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IEEE, Xin Long and Mianyang Yao

Abstract—Most of existing Multi-access edge computing
(MEC) studies consider the remote cloud server as a special
edge server, the opportunity of edge-cloud collaboration has not
been well exploited. We propose a dependency-aware offloading
scheme in MEC with edge-cloud cooperation under task depen-
dency constraints. Each mobile device has a limited budget and
has to determine which sub-task should be computed locally or
should be sent to the edge or remote cloud. To address this
issue, we divide the offloading problem into two application
finishing time minimization sub-problems with two different
cooperation modes, both of which are proved to be NP-hard.
We then devise one greedy algorithm with approximation ratio
of 1 + ε for the first mode with edge-cloud cooperation but
no edge-edge cooperation. Then we design an efficient greedy
algorithm for the second mode, considering both edge-cloud and
edge-edge co-operations. Extensive simulation results show that
for the first mode, the proposed greedy algorithm achieves near
optimal performance for typical task topologies. On average, it
outperforms the modified Hermes benchmark algorithm by about
23% ∼ 43.6% in terms of application finishing time with given
budgets. By further exploiting collaborations among edge servers
in the second cooperation mode, the proposed algorithm helps to
achieve over 20.3% average performance gain on the application
finishing time over the first mode under various scenarios. Real-
world experiments comply with simulation results.

Index Terms—Edge Computing, Offloading, Task Dependency,
Graph, Cooperation

I. INTRODUCTION

Various computation-intensive applications such as mobile

gaming and augmented reality are usually delay-sensitive and

require high computing resources such as power, memory and

battery life. However, due to the small physical size, mobile

devices are usually constrained by limited computing power,

which has become one of the most challenging issues.
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Although mobile cloud computing (MCC) enables con-

venient access to a pool of computation resources in the

cloud, offloading tasks to the remote cloud would result in

large transmission latencies, which degrades users’ quality of

experience (QoE). Multi-access edge computing (MEC) [1]

[2] has emerged as a remedy to the above limitations. By

deploying edge or cloudlet servers that are closer to mobile

users, mobile users can easily access abundant computing

resources [3]. In this way, the transmission delay can be

reduced while meeting the computation resource demands of

mobile devices. For example, in the heterogeneous wireless

network [4], small cell base stations can be equipped with

edge servers to serve local mobile users.

While MEC demonstrates its potential to improve the QoE

of mobile users by bringing services close to users, emerging

applications anticipate efficient edge-cloud cooperation. For

example, when burst user traffic arrives, edge servers on their

own may not possess sufficient resources to serve. With 5G,

industrial internet of things devices can use cloud servers to

execute heavy tasks while running light tasks in edge servers

[5]. As pointed out in [6], the edge-cloud architecture is able to

solve the edge resource contention problem. Meanwhile, load

balance can be achieved for online games with edge-cloud

cooperation.

II. MOTIVATION AND CONTRIBUTIONS

Most of existing studies on computation offloading with

MEC only consider task offloading among mobile devices

[7] or between mobile devices and the MEC servers [8], [9].

The remote cloud such as Amazon AWS, Windows Azure and

Google compute engine with great computing capabilities are

neglected to some extent. As cloud providers are heavily in-

vesting to expand data centers, the accessible cloud resources,

while still far away compared with MEC, can be utilized

with the deployment of high speed optical fiber networks.

The opportunity of edge-cloud collaboration brings many

advantages. For example, in the area of software engineering,

the heavy load training sub-tasks using bug repositories [10]

can be offloaded to the remote cloud server while running bug

reporting and matching sub-tasks on edge servers to reduce

the total execution time of bug classification [11]. For object

detection in vehicular networks, the cooperation between edge-

cloud can improve the detection accuracy [12]. This can be

done by balancing the tasks of global model cloud execution
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and geographic context updating on edge servers. Moreover,

when some edge servers are idle, they can be further exploited

to alleviate the burden of the remote cloud by incorporating

collaboration between neighboring edge servers. Through edge

offloading, the total cost of users can be reduced because of

the cheaper service price on edge servers over the cloud [13].

In MEC networks, most of existing works assume edge

servers and the cloud server always possess abundant resources

and they are willing to help. In fact, edge servers and the

cloud servers are operated by companies, the revenue of

servers should not be negative when providing services. In

real-world scenarios, an edge server at local access point may

experience poor link connectivity because of link congestion

and may be unable to connect to the remote cloud server. Edge

servers must then collaborate with each other via neighboring

edge servers. An edge server must handle tasks from its

local users and the tasks from neighboring edge servers,

which complicates the offloading problem. Different from the

most similar work [14] that investigates task finishing time

minimization problem with budget constraints, the utilities of

edge and cloud servers are ensured in this paper. To solve

the above challenges, in this paper, we try to fill the gap by

exploring the collaborations among both edge-edge and edge-

cloud, which haven’t been properly investigated yet. The main

contributions are summarized as follows:

• We consider the joint task offloading and computation

service coordination problem in a three-layer wireless

access network, i.e., remote cloud, edge servers co-

located at access points (APs) and mobile devices. In

this scenario, not only the cooperation between the edge

and remote cloud, but also the collaborations among edge

servers are taken into account.

• We present the system model in terms of mobile de-

vices’ energy consumptions and limited budgets. The

dependency-aware offloading problem is formulated as

a task completion time minimization problem under two

cooperation modes, both of which are proved to be NP-

hard: one with only edge-cloud cooperation, and the other

with both edge-cloud and edge-edge co-operations.

• Since it is difficult to solve the NP-hard problem, we

devise one greedy algorithm with approximation ratio of

1 + ε for the first mode with edge-cloud cooperation but

no edge-edge cooperation. Then we design an efficient

greedy algorithm for the second mode considering both

edge-cloud and edge-edge co-operations.

• Simulation results show that for the first mode, the

proposed greedy algorithm outperforms the modified

benchmark algorithm by about 23% ∼ 43.6% on the

application finishing time averagely. For the second

mode, by further exploiting collaborations among edge

servers, the proposed algorithm helps to achieve over

20.3% average performance gain over the first mode

under various cases. Real-world experiments comply

with simulation results. All the codes can be obtained via

the following link https://github.com/Derfei/Dependency-

Aware-Computation-Offloading-for-Mobile-Edge-

Computing-with-Edge-Cloud-Cooperation.

The remainder of the paper is organized as follows. Related

works on offloading with MEC are presented in Section III.

Section IV presents the system and computational models.

Problem formulation is described in Section V. Section VI

presents the proposed algorithms. Performance evaluation is

presented in Section VII and Section VIII concludes this paper

with future remarks.

III. RELATED WORKS

For MEC, computation offloading can be classified into two

types, i.e. full offloading [15] and partial offloading [8]. For

full offloading, the whole computation task is offloaded and

processed by the edge server. Chen et al. in [15] proposed a

game theoretic offloading scheme in the multi-channel wireless

contention environment, minimizing the number of cloud

computing users with interference constraints. For partial off-
loading, part of the computation tasks are processed locally on

the mobile devices while the rest are offloaded to the MEC. In

[8], by using convex optimization, You et al. presented multi-

user offloading algorithms to reduce the energy consumption

of mobile devices with delay constraints. In [9], Mao et al.

developed a stochastic optimization algorithm for joint radio

and computation resource management in multi-user MEC

systems with partial offloading. However, these works all focus
on how much workload should be distributed to the MEC
server without considering task dependency of an application.

Although there have been recent works [16], [17] on com-

putation offloading with task dependency in MEC, they failed
to address budgets constraints of mobile users [18]. In [16],

under the multi-tenant cloud computing environment, Rimal

et al. designed a few algorithms to schedule workflows with

flow delay constraints. In [17], sub-tasks of an application can

be offloaded to mobile device and the cloud with application

finishing time constraint. In [19], authors regarded the user

budgets as peak transmission power and peak CPU frequency,

but they assume edge servers are willing to offer offloading

services. In fact, the utilities of the edge and cloud servers

should be guaranteed.

In this work, we investigate partial offloading with joint

consideration of computation costs of mobile devices and the

edge servers. Computation offloading that takes both cost and

delay into consideration in mobile cloud computing has not

been extensively studied. To our best knowledge, there are only

a few works that have addressed the computation offloading

problem in MEC considering the cost of edge servers such

as energy consumption during computation and transmission.

In [20], Deng et al. investigated the power consumption and

delay trade-off with the objective to minimize total power

consumption of edge servers and remote cloud servers. Chen

et al. [21] jointly optimized the offloading decisions of all

user tasks and the allocation of computation resources with

the objective to minimize the total cost. Compared with our

work, they failed to address task dependency and cost budgets
of mobile devices, which are critical factors that affect users’
performance.
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TABLE I
NOTATIONS FOR SYSTEM MODEL

Notations Meaning

M The set of mobile devices, where |M| = M

N The set of sub-tasks, where |N | = N

m Mobile device m, where m ∈ M
G(V,E) Task graph of an application with |V | = N and E is the

edge set

Ke,Kc Edge server set, cloud server set, respectively

xe
m,n,p Offloading strategy variable when xe

m,n,p = 1 meaning
that mobile device m chooses to offload sub-task n to pth
edge server

xc
m,n,q Offloading strategy variable when xc

m,n,q = 1 meaning
that sub-task n is further offloaded to the qth remote cloud
server

τ l
m,n, El

m,n Completion time, energy consumption of local execution of
sub-task n on mobile device m, respectively

τe
m,n, Ee

m,n Computation time, energy consumption for sub-task n of
mobile user m on the edge server, respectively

τt
m,n, Et

m,n Transmission time, energy consumption between device and
its corresponding access point, respectively

τc
m,n,q , Ec

m,n Remote execution time, energy consumption for sub-task n
of device m on remote cloud server q, respectively

wm,n, dm,n, Cm,n Workload, data size, cost for sub-task n of mobile device
m, respectively

Tm Task finishing time of mobile device m

Fig. 1. System Architecture

IV. SYSTEM MODEL AND COMPUTATIONAL MODEL

A. System Model

As shown in Fig. 1, there is one optical fiber line splitter

connecting multiple APs with an optical line terminal through

high speed fiber links. Usually, the optical fiber line splitter

is connected with a central controller e.g., a software defined

network controller, to collect necessary network information.

The APs can be long time evolution, 5G base stations and WiFi

access points. A control server at the splitter can be used to

schedule computation tasks. The remote cloud center is linked

to the optical line terminal via the Internet. Each AP that can

be a WiFi or a small cell base station in a HetNet is equipped

with an edge server. We assume that a group of mobile devices

denoted as M = {1, 2, · · · ,M} are located in the vicinity of

their corresponding APs. A mobile application is partitioned

into a set of N sub-tasks denoted by N = {1, 2, · · · , N}.

The application addressed in this paper can be represented by

a directed acyclic graph (DAG) with one entry node and one

exit node. The entry node is the root on the spanning tree of the

graph, which represents the beginning sub-task. The exit node

represents the sub-task where the whole application terminates.

Let Ke = {1, 2, · · · , P} and Kc = {1, 2, · · · , Q} denote the

set of edge servers and the set of cloud servers, respectively.

There is a set of K = Kc ∪Ke servers in total1. Hence, |K| =
P+Q. The application is modeled as a weighted DAG denoted

by G(V,E), where V denotes a set of sub-tasks, each of which

is vi and i = 1, 2, · · · , N and |V | = N . The term E denotes a

set of edges, each of which eij represents precedence relation

such that task vi should complete its execution before task

vj starts, where (i, j) ∈ {1, 2, · · · , N} × {1, 2, · · · , N} and

|E| = e. The notations are summarized in Table I.

B. Channel Model

The channel between mobile device m ∈ M and AP

p ∈ Ke follows quasi-static block fading. We assume that

orthogonal frequency division multiplexing (OFDM) access

with the corresponding interference cancellation algorithms

is adopted so that interference between any two adjacent

cells can be properly handled [4]. For each cell, a particular

OFDM sub-channel is used by at most one mobile device

in that cell. Let xe
m,n,p ∈ {0, 1} and xc

m,n,q ∈ {0, 1}
represent the computation offloading strategies to edge and

cloud servers, respectively, where p ∈ Ke and q ∈ Kc.

Particularly, xe
m,n,p = 1 means that mobile device m chooses

to offload sub-task n to the pth edge server while xe
m,n,p = 0

means otherwise. Similarly, xc
m,n,q = 1 means that mobile

device m decides to offload sub-task n to the qth remote cloud

server and xc
m,n,q = 0 otherwise. We can compute the up-

link data rate denoted by Rm,n,p, for wireless communication

between device m and access point p when transmitting the

nth sub-task as

Rm,n,p = W log2

(
1 +

P tx
m,n,pGm,n,p

I + σ2
m,p

)
, p ∈ Ke, (1)

where P tx
m,n,p is the transmission power of mobile device m

to offload its sub-task n to AP p, which is set as 27dBm

by default [22]. The channel gain from the mth device to

the pth AP is Gm,n,p when transmitting sub-task n and

Gm,n,p = (dm,p)
−η|hm,p|2, where dm,p is the Euclidean

distance between the mth mobile device and the pth edge

server, hm,p is the corresponding Rayleigh fading channel

coefficient and η is a constant set as 4 [23]. The channel

bandwidth is W , the interference from neighboring cells is

denoted by I and the surrounding noise power at the receiver

with the transmission link (m, p) is σ2
m,p.

C. Computation Models

Let τ lm,n be the completion time of local execution of sub-

task n on device m. Let τ tm,n be the transmission time between

1The same as most existing studies, e.g., [21], we treat cloud servers as
a whole by setting Q = 1. Because one dedicated high performance cloud
server has the strong computation capability, equivalent to a number of servers
with inferior computation capability.
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the mobile device and its corresponding AP, and τem,n be

the execution time at edge server. Denote the transmission

time between the edge servers and the remote cloud server

q by τ rm,n,q . Denote the execution time of sub-task n of

device m on remote cloud server q by τ cm,n,q . Next, we

present the computation overhead on energy consumption, task

completion time as well as the coordination between edge

servers and remote cloud.

1) Local Computing: Let f l
m be the computation capability,

i.e., the average CPU clock speed (Giga Cycles/second) of

mobile devices. Note that different mobile devices may have

different CPU clock speeds. The computation execution time

of sub-task n on mobile device m is then calculated as

τ lm,n =
wm,n

f l
m

, (2)

and the energy consumption of mobile device m for the

corresponding sub-task n is given by

El
m,n = κwm,nf

l
m

2
, (3)

where κ is set to be 10−11 according to [24] and wm,n is the

workload of sub-task n of mobile device m.

2) Edge and Cloud Computing: Similar to [24], we ignore

the time and energy consumption that the cloud takes in

returning the computation outcome because of the small size.

Let fe
p be the computation ability of edge server p, i.e.,

the average machine CPU frequency. Then, the computation

execution time is given by

τem,n =
wm,n

fe
p

, (4)

and the energy consumption of the edge server is given by

Ee
m,n =

(
αe

(
fe
p

)ε
+ βe

)
τem,n, (5)

where both αe and βe are positive constants which can be

obtained by offline power fitting and the value ε ranges from

2.5 to 3 according to [25]. Similarly, the energy consumption

of the remote cloud server for sub-task n of mobile device m
is given by

Ec
m,n =

(
αc

(
f c
q

)ε
+ βc

)
τ cm,n,q, (6)

where the remote execution time τ cm,n,q is calculated as

τ cm,n,q =
wm,n

f c
q

. (7)

Similarly, f c
q denotes the average CPU frequency of the qth

remote cloud server and both αc and βc are also positive

constants.

3) Data Transferring Cost: Given the nth sub-task size of

mobile device m, including the input data i.e. dm,n, τ tm,n can

be expressed as

τ tm,n =
dm,n

Rm,n,p
. (8)

Then the energy cost when transferring the data to AP is given

by

Et
m,n = P tx

m,n,pτ
t
m,n. (9)

Furthermore, we can get the data transfer delay if the remote

cloud server is employed by the corresponding edge server as

τ rm,n,q =
dm,n

ω
, (10)

where ω is average transfer rate or bandwidth between the

edge server and the corresponding remote cloud server. The

energy cost of the edge server during the offloading to the

remote server is denoted by Es
m,n, which is given by

Es
m,n = P0 · τ rm,n,q, (11)

where P0 is the amount of additional power when performing

data transfer per unit time from edge server to the remote

server.

4) Dependency Constraints: Before formulating the

dependency-aware offloading problem, we present some

necessary definitions, quality of service (QoS), and user

budget constraints. Note that for a particular task of a mobile

user, it cannot be executed unless all its precedent tasks

have already been processed. We name this constraint as the

precedence constraint followed by [26] and [27]. Let TRl
m,n

be the time when sub-task n of mobile device m is ready to

be processed, let TF l
m,k, TF e

m,k and TF c
m,k, k ∈ pre(n) be

the task finishing time of the kth predecessor of sub-task n
on local device, edge server and the cloud server respectively.

Then we have

TRl
m,n = max

k∈pre(n)
max{TF l

m,k, TF
e
m,k, TF

c
m,k}, (12)

where the receiving delay is neglected following [24], (12) can

be rewritten as

TRl
m,n ≥(1− xc

m,k,q)
[(
1− xe

m,k,p

)
TF l

m,k + xe
m,k,pTF

e
m,k

]
+ xc

m,k,qTF
c
m,k, k ∈ pre(n),

(13)

where pre(n) denotes the predecessors of task n, k ∈ pre(n)
in (13) means that the local computing of task n can be

executed only after task k has been executed. Therefore, the

local task completion time of mobile device m, denoted by

TF l
m,n is given as follows,

TF l
m,n = τ lm,n + TRl

m,n. (14)

Similarly, let TRe
m,n, TRc

m,n be the time when sub-task n
of mobile device m is ready to be processed on the edge

server and the corresponding time at the remote cloud server,

respectively, given as follows,

TRe
m,n = max{TF t

m,n, max
k∈pre(n)

TF e
m,k, max

k∈pre(n)
TF c

m,k},
(15)

and

TRc
m,n =max

{
TF t

m,n + τ rm,n, max
k∈pre(n)

TF c
m,k, TF

r
m,n

}
.

(16)

In (15), TF t
m,n that is the transmission finishing time from

mobile device m to the corresponding edge server is given by

TF t
m,n = τ tm,n + max

k∈pre(n)
TF l

m,k, (17)

which means the task transmission finishing time equals to

the current sub-task’s transmission time plus the local task

finishing time of all the predecessor sub-tasks of the current

sub-task. Because we want to obtain the accumulated time

on the task transmission finishing time from the start of the

application’s execution.

The term TF e
m,n that is the task finishing time at the edge

server is given by

TF e
m,n = τem,n + TRe

m,n, (18)

and TF c
m,k that is the task finishing time at remote cloud

server is given by

TF c
m,n = τ cm,n,q + TRc

m,n. (19)
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In (16), TF r
m,n denotes the completion time of transmission

between edge and remote cloud servers, which can be defined

similar to (17), given by

TF r
m,n = τ rm,n + max

k∈pre(n)
TF e

m,k. (20)

In (19), TRc
m,n is the time when sub-task n is ready for

processing at the remote cloud server.

D. Utility Constraints and Costs

Next, we present the utility constraints of both edge servers

and remote cloud servers as well as cost constraints of mobile

devices. The utility of edge server can be derived as

Ue
p =

M∑
m=1

N∑
n=1

(
P e
p dm,nx

e
m,n,p − Es

m,nx
c
m,n,q − Ee

m,nx
e
m,n,p

)
,

(21)

∀p ∈ Ke, where P e
p is the charging price by the pth edge server

to cover the transmission or execution cost per unit data in the

network. It can be observed from (21) that the transmission

cost Es
m,n and execution cost Ee

m,n cannot coexist for a

particular task n ∈ N . Similarly, the utility of the remote

cloud server can be expressed as

U c
q =

M∑
m=1

N∑
n=1

(
P c
q dm,nx

c
m,n,q − Ec

m,nx
c
m,n,q

)
, ∀q ∈ Kc,

(22)

where P c
q is the charging price of the qth remote cloud server.

It should be noted that, to motivate computation offloading,

the utility of both edge server and the remote cloud server

should not be negative, therefore we have

Ue
p ≥ 0, U c

q ≥ 0, ∀p ∈ Ke, ∀q ∈ Kc. (23)

For the mobile device m processing sub-task n, its cost Cm,n

that consists of local execution cost, the payment for the

corresponding edge server and the payment for the remote

cloud server, can be expressed as

Cm,n =
{(

1− xc
m,n,q

)
[ El

m,n

(
1− xe

m,n,p

)
+

(P e
p dm,n + Et

m,n)x
e
m,n,p ] + [P c

q dm,n + Et
m,n]x

c
m,n,q

}
,

∀p ∈ Ke, ∀q ∈ Kc,
(24)

where for a particular task n ∈ N of mobile device m, xc
m,n,q ,

xe
m,n,p cannot be one at the same time.

Finally, we derive the running time expression of the whole

application for the mobile device. Denote the total application

response time for mobile device m by Tm. Then Tm that is

the time when all the tasks in an application are finished, is

given by

Tm = TFm,N . (25)

We observe from (25) that the total application delay is

the time when the final sub-task N of mobile device m has

finished executing on the mobile device.

V. PROBLEM FORMULATION

In this section, we study the offloading problem under two

different assumptions on the edge processing, i.e., single-

edge processing and multi-edge processing. While the first

assumption only allows cooperation between one edge server

and the cloud, the second one also allows collaborations

among edge servers for further performance improvement.

A. Single-edge Processing

Definition 1: Single-Edge Processing (SEP) problem con-

siders the case where sub-tasks of an application from one

mobile user can be processed by the nearby edge server, or

by the remote cloud. But there is no cooperation between edge

servers.

To solve the SEP problem, considering mobile user budgets

and the cost of servers, we try to design an effective compu-

tation offloading strategy with edge-cloud cooperation. The

aim is to minimize the total application completion delay,

which reflects the execution efficiency of the system. Similar

to [28], since servers are usually operated by companies, to

motivate them to participate in computation offloading, the

utilities should not be negative. We do not impose similar

utility constraints for the mobile devices on the basis that

mobile phones are carried by users, they can charge batteries of

their phones in economic prices. The costs of mobile devices

can be represented by the maximum user budgets they are

willing to pay. The detail problem is described in OPT-1.

OPT-1 min

M∑
m=1

Tm

s.t. C1 : (13), C2 : (15), C3 : (16),

C4 : Ue
p ≥ 0, U c

q ≥ 0,

C5 : xc
m,n,q + xe

m,n,p ≤ 1,

C6 : xc
m,n,q ∈ {0, 1}, xe

m,n,p ∈ {0, 1},

C7 :

N∑
n=1

Cm,n ≤ εm,

(26)

where ∀m ∈ M, ∀n ∈ N , ∀p ∈ Ke, ∀q ∈ Kc and εm is

the monetary budget for mobile device m. Constraint C1 is

the local task dependency constraint ensuring that sub-task n
can start execution only after all its predecessor tasks have

been finished. Constraints C2 and C3 are edge and remote

cloud task dependency constraints, respectively; they imply

that sub-task n can be executed on the edge and remote cloud

server only after the task has been completely offloaded to

the edge and remote cloud, respectively. Constraint C4 is the

utility constraint for edge servers and the remote cloud server.

Constraint C5 ensures that for a sub-task n ∈ N , it can only

be executed on one of the three places, i.e. the local mobile

device, the edge server or the remote cloud server. The binary

constraints are presented in C6. Constraint C7 is the budget

constraint for mobile device m.

B. Multi-edge Processing

We then consider another scenario, in which sub-tasks of

a single application are allowed to be processed by multiple

edge servers located at multiple small cell base stations. This

investigation will help to reveal the potential benefits of the

edge-edge cooperation.

Definition 2: Multi-Edge Processing (MEP) problem is for

the case where sub-tasks of an application from one mobile

user can be processed by multiple edge servers and the remote

cloud.
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Given a DAG-structured application graph G(V,E), M
mobile devices, one remote cloud and p edge servers. Set

K = {Kl,Ke,Kc} represents different devices in the network,

where Kl (Kl ⊆ K) stands for the mobile device subset, Kc

is the subset of the remote cloud and Ke is the subset of

edge servers. For each mobile device m ∈ M, there is a

fixed financial budget εm and for each application generated

by the mobile device, there are ni sub-tasks since vi ∈ V . The

MEP problem is essentially to find a schedule S : vi → k,

∀vi ∈ V , ∃k ∈ K, where k is the element in set K, such that

the total application finishing time is minimized with the given

cost budgets. Let EIst
m,n be the energy consumption for inter

transmission between edge servers s and t. Thus, we have

EIst
m,n = {dm,n

ω
+ l(s, t)} · P0, ∀m ∈ M, ∀n ∈ N , (27)

where l(s, t) is the extra delay due to the multi-hop transmis-

sion between edge servers s and t. Therefore, the cost function

of equation (24) can be rewritten as:

C ′
m,n =

{(
1− xc

m,n,q

)
[ El

m,n

(
1− xe

m,n,p

)
+

(P e
p dm,n + Et

m,n)x
e
m,n,p + EIst

m,nx
I
st ] +

(P c
q dm,n + Et

m,n)x
c
m,n,q

}
, ∀p ∈ Ke, ∀q ∈ Kc,

(28)

where xI
st ∈ {0, 1} is a binary variable. When xI

st = 1, it

means that the sub-task from edge server s is executed at the

tth edge server and xI
st = 0 otherwise. As a consequence, the

utility of the edge server can be rewritten as

U ′e
p =

M∑
m=1

N∑
n=1

(
P e
p dm,nx

e
m,n,p − Es

m,nx
c
m,n,q

−Ee
m,nx

e
m,n,p − EIst

m,nx
I
st

)
.

(29)

Then the MEP problem can be formulated as:

OPT-2 min
∃S

(
M∑

m=1

Tm

)

s.t. C8 :

ni∑
n=1

C ′
m,n ≤ εm,

C9 : U ′e
p ≥ 0, U c

q ≥ 0,

C10 : xc
m,n,q + xe

m,n,p + xI
st ≤ 1,

C11 : xc
m,n,q, x

e
m,n,p, x

I
st ∈ {0, 1},

C12 : wm,nx
e
m,n,p +

∑
u∈M,v∈N

wu,vx
I
spx

e
u,v,s ≤ Wp,

s �= p, s ∈ Ke, u �= m, v �= n, and C1, C2, C3.
(30)

Different from OPT-1, for OPT-2, the total cost also in-

cludes the computation cost of the neighboring edge server if

sub-tasks are offloaded to it. Meanwhile, we assume that edge

servers possess the limited computation capacity. Therefore,

constraints C8, C9, C10 and C11 are modifications from C7,

C4, C5 and C6, respectively in OPT-1. Constraint C12 is

the computation capability constraint and Wp is the maximum

workload that the pth edge server can deal with. It should be

noted that the pth edge server cannot process sub-tasks with

a total size greater than its allowed workload Wp.

VI. ALGORITHMS FOR DEPENDENCY-AWARE OFFLOADING

Algorithm 1 Single edge greedy algorithm (SEG) for mobile

device m

Input: N : a sequence obtained by the depth first traversal of

N sub-tasks on mobile device m;

pre(n): the predecessors of sub-task n;

εm: the sum budget for mobile device m;

P e
p : the charging price by the pth edge server;

P c
q : the charging price of the qth remote cloud server.

Output: Offloading policy X

1: begin
2: Initialize: wm,n, dm,n, Ue

p ← 0;

3: for n =1 to N do
4: Compute Rm,n,p, τ

l
m,n, E

l
m,n by (1)-(3), respectively;

5: if pre(n) == ∅ then
6: TRl

m,n ← 0, TRe
m,n ← 0, TRc

m,n ← 0
7: else
8: Compute TF t

m,n, TF
r
m,n by (17), (20), respectively;

9: Compute TRl
m,n, TR

e
m,n, TR

c
m,n by (13), (15), (16),

respectively;

10: end if
11: Compute TF l

m,n, TF
e
m,n, TF

c
m,n by (14), (18) and (19),

respectively;

12: if TF l
m,n < TF e

m,n & TF l
m,n < TF c

m,n then
13: xe

m,n,p ← 0, xc
m,n,q ← 0;

14: else
15: if P c

q dm,n

Ec
m,n

≥ 1 then
16: xe

m,n,p ← 0, xc
m,n,q ← 1;

17: else
18: xe

m,n,p ← 1, xc
m,n,q ← 0;

19: end if
20: end if
21: Compute Ee

m,n, E
c
m,n by (5), (6), respectively;

22: Compute Cm,n by (24);

23: end for
24: while

∑N
n=1 Cm,n > εm do

25: if
∑N

n=1 x
c
m,n,q �= 0 then

26: y ← arg
n

min{Ec
m,n};

27: xe
m,y,p ← 1, xc

m,y,q ← 0;

28: else
29: z ← arg

n
min{Ee

m,n};

30: xe
m,z,p ← 0, xc

m,z,q ← 0;

31: end if
32: end while
33: while Ue

p < 0 do
34: if

∑N
n=1 x

c
m,n,q �= 0&{Es

m,n

Ee
m,n

> 1} �= ∅ then

35: u ← arg
n

max{Es
m,n

Ee
m,n

};

36: xe
m,u,p = 1, xc

m,u,q = 0;

37: else
38: v ← arg

n
min{P e

p dm,n

Ee
m,n

};

39: xe
m,v,p ← 0, xc

m,v,q ← 0;

40: end if
41: Compute Ue

p by (21);

42: end while
43: end
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A. Analysis and Algorithms for OPT-1

In the computation offloading decision procedure, the edge

server will determine which sub-task should be executed at

the mobile device, which sub-task should be offloaded to

the edge server and which should further be transmitted to

the remote cloud server by the edge server. The objective

is to determine a strategy to minimize execution delay with

the given budget constraints. Meanwhile, the task dependency

constraints should be preserved. Thus, problem OPT-1 can be

reduced to a special 0-1 Knapsack problem, where the εm is

the total volume of the package, so that OPT-1 is also NP-

hard. Note that if TF e
m,n < TF l

m,n and TF e
m,n < TF c

m,n,

then the sub-task will be offloaded to the edge server. If

TF c
m,n < TF l

m,n and TF c
m,n < TF e

m,n, the remote cloud

will be chosen.

1) Greedy Implementation for SEP sub-problem: Based on

the above analysis, first of all, we design a Single Edge Greedy

(SEG) offloading algorithm to minimize the task completion

time. To acquire the minimum finishing time of all sub-tasks in

the application on mobile device m, the minimum completion

time of sub-task n is selected from TF l
m,n, TF e

m,n, and

TF c
m,n. To meet the utility constraint of the remote cloud

server, P c
q dm,n should be larger than Ec

m,n according to

(6). By determining the offloading policy for each sub-task

consecutively, we obtain the initial solution for mobile device

m. This sub-procedure is shown between lines 3 and 32.

Then, we iteratively adjust the initial offloading policy to

satisfy the sum cost budget for mobile device m. Considering

the fact that in real-world scenarios, the price of remote cloud

service denoted by i.e., P c
q is much more expensive than the

service price of edge server denoted by P e
p

2. Therefore, the

cost of a task on the remote cloud is higher than that on

the edge server, then the sub-tasks on the cloud server can

be directed to the edge servers in order to save the costs of

mobile users, thus users can pay less money for the offloading

services. If there have been some tasks deployed on the cloud,

i.e.,
∑N

n=1 x
c
m,n,q �= 0, we can move them to the edge

node one by one according to the ascending order of Ec
m,n.

Similarly, when there is no task deployed on the cloud, we

can move tasks from the edge server to the mobile device one

by one in ascending order of Ee
m,n.

Finally, we adjust the offloading policy to satisfy the utility

constraint of the edge server. In order to improve the utility

of the corresponding edge server, we remove tasks from cloud

server to the edge in descending order of
Es

m,n

Ee
m,n

, when Es
m,n is

greater than Ee
m,n. If no task is deployed on cloud server,

we remove tasks from edge servers to mobile devices in

ascending order of
P e

p dm,n

Ee
m,n

. It is worth mentioning that, with

the above operations, the total cost budget for mobile device

m still holds, because of the decreased prices from the remote

cloud to the edge server and from the edge server to the

mobile device. The detail of the SEG algorithm is described

in Algorithm 1. In the following, we specify the task graphs

2For example, mobile users have to pay by month or year renting the remote
cloud computing service from service providers while pay less amount of
money for the service of an idle edge server within its local community.

Fig. 2. Example of converting a directed acyclic graph to a tree shaped graph.

considered in this paper, and then prove the approximation

ratio of the proposed greedy algorithm.

Definition 3: Tree shaped graph: A tree shaped graph of an

application in this paper is a directed graph, in which every

node in the tree has only one parent node except for the root,

which is the task starting node (or the entry) in an application

task graph. Each node in the graph is linked to the root. If

the current node has more than two parent nodes, then we can

replicate the current node and place each of them to the parent

node. As shown in Fig. 2, node v1 represents the starting sub-

task and node v4 is the task termination node (or the exit). By

replicating node v4, who has two parent nodes, we can obtain

a tree shaped graph.

Therefore, based on Definition 3, we have Theorem 1.

Theorem 1 utilizes the above defined tree shaped graph to

derive the approximation ratio. The details are as follows.

Theorem 1: Given any general acyclic task graph with one

start node and one end node, it can be transformed into a

tree shaped graph with task dependency [29]. Let ε be an

arbitrarily small positive constant and h be the longest branch

of the tree shaped tasks. By setting δ = εTmax

h > 0, for a

particular application, the greedy algorithm on computation

offloading takes time of O(N2+N h2δ
ε ) and achieves the (1+ε)

approximation ratio.

Proof: Let Tmax be the maximum task finishing time of

a whole application consisting of multiple sub-tasks. Given a

sub-task i and its workload ω̄i, if it is executed on the jth

device (where j = 0 means the local execution, j = 1 means

the remote cloud execution and j ∈ [2, P + 1] is for the edge

execution), the execution delay can be Γij = ξ ω̄i

f̄j
+η following

the expressions of (14), (18) and (19). The term f̄j is CPU

frequency of device j, ξ and η are two constant numbers. The

largest delay is determined by the slowest CPU frequency f̄min
j

and sub-task with the most heavy workload ω̄max
i as Tmax =

ξ
ω̄max

i

f̄min
j

+ η. Therefore, the upper bound of the maximum task

finishing delay can be expressed as hTmax. The adjusting steps

take no more than O(N) time to meet utility constraints of the

edge server and the remote cloud. Since there are N rounds of

iterations, the total time complexity of the greedy algorithm

is O(N2 + NhTmax). If we set δ = εTmax

h , we then have

Tmax = hδ
ε . Thus, the total time complexity can be rewritten

as O(N2 + N h2δ
ε ), where ε is an arbitrarily small positive

constant.

Assume the optimal task finishing time is Lopt(x
∗), where

the corresponding optimal strategy is denoted by x∗. Let x̂ be
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the minimum task finishing time obtained by executing Algo-

rithm 1. We then have L(x̂) ≤ Lopt(x
∗). For a tree-shaped task

graph with height h, at most N times of adjustments happen

because of the sub-procedures from lines 24 ∼ 32 and lines

33 ∼ 42 of Algorithm 1. Following the equations defined in

(14), (18) and (19), for those sequential adjustments defined

in Algorithm 1, each delay is bounded by δ. Since the height

of the tree is h, the total sequential adjustments is bounded

by hδ. Hence, we have

L(x̂) ≤ Lopt(x
∗) ≤ Lopt(x

∗) + hδ. (31)

Let Tmin = ξ
ω̄max

i

f̄max
j

+ η, which means the minimum task

finishing time. It is defined as the ratio between the most

intensive workload executed on the most efficient server.

Similarly, we have Tmax = ξ
ω̄max

i

f̄min
j

+ η. The result of optimal

strategy Lopt(x
∗) is at least equal to Tmin, then we have

Lopt(x
∗) ≥ Tmin. Following (31), we have

L(x̂) ≤ Lopt(x
∗) + hδ = Lopt(x

∗) + εTmax

= Lopt(x
∗) + ε

(
ξ

Tmin−η
ξ f̄max

j

f̄min
j

+ η

)

≤ Lopt(x
∗) + ε

(
ξ

Lopt(x
∗)−η

ξ f̄max
j

f̄min
j

+ η

)

≤
(
1 + ε

f̄max
j

f̄min
j

)
Lopt(x

∗)

ε′=ξ′ε
= (1 + ε′)Lopt(x

∗).

(32)

That is because in the multi-access mobile edge computing

architecture,
f̄max
j

f̄min
j

is bounded by a positive constant ξ′. Let

ε′ = ξ′ε and we obtain L(x̂) ≤ (1 + ε′)Lopt(x
∗), which

concludes the proof.

B. Analysis and Algorithm of OPT-2

Different from the SEP problem, in MEP problem, sub-

tasks of one user may be executed by multiple edge servers.

It implies that OPT-2 is more challenging to be solved. We

first analyze the hardness of OPT-2 via the reduction of the

original problem to the multiple-choice Knapsack problem.

Because of the unique budget constraints, we then prove that

there is no polynomial time approximation algorithm for the

MEP sub-problem by contradiction. Finally, we propose an

efficient greedy algorithm.

1) Hardness of OPT-2: We first give the definition of Mul-

tidimensional Multiple-choice Knapsack Problem (MMKP)

before proving that the MEP problem is NP-hard.

Definition 4: Multidimensional Multiple-choice Knapsack
Problem (MMKP). Given B classes of resources denoted by

{K1,K2, · · · ,KB}. There are M groups, each with ni items,

where i ∈ {1, 2, · · · ,M}. Each item j, ∀j ∈ {1, 2, · · · , ni}
has a particular value uij and requires B distinct resources

represented by vector (r1ij , r
2
ij , ·, rBij). The objective of MMKP

is to maximize the total value of the collected items subject

to the given resource constraints. It can be formulated as:

Maximize :

M∑
i=1

ni∑
j=1

uijxij

s.t.

M∑
i=1

ni∑
j=1

rkijxij ≤ Ck, ∀k ∈ {1, 2, · · · , B},
ni∑
j=1

xij = 1, ∀i ∈ {1, 2, · · · ,M},

xij ∈ {0, 1}, ∀j ∈ {1, 2, · · · , ni},
(33)

where the first constraint is the resource constraint of the kth

class resource. The second constraint in (33) means that only

one item can be chosen from one group and the third constraint

is the binary constraint.

We then prove the hardness of the MEP problem.

Theorem 2: The MEP problem is NP-hard.

Proof: Given any offloading strategy S, we verify

whether it is a feasible solution by calculating utility and

budget constraints in polynomial time. Consequently, MEP ∈
NP. We then prove the NP-hardness of MEP by showing that

the MMKP problem which is an NP-hard problem is a special

case of the MEP problem.

Consider for a particular case when MEP has pipeline work

flows. The p + 2 kinds of devices in set K of MEP problem

(See definition in subsection V-B) correspond to B classes

of resources in MMKP. Sub-tasks in one application of a

mobile device of MEP problem correspond to ni items in each

group of MMKP. Noting that mobile devices in MEP problem

have limited cost budgets εm, each mobile device can only

afford the limited number of computation resources from the

computation devices (local mobile devices, edge servers and

the remote cloud server) and the edge server can only serve the

limited number of workloads from mobile devices as shown

in constraint C12. Hence, it is equivalent to the case when

there are limited resources in MMKP, as shown in the first

constraint of (33). Since one item or one sub-task is chosen

per class or application, both the MMKP and MEP problems

are the same under this setting. The utility uij represents delay

in MEP. Maximizing total utilities is equivalent to minimizing

total delay. Since the special case is NP-hard, the original MEP

problem is also NP-hard.

Theorem 3: MEP does not have a polynomial time approx-

imation algorithm of any constant approximation ratio unless

P = NP .

Proof: We show that the MEP sub-problem has no

polynomial time approximation scheme following [30]. Given

ε, which is a positive constant, there is an approximation

algorithm L to an instance xMEP of the MEP problem with

an approximation ratio less than 1 + ε, that is
L(xMEP )

OPT (xMEP ) =
L(x̂)

Lopt(x∗) ≤ 1+ ε. For an instance xMMKP of MMKP consisting

of B classes, M groups with ni (ni > 1, i = 1, 2, · · · , N )

items in the ith group. For a particular class K, K ∈
{1, 2, · · · , B}, the service capacity is set as C, i.e., the

maximum available workload and resources for handling tasks.

Given the MMKP instance xMMKP , we can always construct
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an instance of xMEP by creating a network topology of

B classes corresponding to B kinds of servers for mobile

device m. For each sub-task n on mobile device m, we set

the processing power of each server to be identical as P0.

For each sub-task n from mobile device m, the execution

time is
wm,n

fm,n
, we set fmax

m,n = max{f c
q , f

e
p , f

l
m}. We denote

the minimum transmission delay between two distinct net-

work entities as T ′min
m,n = min{TF e

m,n, TF
c
m,n, E

Ist
m,n/P0}.

We first construct a constant factor k = C
Nwmax

m,n
. For each

one of servers except for the mobile devices, without loss

of generality, one of the running cost per second can be

expressed as CS = k · wm,n/{wm,n

fmax
m,n

+ T ′min
m,n}. Since L is an

approximation algorithm of xMEP , the total execution time

TL ≤ (1 + ε)TOPT , where TOPT denotes the optimal total

execution delay. When we have a schedule S, we can calculate

total delay and costs as Ttotal =
∑M

m=1

∑N
n=1{wm,n

fm,n
+

T ′min
m,n} ≥ ∑M

m=1

∑N
n=1{wm,n

fmax
m,n

+ T ′min
m,n}, Ctotal =∑M

m=1

∑N
n=1 Cs{wm,n

fm,n
+T ′

m,n} ≤ ∑M
m=1

∑N
n=1 Cs{wmax

m,n

fm,n
+

T ′min
m,n} ≤ C. Let

∑M
m=1

∑N
n=1{wm,n

fmax
m,n

+T ′min
m,n} be TL. When

Ttotal achieves TL, it is the optimal solution of xMEP for this

case, which corresponds to the optimal solution of xMMKP

where for class K, the item with fmax
m,n in each class is selected

if the knapsack capacity is no less than C. The approximation

algorithm L of xMEP with ε = εL only returns a solution

that corresponds to the optimal solution of xMMKP , because

for any other solutions would result in Ttotal > (1 + ε)TL.

Therefore, we only have to consider the following cases:

• Case i): If
wm,n

Nwmax
m,n

≤
wm,n
fmax
m,n

+T ′max
m,n

wm,n
fm,n

+T ′
m,n

, the L scheme can

always achieve the constraint C.

• Case ii): If
wm,n

Nwmax
m,n

>

wm,n
fmax
m,n

+T ′min
m,n

wm,n
fm,n

+T ′
m,n

, the decision cannot

achieve the constraint C.

In the above cases, if xMMKP has a solution, we can solve

xMMKP in polynomial time by applying L to xMEP , which

is not possible unless P = NP . Therefore, there is no poly-

nomial time approximation algorithm for MEP , which con-

cludes this proof.

2) Algorithm for MEP sub-problem: Based on the above

analysis, to solve the MEP sub-problem, we propose a Greedy

algorithm for Collaborative edge Computing (GCC) as shown

in Algorithm 2. The GCC algorithm is similar to the greedy

algorithm as shown in Algorithm 1 while it mainly differs

from Algorithm 1 from lines 15 ∼ 21 as shown in Algorithm

2. For processing each sub-task of each users, if the service

price of neighboring edge servers is less than the original edge

server and the computation capability constraint C12 is met,

then the sub-task is transmitted from the original edge server

to the corresponding neighboring edge server so as to achieve

the minimal delay among all edge servers.

Algorithm 2 GCC Algorithm for MEP problem

Input: N : a sequence obtained by the depth first traversal of

N sub-tasks on mobile device m;

εm: the sum budget for mobile device m.

Output: Offloading policy X

1: begin
2: Initialize: wm,n, dm,n, Ue

p ← 0, FIFO queues at edge

servers;

3: for n = 1 to N do
4: Calculate Rm,n,p, τ lm,n, El

m,n by (1)-(3), respectively

for each mobile user m at the nearest access point;

5: if pre(n) = ∅ then
6: TRl

m,n ← 0, TRe
m,n ← 0, TRc

m,n ← 0
7: else
8: Compute TF t

m,n, TF
r
m,n by (17), (20) respectively;

9: Compute TRl
m,n, TR

e
m,n, TR

c
m,n by (13), (15), (16),

respectively;

10: end if
11: Compute TF l

m,n, TF
e
m,n, TF

c
m,n by (14), (18) and (19),

respectively;

12: if P c
q dm,n

Ec
m,n

≥ 1&TF c
m,n < TF e

m,n then
13: xe

m,n,p ← 0, xc
m,n,q ← 1;

14: else
15: for m = 1 to M do
16: xe

m,n,p ← 1, xc
m,n,q ← 0;

17: if P e
t < P e

p where p �= t and for the tth edge

server, the workload constraint C12 of Wt in (30)

is met then
18: Set the current workload wm,n on the pth edge

server to the tth edge server if the incurred delay

is minimal among all edge servers excluding the

pth edge server

19: xe
m,n,p ← 0, xe

m,n,t ← 1;

20: end if
21: end for
22: end if
23: Compute Ee

m,n, E
c
m,n by (5), (6), respectively;

24: Compute C ′
m,n by (28);

25: end for
26: while

∑N
n=1 C

′
m,n > εm do

27: if
∑N

n=1 x
c
m,n,q �= 0 & C12 holds then

28: y ← arg
n

min{Ec
m,n};

29: xe
m,y,p ← 1, xc

m,y,q ← 0;

30: else
31: Look for the edge server with the minimum cost to

offload;

32: if Cannot find == true then
33: z ← arg

n
min{Ee

m,n};

34: xe
m,z,p ← 0, xc

m,z,q ← 0;

35: end if
36: end if
37: end while
38: while U ′e

p < 0 do
39: if

∑N
n=1 x

c
m,n,q �= 0&{Es

m,n

Ee
m,n

> 1} �= ∅ & (C12) holds

then
40: u ← arg

n
max{Es

m,n

Ee
m,n

};

41: xe
m,u,p = 1, xc

m,u,q = 0;

42: else
43: v ← arg

n
min{P e

p dm,n

Ee
m,n

};

44: xe
m,v,p ← 0, xc

m,v,q ← 0;

45: end if
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(a)

(b)

Fig. 3. (a) Sequential task graph used for the simulation of SEP; (b) General
task graph used for simulation.

46: Compute U ′e
p by (29);

47: end while
48: end

Theorem 4: Let h be the longest branch of the task tree.

The time complexity of Algorithm GCC is of O(N2PM +
NhTmax), where Tmax is the maximum computation delay.

Proof: Since Algorithm 2 is similar to Algorithm 1, we

focus on the analysis on lines 15 ∼ 21 in Algorithm 2. There

are P edge servers in the network. For each application,

calculating the incurred delay is O(N) at most, thus the

time complexity of lines 17 ∼ 18 is O(PN). The inner

‘for’ circulation (See line 15 of Algorithm 2) takes O(M)
rounds for M mobile users. As a result, the total complexity

of lines 15 ∼ 21 is O(PNM), which is additional cost

compared to Algorithm 1. Therefore, the first ‘for’ circulation

takes O(N(PNM)) = O(N2PM). Similarly to the proof

of Theorem 1, the remained time complexity is O(NhTmax).
The obtained total time complexity is O(N2PM +NhTmax),
where Tmax is the maximum computation delay as defined in

the proof to Theorem 1.

VII. PERFORMANCE EVALUATION

In this section, we firstly present the performance evaluation

of greedy algorithm to the SEP sub-problem, then evaluate

the solution to the MEP sub-problem. We also investigate the

sensitivity of parameters.

A. Evaluation for the SEP Problem

1) Settings for SEP: We design experimental studies to

evaluate the proposed algorithms. The results are averaged

for 1, 000 time executions. We implement all the algorithms

on the CloudSim simulator [31], which is a discrete event

simulator [32]. By default, we let the noise variance between

the edge and mobile device be σ2 = 1 [4] and the channel

bandwidth be W = 5MHz. The transmission rate between the

edge server and remote cloud is set as ω = 10Mbps. The

CPU frequency of the edge server is set as fe
p = 3.6× 109Hz

[33]. The CPU frequency of the remote cloud server is

f c
q = 3.6×1010Hz [34] and the CPU frequency of the mobile

device is f l
m = 1.0 × 109Hz [35]. The amount of power for
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Fig. 4. The application finishing time with the increase of data size for
sequential topology
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Fig. 5. Application finishing time with average user budget for general task
graph when there is no special relationship between workload and data size.

transmission between edge and cloud is P0 = 0.1W [36].

The charging price of edge server is P e
p = 0.001 and the

charging price of the remote cloud is P c
q = 0.004. Key system

parameters are set as αe = 0.5, βe = 0.4, αc = 0.6, βc = 0.6
[25].

First, we conduct a preliminary investigation for the per-

formance of the proposed greedy algorithm with different

workloads and data sizes with a sequential task dependency

graph [37] shown in Fig. 3(a). By default, in an application,

there are 8 sub-tasks with average data sizes [8.80, 3.70, 9.26,

3.24, 7.41, 6.48, 6.02, 5.09] MB [38] to be processed. The

workload is proportional to the data size [39] by multiply

the data size vector by 1.2. To vary the data sizes, we

multiply the default data size vector by each of the numbers

in the vector index, where index = [1, 2, · · · , 9]. For multiple

executions, we also vary both the workload and data size
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Fig. 6. Application finishing time with average user budget for general task
graph when workload is in proportion to data size.
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Fig. 7. Application finishing time with average number of sub-tasks in an
application for case 1.

vectors for each simulation instance by randomly adding a

small positive or negative constant within [−10, 10]. For each

user m, the budget is set as εm=
∑

(data sizes of sub-task in

an application)×0.1.

Then, to better compare the performance of algorithms, we

also use a general task graph [40] for simulation shown in

Fig. 3(b). By default, there are 8 sub-tasks in one application.

Node 0 represents the starting sub-task while node 7 is

the ending sub-task. For each internal sub-task, there are at

most 2 incoming edges, 2 out-coming edges. Similar to [41],

for each application, one internal node in the task graph is

connected to its neighbor node with a probability of 0.3. The

workload of each sub-task ranges in [0, 50] with mean value of

33.1. For example, the workload vector of one application is

[49.10, 1.15, 35.26, 38.35, 34.19, 35.26, 41.10, 30.17] MB and

the data size is [35.19, 14.81, 37.04, 12.96, 29.63, 25.93, 24.07,
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Fig. 8. Application finishing time with average number of sub-tasks in an
application for case 2.
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Fig. 9. Average utilities of edge/cloud servers with average number of sub-
tasks for case 1.

20.37] MB. For comparing purpose, we compare proposed

algorithms with Hermes mentioned in [14], which is an

algorithm based on dynamic programming where there is no

remote cloud. Considering the fact that in the original Hermes

algorithm, there is no cooperation between edge server and

the cloud server, we have modified the Hermes algorithm

according to the following operations. We regard the remote

cloud server as a special edge server. Then the original Hermes

algorithm possesses the ability to handle both edge and the

cloud servers. To be detail, we change the sub-index j’s

range of the variable C[i, j, t] mentioned in Hermes from

1 ≤ j ≤ M to 1 ≤ j ≤ M + 1. Where M represents

the total number of edge servers and the additional +1
represents the cloud server and we adopt the same parameters

to SEG algorithm. The brute force (BF) algorithm acts as the

benchmark to derive the optimal solutions. In the following

paragraphs, we use the terms modified Hermes and Hermes
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Fig. 10. Average utilities of edge/cloud servers with average number of sub-
tasks for case 2.
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Fig. 11. Average running time with average number of sub-tasks for case 1.

interchangeably.

2) Sequential task graph: As shown in Fig. 4, the applica-

tion finishing time of all the algorithms shows linear growth

when data size increases. On average, the SEG algorithm is

more than 2% slower than the BF method while the modified

Hermes algorithm is more than 10% slower than the BF

method on the application finishing time. Therefore, the SEG

algorithm is close to the optimal results and has achieved 7%
performance gain over Hermes.

3) General task dependency graph: Fig. 5 and Fig. 6

show the relationships between average application finishing

time and average user budget. There are two cases. Case
1: The default setting, where there is no special relationship

between workload and data size. Case 2: The data size is in

proportional to the workload and data size = workload× 0.1.

We can see that for all the cases and all the algorithms,

the application finishing time decreases with the increase of

average user budget. When the average user budget is constant,
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Fig. 12. Average running time with average number of sub-tasks for case 2.
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Fig. 13. Application finishing time with average data size for case 1 of MEP
problem.

the SEG algorithm outperforms Hermes by about 8% on

average for case 1 and the maximum performance gain is

over 16.4%. For case 2, the SEG algorithm is about 23%
better than Hermes on the application finishing time averagely

with given budgets. That’s because the SEG algorithm tends

to select more sub-tasks to be executed on the remote cloud,

which can reduce the execution time.

Fig. 7 and Fig. 8 illustrate the application finishing time

with average number of sub-tasks in an application. It is

observed that the application finishing time of both cases grow

exponentially with the increasing of average number of sub-

tasks. This is because when there are more sub-tasks in an

application, following the computation model, it will take more

time for the corresponding edge servers and remote cloud to

process the sub-tasks, which results in the growth of both

application finishing time. On average, the SEG algorithm is
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Fig. 14. Application finishing time with average data size for case 2 of MEP
problem.
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Fig. 15. Application finishing time with average user budget for case 1 of
MEP problem.

25.6% more efficient than Hermes on the application finishing

time given average number of sub-tasks for case 1. For case 2,

the SEG algorithm saves 43.6% time over Hermes. Of all the

cases, the proposed SEG algorithm is close to the BF method

on the application finishing time.

Fig. 9 and Fig. 10 depict the average utilities of edge and

cloud servers for the two cases. Clearly, we can observe that

the proposed SEG algorithm and the BF benchmark algorithm

can guarantee non-negative utilities of both edge and the

cloud servers. In other words, edge and cloud servers are

individual rational [18] in the proposed algorithms. In addition,

SEG algorithm and BF algorithm can achieve similar average

utilities at the server side. As shown in Figs. 11 and 12, the

running time of all three algorithms grows with the average
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Fig. 16. Application finishing time with average user budget for case 2 of
MEP problem.
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number of sub-tasks for both cases. Meanwhile, both SEG and

the modified Hermes algorithms outperform the BF benchmark

algorithm. On average, SEG is about 55.2% and 57.3% more

efficient than the modified Hermes algorithm for both case 1

and case 2, which comply with the theoretical analysis on time

complexity of the two algorithms.

B. Evaluation for the MEP Problem

1) Settings for MEP: To evaluate MEP, we set the task

graph of mobile users as the directed acyclic graph as shown

in Fig. 3(b). By default, we assume each sub-task has only two

descendant sub-tasks for the benefit of presentation whereas

our scheme is adapt to the case when there are more than two

descendant sub-tasks for one sub-task.
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Fig. 18. Application finishing time with average transmission rate between
edge servers.

The maximum depth (the longest hops) of the application

task graph is set as 5. Moreover, we also compare GCC

with the greedy algorithm SEG mentioned in Algorithm 1,

where there are no collaborations between edge servers. In

this simulation, we have four edge servers and one remote

cloud center. For edge server p, its maximum workload Wp is

set Wp = 1000, the charging price rages in [0.001, 0.003]. The

additional delay l(s, t) due to the inter transmission between

edge servers is set as 0.1ms. In each small cell, there are

20 to 40 mobile devices and each of them has one splittable

application to be executed. Similar to the workload settings

mentioned in subsection VII-A1, there are also two cases. For

case 1, there are no special relations between workloads and

data sizes. The default workload vector is [12.28, 0.29, 8.82,

9.59, 8.55, 8.82, 10.28, 7.54] MB and the default data size

vector is [8.79, 3.70, 9.26, 3.24, 7.41, 6.48, 6.02, 5.09] MB.

To vary the workloads and data sizes, we multiply each one of

the vectors by positive variables range from 1 to 9. Moreover,

considering the budget influence, we further divide case 1 into

two sub-cases, i.e., the low budgets sub-case and the high

budgets sub-case. For low budgets sub-case, the budget for

each user m is set as εm=
∑

(data size of sub-tasks in an

application)×0.1 while for high budgets sub-case, εm=
∑

(data

size of sub-tasks in an application)×0.5. For high budget sub-

case, the budgets are 5 times more than the low budgets sub-

case. For case 2, the default workload is linear to the data size,

that is, workload=data size ×1.2 and the workload vector is

[10.56, 4.44, 11.11, 3.89, 8.89, 7.78, 7.22, 6.11]MB. Just the

same as case 1, there also exists two sub-cases considering

budgets. For the benefit of demonstration, we assume each

edge server can collaborate with its two adjacent neighbor

edge servers with adequate resources since cooperation with

edge servers too many hops away will result in longer internal

transmission delays between edge servers, thereby degrading

the performance of design goals.

2) Performance Evaluation for MEP: In Fig. 13 and Fig.

14, we compare application finishing time with the average

data size for two cases. For case 1, the application finishing

time has shown a linear growth with the increasing number

of average data sizes. The proposed GCC algorithm performs

the best in terms of the average application finishing time

whenever budgets are low or high. In the low budgets sub-

case, the proposed GCC algorithm is 22.7% more efficient than

the SEG algorithm on the application finishing time. This is

because when budgets are low, GCC will employ more edge

servers than SEG, which will improve the efficiency. In the

high budgets sub-case, GCC reduces the average application

finishing time of SEG by 16.7%. The reason lies in the fact

that, when there are abundant budgets, SEG will put more

works on the remote cloud which may cause longer transmis-

sion delays than GCC. For case 2, GCC achieves almost the

same performance on the average application finishing time

as case 1 shown in Fig. 13. With collaboration between edge

servers, the average application finishing time can be further

reduced by GCC for at least 5.5% when comparing it with

SEG algorithm. The details are shown in Fig. 14.

Fig. 15 and Fig. 16 demonstrate the changes of application

finishing time with the variation of average user budget by re-

defining case 1 and case 2 as follows. Case 1: the default work-

load vector is [49.11, 1.15, 35.26, 38.35, 34.19, 35.27, 41.11,

30.17]MB and the default data size vector is [35.19, 14.81,

37.04, 12.96, 29.63, 25.93, 24.07, 20.37]MB. We then vary the

two vectors for each simulation instance by randomly adding

a small positive or negative constant within [−10, 10], and

the mean value of data size for each application is 33.08 and

the mean data size is 25.0. Case 2: workload vector=[49.11,

1.15, 35.26, 38.35, 34.19, 35.27, 41.11, 30.17]MB. The data

size vector is obtained via workload ×0.1. On average, GCC

is superior to SEG on the application finishing time when

average user budget changes for both cases. For both cases,

the application finishing time decreases with the increase of

average user budget. That is because when there are enough

budgets, both the two proposed algorithms will offload more

tasks to the remote cloud. For GCC, it will recruit more edge

servers, thus the application finishing time of SEG can be

further reduced. For case 1, GCC can reduce the average

application finishing time by over 20.5% when comparing with

SEG. For case 2, GCC saves more than 18.3% application

completion time than SEG.

C. Sensitivity of Parameters

This subsection investigates the sensitivity of parameters,

to show their influences on the optimization target, i.e., the

total application finishing time. As shown in Fig. 17, we fix

the unit service price of the remote cloud server as pcq = 0.5
and adopt the settings for case 1 and case 2 mentioned in

section VII-B2. It is observed that for both algorithms, with

the growing ratio between unit price of the remote cloud and

unit price of the edge server
pe
p

pc
q

, the application finishing

time increases and converges to a constant. That’s because

when the unit price of the edge server become larger, more

sub-tasks will be offloaded to the remote cloud if budget is



IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, XXXXX XXXX 15

TABLE II
DISTANCE FROM ACCESS POINT, UP-LINK AND DOWN-LINK RATES AT EACH WAYPOINT OF PATHS

Path V1 Path V2 Path V3 Path V4

Distance (m) 7.5 7.2 7.5 4.5 4 3.3 4.8 5.5 7.59 3.5 3.5 5.5 5 5.7 3.8 2
Uplink rate (Mbps) 5.18 5.14 4.86 5.79 5.22 5.13 5.08 4.74 2.4 0.97 1.43 0.27 1.75 4.8 5.09 4.98
Downlink rate (Mbps) 6.43 5.3 5.79 7.59 15.6 15.34 11.84 9.84 0.07 0.09 0.51 0.03 0.09 4.47 7.59 7.2

sufficient at that time or otherwise, those sub-tasks will be

executed on the local device. It can be directly drawn from

Fig. 17 that, the application finishing time is less sensitive for

the proposed GCC algorithm over the other two algorithms,

whereas it is sensitive for Hermes. When the price ratio is

constant, GCC can save more application completion time

than Hermes by 23.9% for case 1 and 24.4% for case 2

averagely. Moreover, GCC is more efficient than the proposed

SEG algorithm with 13.3% and 10.4% time reduction for case

1 and case 2 respectively.

Next, we investigate the influence of the transmission rate

between edge servers. We set the transmission rate between

the edge server and the remote cloud as ω = 80Mbps. Then

we vary the transmission rate between edge servers. As shown

in Fig. 18, for all cases, the application finishing time for GCC

is smaller than that of the SEG algorithm and decreases with

the growth of transmission rate between edge servers. It can

be concluded that, increase the transmission rate between edge

servers can guarantee the high performance on the application

finishing time.

D. Real-world Experiment

Remote server
Campus Network

1. AP and edge 
server

3. State of mobile
device

3. Mobile device

2. Edge server

Fig. 19. Experimental test-bed setting

In the real-world experiment, we design and implement a

radio frequency environment using heterogeneous WiFi access

points with four edge servers at different corners of the

laboratory. One of the edge servers with its access point and

the remote server are depicted in Fig. 19. As shown in Fig.

20, the wireless routers are TP-LINK routers that can not only

cover the whole lab, but also go through walls to reach the

corridor. Four typical moving paths with different speeds V1

∼ V4 are set to obtain different channel gains and SINRs at

different waypoints of the moving paths. Therefore, the fixed

channel condition parameters can be measured at each of the

waypoints. We let Android smartphone users move along each

of the four paths and stop for a while at each waypoints, there

are 20 mobile users in total.

For each route, the channel conditions are measured and

listed in Table II. We average the finishing time obtained from

each waypoint of a path. At each way point, there are 20
deep learning applications, whose task graph is shown as Fig.

21. Using ensemble learning technique, the application tries

to classify the input images combining 16-layer and 19-layer

VGG models [42]. We consider two different user budgets’

setting, adequate budgets and limited budgets.

For Fig. 22, users have high budgets and are set as 100. It

is observed that both SEG and GCC outperform the existing

algorithm Hermes for all different paths, on the application

finishing time. For example, for path V1, the average appli-

cation finishing time for GCC, SEG and Hermes are 9.58s,

11.01s, and 18.61s. On average, the proposed SEG algorithm

can save 44.6% execution time than Hermes. Further, GCC

can averagely enhance the performance of SEG by more than

12.7%. For the case when user budgets are limited, we vary

user budgets from 20 to 60 with step size of 20 using path

V1. The results are depicted in Fig. 23. It is clear that the

application finishing time decreases with the growth of user

budgets for both SEG and GCC algorithms. That is because

when budgets are adequate, more sub-tasks will be offloaded to

the remote cloud server for execution, which reduces the total

application finishing time. For example, when user budgets

increase from 20 to 40, the application finishing time for

GCC drops from 11.8s to 8.6s. However, for Hermes, the

application finishing time shows no explicit relations with

respect to user budgets, since budgets are not included in the

Hermes algorithm. On average, the SEG algorithm is 42.1%
more efficient than Hermes on the application finishing time.

Moreover, GCC can further improve the performance of SEG

by over 10% averagely on the average application finishing

time.

VIII. CONCLUSIONS

This paper has proposed novel computation offloading

schemes with device, edge and remote cloud collaboration.

We have formulated two NP-hard application completion time

minimization problems. We have firstly considered the typical

case in a small cell where tasks from mobile devices can only
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Fig. 20. Mobile trajectory of users.
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Fig. 21. Application used to label the input pictures.

be offloaded to edge servers at the small cell base station in

their local vicinity or to the remote cloud. We then extend

our model to the general case where edge nodes at different

small cell base stations can cooperate with each other. For the

first sub-problem, i.e. the SEP problem, we have proposed a

greedy algorithm to obtain the sub-optimal offloading strategy

on the minimal application finishing time. The sub-optimal

offloading strategy has an approximation ratio of 1 + ε. For

the second sub-problem where edge nodes collaborate with

each other, we have designed a greedy based collaborative

edge computing algorithm to obtain the minimum application

finishing time. We have conducted extensive simulations to

verify the performance of our approaches. Simulation results

have demonstrated the effectiveness of proposed algorithms.

Real-world experiments comply with simulation results.

In the future, we plan to investigate the trade-off between

user budgets and application completion time. We also plan

to use coalitional game theory or auction theory to devise

distributed algorithms.

V1 V2 V3 V4

0

5

10

15

20

25

A
pp

lic
at

io
n 

fin
ish

in
g 

tim
e(

s)

GCC
Hermes
SEG

Fig. 22. Application finishing time for different moving paths.
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