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Abstract— We study the performance of measurement-based
opportunistic scheduling strategies for wireless systems in prac-
tical scenarios where user’s heterogenous capacity distributions
are unknown. We make the case for usingmaximum quantile
scheduling, i.e., scheduling a user whose current rate is in the
highest quantile relative to its current empirical distribution.
Under the assumption of fast fading, we prove a bound on
the relative penalty associated with such estimates, showing that
number of independent samples need only grow linearly with the
number of active users. This is a fairly limited cost, suggesting one
could track distributional changes in users’ channels. By contrast
other opportunistic scheduling schemes require estimating or
setting weights/thresholds that implicitly depend on the number
of users, their channel distributions, and possibly their traffic
characteristics and/or are queue dependent. Our results show
that it is easier to estimate users’ distributions than to infer good
weights, and that maximum quantile scheduling is more robust
to changes in the activity levels of users and/or changes in the
number of users. This allows it to maintain opportunism without
loss in performance in dynamic and/or unsaturated regimes.
In addition, for a saturated regime, we show that maximum
quantile scheduling not only maximizes ‘opportunism,’ but if
rates are bounded and number of users is high, it is sum average
throughput maximizing subject temporal fairness. Furthermore
we show that the distributions for the vector of rates allocated
to various users on a typical slot by maximum quantile cannot
be stochastically dominated by any other non idling scheduler.
As such our analysis and simulations suggest that maximum
quantile scheduling might provide the best features both in terms
of performance and robustness for practical scenarios.

I. I NTRODUCTION

Motivation. The scheduling of users’ data transmissions at
a wireless access point has recently attracted a substantial
amount of attention, see e.g., [6][19][4]. A key feature of
wireless systems relative to the traditional wireline systems is
that, the channel capacity, or service rate, may exhibit temporal
variations. This allows one to consider scheduling policies that
choose to send to, or receive from, a user (or a subset of
users) which at a given point in time has (have) the ‘best’, e.g.,
highest, capacity. Such ‘opportunistic scheduling’ can lead to
good increases in the aggregate capacity of a wireless system,
and has thus been adopted in various wireless standards such
as CDMA-HDR, HSDPA [2][1], and will almost certainly play
a role in future wireless systems.

In practice users’ channel capacity variations are unknown
and heterogenous, e.g., users close to an access point see
significantly different channel capacity than those further off.
Thus it is important to devise opportunistic schedulers that
do not starve some users, e.g., those with poor channels, to
achieve some degree of fairness among users sharing an access

point. To this end many opportunistic scheduling schemes have
been devised that make decisions by selecting the user that
currently has the highest weighted channel capacity. In practice
the weights may be hard to determine, because they depend
in a complex way on the users’ channel capacity distributions,
the number of users, and the characteristics of their traffic.
Thus they either need to be estimated or tuned based on the
service users have received or their queue lengths.

Unfortunately, the complex dependence of weights may
make them very sensitive to changes in the system, i.e.,
if a user’s traffic characteristics changes, or a user leaves
or enters the system (e.g., a mobile user comes out of the
shadow of a building), or the channel characteristics of a user
change, then the weights associated withall users may need
to change. Therefore, it is likely that a significant fraction
of time will be spent in estimating/tuning weights to their
‘ideal’ values. In fact, if the system is dynamic enough and/or
the tuning algorithm is not sensitive enough, one may never
converge, possibly compromising fairness but also, and more
importantly leading to poor throughput performance. Consider
a simple example. Due to the stochastic or time varying nature
of channel capacity and user’s traffic a measurement-based
opportunistic scheduler may be biased in favor of a user who
has not received service in the recent past or one that currently
has a high queue. While, this myopic approach is good for
short term fairness, the scheduler may end up serving a user
even though it is not currently experiencing a high channel
rate. This in turn decreases the achieved opportunism and long
term throughput the system can sustain. In heavily loaded
systems, at a given moment of time, it is very likely that
there exists a group of users which are starved. If those users
are served, others may become starved, leading to a cycle, in
which the level of opportunism and throughput are low. In
this paper we will see that indeed the performance of many
proposed opportunistic scheduling schemes in such regimes
are subject to such performance penalties.

Recently, distribution based opportunistic schedulers have
been proposed by several researchers under different guises
[9][10][3][14]. In this paper, we shall refer to this family
of schemes asmaximum quantile schedulers. The idea is
to schedule a user whose current rate is highest relative to
his own distribution, i.e., in the highest quantile. As will be
explained in the sequel because the quantile of each users’
rate is uniformly distributed, maximum quantile scheduling
is automatically temporally fair – i.e., no weights required
to achieve fairness. However, in practice maximum quantile



scheduling would involve estimating each user’s channel ca-
pacity distribution. In this paper we will show that the through-
put penalty incurred from estimating user’s distributions can be
limited. Furthermore, unlike other schemes, maximum quantile
does not require estimation/tuning of weights which depend
on users’ joint channel capacity distributions, and so it is
robust to fast changes in the number of users or their activity
levels. In other words the performance penalties associated
with estimation/tuning are substantially reduced.

Contributions. The following is the list of the key contri-
butions of this paper:

• We investigate the throughput performance of maximum
quantile scheduling and show that if the achievable in-
stantaneous rate of users’ is bounded, then among the
class of scheduling policies that serve each user an
equal fraction of time, maximum quantile scheduling
maximizes the long term system throughput when there
is a large number of users. Furthermore, we show that
the marginal distribution for the rate when users are
selected for service under maximum quantile scheduling
can not be stochastically dominated by any other non-
idling scheduler.

• Under the assumption of fast fading, we prove a bound on
each user’s relative throughput penalty when maximum
quantile scheduling is based on empirical distributions
for users’ channel capacity. This is significant because it
shows that such penalties can be controlled if the number
of independent samples used to estimate the empirical
distribution is roughly proportional to thenumber of users
in the system. Thus maximum quantile scheduling can
be used even when users’ channel distributions are not
known or slowly changing.

• We conjecture that the best way to serve a user is to
serve it when its rate is high compared to its distribution,
rather than favoring a user that has not been served for
some period of time. This conjecture is supported by sim-
ulating the performance of various measurement based
opportunistic scheduling schemes for various network
and traffic scenarios. We find that maximum quantile
scheduling can have significantly better performance in
terms of both packet delay and file transfer delay, e.g.,
up to 40% improvement. We stress that this observation
has not been made by previous works.

Paper Organization.This paper is organized as follows. In
Section II we revisit and critique representative prior work
in the area of opportunistic scheduling and introduce some
known features of maximum quantile scheduling. Throughput
performance and optimality of maximum quantile scheduling
is studied in Section III. We prove our bound on the relative
throughput penalty associated with measuring distributions in
Section IV. Simulation results comparing the performance of
maximum quantile scheduling to other schemes are presented
in Section V and VI. Section VII concludes the paper.
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Fig. 1. Downlink scheduling to users from a wireless access point.

II. REVISITING OPPORTUNISTICSCHEDULING

A. System Model and Notation

We begin by introducing our system model and some
notation. For simplicity, we focus on downlink scheduling
from an access point to multiple users (see Figure 1). Suppose
time is divided into equal sized slots and at most one user gets
served per slot, e.g., for the CDMA-HDR systems defined in
the CDMA2000 IS-856 standard, the slot time has a duration
of 1.67 ms [2]. During each slot, each user feeds back the data
rate it can support and the access point makes a decision on
which user should get served. In the sequel we use the terms
‘channel capacity’ and ‘rate’ interchangeably and make the
following assumption on user’s channel characteristics over
time slots.

For analysis purposes, we make the following assumptions
on users’ channel capacity distribution(s) across slots for this
section of the paper.

Assumption 2.1:We assume the channel capacity (rate) for
each user is a stationary ergodic process and these processes
are independent across users. Further we assume that the
marginal distribution for each user is continuous and is either
known a priori, or estimated by the access point.

Discussion on the assumption.First the channel capacity
distributions seen by users might indeed be roughly stationary
over a reasonable period of time particularly if users are at
fixed locations. As will be discussed later, we conjecture that
the channel should remain stationary for roughlyO(n2) (here
n is the number of users in the system) samples for the result
on measurement based performance proved in Section IV to be
practically viable. The assumption that users’ rates are inde-
pendent is also likely to be true, though a notable exception is
the case where mobile users move in a correlated manner, e.g.,
along a highway. The assumption that the access point knows,
and in particular can estimate, the marginal distributions of
the channel capacity processes may seem unreasonable, but
simple book keeping on the users’ feedback of the currently
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achievable rate can be used to estimate distributions. We
will discuss estimation of such distributions in Section IV.
Note that channel capacities are not restricted to any specific
distribution, or class of distributions, i.e., users can undergo
any fading process. This makes the analysis presented later
applicable to real world scenarios. Note that the we require
the marginal distributions of rates to be continuous only for
simplicity sake, the results presented here can be extended to
the discrete case.

Notation. In the sequel we will letxi(t) denote the real-
ization of the channel capacity of useri at time slott, and
let Xi be a random variable whose distribution is that of the
channel capacity of useri on atypical slot. Recall that we will
be assumingXi to be independent across users but need not
be identically distributed. We denote the distribution function
of Xi by FXi(·). For simplicity, we will assume thatFXi(·)
is a strictly increasing function, so that its inverse denoted by
F−1

Xi (·) is defined.
System Scenario.There are several system scenarios (Fig-

ure 2) one can consider. In a real world scenario, the number
of users in the system may be changing, and users may not
be infinitely backlogged, i.e., unsaturated dynamic. However,
such a scenario is analytically intractable, therefore we usually
study different idealizations. The first idealization is the ‘fixed
saturated’ case, where the number of users in the system does
not change with time and each user is infinitely backlogged.
Such a scenario is an approximation where the number of users
in the system changes slowly and packet queues for each user
are always non empty at the access point. This idealization
is often studied in literature, and we will largely focus on
this case. We will also perform some simulations in the ‘fixed
unsaturated’ and ‘dynamic saturated’ case, the former referring
to the scenario where even though the number of users remain
static, they are not necessarily backlogged, and the later refer
to the scenario where the number of users changes with time,
but whenever a user is present, it is infinitely backlogged.

We denote the number of users present in the system on slot
t by n(t). We simplify this ton in a fixed system (saturated or
unsaturated) since the number of users is constant. The set of
active, i.e., backlogged users on slott is denoted byA(t). In
other words,A(t) is the set of users that wish to be served on
slot t. Note that in a dynamic saturated system|A(t)| = n(t),
while in fixed saturated system|A(t)| = n.

B. Weight based Opportunistic Schemes

Opportunistic scheduling was first proposed in [6]. They
proposedmaximum rate scheduling, where the user with

maximum channel capacity at that point of time is served,
i.e., userk(t) is selected for service on time slott if

k(t) ∈ arg max
i∈A(t)

xi(t).

This maximizes system throughput in a fixed saturated system,
but in a system where users have heterogenous rate distribu-
tions, may neglect those with poor channels.

Subsequently a myriad of approaches have been proposed to
address both unfairness and/or performance issues. One of the
more cited schemes isproportional fair scheduling[5][20][4]
which serves the user whose current rate normalized by a
moving average of his allocated rate is the highest, i.e., user
k(t) is selected for service at time slott if

k(t) ∈ arg max
i∈A(t)

xi(t)
µi(t)

, (1)

where

µi(t) = (1− 1
tc

)µi(t− 1) +
1
tc

xi(t)1Si
pf

(t)

and tc is the moving average parameter,Si
pf (t) is the event

that useri gets served on slott by the scheme, and1Si
pf

(t) is

the indicator function ofSi
pf (t).

As a simple experiment we compare the throughput
achieved by proportionally fair to that achieved by maximum
quantile scheduling (described in the next subsection) in a
fixed saturated system. Our setup consists of two classes
of users having a mean signal to noise ratio (SNR) of2
and 0.1, with both classes experiencing Rayleigh fading and
containing an equal number of users. The channel capacity
for all users is fast fading, i.e., rate supported by users is
independent across slots, and the slot size is set to 1.67 msec.
The bandwidth associated with each user is 500 KHz and
we assume that coding achieves the Shannon rate. This setup
will be used throughout the paper for simulations, and unless
specified otherwise, both classes will contain an equal number
of users.The parametertc is set equal to 1000 slot length [5].

Figure 3 exhibits the ratio of the per class through-
put achieved by maximum quantile scheduling versus that
achieved by proportional fair based on allocated rate for an
increasing number of users. As can be observed, maximum
quantile achieves a 50% gain in throughput with less than 8
users in the system for both the classes, and the gain exceeds
100% for a larger number of users.This clearly illustrates
that scheduling based on the recent service given to a user
can lead to large loss in opportunism.

Queue based opportunistic scheduling schemes that factor
the magnitude of ongoing users’ queue lengths (as a measure
of recent service given to a user) and their channel capacity
in deciding which to serve have also been proposed in the
literature. For example, theexponential rule [19][18][17],
chooses to serve userk(t) on slot t if

k(t) ∈ arg max
i∈A(t)

[γixi(t) exp(
aiqi(t)

1 +
√

q̄(t)
)],

3



0 5 10 15 20 25 30 35
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of users per class

P
er

 c
la

ss
 th

ro
ug

hp
ut

 r
at

io
 o

f m
ax

. q
ua

nt
ile

 to
 p

ro
p.

 fa
ir high SNR class users

low SNR class users

Fig. 3. Ratio of per class throughput achieved by maximum quantile
scheduling to that achieved by proportional fair.

where qi(t) is the queue length of useri at time t, ai is
the weight associated with useri’s queue,q̄(t) is the average
weighted queue length across users at timet, and γi is the
weight associated with useri’s channel ratexi(t). Factoring
users’ queue length has the potential advantage of reducing
packet delays. Indeed, it has been shown in [17] that under
heavy traffic scenario, the exponential rule will minimize the
maximum of weighted queue length, i.e.,aiqi. Good packet
delay performance of the rule has been supported by simula-
tions shown in [18]. We will revisit this point in Section V,
and show that in practice, not unlike proportional fair, such
queue based schemes introduce biases that may compromise
opportunism thus compromising packet delay performance.

Finally, [7] proposed strategies that maximize system
throughput under fairness constraints. For example, they show
that a scheduling policy of the form

k(t) ∈ arg max
i∈A(t)

[xi(t) + νi], (2)

maximizes the overall sum/system throughput subject to con-
straints on the fraction of time each useri is served in a fixed
saturated regime. Hereνi is a weight associated with useri
that ensures that users get served the desired fraction of time.
Similar optimal schemes were proposed for rate and utility
based fairness.

While the fairness and optimality characteristics of these
schemes are desirable, in practice they would require estimat-
ing thresholdsνi which are complicated functions of users’
rate distributions, number of users and temporal constraints.
In the sequel (Section IV and VI), we show that such esti-
mates may converge slowly and are not robust to changes in
unsaturated and/or dynamic regime.

C. Maximum Quantile Scheduling

Maximum quantile scheduling has been proposed indepen-
dently by several researchers. Specifically [9][10] proposed a
‘CDF based scheme’. While [3] proposed a so called ‘score
based scheduler’ and [14] proposed a ‘distribution fairness’
based scheduler. We have studied the properties of maximum
quantile scheduling under greedy user behavior in [13], and

in [12], we evaluate its use to achieve quality of service
guarantees for real-time traffic.

Let us briefly introduce this scheme in the fixed saturated
regime. The main idea is to schedule a user whose rate is
highest compared to hisown distribution, i.e., serve userk(t)
during slott if

k(t) ∈ arg max
i=1,...,n

FXi(xi(t)). (3)

It is well known thatFXi(Xi) is uniformly distributed on
[0, 1]. Let U i = FXi(Xi), thenU i is also uniformly distrib-
uted on[0, 1]. Maximum quantile can be thought of as picking
the maximum among independent realizations of users’ (i.i.d.)
U i’s on every slot. Thus, it is clear that maximum quantile is
equally likely to serve any user on a typical slot, and as a
result all users get served an equal fraction of time, i.e.,1

n

th

of time.
Let U (n) = max[U1, . . . , Un], where Uj is uniformly

distributed on[0, 1] ∀j = 1, . . . , n, then

Pr(U (n) ≤ u) = un, ∀u ∈ [0, 1]. (4)

Let Si
mq be the event that useri is the selected for service on

a typical slot under maximum quantile scheduling. Then the
rate distribution seen by useri on a slot that it gets served
is the same asF−1

Xi (U (n)). Therefore, the average throughput
seen by useri is given byGi

mq(n)[9][10],

Gi
mq(n) =

E[F−1
Xi (U (n))]

n
=

E[Xi,(n)]
n

.

where Xi,(n) is maximum of n i.i.d. copies of Xi, i.e.,
Xi,(n) := max[Xi

1, . . . , X
i
n], whereXi

j ∼ Xi, ∀j =
1, . . . , n. Note that by contrast, with the schemes discussed
in the previous subsection, if the users’ rate distributions were
known, it is fairly easy to evaluate the individual and system
throughput for maximum quantile scheduling.

Maximum quantile scheduling can be modified to serve
users different fractions of time using easily tuned (distribution
independent) weights, see [9][10] for details.

It is clear that maximum quantile scheduling has some
very desirable properties: e.g., it is temporally fair, it is
amenable to performance prediction in the fixed saturated
case, and Figure 3 indicates that it has good throughput
performance. However, as discussed earlier, it is unlikely that
rate distributions will be known. It is unclear how maximum
quantile’s performance compares to that of other schemes
when distributions are estimated, especially in scenarios other
than fixed saturated. In the sequel we will address these issues.

III. PERFORMANCE OFMAXIMUM QUANTILE

SCHEDULING IN FIXED SATURATED SYSTEM

In this section, we look at two metrics to study the per-
formance of maximum quantile scheduling : (1) the amount
of opportunism exploited by the scheme, (2) the throughput
achieved by the scheme.

‘Opportunistically’ Optimal. Suppose we consider as mea-
sure of opportunism achieved by useri as the quantile of

4



the rate achieved by the user, i.e.,FXi(xi(t)) whenever it is
served. A high quantile means a high degree of opportunism
and E[

∑n
i=1 FXi(Xi)1Si

β
] denotes the overall expected op-

portunism realized by a scheduling schemeβ. (HereSi
β is the

event that useri is selected for service on typical slot byβ.) It
should be clear that maximum quantile scheduling maximizes
the system opportunism, and does so while serving all users
an equal fraction of time.

Not Stochastically Dominated.Maximum quantile schedul-
ing has an optimality in terms of the rates seen by users in the
typical slots in which they are served. Let us first introduce the
concept of stochastic dominance, before presenting the bound.
We say that a random variableY stochastically dominates
random variableV , if ∀v, Pr(Y > v) ≥ Pr(V > v). This
is denoted asY ≥st V and it follows that for any increasing
function g(·), we have thatg(Y ) ≥st g(V ).

Let Ri
mq represent the rate distribution seen by useri when

selected for service on a typical slot by maximum quantile
scheduling, and let

−→
Rmq = (R1

mq, . . . , R
n
mq), i.e., the vector

of random variables representing the rate distributions. Let−→
Rβ = (R1

β , . . . , Rn
β) be the same quantity for another distinct

non idling scheduling schemeβ that maynot serve all users
an equal fraction of time. By distinct we mean that the scheme
does not always pick the user with the maximum quantile, and
by non idling, we mean that the scheme will never be idle as
long as there is at least one backlogged user. Then our claim
is that

−→
Rβ 6≥st −→Rmq, i.e.,∃j, such thatRj

β 6≥st Rj
mq. This is

formally stated in the following theorem with the proof given
in Appendix I.

Theorem 3.1:Consider a fixed saturated system withn
users, whose channel capacity variations satisfy Assump-
tion 2.1. Then for any distinct non idling schemeβ,

−→
Rβ 6≥st −→Rmq.

Note that a scheduling schemeγ is known to be Pareto
optimal if there exists no other scheduling scheme that is
able to give an equal or higher average throughput toall the
users than that received by users underγ. Theorem 3.1 can be
thought to be a weak form of Pareto optimality in terms of rate
seen in a typical slot, not average throughput. We will next
show that maximum quantile is not Pareto optimal in terms of
average throughput.

Not Pareto Optimal.We illustrate this with a simple patho-
logical example where users’ support only discrete rates. (The
example can be extended to the continuous case.) Consider a
two user system with ON-OFF channels. The ON and OFF
channel states correspond to rates1 and0 respectively. User 1
and 2 have an ON probability of0.6 and 0.4 respectively.
Here maximum quantile will serve User 1 a rate of 0.42,
and User 2 a rate of 0.32. However, it can be shown that
maximum quantile may sometimes serve User 2 in OFF state,
even though User 1’s channel is ON. Therefore, it is possible
to improve performance while still serving each user an equal
fraction of time. Consider a scheme that always serves the
user with the highest instantaneous rate and breaks ties7

24

th

of times in favor of User 1. Such a scheme will give User 1 a
rate of 0.43, and User 2 will get a rate of 0.33. Hence one can
give better performance to both the users, while maintaining
temporal fairness.

Throughput Optimal for Large Number of Users.Even
though the maximum quantile is not Pareto optimal in general,
it does achieve good system throughput performance. If the
rates achievable by users in a system are bounded, then max-
imum quantile scheduling is sum throughput optimal among
policies that serve all users an equal fraction of time as the
number of users increases. Following lemma is useful to prove
this claim.

Lemma 3.2:Consider a fixed saturated system withn users,
whose channel capacity variations satisfy Assumption 2.1 and
served based on maximum quantile scheduling. Letε, δ ∈
(0, 1), then there existsnε,δ such that ifn > nε,δ at any slot
where userk gets scheduled for service, the user sees a rate
exceedingF−1

Xk (1− δ) with probability greater than1− ε.

Proof: As discussed in the previous section, whenever
userk gets served under maximum quantile scheduling, it sees
a rateF−1

Xk (U (n)). In order to ensure the desired condition is
satisfied we require that

Pr(F−1
Xk (U (n)) > F−1

Xk (1− δ)) > 1− ε.

SinceF−1
Xk (·) is an increasing function, the above inequality

can be rewritten as

Pr(U (n) > (1− δ)) > 1− ε.

From (4), we get

1− (1− δ)n > 1− ε.

Simplifying and taking log, we get

n >
ln ε

ln(1− δ)
.

Defining

nε,δ = d ln ε

ln(1− δ)
e,

we have that for anyn ≥ nε,δ, whenever userk is served, it
will experience a rate greater thanF−1

Xk (1−δ) with probability
greater than1− ε.

The following theorem follows from Lemma 3.2 and for-
mally states our claim.

Theorem 3.3:Consider a fixed saturated system withn
users, whose channel capacity variations satisfy Assump-
tion 2.1 and are served using maximum quantile scheduling.
Suppose each useri has a maximum instantaneous rate of
ri
max < ∞. Then asn →∞, each user is likely to be served

at his maximum rate, so maximum quantile scheduling is sum
throughput optimal.

Summarizing, we observe that even though maximum quan-
tile scheduling is not Pareto optimal, it is likely to give a good
throughput performance.
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IV. PENALTY DUE TO MEASUREMENT

We now focus on the measurement aspects of opportunistic
scheduling. We will first consider the throughput penalty
incurred by maximum quantile scheduling due to estimation
of rate distributions of users under fast fading, and present
simulation results for the slow fading case. Following this, we
will compare the penalty incurred by maximum quantile to
that incurred by sum throughput optimal scheme in (2), via
simulations.

A. Maximum Quantile Scheduling based on Empirical Distri-
butions

Assumption 2.1 required that the channel capacity distrib-
ution, i.e.,FXi(·) of each user be known at the access point.
This is unlikely, and in this subsection we consider the penalty
in throughput seen by users in an user fixed saturated system
due to such mistakes by the scheduler.

Suppose the quantile of the current rate of a user is estimated
using the previousm samples of the user’s rate. The empirical
distribution of useri during slott based onm previous samples
is denoted byF̃m,t

Xi (·) and is given by

F̃m,t
Xi (x) =

1
m

m∑

j=1

1{Xi(t− j) ≤ x}. (5)

Note that the above way of estimating is similar to the score
function described in [3], however no attempt was made there
to evaluate the penalty due to incorrect distribution estimation
as function ofn andm.

Thus maximum quantile scheduling of users based on
estimated distributions, would choose userk(t) for service
during slott if

k(t) ∈ arg max
i=1,...,n

F̃m,t
Xi (xi(t)),

with ties being broken arbitrarily.
Let us examine the properties of the above scheme. It can

be shown that for any user on any slott, F̃m,t
Xi (Xi(t)) is

uniformly distributed on{0, 1
m . . . , 1}. Therefore, it is easy to

see that even with estimated distributions, maximum quantile
scheduling will still serve each user an equal fraction of time.

Calculating the penalty due to estimation seems to be
intractable under slow fading,therefore we add an additional
assumption of fast fading, i.e., channel capacity realization of
a user in a slot is independent across slots. Even though fast
fading users’ channel capacity is not usually true, indepen-
dence of samples can be ensured by taking samples that are
sufficiently apart in time or for some physical layer follows
from system design, see e.g. ‘opportunistic beamforming’ [20].
The assumption is also likely to be true in OFDM based
systems where slot times are relatively long.

We now calculate the long term throughput achieved by
users under maximum quantile scheduling based on estimated
distributions. Here, since we are interested in the stationary
behavior, we simplify notation for the estimated distribution
to F̃m

Xi(·). Following theorem characterizes the performance
of this scheme, a proof is given in Appendix II.

Theorem 4.1:Consider a fixed saturated system withn
users whose channel capacity variations satisfy Assump-
tion 2.1. Suppose the channel capacity distributions in such a
system are estimated via (5) base onm independentsamples of
a user’s channel and users are served using maximum quantile
scheduling, then the long term throughput achieved by userk
is given by

G̃k
mq(n,m) =

E[F−1
Xk (Ũn,m)]

n
,

whereŨn,m is a continuous r.v. on[0, 1] having a probability
density function

fŨn,m
(u) =

m∑

j=0

(
m
j

)
uj(1− u)m−j ((j + 1)n − jn)

(m + 1)n−1
. (6)

Recall thatRi
mq represent the rate distribution seen by user

i when selected for service on a typical slot by maximum
quantile scheduling (with perfect distribution knowledge). Let
R̃i,m

mq denote the same quantity for maximum quantile schedul-
ing when distributions are estimated usingm samples.

We show thatR̃i,m
mq and Ri

mq are ‘closely related’ random
variables, i.e., the rate seen by a user when served under empir-
ical distributions case is similar to that seen when distributions
are perfectly known. This is used to show that the average
throughput achieved by a user when empirical distributions are
used is less than or equal to that achieved when distributions
are perfectly known, i.e.,̃Gk

mq(n, m) ≤ Gk
mq(n) and bound

the relative throughput penalty due to estimation. Our result
is formally stated below, the proof given in Appendix III.

Theorem 4.2:Consider a fixed saturated system withn
users whose channel capacity variations satisfy Assump-
tion 2.1. Then under fast fading∀n,m,

(
m + 1

n
(1− (

m

m + 1
)n)) ≤ Pr(R̃i,m

mq ≤ r)
Pr(Ri

mq ≤ r)
≤ 1, ∀r,

and
Gk

mq(n) ≥ G̃k
mq(n,m), ∀m,

and the relative throughput penalty is bounded by

|Gk
mq(n)− G̃k

mq(n,m)|
Gk

mq(n)
≤ 1− m + 1

n
(1− (

m

m + 1
)n).

To understand the scaling of the number of independent
samplesm required to limit the throughput penalty, note that
for a reasonably largen, if m scales linearly withn, then

(
m

m + 1
)n = (1 +

1
m

)−n ≈ e−
n
m .

Expandinge−
n
m and simplifying, we get that the penalty is

equal to

1− m + 1
m

+
m + 1

n
(
1
2
(
n

m
)2 − . . .),

which is upper bounded byn2m . Therefore to achieve a relative
error less thanε, approximately n

2ε samples are needed. For
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Fig. 4. The top three curves plot the selection error probability for maximum
quantile scheduling, due to estimated distributions with increasing number of
users. The bottom three curves plot the relative throughput penalty for the
same.

example to achieve an error less than5%, approximately10n
samples are needed. Therefore for a given error bound, the
number of samples required will at worst grow roughly linearly
with the number of users contending.

To validate these results, we ran some simulations. The
set up is same as discussed in Section II. We observed the
throughput penalty for different values ofn andm. The value
of n is varied from8 to 16 to 32, while m is varied by a
factor of2 from 8 to 256 for a given value ofn. As shown in
Figure 4, the bound is clearly met, in fact the results indicate
that our bound is quite conservative (which is not surprising,
since the bound is distribution free). For example, a penalty
of around1% is achieved with only64 samples for8 users,
whereas the bound suggests 5%.

We also plot the selection error probability in the figure, i.e.,
the fraction of slots where the user selected with maximum
quantile isnot chosen due to error in estimation of distribution.
As the plot indicates, this can be quite high. Our analysis
(not included in this paper) shows that the number of samples
required to achieve a given error probability grows roughly
as O(n2). Therefore, even though mistakes may be made in
selecting the user with the highest quantile, the throughput
penalty in making an error is not large.

Let us consider the relevance of the bound under slow
fading. The need form independent samples immediately
suggests the need for samplingm coherence time intervals
to achieve the required penalty. We ran simulations to con-
firm this conjecture. The simulation consisted of two (earlier
described) classes of slow Rayleigh fading users with5 users
each, we aimed for a throughput penalty of 5%. The Doppler
spread for the channels was varied from 10 Hz to 50 Hz in
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Fig. 5. Relative throughput penalty for 10 users with slow Rayleigh fading
channel capacities.

steps of 10 Hz. LetfD denote the Doppler spread, then the
coherence time can be estimated using the formula916πfD

[15].
Given the coherence time, the total number of users and the
required penalty, the number of slots needed to estimate the
rate distributions can be ascertained. The simulation results are
plotted in Figure 5, as can be observed, the required penalty
is easily met in all cases.

Note that in our simulations we found that for Doppler
spread of 10 Hz, 932 slots were needed. (Other Doppler
spreads required 466, 311, 233, 187 slots.) This corresponds
to 1.55 seconds (slot size is 1.67 msec), it may be reasonable
to expect the system to be stationary for such a period because
the Doppler spread is quite low, i.e., users/objects are moving
quite slowly. In other words, even though very slowly fading
systems may require a large number of samples to achieve
the desired penalty, it may also be reasonable to expect such
channels to be stationary over large periods of time.

Discussion of the bound.Theorem 4.2 has several interest-
ing implications, which we discuss below.

• The bounds shows that the throughput penalty for due to
estimation of users’ distribution can be bounded forany
distribution.

• The theorem is strong in the sense that it shows it
shows a relationship between distributions of rates seen
by the user in both the empirical and perfectly known
distribution cases.

• Furthermore, the number of samples needed to achieve
small penalty isonly linear in the number of users. This
is fairly limited (at least for the fast fading case) because
the slot sizes are usually of the order of milliseconds.

• The dependence of penalty only on the number of users
is significant, because this allows the bound to extend to
unsaturated and dynamic regime. To achieve a certain
penalty, a system designer only needs to estimate the
‘average’ number of users that will be competing for
service at any given time, and not on the users’ distri-
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Fig. 7. Average relative throughput penalty incurred by the class of low
SNR users for increasing number of tuning samples.

bution or traffic characteristics. We reiterate here that it
is difficult to even design heuristics to redefine weights
in dynamic and unsaturated scenarios for other weight
based schemes.

• The dependence on only the number of users also allows
the theorem to extend to quasi stationary rate distribu-
tions. We conjecture that if users’ channel are stationary
for roughly O(n2) slots (under fast fading), then the
desired penalty will be met.

Summarizing, maximum quantile scheduling under esti-
mated distribution case is not only fair, suffers from fairly
limited penalty, but is quite easy to design for and to imple-
ment.

B. Throughput Penalty Comparisons

Recall that if the users’ weightνi are properly set in (2),
then the scheme maximizes sum throughput under temporal

fairness. However in practice the weights for each user needs
to be estimated. Let us investigate the sensitivity of system
throughput to errors in these weights by performing two
controlled experiments.

In the first experiment, there are 5 users in each class (with
the previously described setup), and the weightsνi for all users
are initialized to 0. We train the weights form slots according
to the stochastic approximation algorithm suggested in [7], and
observe the average penalty in performance due to errors in
weights on the(m + 1)st slot. We refer the reader to [7] for
details on the training algorithm. We evaluate two performance
parameters, the fraction of time low SNR users are served, and
the relative penalty in throughput achieved by those users as
compared to that achieved when weights are perfectly known.

The stochastic approximation algorithm for estimating the
νi’s has several parameters (w, δ, δi) that need to be set,
we first set these parameters equal to those suggested in
[7]. However, the scheduling scheme served the low SNR
user less than 0.1% of time even whenm = 2000 (again
demonstrating that measurement based weights may severely
affect performance). We changed the parameters tow = 0.005,
δ = 0.2 andδi = 0.1, which exhibited better performance.

Figure 6 shows the fraction of time low SNR users are
served as an increasing number of training samplesm is
used. We also plot the corresponding results for maximum
quantile scheduling. Note that maximum quantile scheduling
always serves low SNR users close to 0.5 fraction of time. By
contrast, maximum sum throughput takes around 400 samples
to converge to approximately 0.47 and then shows negligible
improvement. This is because the granularity of training is
not sufficiently small, however as suggested in the previous
paragraph, if one reduces these updates, then the convergence
time may be much larger.

Figure 7 shows the throughput penalty for the low SNR
users for an increasing number of training samplesm. While
the throughput penalty is virtually 0 under maximum quantile
scheduling, note that there is penalty of 15% even for 1000
training samples. Therefore a 3% loss in temporal fairness can
lead to a 15% loss in throughput.

In the second experiment, suppose there are initially5 users
belonging to each class, with estimates forνi converged to
their true values. Now if a user leaves the system the values
of weights would have to change, so if the system does not
tune fast enough, then the maximum sum throughput scheme
may incur a throughput penalty. We simulated the throughput
achieved by the scheme under the previously converged values
of weights and compare it to that achieved by maximum
quantile scheduling with distribution estimates converged.

Figure 8 shows the throughput achieved by both the schemes
when the number of low SNR users is reduced. Note that the
throughput difference between the two schemes is small even
when both classes have5 users each. Then if the number of
low SNR users goes from5 to 4, maximum quantile scheduling
immediately starts doing better. We observed a similar trend
when the high SNR users were reduced.
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V. PERFORMANCE INFIXED UNSATURATED REGIME

In this section, we consider a fixed unsaturated system.
One can show that the throughput achieved by an infinitely
backlogged userk in an unsaturated system is lower bounded
by Gk

mq(n) [11], i.e., the throughput achieved in a fixed
saturated system. However, the way in which resources are
allocated impacts the delay for e.g. real-time traffic. Therefore,
we will evaluate the packet delay in this section.

In our simulations, we compare the performance of maxi-
mum quantile scheduling with maximum rate, proportionally
fair and the exponential rule. We do not compare the perfor-
mance with the maximum sum throughput scheme (2), because
it is unclear how to set the weights for this scheme in an
unsaturated scenario.

Our setup is the same as before with 5 users per class.
All users have Poisson packet arrivals with equal average
arrival rate. Each packet is 1500 bytes. Packet delay for a
packet is measured by finding the difference between packet
arrival time and the time when the packet has beencompletely
transmitted. We set all the weights equal to1 in exponential
rule (We also experimented by weighting a user’s queue
inversely proportional to its channel mean, but that increased
the average delay for the exponential rule.). We assume that the
distribution is perfectly known at the scheduler for maximum
quantile scheduling, i.e., the estimates of the distributions have
converged (this may be reasonable for fixed systems).

Figure 9 shows the average packet delay across users as
the load increases.(Proportional fair has the worst performance
among all schemes, for simplicity its plot has not been shown).
Maximum quantile always has the lowest packet delay, and
achieves more than 35% reduction in packet delay as compared
to the exponential rule. This is surprising, since unlike expo-
nential rule, maximum quantile is completelyinsensitiveto
queue lengths. This underscores the importance of scheduling
according to opportunism, rather than simply the rate and/or
queue lengths.
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Fig. 9. Packet delay performance of maximum quantile, exponential rule
and maximum rate scheduling.
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VI. PERFORMANCE INDYNAMIC SATURATED REGIME

In this section, we compare the performance of maximum
quantile scheduling to maximum rate, proportional fair and
maximum sum throughput under temporal constraints. Note
that the exponential rule does not make sense in a saturated
scenario.. Dynamic saturated system is a good model for an
access point supporting file transfers, therefore, a good metric
for performance here is the average file transfer delay.

Again our setup is the same as before, however since the
system is dynamic, the number of users will change with time.
Users arrive to the system according to a Poison process, and
are equally likely to belong to one of the two classes. Each user
has a file associated with it. The file sizes are exponentially
distributed with a mean size of 60KB. We keep track of the
time taken from a user’s arrival to departure. For maximum
quantile, estimate for users rate distributions are generated
by keeping track of previous samples. While the weights for
maximum sum throughput under temporal fairness are trained
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using the stochastic approximation algorithm referred to in
Section IV, with the values of the parameters same as before.

The average file transfer delay experienced by users is
plotted with increasing load in Figure 10 (we again do not
plot proportional fair because its performance is the worst).
The number of samples used for estimating users’ distributions
is 50 at a load of0.1. This was increased linearly by50
samples for every load increase of0.1. As can be seen in
the figure, maximum quantile scheduling outperforms both
maximum rate and maximum sum throughput. In fact the
reduction in delay is almost40% (as compared to maximum
sum throughput) at a load of1. This again underscores the
importance of scheduling according to the quantile. Also note
that due to non convergence of weights, maximum rate and
maximum sum throughput up to a load of 0.8 have quite
similar performance. Therefore maximum sum throughput can
easily degrade to maximum rate in a dynamic scenario.

We also plot the delay experienced by users under maximum
quantile with perfect rate distribution knowledge. Observe that
the ideal performance is close to measurement based one.

VII. C ONCLUSION

In summary we have evaluated measurement based op-
portunistic scheduling schemes from various perspectives
and under various system regimes, e.g., dynamic/fixed, sat-
urated/unsaturated. The key take away, is that, perhaps sur-
prisingly, maximum quantile scheduling which would require
estimation of each users channel rate distribution, realizes
excellent performance, relative to proportionally fair, the ex-
ponential rule, and schemes that are optimal in terms of
sum throughput subject to fairness. The main reason is that
maximum quantile places systematic emphasis on scheduling
users when they are high relative to their own distribution,
while achieving temporal fairness. By contrast other schemes
measure the degree to which fairness is achieved and bias
scheduling decisions to compensate for biases. This com-
promises opportunism and also performance. Although the
estimation of users distributions seems fairly straightforward
and would be necessary to enable resource management and
call admission decisions at a wireless point, the question
remains as to whether the additional complexity over simple
schemes such as proportionally fair is warranted.

APPENDIX I
PROOF OFTHEOREM 3.1

Proof: DefineUβ :=
∑n

i=1 U i1Si
β
, i.e., the total oppor-

tunism achieved byβ. Let U i
β = U i|Si

β , i.e., the quantile of
useri conditioned on getting served byβ. Then

Pr(Uβ > u) =
n∑

i=1

Pr(U i
β > u) Pr(Si

β), u ∈ [0, 1].

Let j(u) = arg mini=1,...,n Pr(U i
β > u). Sinceβ is non idling,∑n

i=1 Pr(Si
β) = 1, so

Pr(Uβ > u) ≥ Pr(U j(u)
β > u).

Recall thatU (n) is the maximum ofn i.i.d. uniformly distrib-
uted random variables, then sinceβ is distinct, there must be
a u′ such that

Pr(U (n) > u′) > Pr(Uβ > u′) ≥ Pr(U j(u′)
β > u′).

Let U i
mq be the same quantity asU i

β for maximum quantile
scheduling. Now recall that under maximum quantile schedul-
ing, a useri is selected for service only when its quantile is
the highest, i.e.,U i

mq ∼ U (n). Then

Pr(U j(u′)
mq > u′) > Pr(U j(u′)

β > u′).

SoU
j(u′)
β 6≥st U

j(u′)
mq . Note that for any useri, Ri

β = F−1
Xi (U i

β)
andRi

mq = F−1
Xi (U i

mq). Now sinceF−1
Xj(u′)(·) is an increasing

function, then

R
j(u′)
β 6≥st Rj(u′)

mq .

APPENDIX II
PROOF OFTHEOREM 4.1

Proof: Recall thatSk is the event denoting the selection
of userk for service. Since each user is equally likely to be
served,Pr(Sk) = 1

n , and

G̃i
mq(n,m) = E[Xk|Sk] Pr(Sk) =

E[Xk|Sk]
n

.

Let us now evaluateE[Xk|Sk] by conditioning onF̃m
Xk(Xk),

we have that

E[Xk|Sk] =
m∑

j=0

E[Xk|Sk, F̃m
Xk(Xk) =

j

m
] Pr(F̃m

Xk(Xk) =
j

m
|Sk).

Note that the selection of a user in a slot is independent of its
current rate, given its estimated current quantile, so

E[Xk|Sk, F̃m
Xk(Xk) =

j

m
] = E[Xk|F̃m

Xk(Xk) =
j

m
].

Since F̃m
Xk(Xk) are uniformly distributed on{0, 1

m , . . . , 1}
and ties are broken randomly,

Pr(F̃m
Xk(Xk) =

j

m
|Sk) =

(j + 1)n − jn

(m + 1)n
.

Now considerE[Xk|F̃m
Xk(Xk) = j

m ], by using Bayes’ for-

mula and the fact that

(
m
j

) ∫ 1

0
yj(1 − y)m−jdy = 1

m+1 ,

one can show that

E[Xk|F̃m
Xk(Xk) =

j

m
] =

(m + 1)
(

m
j

) ∫ ∞

0

x(FXk(x))j(1− FXk(x))m−jfXk(x)dx,
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wherefXk(·) is the probability density function of the SNR
associated with userk. Now using a change of variables this
can be rewritten as

E[Xk|F̃m
Xk(Xk) =

j

m
] =

(m + 1)
(

m
j

) ∫ 1

0

F−1
Xk (u)uj(1− u)m−jdu.

So it follows thatG̃k
mq(n,m) is given by

1
n

∫ 1

0

F−1
Xk (u)(

m∑

j=0

(
m
j

)
uj(1− u)m−j ((j + 1)n − jn)

(m + 1)n−1
)du.

This completes the proof.

APPENDIX III
PROOF OFTHEOREM 4.2

We present a few useful lemmas before proving Theo-
rem 4.2.

Lemma 3.1:Let H be a binomial r.v. with parameters
(m,u). Consider the moment generating function ofH,
M(s) := (1− u + ues)m. Its lth derivative is given by

dlM(s)
dsl

=
l∑

j=1

bj,l
m!

(m− j)!
(1− u + ues)m−j(ues)j . (7)

Herebj,l’s are constants with the following properties:

• b1,1 = 1
• bj,l = jbj,l−1 + bj−1,l−1, ∀j = 1, . . . , l, ∀l
• b0,l = bl+1,l = 0, ∀l.
Note that sinceb1,1 = 1 andbl+1,l = 0, ∀l, from the second

property one can show thatbl,l = bl−1,l−1 = 1, ∀l.
Proof: The lemma clearly holds forl = 1. We give a

proof by induction onl. Assume the lemma holds forl, i.e.,
(7) is true. Then, to prove the lemma forl+1, we differentiate
(7) and after some rearrangement get

dl+1M(s)
dsl+1

=
l+1∑

j=1

[(jbj,l + bj−1,l)
m!

(m− j)!

(1− u + ues)m−j(ues)j ].

This completes the proof.

From Lemma 3.1 it follows that thelth order moment of
H is given by

E[H l] =
l∑

j=1

bj,l
m!

(m− j)!
uj . (8)

The following lemma exhibits an inequality between the
moments ofH.

Lemma 3.2:Let H be a binomial r.v. with parameters
(m,u). Then for all l such thatl ≤ m,

E[H l+1] ≤ (mu + l(1− u))E[H l]. (9)

Proof: The right side of (9) can be expressed as

((m− l)u + l)E[H l].

Using (8), the above equation can be rewritten as

m!
(m− l − 1)!

ul+1 + (10)

l∑

j=1

[lbj,l
m!

(m− j)!
+ (m− l)bj−1,l

m!
(m− j + 1)!

]uj . (11)

If one splitslbj,l
m!

(m−j)! in the following way

lbj,l
m!

(m− j)!
= jbj,l

m!
(m− j)!

+ (l − j)bj,l
m!

(m− j)!
,

then (10) in turn can be expressed as

m!
(m− l − 1)!

ul+1 +
l∑

j=1

[(jbj,l
m!

(m− j)!
+ (m− l)bj−1,l

m!
(m− j + 1)!

)uj + (l − j + 1)bj−1,l
m!

(m− j + 1)!
uj−1].

Now since0 ≤ u ≤ 1, then∀j, uj−1 ≤ uj . So, from the
above equation we get

(mu + l(1− u))E[H l] ≥ m!
(m− l − 1)!

ul+1 +

l∑

j=1

[(jbj,l
m!

(m− j)!
+ (m− l)bj−1,l

m!
(m− j + 1)!

) +

(l − j + 1)bj−1,l
m!

(m− j + 1)!
]uj .

Combining the last two terms in the summation of the above
inequality, we get

(mu + l(1− u))E[H l] ≥ m!
(m− l − 1)!

ul+1 +

l∑

j=1

(jbj,l + bj−1,l)
m!

(m− j)!
uj

This proves (9).

Next we show thatU (n) dominatesŨn,m in a likelihood ra-
tio ordering sense, i.e.,U (n) ≥lr Ũn,m [8][16]. This is a strong
form of dominance which means thatfU(n)(u)/fŨn,m

(u) is
non decreasing inu, or fŨn,m

(u)/fU(n)(u) is non increasing
in u (herefU(n)(u) is the probability density function ofU (n)).
If U (n) ≥lr Ũn,m, it follows that U (n) ≥st Ũn,m.

Lemma 3.3:For the random variablesU (n) andŨn,m given
by (4) and (6) respectively, then∀n, m U (n) ≥lr Ũn,m.

Proof: To prove the lemma, we need to show

d

du

[
fŨn,m

(u)

fU(n)(u)

]
≤ 0,
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∀u ∈ (0, 1]. To prove this, it is sufficient to show

fU(n)(u)

[
dfŨn,m

(u)

du

]
− fŨn,m

(u)
[
dfU(n)(u)

du

]
≤ 0.

Note thatfU(n)(u) = nun−1. Then expanding, we get

1
(m + 1)n−1

[nun−1(−m(1− u)m−1 +

m−1∑

j=1

(
m
j

)
uj−1(1− u)m−j−1(j −mu)((j + 1)n − jn) +

mum−1((m + 1)n −mn))−

n(n− 1)un−2(
m∑

j=0

(
m
j

)
uj(1− u)m−j((j + 1)n − jn))] ≤ 0.

Simplifying and multiplying both sides by(1− u), we get

(−mu(1− u)m +
m−1∑

j=1

(
m
j

)
(j −mu)uj(1− u)m−j((j + 1)n − jn) +

(m−mu)um((m + 1)n −mn))− (n− 1)(1− u)

(
m∑

j=0

(
m
j

)
uj(1− u)m−j((j + 1)n − jn)) ≤ 0.

The above inequality can be rewritten as

m∑

j=0

(
m
j

)
(j −mu− (n− 1)(1− u))uj(1− u)m−j

((j + 1)n − jn) ≤ 0.

Then the inequality clearly holds form < n. However the
more interesting case is whenm ≥ n, and this requires a few

more steps. Note that

(
m
j

)
uj(1−u)m−j is the probability

that a binomial r.v. with parameter(m, u) has a valuej, i.e.,
the same as that ofH. Then the inequality can be rewritten
in terms of expectations as

E[(H −mu)((H + 1)n −Hn)]−
(n− 1)(1− u)E[(H + 1)n −Hn] ≤ 0.

This can be further rewritten as

E[H((H + 1)n −Hn)] ≤
(mu + (n− 1)(1− u))E[(H + 1)n −Hn]. (12)

Expanding(H + 1)n and simplifying, one can show that
(12) will hold if

E[H l+1] ≤ (mu + l(1− u))E[H l],

∀l < n ≤ m. This follows from Lemma 3.2. This completes
the proof.

We now prove Theorem 4.2.

Proof: To prove the first claim, defineu := FXi(r) and
consider

FU(n)(u)− FŨn,m
(u), ∀u ∈ (0, 1].

This is equivalent to
∫ u

0

fU(n)(u)− fŨn,m
(u)du.

This in turn is equivalent to
∫ u

0

fU(n)(u)(1−
fŨn,m

(u)

fU(n)(u)
)du.

Then

FU(n)(u)− FŨn,m
(u) ≤

∫ u

0

fU(n)(u) max
u

(1−
fŨn,m

(u)

fU(n)(u)
)du.

Note from Lemma 3.3,

min
u

fŨn,m
(u)

fU(n)(u)
=

fŨn,m
(1)

fU(n)(1)
=

m + 1
n

(1− (
m

m + 1
)n).

Then

FU(n)(u)−FŨn,m
(u) ≤ FU(n)(u)(1−m + 1

n
(1−(

m

m + 1
)n)).

Simplifying, one gets

FU(n)(u)(
m + 1

n
(1− (

m

m + 1
)n)) ≤ FŨn,m

(u).

Now from Lemma 3.3, it follows thatU (n) ≥st Ũn,m,
combining this with the above equation we get

m + 1
n

(1− (
m

m + 1
)n) ≤

FŨn,m
(u)

FU(n)(u)
≤ 1.

Using the definition ofu, and the fact thatFXi(·) is an
increasing function, the above equation can be rewritten as

m + 1
n

(1− (
m

m + 1
)n) ≤ Pr(F−1

Xi (Ũn,m) ≤ r)
Pr(F−1

Xi (U (n)) ≤ r)
≤ 1.

Note thatRi
mq = F−1

Xi (U (n)) and R̃i,m
mq = F−1

Xi ((Ũn,m),
then the above equation can be written as

m + 1
n

(1− (
m

m + 1
)n) ≤ Pr(R̃i,m

mq ≤ r)
Pr(Ri

mq ≤ r)
≤ 1.

To prove the second claim, recall thatGk
mq(n) =

E[F−1
Xk

(U(n))]

n . Note that F−1
Xk (·) is an increasing function.

Therefore it is sufficient to prove thatU (n) ≥st Ũn,m to prove
the theorem, which is shown to be true from Lemma 3.3.

We now prove the third part of the theorem. Note from the
second part of the theorem, it is suffices to study

Gk
mq(n)− G̃k

mq(n,m)
Gk

mq(n)
.

Consider the difference between the two throughput, i.e.,
E[F−1

Xk (U (n))] − E[F−1
Xk (Ũn,m)]. The difference can be ex-

pressed as
∫ 1

0

F−1
Xk (u)fU(n)(u)du−

∫ 1

0

F−1
Xk (u)fŨn,m

(u)du.

12



Then following the methodology used in the first part of the
proof on can show

E[F−1
Xk (U (n))]− E[F−1

Xk (Ũn,m)] ≤
∫ 1

0

F−1
Xk (u)fU(n)(u)(1− m + 1

n
(1− (

m

m + 1
)n))du,

or

E[F−1
Xk (U (n))]− E[F−1

Xk (Ũn,m)] ≤
E[F−1

Xk (U (n))](1− m + 1
n

(1− (
m

m + 1
)n)).

This completes the proof.
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