a
frontal face. The other two strategies, “random” and “same
orientation”, also have a good performance with a drop of
no more than 1% compared to the best result. The result
proves Diff-ID can recognize the identity difference with
relatively low sensitivity to the head orientation of reference
images. Therefore, in terms of simplicity and practicality, we
only sample one random reference image for the whole test
sets of each identity in the main experiment.

4.3.3 Effectiveness of Proposed Gain Strategies

In our Diff-ID, we design a mask matrix to filter out the
noise outside the face region. Besides, we fine-tune the face-
swapping generator to meet the needs of identity constraint
and attribute constraint. These two strategies in Diff-ID aim
to improve its capability of capturing identity differences.
In this section, we split each part separately to explore
the impact of the two strategies in Diff-ID. Specifically, we
conduct the following variants: 1) pre-trained SimSwap as
the generator without applying the mask as the baseline.
2) pre-trained SimSwap as the generator with the mask. 3)
fine-tuned SimSwap as the generator without the mask. 4)
fine-tuned SimSwap as the generator with the mask.

The results are reported in Table 5, and the metric is
AUC. Comparing variant 1) and variant 3), the adaptive
fine-tuning scheme brings about 0.2% AUC score improve-
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Fig. 7. Face-swapping results comparison of the pre-trained and the
fine-tuned generator. The diff images are magnified ten times for better
illustration.

ment on average. Comparing variant 1) and variant 2), as
well as variant 3) and variant 4), the performance is further
improved by applying the face mask to exclude the noisy
attribute loss in the background. Combining both two com-
ponents yields the best detection results, with an average
performance improvement of 0.8% over the baseline on the
three datasets.

In order to better explain the performance improve-
ment brought by our fine-tuning strategy, in Figure 7, we
show the comparison between the pre-trained model (rep-
resented as Gy) and our fine-tuned model (represented as
G1) in terms of attribute feature preservation and iden-
tity difference extraction. The first row displays face im-
ages from a specific identity, such as Aamir Khan. In de-
tail, there is one reference image, two real images, and
two fake images in sequence. The second row shows the
face-swapping results where the reference provides the
attribute embedding, the five examples in the first row
provide the identity embeddings, and the pre-trained Sim-
Swap Gy serves as the generator. The third-row results
are the image pixel differences. Specifically, the first one
is dif f(Lid—ref,att—ref, Iref), indicating the reconstruction
loss of the pre-trained generator Gg. The following four are
dif f(Lia—test,att—refs Lid—ref,att—res), Where test refers to
the first-row images. The brighter areas in the di f f images
disclose the noticeable attribute or identity loss. We expect
that the attribute loss obtained in the dif f image is small
enough while the identity loss is large enough, such that we
can more accurately assess the identity difference between
the original reference image and the test image. The images
in the last two rows are generated in the same way but use
our fine-tuned SimSwap G; as the generator. Comparing
the two red-circled diff images, we find that the pixel
values in the lower image are smaller, especially in the
identity-insensitive regions such as the forehead, cheeks,
and facial contours. It proves the fine-tuned generator bet-
ter maintains attribute features in the generation results.
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TABLE 6
Effectiveness of different quantitative metrics.

repiia 20208, i 4544 p,.1;0 DFD  CelebDF DFo
v - - - - B9 85 861
- v - - - 976 882 96
- - v - - 977 867 960
- v v - - 977 881 95
- v - v - 986 912 984
- v v v v 985 911 983

Meanwhile, the fine-tuned generator maintains the ability
to reveal differences in input identity features as the pre-
trained generator. This can be seen by comparing the two
dif f images circled in yellow since there is little differ-
ence in identity-sensitive areas. Similar observations can be
found on that of the other real image (reals). Moreover, our
fine-tuned generator more clearly and explicitly reveals that
on which facial characteristics the fake image differs from
the reference image on the dif f images. For example, the
eyes and mouth corners of fake; appear different from the
reference image; the eyebrows of fakey appear different.
Due to the better suppression of the noise caused by the
attribute loss, the identity difference is better recognized in
the di f f images. Overall, the fine-tuned generator performs
better on identity and attribute constraints. It is easier to
capture minor identity differences in the input and reflect
them in the generated images. Therefore, the fine-tuned
generator with stricter constraints on identity and attributes
plays a great role in the task of Diff-ID to detect fake images.

4.3.4 Customized Metric Evaluation

In this section, we conduct experiments to verify the effec-
tiveness of different metrics in distinguishing real and fake
images. As mentioned before, we calculate I, f.iq/lre f:recon
and liestiid/ltest:recon to normalize the identity differences
between the reference and the test image. We also use angle
Orefiia and Oiegr:iq to represent the distance of the two
identity features in the angular space. The result in Table
6 indicates that these metrics behave well and are robust
among diverse datasets.

The result reveals that the performance of metric ly¢f:i4
is not as good as lycf:id/lref:recon- It proves that an isolated
difference does not represent the identity characteristics
loss well, while the normalized one does. In the following,
we give a detailed explanation of this result. /,.f.;q (so
does liest:ia) represents the difference between the outputs
generated from two similar identity features and assesses
the identity differences between the reference and test im-
ages. However, the value of l,.y.;q is largely related to the
quality of the reference image besides the ability of the face-
swapping generator. With the generator fixed, fine-grained
attributes of high-quality reference images disclose more
identity differences, resulting in a larger l,.f.;q compared
with the low-quality ones. On the other hand, delicate image
details might exceed the generator’s reconstruction ability
and be reflected in a larger reconstruction 1oss I f.recon-
Therefore, the normalized metric lycf.id/lrefirecon gives a
fair comparison when the quality of reference images varies,
and the result confirms it.
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The 0,cf.5a performs as well as the normalized loss
lrefiia /e f:recon- They could complement each other, as one
indicates an identity difference in numerical value and the
other in angular space. Thus, our Diff-ID metric merges the
identity loss from two different dimensions and is well-
behaved in DeepFake detection.

4.4 Generalization to Other Face-swapping Models.

In this section, we analyze the generalization ability of Diff-
ID with other face-swapping generators. We replace the
backbone generator with FaceShifter [45] or HifiFace [49]
because of the following considerations.

« First, FaceShifter and HifiFace achieve good ID retrieval
scores, meaning that the generated results are highly
similar to the source in terms of identity features. There-
fore, they are more likely to satisfy Diff-ID’s demand
of identifying very subtle identity differences. If a great
identity characteristics change occurs in face swapping, it
will damage the assessment of identity loss.

« Second, FaceShifter and HifiFace adopt two typical iden-
tity feature extractors, respectively. In specific, FaceShifter
uses the face recognition model as an identity encoder to
extract the identity embeddings from a 2D face directly.
Following another direction of work, HifiFace uses a 3D
face reconstruction network to rebuild 2D faces into 3D
faces and obtains identity-related representation through
the 3D Morphable Models (3DMM).

o Third, FaceShifter and HifiFace are relatively computa-
tion friendly. Other recent methods, such as MegaFS and
HiRes, use StyleGAN as a Decoder to generate high-
resolution (1024*1024) images. However, the faces in the
DeepFake dataset are not that high-resolution. In this case,
FaceShifter and HifiFace can better balance the image
quality and computation overhead.

Regarding specific model deployment details, the
FaceShifter model is an unofficial implementation of our
own. According to the FaceShifter paper, the two networks
for the entire pipeline are AEI-Net and HEAR-Net. We only
implement AEI-Net, the face-swapping network that plays
the main role. The HifiFace model we use is an unofficial
implementation of MINDsLab [83]. Since HifiFace predicts
the face mask itself and confines the face modification region
inside the mask, we only apply the fine-tuning strategy to
it. Furthermore, we adjust our image processing to fit the
resolution of FaceShifter and HifiFace (256 x256).

We conduct experiments on CelebDF since it is the
currently most challenging DeepFake dataset for Diff-ID or
other state-of-the-art methods. In CelebDF, each identity
owns both real videos with various backgrounds and rich
fake videos, similar to real-world forgery detection scenar-
ios. Therefore, if Diff-ID with an appropriate generator can
perform well on the CelebDF dataset, then it will also have
good detection ability in practical applications.

The evaluation results are shown in Table 7. Diff-ID with
both FaceShifter and HifiFace achieves high AUC scores
above 80%, proving that it generalizes easily to these two
generators. It is noted that the pre-trained FaceShifter with
mask faces a slight performance drop. We speculate that
this is because the incomplete version of FaceShifter does
not preserve the attributes well enough. When fake images
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TABLE 7
Diff-ID’s performance with other backbone generators.
HifiFace FaceShifter
fine-tuning CelebDF fine-tuning mask  CelebDF

. 795 - - 86.6

- v 85.6
v 8.7 v - 86.8

v v 87.2

Ii:lig—ref,att—ref L2'lia-testate-res AiffUrer,11)  diff(Iy, I3)

Reference Image Ires

SimSwap

FaceShifter

HifiFace

Fig. 8. Face-swapping results of different generators.

have a different facial contour (e.g., hairline) from the real, it
may be added to the identity loss but excluded by the mask.
For example, fusing a larger fake forehead into the reference
may compromise the preservation of hairstyle attributes,
for a conflict of identity (large forehead) and attributes
occurs. As a result, the differences in hair generation are
accumulated into the identity loss but are excluded if there
is a reference face mask. On the contrary, the fine-tuned
FaceShifter reduces attribute loss (e.g., hairline differences)
and concentrates more on the identity difference in the
central face. In this circumstance, the mask matrix filters
out the noise outside face regions without affecting identity-
induced image differences. Therefore, adaptive fine-tuning
together with the mask achieves the best performance.

In general, Diff-ID can be compatible with different
face-swapping generators if the generator can preserve the
identity and attribute features of the input in the gener-
ated results. With different generators as backbones, Diff-
ID behaves slightly differently. Figure 8 displays the face-
swapping results of SimSwap, FaceShifter, and HifiFace.
From the images, we can find that SimSwap best preserves
the input attribute features in the generated results (I3
and I»), followed by FaceShifter, and HifiFace is the worst.
Specifically, the image I; is the self-reconstruction of the
reference image Ir.s, and the image dif f (Iges, 1) mainly
reflects the ability of the generator to maintain the attribute
features. Brighter dif f images represent the greater loss of
attributes, which will degrade the performance of Diff-ID.
Furthermore, we find that SimSwap best captures the iden-
tity differences between reference and test images, which
are shown in dif f (I, I3). Compared with FaceShifter, the
di f f result of SimSwap is brighter and more concentrated in
identity-sensitive face regions, indicating a better ability to
capture the identity differences. Although the di f f result of
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Fig. 9. Example results under five different JPEG Quality Factors (QF).
The diff images are magnified ten times for better illustration. The
noticeable changes mentioned in the main text are circled.

HifiFace is the brightest, it also has large values in identity-
insensitive regions such as the forehead and cheeks, indi-
cating that identity loss is polluted by attribute loss. In this
case, Diff-ID cannot accurately assess identity differences,
and its ability to detect fake faces is thus weakened. Based
on the above reasons, SimSwap outperforms FaceShifter and
HifiFace. In conclusion, Diff-ID can do better in DeepFake
detection if it integrates a generator that can preserve at-
tribute features well and is sensitive to identity features.

4.5 Method Robustness to Image Quality Distortion.

When faced with image distortions such as compression,
previous works suffer from a drastic drop in their detec-
tion performance. Cozzolino et al. [65] mentioned in their
study that “it is possible to observe a sharp performance
degradation of most methods in the presence of strong
compression.” Other studies like LipForensics [28] and ADD
[84] have also highlighted the problem that DeepFake de-
tection methods are adversely affected by compression. As
the image quality decreases, forgery details may be lost,
and thus the forgery information obtained by the detection
network will be weakened or even eliminated.

In this section, we evaluate the stability of Diff-ID when
the quality of the test image degrades. The JPEG compres-
sion quality is usually summarized using the JPEG Quality
Factor (QF), which has a value from 0 to 100. Figure 9
illustrates the identity differences captured from the face
images of Aamir Khan at different compression qualities.
On the far left is the reference image used for identity dif-
ference comparison. The test images get more compressed
from left to right, where QF=100 means uncompression,
and QF=10 means heavy compression. The resulting image
differences diff(lid—test,att—refa Iid—ref,att—?“ef) fOHOWing
the Diff-ID workflow are shown below the compressed test
images. As a high-level semantic feature, we find that iden-
tity shows its invariance under image compression. With
compression, some details in the image may be lost, while
identity features remain almost unchanged. In the figure,
when the test image is compressed from QF=100 to QF=20,
a pronounced grid-like texture appears, and the colors of
the adjacent areas become no longer smooth, which leads to
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fake quantile 0.05
25977
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154
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1.0+

image quality

Fig. 10. Diff-ID metric change curve with respect to JPEG quality factor
of 400 test images. Real in blue, Fake in orange. The ninety-fifth quantile
change curve of the real images and the fifth quantile change curve of
the fake images are marked in the figure.

the loss of many detailed features. However, the differences
in identity features captured on the di f f image still point to
the same face region. There is little difference between the
dif f image with QF=20 and the image with QF=100. Only
when the image is catastrophically compressed to QF=10
does the di f f image show a noticeable change identified by
the red circles. In this case, the images are almost mosaic,
with severely distorted facial contours, indicating a large
loss of identity details.

To more fine-grained evaluate the robustness of the
Diff-ID metric to image compression, we randomly sam-
ple 200 real and 200 fake images of one person from the
CelebDF dataset. For each test image Iy, we compress
it with different JPEG qualities and get a set of vari-
ants {Ir gr—20,I7,Qr=25,---, I7,Qr=95, IT,Qr=100}. Then,
we compute their Diff-ID metric and denote the results as
{MQFZQ(),MQF:%, ...,MQF:95,MQF:100}. We ignore
compression below QF=20 because the image quality hardly
degrades to this level, even after multiple transmissions
over the Internet. As shown in Figure 10, we plot the Diff-ID
metric change curves of real and fake images in blue and
orange, respectively, where each polyline represents a set
of metrics of a specific test image. In addition, we marked
the 95% quantile change curve of the real image and the
5% quantile change curve of the fake image in the figure.
According to the illustrated results, we can conclude that
no matter how the image is compressed, most of the test
images can be accurately distinguished as real or fake by
a threshold of about 0.6. It demonstrates that our Diff-ID
metric is robust to image compression.

We further conduct experiments on the full CelebDF
dataset and two other datasets, DFD and DFo. Table 8
reports the detection performance of Diff-ID when different
compressions are applied to the test images. The results
show that the performance drop due to image compression
is no more than 2%AUC, confirming the robustness of our
method. In summary, the robustness of the Diff-ID metric
to image distortions benefits from several aspects. On the
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TABLE 8
Robust analysis with respect to JPEG quality factor.

Quality Factor

Dataset AAUC
100 80 60 40 20
DFD 98.5 98.3 98.2 98.1 97.9 -0.6
CelebDF 91.1 90.7 90.3 90.0 89.1 -2.0
DFo 98.3 98.1 97.8 97.5 97.1 -1.2

one hand, Diff-ID incorporates a well-trained face-swapping
generator to stabilize the quality of the reconstructed im-
ages. On the other hand, Diff-ID mines high-level semantic
identity features extracted stably under image compression.

5 DISCUSSION AND LIMITATION

Other Face Forgery Types. Our detection method is de-
signed for face swapping, one of the various types of facial
forgery. We developed our approach based on the finding
that swapped fake faces suffer identity loss compared to
real faces. Due to the entanglement of identity and attribute
on the facial characteristics, the identity feature of the source
face in the face-swapping process inevitably conflicts with
the target attribute feature, resulting in a non-negligible
identity loss for the swapped fake faces. However, other
forgery types, such as face reenactment, where only expres-
sions and mouth shapes are changed, result in negligible
identity loss. Our approach struggles to capture such subtle
identity changes. Considering the diversity of face forgery
algorithms, combining multiple methods to detect forged
samples in practical applications is expected. Our method
performs well on face-swapping detection and can be used
together with other methods to tackle the problem of Deep-
Fake detection.

Dependant on the Underlying Face-swapping Gener-
ator. Our method seems to rely heavily on the capabilities
of the underlying face-swapping generator. However, Diff-
ID is not limited to a specific generator but can be easily
deployed with different generators. As illustrated in the
experimental section, the generator’s sensitivity to identity
features, as well as its ability to preserve identity and at-
tribute features across face-swapping results, affect Diff-ID’s
ability to capture identity loss. Therefore, we design the fine-
tuning strategy for the generator to improve its capabilities.
Modeling a generator suitable for swapping faces of similar
identities can further enhance the performance of Diff-ID,
which will be our future work.

6 CONCLUSION

In this work, we provide insights into face-swapping de-
tection in that forgery images exhibit an inevitable iden-
tity loss from the source real image caused by feature
fusion conflicts. Based on this, we propose an explainable
forgery detection scheme. Specifically, we introduce Diff-
ID, which incorporates a face-swapping generator to recon-
struct aligned image pairs that visualize identity differences
between a test image and an authentic reference image.
Then, we design some complementary components that are
beneficial for capturing identity differences and reducing
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noisy attribute loss. Finally, identity inconsistency is quanti-
fied via a customized metric to distinguish fake images from
real ones. Extensive experiments prove that our method has
achieved good detection results on multiple datasets com-
pared to other SOTA approaches. Meanwhile, it has better
generalization ability for unknown forgery algorithms and
prominent robustness to image compression.
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