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Abstract—We study the performance of measurement-based point. To this end many opportunistic scheduling schemes have
opportunistic scheduling strategies for wireless systems in prac- peen devised that make decisions by selecting the user that
tical scenarios where user’'s heterogenous capacity distributions currently has the highest weighted channel capacity. In practice
are unknown. We make the case for usingmaximum quantile . .
scheduling i.e., scheduling a user whose current rate is in the f{he weights may be hard to determine, becalﬂse f{he.y dgpend
highest quantile relative to its current empirical distribution. iN @ complex way on the users’ channel capacity distributions,
Under the assumption of fast fading, we prove a bound on the number of users, and the characteristics of their traffic.
the relative penalty associated with such estimates, showing that Thus they either need to be estimated or tuned based on the
number of independent samples need only grow linearly with the sanjice users have received or their queue lengths.

number of active users. This is a fairly limited cost, suggesting one Unfortunatelv. th lex d d f iaht
could track distributional changes in users’ channels. By contrast nioriunately, the complex dependence or weights may

other opportunistic scheduling schemes require estimating or Make them very sensitive to changes in the system, i.e.,
setting weights/thresholds that implicitly depend on the number if a user’s traffic characteristics changes, or a user leaves
of users, their channel distributions, and possibly their traffic or enters the system (e.g., a mobile user comes out of the
characteristics and/or are queue dependent. Our results show ghaqaw of a building), or the channel characteristics of a user

that it is easier to estimate users’ distributions than to infer good h then th iaht iated vaith d
weights, and that maximum quantile scheduling is more robust change, then the weights associated valhusers may nee

to changes in the activity levels of users and/or changes in the t0 change. Therefore, it is likely that a significant fraction
number of users. This allows it to maintain opportunism without  of time will be spent in estimating/tuning weights to their
loss in performance in dynamic and/or unsaturated regimes. ‘ideal’ values. In fact, if the system is dynamic enough and/or
In addition, for a saturated regime, we show that maximum he tyning algorithm is not sensitive enough, one may never

quantile scheduling not only maximizes ‘opportunism,” but if ibl ising fai but al d
rates are bounded and number of users is high, it is sum average converge, possibly compromising fairness but also, and more

throughput maximizing subject temporal fairess. Furthermore importantly leading to poor throughput performance. Consider
we show that the distributions for the vector of rates allocated a simple example. Due to the stochastic or time varying nature

to various users on a typical slot by maximum quantile cannot of channel capacity and user’s traffic a measurement-based
be stochastically dominated by any other non idling scheduler. opportunistic scheduler may be biased in favor of a user who

As such our analysis and simulations suggest that maximum h t ived ice in th i i that H
guantile scheduling might provide the best features both in terms as notreceived service in the recent past or one that currently

of performance and robustness for practical scenarios. has a high queue. While, this myopic approach is good for
short term fairness, the scheduler may end up serving a user
l. INTRODUCTION even though it is not currently experiencing a high channel

Motivation. The scheduling of users’ data transmissions atte. This in turn decreases the achieved opportunism and long
a wireless access point has recently attracted a substarigain throughput the system can sustain. In heavily loaded
amount of attention, see e.g., [6][19][4]. A key feature ofystems, at a given moment of time, it is very likely that
wireless systems relative to the traditional wireline systemstisere exists a group of users which are starved. If those users
that, the channel capacity, or service rate, may exhibit tempoaak served, others may become starved, leading to a cycle, in
variations. This allows one to consider scheduling policies thahich the level of opportunism and throughput are low. In
choose to send to, or receive from, a user (or a subsettbis paper we will see that indeed the performance of many
users) which at a given point in time has (have) the ‘best’, e.groposed opportunistic scheduling schemes in such regimes
highest, capacity. Such ‘opportunistic scheduling’ can lead #oe subject to such performance penalties.
good increases in the aggregate capacity of a wireless systenRecently, distribution based opportunistic schedulers have
and has thus been adopted in various wireless standards suetn proposed by several researchers under different guises
as CDMA-HDR, HSDPA [2][1], and will almost certainly play [9][10][3][14]. In this paper, we shall refer to this family
a role in future wireless systems. of schemes asnaximum quantile schedulerhe idea is

In practice users’ channel capacity variations are unknowm schedule a user whose current rate is highest relative to
and heterogenous, e.g., users close to an access pointtsg@wn distribution, i.e., in the highest quantile. As will be
significantly different channel capacity than those further oféxplained in the sequel because the quantile of each users’
Thus it is important to devise opportunistic schedulers thedte is uniformly distributed, maximum quantile scheduling
do not starve some users, e.g., those with poor channelsjstautomatically temporally fair — i.e., no weights required
achieve some degree of fairness among users sharing an acttesg&hieve fairness. However, in practice maximum quantile



scheduling would involve estimating each user’s channel ca- y
pacity distribution. In this paper we will show that the through-

put penalty incurred from estimating user’s distributions can be

limited. Furthermore, unlike other schemes, maximum quantile

does not require estimation/tuning of weights which depenj «2

on users’ joint channel capacity distributions, and so it iUser ,

robust to fast changes in the number of users or their activity

levels. In other words the performance penalties associated
with estimation/tuning are substantially reduced.

Opportunistic scheduler

Y

Contributions. The following is the list of the key contri-
butions of this paper: 4\{ {
User 1

« We investigate the throughput performance of maximum
quantile scheduling and show that if the achievable in-
stantaneous rate of users’ is bounded, then among the
class of scheduling policies that serve each user an
equal fraction of time, maximum quantile scheduling Fig. 1. Downlink scheduling to users from a wireless access point.
maximizes the long term system throughput when there
is a large number of users. Furthermore, we show that )
the marginal distribution for the rate when users ar®- System Model and Notation
selected for service under maximum quantile schedulingWe begin by introducing our system model and some
can not be stochastically dominated by any other nonetation. For simplicity, we focus on downlink scheduling
idling scheduler. from an access point to multiple users (see Figure 1). Suppose

« Under the assumption of fast fading, we prove a bound ¢ime is divided into equal sized slots and at most one user gets
each user’s relative throughput penalty when maximuserved per slot, e.g., for the CDMA-HDR systems defined in
qguantile scheduling is based on empirical distributiorthe CDMA2000 IS-856 standard, the slot time has a duration
for users’ channel capacity. This is significant becausedf 1.67 ms [2]. During each slot, each user feeds back the data
shows that such penalties can be controlled if the numbmite it can support and the access point makes a decision on
of independent samples used to estimate the empirigghich user should get served. In the sequel we use the terms
distribution is roughly proportional to theumber of users ‘channel capacity’ and ‘rate’ interchangeably and make the
in the systemThus maximum quantile scheduling carfollowing assumption on user's channel characteristics over
be used even when users’ channel distributions are niphe slots.
known or slowly changing. For analysis purposes, we make the following assumptions

« We conjecture that the best way to serve a user is ¢m users’ channel capacity distribution(s) across slots for this
serve it when its rate is high compared to its distributiorsection of the paper.

rather than favoring a user that has not been served for , . ¢
some period of time. This conjecture is supported by sim- Assumption 2.1We assume the channel capacity (rate) for

ulating the performance of various measurement bas%?iCh_ user is a stationary ergodic process and these processes
opportunistic scheduling schemes for various netwof¥€ independent across users. Further we assume that the
and traffic scenarios. We find that maximum quanti|g1arginal distribution for each user is continuous and is either

scheduling can have significantly better performance ffioWn & priori, or estimated by the access point.

terms of both packet delay and file transfer delay, e.g., piscussion on the assumptiorFirst the channel capacity

up to 40% improvement. We stress that this observatigfistributions seen by users might indeed be roughly stationary

has not been made by previous works. over a reasonable period of time particularly if users are at

fixed locations. As will be discussed later, we conjecture that
Paper OrganizationThis paper is organized as follows. Inthe channel should remain stationary for rougblgn?) (here

Section Il we revisit and critique representative prior work is the number of users in the system) samples for the result
in the area of opportunistic scheduling and introduce soroe measurement based performance proved in Section IV to be
known features of maximum quantile scheduling. Throughpptactically viable. The assumption that users’ rates are inde-
performance and optimality of maximum quantile schedulingendent is also likely to be true, though a notable exception is
is studied in Section Ill. We prove our bound on the relativihe case where mobile users move in a correlated manner, e.g.,
throughput penalty associated with measuring distributions atong a highway. The assumption that the access point knows,
Section IV. Simulation results comparing the performance ahd in particular can estimate, the marginal distributions of
maximum quantile scheduling to other schemes are presenteel channel capacity processes may seem unreasonable, but
in Section V and VI. Section VIl concludes the paper. simple book keeping on the users’ feedback of the currently
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v Unsaturated Users

Fixed number maximum channel capacity at that point of time is served,

of users SaL i.e., userk(t) is selected for service on time sloif
Saturated Users
stem Model Scenarios k(t) € arg max z*(t
¥ \ / Unsaturated Users ( ) ngA(t) ( )
Dynamic number This maximizes system throughput in a fixed saturated system,
of users \ . ..
Saturated Users but in a system where users have heterogenous rate distribu-

tions, may neglect those with poor channels.
Subsequently a myriad of approaches have been proposed to

achievable rate can be used to estimate distributions. Wadress both unfairness and/or performance issues. One of the
will discuss estimation of such distributions in Section Ivmore cited schemes fwoportional fair schedulind5][20][4]

Note that channel capacities are not restricted to any speciiich serves the user whose current rate normalized by a
distribution, or class of distributions, i.e., users can underg@oving average of his allocated rate is the highest, i.e., user
any fading process. This makes the analysis presented |dt€l is selected for service at time slbif

applicable to real world scenarios. Note that the we require

Fig. 2. Different scenarios for system model.

Py

the marginal distributions of rates to be continuous only for k(t) € arg max “Li—(t), Q)
simplicity sake, the results presented here can be extended to i€A(n) (' (t)
the discrete case. where

Notation. In the sequel we will letzi(¢) denote the real- ‘ 1.
ization of the channel capacity of usémt time slott, and pit) =1 = u't = 1) + 2" (s ()
let X be a random variable whose distribution is that of the ¢ ¢
channel capacity of uséron atypical slot. Recall that we will andt. is the moving average parameté}; ) is the event
be assumingX® to be independent across users but need rtbat user; gets served on slatby the scheme anﬂs, (t) 1S

be identically distributed. We denote the distribution functiothe indicator function ofgZ ().
of X’ by Fy:(-). For simplicity, we will assume thax:(-)  As a simple expenment we compare the throughput
is a strictly increasing function, so that its inverse denoted Ry¢hieved by proportionally fair to that achieved by maximum
Fy!(-) is defined. quantile scheduling (described in the next subsection) in a

System ScenarioThere are several system scenarios (Figixed saturated system. Our setup consists of two classes
ure 2) one can consider. In a real world scenario, the numkgr users having a mean signal to noise ratio (SNR)2of
of users in the system may be changing, and users may BAH 0.1, with both classes experiencing Rayleigh fading and
be infinitely backlogged, i.e., unsaturated dynamic. Howevejpntaining an equal number of users. The channel capacity
such a scenario is analytically intractable, therefore we usuafyt all users is fast fading, i.e., rate supported by users is
study different idealizations. The first idealization is the ‘fixe¢hdependent across slots, and the slot size is set to 1.67 msec.
saturated’ case, where the number of users in the system dpré bandwidth associated with each user is 500 KHz and
not change with time and each user is infinitely backloggedle assume that coding achieves the Shannon rate. This setup
Such a scenario is an approximation where the number of usgil be used throughout the paper for simulations, and unless
in the system changes slowly and packet queues for each uggicified otherwise, both classes will contain an equal number
are always non empty at the access point. This idealizatighusers.The parameter is set equal to 1000 slot length [5].
is often studied in literature, and we will largely focus on Figure 3 exhibits the ratio of the per class through-
this case. We will also perform some simulations in the ‘fixegut achieved by maximum quantile scheduling versus that
unsaturated’ and ‘dynamic saturated’ case, the former referrigghieved by proportional fair based on allocated rate for an
to the scenario where even though the number of users remaiteasing number of users. As can be observed, maximum
static, they are not necessarily backlogged, and the later redgeantile achieves a 50% gain in throughput with less than 8
to the scenario where the number of users changes with timigers in the system for both the classes, and the gain exceeds
but whenever a user is present, it is infinitely backlogged. 100% for a larger number of user$his clearly illustrates

We denote the number of users present in the system on $fdt scheduling based on the recent service given to a user
t by n(t). We simplify this ton in a fixed system (saturated orcan lead to large loss in opportunism.
unsaturated) since the number of users is constant. The set @hueue based opportunistic scheduling schemes that factor
active, i.e., backlogged users on slas denoted byA(t). In  the magnitude of ongoing users’ queue lengths (as a measure
other words A(t) is the set of users that wish to be served opf recent service given to a user) and their channel capacity
slot¢. Note that in a dynamic saturated systedtt)| = n(t), in deciding which to serve have also been proposed in the
while in fixed saturated systef(t)| = n. literature. For example, thexponential rule[19][18][17],

B. Weight based Opportunistic Schemes chooses to serve use(t) on slot? if

Opportunistic scheduling was first proposed in [6]. They k() e
proposed maximum rate schedulingwhere the user with ®) argzrenﬂx)hx (t )eXp(1+ q(t)



in [12], we evaluate its use to achieve quality of service
guarantees for real-time traffic.

Let us briefly introduce this scheme in the fixed saturated
regime. The main idea is to schedule a user whose rate is
highest compared to hiswn distribution, i.e., serve usék(t)
during slott if

T T T
=8 high SNR class users
—©— low SNR class users
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k(t) € arg max Fxi(z'(t)). 3

18-

6 .
' It is well known that F'x:(X*) is uniformly distributed on

[0,1]. Let U" = Fx.:(X"), thenU® is also uniformly distrib-
uted on|0, 1]. Maximum quantile can be thought of as picking
0 5 10 15 2 2 30 3 the maximum among independent realizations of users’ (i.i.d.)
Number of users per class iy s . . .
U"s on every slot. Thus, it is clear that maximum quantile is

! . . ) ually likely to serve any user on a typical slot, and as a
Fig. 3. Ratio of per class throughput achieved by maximum quantiFeq y y y yp

1.4F

1.2f

Per class throughput ratio of max. quantile to prop. fair

. . 1 th
scheduling to that achieved by proportional fair. result all users get served an equal fraction of time, i€,
of time.
where ¢i(t) is the queue length of userat time t, o is Let U™ = max[Uy,...,U,], where U; is uniformly
the weight associated with usés queue,q(?) is the average distributed on[0,1] Vj = 1,...,n, then
weighted queue length across users at timand~* is the
weight associated with useis channel rater’(t). Factoring Pr(U™ <u) =u", Yu € [0,1]. 4)

users' queue length has the potential advantage of reducing g: pe the event that usetis the selected for service on
packet delays. Indeed, it has been shown in [17] that undgty nica| siot under maximum quantile scheduling. Then the
heavy traffic scenario, the exponential rule will minimize th

i ; o fate distribution seen by uséron a slot that it gets served
maximum of weighted queue length, i.e’q’. Good packet g ihe same agy};il(U(n))' Therefore, the average throughput

delay performance of the rule has been supported by simula,, by uset is given by G, (n)[9][10]
tions shown in [18]. We will revisit this point in Section V, ma ’
and show that in practice, not unlike proportional fair, such ; EFLHUM)]  E[xH™)
gueue based schemes introduce biases that may compromise qu(”) = n = n :

opportunism thus compromising packet delay performance, i) . . . i
Finally, [7] proposed strategies that maximize systerﬁ?fi? X_ mlzx[r?(a;mmur;i(])f TJW:;}C;'XCZ-OpIES )O(finij €
— IEEEEE) nls J ~ 5 -

throughput under fairness constraints. For example, they sh?vy” n. Note that by contrast, with the schemes discussed

that a scheduling policy of th 2 . ) . ST
g policy e form in the previous subsection, if the users’ rate distributions were

k(t) € arg max [z"(t) + 1], (2) known, it is fairly easy to evaluate the individual and system
i€A®) throughput for maximum quantile scheduling.
maximizes the overall sum/system throughput subject to con-Maximum quantile scheduling can be modified to serve
straints on the fraction of time each usés served in a fixed users different fractions of time using easily tuned (distribution
saturated regime. Heng’ is a weight associated with usér independent) weights, see [9][10] for details.
that ensures that users get served the desired fraction of timdt is clear that maximum quantile scheduling has some
Similar optimal schemes were proposed for rate and utilisery desirable properties: e.g., it is temporally fair, it is
based fairness. amenable to performance prediction in the fixed saturated
While the fairness and optimality characteristics of thesmse, and Figure 3 indicates that it has good throughput
schemes are desirable, in practice they would require estimagrformance. However, as discussed earlier, it is unlikely that
ing thresholds/® which are complicated functions of usersrate distributions will be known. It is unclear how maximum
rate distributions, number of users and temporal constraintislantile’s performance compares to that of other schemes
In the sequel (Section IV and VI), we show that such estivhen distributions are estimated, especially in scenarios other
mates may converge slowly and are not robust to changedhan fixed saturated. In the sequel we will address these issues.
unsaturated and/or dynamic regime.

Ill. PERFORMANCE OFMAXIMUM QUANTILE
C. Maximum Quantile Scheduling SCHEDULING IN FIXED SATURATED SYSTEM

Maximum quantile scheduling has been proposed indepenin this section, we look at two metrics to study the per-
dently by several researchers. Specifically [9][10] proposed@mance of maximum quantile scheduling : (1) the amount
‘CDF based scheme’. While [3] proposed a so called ‘scood opportunism exploited by the scheme, (2) the throughput
based scheduler’ and [14] proposed a ‘distribution fairnesathieved by the scheme.
based scheduler. We have studied the properties of maximun'Opportunistically’ Optimal. Suppose we consider as mea-
guantile scheduling under greedy user behavior in [13], asdre of opportunism achieved by useras the quantile of

4



the rate achieved by the user, i.€:(2%(t)) whenever it is of times in favor of User 1. Such a scheme will give User 1 a
served. A high gquantile means a high degree of opportunisate of 0.43, and User 2 will get a rate of 0.33. Hence one can
and E[>"" | Fx: (Xi)lsfj] denotes the overall expected opgive better performance to both the users, while maintaining
portunism realized by a scheduling schethgHere S% is the temporal faimess.
event that usef is selected for service on typical slot By) It Throughput Optimal for Large Number of UsersEven
should be clear that maximum quantile scheduling maximiz8¥ugh the maximum quantile is not Pareto optimal in general,
the system opportunism, and does so while serving all usérgloes achieve good system throughput performance. If the
an equal fraction of time. rates achievable by users in a system are bounded, then max-
Not Stochastically DominatedVlaximum quantile schedul- imum quantile scheduling is sum throughput optimal among
ing has an 0pt|ma||ty in terms of the rates seen by users in tﬁ@liCieS that serve all users an equal fraction of time as the
typical slots in which they are served. Let us first introduce tHimber of users increases. Following lemma is useful to prove
concept of stochastic dominance, before presenting the bouthds claim.
We say that a random variablg stochastically dominates
random variableV, if Vv, Pr(Y > v) > Pr(V > v). This
is denoted a§” >** V and it follows that for any increasing
function g(-), we have thay(Y") >t g(V).

Lemma 3.2:Consider a fixed saturated system withisers,
whose channel capacity variations satisfy Assumption 2.1 and
served based on maximum quantile scheduling. &.ét

_ . . (0, 1), then there exista, 5 such that ifn > n. s at any slot
7 I )
Let qu represent the rate distribution seen by usethen where user gets scheduled for service, the user sees a rate

selected for service on a typical slot by maximum quam"@xceedingF”(l — §) with probability greater than — ¢
Xk :

scheduling, and Ierl—-fmq = (R}, ---> Ry, ie., the vector
of random variables representing the rate distributions. Let Proof: As discussed in the previous section, whenever
72)5 = (R};, e ,Rg) be the same quantity for another distinctiserk gets served under maximum quantile scheduling, it sees

non idling scheduling scheme that maynot serve all users a rateF);,}.(U(”)). In order to ensure the desired condition is
an equal fraction of time. By distinct we mean that the schemsatisfied we require that

does not always pick the user with the maximum quantile, and “1rr(n 1

by non idling, we mean that the scheme will never be idle as Pr(Fyi(U™) > Fii(1-6) > 1 - e

long as there is at least one backlogged user. Then our clzﬁinceF);g(.) is an increasing function, the above inequality
is that B 5 #*' R g, i.e., 3, such thatR), #* Rj,,. This is can be rewritten as

formally stated in the following theorem with the proof given Pr(U™

in Appendix |. U >01-9)>1-e

Theorem 3.1:Consider a fixed saturated system with From (4), we get

users, whose channel capacity variations satisfy Assump- 1-(1-6)">1-e

tion 2.1. Then for any distinct non idling schenie Simplifying and taking log, we get

ﬁﬁ 2! ﬁmfr - Ine
n>—-=.
Note that a scheduling schemeis known to be Pareto In(1 - 6)
optimal if there exists no other scheduling scheme that [¥fining
able to give an equal or higher average throughpultdahe nes = [ Ine 1
users than that received by users ungerheorem 3.1 can be &8 In(1—4)"

thought to be a weak form of Pareto optimality in terms of ralge have that for any. > n. s, whenever usef is served, it
— e, 09 1

seen in a typical slot, not average throughput. We will nexji| experience a rate greater thdiy . (1—5) with probability
show that maximum quantile is not Pareto optimal in terms @freater thar — e. n

average throughput.

Not Pareto Optimal We illustrate this with a simple patho- The following theorem follows from Lemma 3.2 and for-
logical example where users’ support only discrete rates. (Thlly states our claim.
example can be extended to the continuous case.) Consider . . ' .
two user system with ON-OFF channels. The ON and OFF‘?heorem 3.3:Consider a fixed saturated system with

channel states correspond to rateend0 respectively. User 1 Egﬁr? 1vvahn0ds:1r;:hsinr\r;§(lj szir)nacga)\(/?r;ﬁg]onlsjaiftiiT:aSZcrf\e sdsljllmp-
and 2 have an ON probability di.6 and 0.4 respectively. : 9 q g

: ) . uppose each usérhas a maximum instantaneous rate of
Here maximum quantile will serve User 1 a rate of 0.42S PP

g .
and User 2 a rate of 0.32. However, it can be shown th?i[rm < c0. Then asn — oo, each user is likely to be served

. . . . his maximum rate, so maximum quantile scheduling is sum
maximum quantile may sometimes serve User 2 in OFF stafe

even though User 1's channel is ON. Therefore, it is possib eroughput optimal.
to improve performance while still serving each user an equalSummarizing, we observe that even though maximum quan-
fraction of time. Consider a scheme that always serves tfile scheduling is not Pareto optimal, it is likely to give a good

user with the highest instantaneous rate and breaksz%fitehs throughput performance.
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IV. PENALTY DUE TO MEASUREMENT Theorem 4.1:Consider a fixed saturated system with

We now focus on the measurement aspects of opportunisfRe€"s Whose channel capacity variations satisfy Assump-
scheduling. We will first consider the throughput penaltfjon 2-1. Suppose the channel capacity distributions in such a
incurred by maximum quantile scheduling due to estimatiGyStem are estimated via (5) basereindependensamples of
of rate distributions of users under fast fading, and presaﬁ\]pser’s_channel and users are served using maximum quantile
simulation results for the slow fading case. Following this, wecheduling, then the long term throughput achieved by kser
will compare the penalty incurred by maximum quantile t§ given by
that incurred by sum throughput optimal scheme in (2), via E[FZH (T )]

X 2

. . ~k g 7
simulations. Gmg(n,m) = ——=———,

A. Maximum Quantile Scheduling based on Empirical DiStr'\thereUn,m is a continuous r.v. of), 1] having a probability

butions density function
Assumption 2.1 required that the channel capacity distrib- m ) o
ution, i.e., F'x:(-) of each user be known at the access point..  (y) = Z < m ) W (1— u)m—jw (6)
This is unlikely, and in this subsection we consider the penalty "™ = (m+1)"
in throughput seen by users imauser fixed saturated system , o
due to such mistakes by the scheduler. Recall thatR,, represent the rate distribution seen by user

Suppose the quantile of the current rate of a user is estimate@hen selected for service on a typical slot by maximum
using the previous, samples of the user's rate. The empirica‘lua”t”e scheduling (with perfect dlstrlputlon knowlgdge). Let
distribution of uset during slott based onn previous samples Zniq denote the same quantity for maximum quantile schedul-

is denoted byF"™*(-) and is given by ing when distribu}ions are estimated usimgsamples.
We show thatR,,7 and Ry, are ‘closely related’ random
1 . variables, i.e., the rate seen by a user when served under empir-
— ST HXU(t - j) < . (5) ‘anavies, 1=, seen by Unaer emp
m ical distributions case is similar to that seen when distributions
= S are perfectly known. This is used to show that the average
Note that the above way of estimating is similar to the scotgroughput achieved by a user when empirical distributions are

function described in [3], however no attempt was made thejiged is less than or equal to that achieved when distributions
to evaluate the penalty due to incorrect distribution estimatigfie perfectly known, i.e. ¥, (n,m) < G* (n) and bound

mq mq

as function ofn andm. the relative throughput penalty due to estimation. Our result

Thus maximum quantile scheduling of users based @fformally stated below, the proof given in Appendix IIl.
estimated distributions, would choose ug€t) for service

F;t(x) =

during slott if Theorem 4.2:Consider a fixed saturated system with
P users whose channel capacity variations satisfy Assump-
k(t) € arg max Fyr(a*(1)), tion 2.1. Then under fast fading, m,
with ties being broken arbitrarily. m+1 . m < PF(RZ’JQ <r) <1 v
i ? T?

Let us examine the properties of the above scheme. It can ( n (1- (m + 1) ) < Pr(Ri'nq <)
be shown that for any user on any slt)tF)’}?;t(X’(t)) is
uniformly distributed on{0, -1 ..., 1}. Therefore, it is easy to and . -
see that even with estimated distributions, maximum quantile Ging(n) 2 Gy (n,m), Vm,
scheduling will still serve each user an equal fraction of timgnq the relative throughput penalty is bounded by
Calculating the penalty due to estimation seems to be .
intractable under slow fadingherefore we add an additional  |Ghg(n) — Gl (n,m)| o Ml (1 (™
assumption of fast fading, i.e., channel capacity realization of Gr.,(n) - n m+1" 7
a user in a slot is independent across sldisen though fast
fading users’ channel capacity is not usually true, indepen-

dence of samples can be ensured by taking samples that At plesm required to fimit the throughput penalty, note that

sufficiently apart in time or for some physical layer foIIowsfor a reasonably large, if m scales linearly witt, then
from system design, see e.g. ‘opportunistic beamforming’ [20]. ( m )= (1 + l),n ~e 2
The assumption is also likely to be true in OFDM based m-+1 m

systems where slot times are relatively long.

We now calculate the long term throughput achieved

To understand the scaling of the number of independent

Expandinge~= and simplifying, we get that the penalty is

users under maximum quantile scheduling based on estimateéJal o

distributions. Here, since we are interested in the stationary 1_m +1 L +1 (l(ﬁy -

behavior, we simplify notation for the estimated distribution m no2'm ’

to F)’gz(-). Following theorem characterizes the performanaghich is upper bounded by:-. Therefore to achieve a relative
of this scheme, a proof is given in Appendix II. error less thare, approximately;- samples are needed. For
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steps of 10 Hz. Letfp denote the Doppler spread, then the
Fig. 4I Thﬁtzplthre%cur;/es ptlot t?edsgletct;)or: error ptrﬁ)bablllty for mamgﬂucoherence time can be estimated using the forn%ﬁ?h [15].
dantle schecting, e o estmated dsulons wth ncreasing Parbei@iven the coherence time, the total number of usérs and the
same. required penalty, the number of slots needed to estimate the

rate distributions can be ascertained. The simulation results are
example to achieve an error less tHgh, approximatelylon ~ plotted in Figure 5, as can be observed, the required penalty
samples are needed. Therefore for a given error bound, theeasily met in all cases.
number of samples required will at worst grow roughly linearly Note that in our simulations we found that for Doppler
with the number of users contending. spread of 10 Hz, 932 slots were needed. (Other Doppler

To validate these results, we ran some simulations. TRereads required 466, 311, 233, 187 slots.) This corresponds

set up is same as discussed in Section Il. We observed thél.55 seconds (slot size is 1.67 msec), it may be reasonable
throughput penalty for different values afandm. The value 0 expect the system to be stationary for such a period because
of n is varied from8 to 16 to 32, while m is varied by a the Doppler spread is quite low, i.e., users/objects are moving
factor of 2 from 8 to 256 for a given value of.. As shown in quite slowly. In other words, even though very slowly fading
Figure 4, the bound is clearly met, in fact the results indicagystems may require a large number of samples to achieve
that our bound is quite conservative (which is not surprising)e desired penalty, it may also be reasonable to expect such
since the bound is distribution free). For example, a penaljiannels to be stationary over large periods of time.
of around1% is achieved with only64 samples for8 users,  Discussion of the boundTheorem 4.2 has several interest-
whereas the bound suggests 5%. ing implications, which we discuss below.

We also p|0t the selection error probablllty in the figure, i.e., « The bounds shows that the throughput pena|ty for due to
the fraction of slots where the user selected with maximum  estimation of users’ distribution can be bounded day
guantile isnotchosen due to error in estimation of distribution.  djstribution.

As the plot indicates, this can be quite high. Our analysis, The theorem is strong in the sense that it shows it
(not included in this paper) shows that the number of samples shows a relationship between distributions of rates seen
required to achieve a given error probability grows roughly by the user in both the empirical and perfectly known
as O(n?). Therefore, even though mistakes may be made in distribution cases.

selecting the user with the highest quantile, the throughput, Furthermore, the number of samples needed to achieve
penalty in making an error is not large. small penalty isonly linear in the number of user3his

Let us consider the relevance of the bound under slow is fairly limited (at least for the fast fading case) because
fading. The need form independent samples immediately  the slot sizes are usually of the order of milliseconds.
suggests the need for samplimg coherence time intervals « The dependence of penalty only on the number of users
to achieve the required penalty. We ran simulations to con- is significant, because this allows the bound to extend to
firm this conjecture. The simulation consisted of two (earlier unsaturated and dynamic regime. To achieve a certain
described) classes of slow Rayleigh fading users witlsers penalty, a system designer only needs to estimate the
each, we aimed for a throughput penalty of 5%. The Doppler ‘average’ number of users that will be competing for
spread for the channels was varied from 10 Hz to 50 Hz in service at any given time, and not on the users’ distri-



fairness. However in practice the weights for each user needs
S maximum quanile scheduling (measured) to be estimated. Let us investigate the sensitivity of system
0.6 L maximum sum throughput scheduling (measured) ] throughput to errors in these weights by performing two
controlled experiments.

In the first experiment, there are 5 users in each class (with
the previously described setup), and the weight®r all users
are initialized to 0. We train the weights fot slots according
to the stochastic approximation algorithm suggested in [7], and
observe the average penalty in performance due to errors in
weights on the(m + 1)t slot. We refer the reader to [7] for
details on the training algorithm. We evaluate two performance
parameters, the fraction of time low SNR users are served, and
the relative penalty in throughput achieved by those users as
: : : : : : : : compared to that achieved when weights are perfectly known.
100 200 300 400 500 600 700 80O 900 1000 The stochastic approximation algorithm for estimating the
Number of samples used for tuning .
v’s has several parameters,(,d;) that need to be set,
Fig. 6.  Fraction of time low SNR users are served by measurem we first set these param?ters equal to those suggested in
based maximum sum throughput optimal and maximum quantile scheduﬁﬁ;- However, the scheduling scheme served the low SNR
schemes, with increasing number of tuning samples. user less than 0.1% of time even when = 2000 (again
demonstrating that measurement based weights may severely
affect performance). We changed the parametets $00.005,
1 0 = 0.2 and¢; = 0.1, which exhibited better performance.

1 Figure 6 shows the fraction of time low SNR users are
served as an increasing number of training sampiess
used. We also plot the corresponding results for maximum
guantile scheduling. Note that maximum quantile scheduling
1 always serves low SNR users close to 0.5 fraction of time. By
contrast, maximum sum throughput takes around 400 samples
to converge to approximately 0.47 and then shows negligible
improvement. This is because the granularity of training is
: not sufficiently small, however as suggested in the previous
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01l ] paragraph, if one reduces these updates, then the convergence
time may be much larger.
o—eo—o—o0—60—0—0—60—0—=0 ,
100 200 300 400 500 600 700 = 800 900 1000 Figure 7 shows the throughput penalty for the low SNR

Number of training samples(m)

users for an increasing number of training sampleswhile
Fig. 7. Average relative throughput penalty incurred by the class of IO:[/\r/]e thro.thpUt penalty is V|rt.ually 0 under maximum quantile
SNR users for increasing number of tuning samples. scheduling, note that there is penalty of 15% even for 1000
training samples. Therefore a 3% loss in temporal fairness can
bution or traffic characteristics. We reiterate here that litad to a 15% loss in throughput.
is difficult to even design heuristics to redefine Weights In the second experiment, suppose there are iniﬂ'ﬁu;ers
in dynamic and unsaturated scenarios for other weighélonging to each class, with estimates fdrconverged to
based schemes. their true values. Now if a user leaves the system the values
« The dependence on only the number of users also allogsweights would have to change, so if the system does not
the theorem to extend to quasi stationary rate distribtiine fast enough, then the maximum sum throughput scheme
tions. We Conjecture that if users’ channel are stationamay incur a throughput pena]ty_ We simulated the throughput
for roughly O(n?) slots (under fast fading), then theachieved by the scheme under the previously converged values
desired penalty will be met. of weights and compare it to that achieved by maximum
Summarizing, maximum quantile scheduling under esfijuantile scheduling with distribution estimates converged.
mated distribution case is not only fair, suffers from fairly Figure 8 shows the throughput achieved by both the schemes
limited penalty, but is quite easy to design for and to implevhen the number of low SNR users is reduced. Note that the
ment. throughput difference between the two schemes is small even
when both classes haveusers each. Then if the number of
low SNR users goes fromto 4, maximum quantile scheduling
Recall that if the users’ weight’ are properly set in (2), immediately starts doing better. We observed a similar trend
then the scheme maximizes sum throughput under temposdien the high SNR users were reduced.

B. Throughput Penalty Comparisons
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V. PERFORMANCE INFIXED UNSATURATED REGIME

In this section, we consider a fixed unsaturated system.
One can show that the throughput achieved by an infinitely
backlogged uset in an unsaturated system is lower bounded
by Gﬁlq(n) [11], i.e., the throughput achieved in a fixed
saturated system. However, the way in which resources are
allocated impacts the delay for e.g. real-time traffic. Therefore,
we will evaluate the packet delay in this section.

In our simulations, we compare the performance of maxi-
mum quantile scheduling with maximum rate, proportionally
fair and the exponential rule. We do not compare the perfor-
mance with the maximum sum throughput scheme (2), because
it is unclear how to set the weights for this scheme in an d
unsaturated scenario.

Our setup is the same as before with 5 users per class.
A”_ users have Poisson p_aCkEt arrivals with equal averagﬁ. 10. File transfer delay performance of maximum quantile, maximum
arrival rate. Each packet is 1500 bytes. Packet delay forra#e and maximum sum throughput scheduling.
packet is measured by finding the difference between packet
arrival ime and the time when the packet has beempletely =~ V!- PERFORMANCE INDYNAMIC SATURATED REGIME
transmitted. We set all the weights equalltan exponential  In this section, we compare the performance of maximum
rule (We also experimented by weighting a user’s queugiantile scheduling to maximum rate, proportional fair and
inversely proportional to its channel mean, but that increasethximum sum throughput under temporal constraints. Note
the average delay for the exponential rule.). We assume that that the exponential rule does not make sense in a saturated
distribution is perfectly known at the scheduler for maximuracenario.. Dynamic saturated system is a good model for an
guantile scheduling, i.e., the estimates of the distributions haaecess point supporting file transfers, therefore, a good metric
converged (this may be reasonable for fixed systems). for performance here is the average file transfer delay.

Figure 9 shows the average packet delay across users a&gain our setup is the same as before, however since the
the load increases.(Proportional fair has the worst performarsyestem is dynamic, the number of users will change with time.
among all schemes, for simplicity its plot has not been shown)sers arrive to the system according to a Poison process, and
Maximum quantile always has the lowest packet delay, aade equally likely to belong to one of the two classes. Each user
achieves more than 35% reduction in packet delay as compahad a file associated with it. The file sizes are exponentially
to the exponential rule. This is surprising, since unlike expdahstributed with a mean size of 60KB. We keep track of the
nential rule, maximum quantile is completeilysensitiveto time taken from a user’s arrival to departure. For maximum
gueue lengths. This underscores the importance of schedulipgntile, estimate for users rate distributions are generated
according to opportunism, rather than simply the rate andfloy keeping track of previous samples. While the weights for
gueue lengths. maximum sum throughput under temporal fairness are trained
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using the stochastic approximation algorithm referred to Recall thatU/(™) is the maximum ofn i.i.d. uniformly distrib-
Section 1V, with the values of the parameters same as befanted random variables, then singes distinct, there must be
The average file transfer delay experienced by usersais’ such that
plotted with increasing load in Figure 10 (we again do not Ly
plot proportional fair because its performance is the worst). Pr(U") >w') > Pr(Us > ') > Pr(Ué(“) > ).
The number of samples used for estimating users’ distributions . ) . .
is 50 at a load of0.1. This was increased linearly byo L€t Ung € the same quantity &; for maximum quantile
samples for every load increase ©fl. As can be seen in schedullng.. Now recall that unde_zr maximum qu_antlle sched_ul-
the figure, maximum quantile scheduling outperforms boffi9: @ useri is selected for service only when its quantile is
maximum rate and maximum sum throughput. In fact tH@€ Nighest, i.e.l;,, ~ Ut™). Then
reduction in delay is almost0% (as compared to maximum ) , i) ,
sum throughput) at a load df. This again underscores the Pr(Upyg ' > ') > Pr(Uﬁ > ).
importance of scheduling according to the quantile. Also note o, ‘ ,
that due to non convergence of weights, maximum rate aﬁ@Uéflt) 25 UAy ) Note that for any uset; R}, = F'y.! (U})
maximum sum throughput up to a load of 0.8 have quiRdR.,, = Fy.!(U},,). Now sinceF_ . (-) is an increasing
similar performance. Therefore maximum sum throughput c&#nction, then
easily degrade to maximum rate in a dynamic scenario. Rf}(“/) #5t R%Z’)_
We also plot the delay experienced by users under maximum
guantile with perfect rate distribution knowledge. Observe that [ ]
the ideal performance is close to measurement based one.

VII. CONCLUSION APPENDIXII

PROOF OFTHEOREM4.1
In summary we have evaluated measurement based op-

portunistic scheduling schemes from various perspectives Proof: Recall thatS” is the event denoting the selection
and under various system regimes, e.g., dynamic/fixed, sat-userk for service. Since each user is equally likely to be
urated/unsaturated. The key take away, is that, perhaps sigrved,Pr(S*) = % and
prisingly, maximum quantile scheduling which would require
estimation of each users channel rate distribution, realizes (n,m) = E[X*|S] Pr(s*) = E[XkISk].
excellent performance, relative to proportionally fair, the ex- ma n

onential rule, and schemes that are optimal in terms of , L -
gum throughput subject to fairness. The rFr)1ain reason is ti&t US NOW evaluat&[X"|5*] by conditioning onF (X*),
maximum quantile places systematic emphasis on schedul\’ﬁﬁ have that
users when they are high relative to their own distribution, E[X*|S%] =
while achieving temporal fairness. By contrast other schemes ) )
measure the deg_ree to which fairness is Qchieved a_md bRS £ x*| sk, (XY = l] Pr(F (XF) = i‘Sk),
scheduling decisions to compensate for biases. This coffx, m m
promises opportunism and also performance. Although the
estimation of users distributions seems fairly straightforwafdote that the selection of a user in a slot is independent of its
and would be necessary to enable resource management @Héent rate, given its estimated current quantile, so
call admission decisions at a wireless point, the question ~ . ~ ;
remains as to whether the additional complexity over simple E[X*|S*, Fi& (X*) = i] = B[ X" F (XF) = i].
schemes such as proportionally fair is warranted. mn mn
Since F (X*) are uniformly distributed on{0, L,... 1}

'm?
APPENDIXI and ties are broken randomly,

PROOF OFTHEOREM 3.1

Proof: DefineUs :=}7i" ) U'lg;, i.e., the total oppor- Pr(Fg. (X*) = i.\S’“) _ U+ l)nlinjn
tunism achieved bys. Let Uj = U*|S}, i.e., the quantile of m (m+1)
useri conditioned on getting served ¥ Then Now considerE[X*|Fm, (X*) = L], by using Bayes’ for-

n . ) m LG _ ym—j - _1
Pr(Us > u) = 3 Pr(Uj > u) Pr(S}), u € [0,1]. mula and the fact thaf " | [, 4'(1 — )" dy = 757,
i=1 one can show that

Letj(u) = argming— ., Pr(Uj > u). Sinceg is non idling,
i, Pr(Sh) =1, so
m

Pr(Us > 0) > Pr(UZ® > ). ) () [ alFa @ (- Fes @) o)

BN () = L] =

10



where fx«(-) is the probability density function of the SNR Proof: The right side of (9) can be expressed as
associated with usét. Now using a change of variables this

1
can be rewritten as ((m = Du+ D E[H.
E[X*Fr (XY) = J EA Using (8), the above equation can be rewritten as
m! 1
' - 4 Tl (10)
(m+1) ( m > / Fir(u)u (1 —u)™ I du. (m—1-1)!
’ ’ : m! m! j
So it follows thatG,  (n,m) is given by ;V%W +m = Dby (A1)

1 m . n -n

l/ ng(u)(z ( m ) W (1 — u)™d ((z +-‘v1-)1)jl ))du. If one splitslij(mL_“j)I in the following way
0 , m "

| m)! m)

- g = by (L= J)bj
This completes the proof. [ ] P (m — §)! P (m — 4)! P (m = j)!
then (10) in turn can be expressed as
APPENDIX I
PROOF OFTHEOREM4.2
!

We present a few useful lemmas before proving Theoiu“r1 +Z jb J1L+(m—l)bj_1,l

rem 4.2. (m—1-1)! = (m —j)!
! _ ! _

Lemma 3.1:Let H be a binomial r.v. with parameterst')zH +(0—-j+ l)bj_l,lLf'uJ‘l]
(m,u). Consider the moment generating function #&f, (m—j+1)! (m—j+1)!
M(s) := (1 —u +ue®)™. Its [*" derivative is given by Now since0 < u < 1, thenVj, v/~ < /. So, from the

above equation we get
d'M(s s
ds; Zb]z (1w ue )" et (1) Ny
(mu +1(1 —u))E[H'] > ﬁulﬂ +
Hereb;,;'s are constants with the following properties: (m —1—1)!
’ l
. bl 1= 1 m)!
o . —Dbj_1———m—) +
o bji=7gbji—1+bj_1-1,Vi=1,...,,Vl Z 7o ]l ) +(m = Db 1’l(m—]+1)!)

J=1

e boy=0bi41,=0,VL
Note that sinceé; ; = 1 andb; 1, ; = 0, VI, from the second =7+ 1)bj_1,
property one can show that; = b;—1 ;-1 =1, VL.

m! j
(m—j+ 1)!]u '
Combining the last two terms in the summation of the above
Proof: The lemma clearly holds fof = 1. We give a jnequality, we get
proof by induction on/. Assume the lemma holds fér i.e.,

(7) is true. Then, to prove the lemma fbr 1, we differentiate m!

(7) and after some rearrangement get (mu +1(1 —w))E[H'] > mu”l +
dFIM(s) o m! ! m! .
o = 2 0b b ) (Jbjp +bj—10) 70’
ds+1 ; (m — j)! ; 7 70 (m— j)!
(1 —u+ue”)™ ™ (ue)]. This proves (9). [
This completes the proof. u Next we show that/ (") dominNatesﬁ",m in a likelihood ra-
From Lemma 3.1 it follows that th&" order moment of ti0 ordering sense, i.elj™) >" U, ,,, [8][16]. This is a strong
H is given by form of dominance which means tht.. (u)/fg (u) is
l non decreasing im, or f5 (u)/fym (u) is non increasing
_ ooml in u (heref;; ) (u) is the probability density function df (™).
= Z bt — (8) Ty (U ! 4
7)! If U™ > 7, ., it follows thatU™ >t U, .,
The following lemma exhibits an inequality between the Lemma 3.3:For the random variablds(™) andU,, ,,, given
moments ofH. by (4) and (6) respectively, thew, m U™ > 0, .,
Lemma 3.2:Let H be a binomial rv. with parameters  Proof: To prove the lemma, we need to show
(m,w). Then for alll such thatl < m, fo (w)
U’Vl m
E[H"™] < (mu+1(1 —u))E[H']. 9) [fm)( )1 ’

11



Yu € (0,1]. To prove this, it is sufficient to show This is equivalent to

dfp N “
om0 [d”] g [ [ ot - 1o, )
Note thatf; - (u) = nu™~!. Then expanding, we get This in turn is equivalent to
1 1 m-1 oo ()1 — J60m (U))du
(m+1)n-1t ™ (=m(1 ~u) * 0 v foe (u) .
m—1 ) Then
(% )wtamam G = w5+
= Fyen (u) —F‘nm(u) <
m—1 1 n __ n _
m " e . / fuo (u maX( fU( ((u)))
_ n—2 m J(1 o \M—J((4 n__ :n n)
nln = Lu (jzzzo ( J ) Wil =) G+1) 7N <0 Note from Lemma 3.3,
Simplifying and multiplying both sides byl — «), we get o, Sy, () m m .,
i = (1—( 1) ).
(—mu(l — u)™ + ven(w)  fue (1) n m+
mol, _ _ Then
. ;T J 1_ m—7J . + 1 n _ N +
> (") =m0 P00 < Fyo 0"
(mm_ muju™((m+1)" =m")) = (n = 1)(1 - u) Simplifying, one gets
m ; m—7j . n_ :n
2 (7 )wa-wr@er-ims<o Fyon ("L () < By ()

The above inequality can be rewritten as Now from Lemma 3.3, it follows that/(™ >t (7, ..

combining this with the above equation we get

Z( m )(j—mu—(n—1)(1—u))ua‘(1—u)m—j m+1(1_( m ") < M 1
=0 J n m 1 = Foom(@) =
((G+D"=5") <0 Using the definition ofu, and the fact thatF'y:(-) is an

Then the inequality clearly holds for. < n. However the increasing function, the above equation can be rewritten as
more interesting case is when > n, and this requires a few m4 1 X m . Pr(F)},-,l(fJn,m) <)

more steps. Note theé T u? (1—u)™~7 is the probability n (1= (m + 1) )< Pr(FH(UM) <r) ~

that a binomial r.v. with parametéfn, u) has a valugj, i.e., Note that R, = Fg!(U™) and Ri;{;’ = Fe (Unm),
the same as that aff. Then the inequality can be rewrltten.[hen the above equation can be written as
in terms of expectations as

BI(H — mu)(H +1)" — H")] - MLy DU S )
(n— 1)1 —u)B[(H +1)" — H"] <0, n m+1" = Pr(Ri,, <1)

H k —
This can be further rewritten as To prove the second claim, recall tha¥;, (n) =

mq

71 (n)
E[H((H+1)"—-H")] < M. Note that F', +(-) is an increasing function.
(mu+(n—-1)(1—-w)E[(H+1)™—H"]. (12) Therefore it is sufficient to prove th&i(™) >t U, ,, to prove
: n L the theorem, which is shown to be true from Lemma 3.3.
(15))(\?\/?}??123(? +1)" and simplifying, one can show that We now prove the third part of the theorem. Note from the

second part of the theorem, it is suffices to study

E[H"™ < (mu+1(1 —w))E[HY), Gk (n)—GE _ (n,m)

Vvl < n < m. This follows from Lemma 3.2. This completes k
the proof Crna(r)

e proof.

Consider the difference between the two throughput, i.e.,
We now prove Theorem 4.2. E[F H(U™)] — E[F5{(Uy,m)]. The difference can be ex-
Proof: To prove the first claim, define := Fx:(r) and pressed as
consider 1 . p 1 o J
Fye (u) = Fg,  (u), Yu € (0,1]. /0 o () fyn (u) “_/0 x+ (W fe, ,, (W)du.
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Then following the methodology used in the first part of thE9] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a

proof on can show timg-varying chgnnel: Th_e Exponential ru‘IeAmerican Mathematical_
Society Translations, Series 2, A volume in memory of F. Karpelevich,
Yu. M. Suhov, Editgr207, 2002.

E[F);i(U(”)H - E[F);Al(Un,m)} < [20] P. Viswanath, D. Tse, and R. Laroia. Opportunistic beamforming using
1 ) m+1 m dumb antennaslEEE Transactions on Information Theor8:1277 —
F. n 1-— 1-— ")du, 1294, June 2002.
| PR e 0 = TR - (B
or
E[F);,}(U("))] - E[F);l}(ﬁn,m)] <
_ +1 m
BF ™)1 -""20 - ).
[Fx (U™)]( A=)
This completes the proof. ]
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