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Various regularization methods have been proposed for single-orientation quantitative 

susceptibility mapping (QSM), which is an ill-posed magnetic field to susceptibility source inverse 

problem. Noise amplification, a major issue in inverse problems, manifests as streaking artifacts 

and quantification errors in QSM and has not been comparatively evaluated in these algorithms. In 

this paper, various QSM methods were systematically categorized for noise analysis. Six 

representative QSM methods were selected from four categories: two non-Bayesian methods with 

alteration or approximation of the dipole kernel to overcome the ill conditioning; four Bayesian 

methods using a general mathematical prior or a specific physical structure prior to select a unique 

solution, and using a data fidelity term with or without noise weighting. The effects of noise in 

these QSM methods were evaluated by reconstruction errors in simulation and image quality in 50 

consecutive human subjects. Bayesian QSM methods with noise weighting consistently reduced 

root mean squared errors in numerical simulations and increased image quality scores in the 

human brain images, when compared to non-Bayesian methods and to corresponding Bayesian 

methods without noise weighting (p ≤ 0.001). In summary, noise effects in QSM can be reduced 

using Bayesian methods with proper noise weighting.

Index Terms

Bayesian; noise weighting; quantitative susceptibility mapping (QSM); structure prior

I. INTRODUCTION

QUANTITATIVE susceptibility mapping (QSM) has received a lot of scientific interest, as it 

can quantify a range of endogenous magnetic biomarkers and contrast agents such as iron, 

calcium, and gadolinium (Gd) [1]–[4]. It has been realized that QSM is a technically 

challenging ill-posed inverse problem because it is necessary to deconvolve the measured 

tissue magnetic field with the unit magnetic dipole field (dipole kernel) that has zeroes at the 

magic angle 54.7° in k-space [5]–[7]. While multiple orientations can be sampled by 

repositioning the subject to condition the inverse problem [8], the only clinically acceptable 

solution is to scan the patient in the neutral position. To develop a clinical QSM method 

using a single orientation, various regularization methods have been proposed to identify a 

unique bulk susceptibility map [1], [2], [9]–[16].

It should be noted that near the zeros of the k-space dipole kernel are infinitesimally small 

values, which cause noise amplification upon inversion, a major concern of an ill-

conditioned inverse problem. This noise amplification should be an important consideration 

in developing QSM methods. However, noise effects in various QSM methods are often not 

analyzed.

In this study, we aim to methodically analyze QSM algorithms in terms of their treatment of 

noise in the data fidelity term and their choice of prior. We evaluate noise effects in 

representative QSM methods using a numerical phantom mimicking the human brain with a 

known susceptibility distribution and using in vivo human brain data with QSM image 

quality retrospectively assessed by the four experienced radiologists.
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II. THEORY

A. Magnetic Resonance Imaging Signal Model for the Tissue Magnetism

The magnetic field controls the spin precession, which determines the magnetic resonance 

imaging (MRI) signal phase, permitting the estimation of the tissue magnetic field [17]–[20]. 

Notations used in the following derivation are summarized in Table I. The magnetic field 

perturbation due to the magnetic susceptibility distribution relative to the MRI main 

magnetic field B0, δb(r) (r the spatial location) can be modeled as the convolution of the 

tissue magnetic susceptibility distribution χ(r) with the magnetic field of a unit dipole d(r) = 

(1/4π)(3cos2θr−1)/|r|3 (referred to as the dipole kernel, |r| > 0, θr is the azimuthal angle of r 
in the spherical coordinate) [21], plus noise n(r) in the estimated field.

(1)

where r has been omitted for clarity and ∗ is the convolution symbol. This signal model for 

magnetic field and susceptibility can also be expressed in k-space as

(2)

where Δb = Fδb, F is the Fourier transform operator, X = Fχ, N = Fn, and 

. Here, kz denotes the Fourier space coordinate in the direction 

parallel to B0 [5]–[7].

The dipole kernel (d or D) has a nontrivial null space where D = 0, which consists of a pair 

of opposing cone surfaces at the magic angle (54.7°) with respect to the B0 direction. In 

addition, D has values that are infinitesimal in the vicinity of the cone surfaces, which will 

lead to large noise amplification upon inversion.

B. Noise Consideration

If the noise n had a uniform variance in space and could be modeled by independent and 

identically distributed Gaussian random variables, a statistically optimal solution is the 

maximum likelihood estimation, which can be found by minimizing a quadratic data fidelity 

term

(3)

However, only noise in the real and imaginary parts of the MR signal can be modeled as 

zero mean Gaussian noise [22]–[26]. The noise n in the magnetic field δb in (1) estimated 

from the MRI signal phase has a complex probability distribution that can be approximated 

as Gaussian only when the SNR is much larger than 1 [22]–[24]. Moreover, this estimated 

Gaussian noise is not spatially uniform since its variance is equal to the square of the inverse 

of the SNR [22]–[24]. Accordingly, the data fidelity term in the Bayesian QSM methods 
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should account for the Gaussian noise in the real and imaginary channels of the detected MR 

signal, which leads to a data fidelity term nonlinear in the estimated magnetic field δb and 

the unknown susceptibility χ [27].

(4)

which we refer to as the data fidelity term with noise weighting, w denoting the proper noise 

weighting, e.g., SNR at the voxel in a single echo acquisition, or calculated SNR [13]. In the 

following comparisons, the data fidelity term in (3) is referred to as without noise weighting, 

as it simply uses the standard least squares formula without considering the noise property 

of the data.

C. Algorithms for QSM Reconstruction

Here, we summarize various QSM algorithms according to the manner in which a unique 

susceptibility solution is identified.

1) Non-Bayesian Methods by Altering the Indeterminate Field-to-Kernel Ratio 
(Kernel Alteration)—In this category, the susceptibility map X in k-space is produced by 

dividing Δb by an altered kernel. An example is the k-space division method [9]–[11], [28] 

with truncation, referred to here as truncated k-space division (TKD) [9]. The altered kernel 

in TKD is set as sign(D)τ (τ is a small predetermined threshold) when |D| < τ and D as itself 

when |D| ≥ τ. The susceptibility solution of the TKD algorithm is

(5)

Here, H is equal to one in the |D| ≥ τ region and zero in the |D| < τ region in k-space.

2) Non-Bayesian Methods by Evaluating the Indeterminate Field-to-Kernel 
Ratio (Kernel Evaluation)—An example of this type of method is to take the partial 

derivative of both the susceptibility and the dipole kernel in a small neighborhood around the 

cone surface before division takes place. By applying L’Hospital’s rule, the indeterminate 

field-to-kernel ratio becomes determinate and can be evaluated around the cone surfaces, 

which is then used to solve for the susceptibility around the cone surfaces. This method is 

referred to as the weighted k-space derivative (WKD) [12]. WKD is formulated as a least-

square fitting algorithm:

(6)

Here, Z = Δb − DX, and ; MD3 is an empirical smooth weighting 

function that decays to zero at the k-space origin where D′ is ill defined [12].
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3) Bayesian Methods Using a General Mathematical Prior—The Bayesian 

approach can be used to specify the input data (the likelihood) and for implementing the 

regularization term (the prior). Deconvolution of the input magnetic field as expressed in (1) 

and (2) bears similarity to those in super-resolution image reconstruction, where input image 

data are subsampled, warped, blurred, and noisy [29], [30]. Regularization methods using 

prior information, particularly those from the Bayesian stochastic approach, can be used to 

derive a unique estimate of the susceptibility.

General mathematical priors can be used to select a unique solution for the susceptibility 

map. Typically, the regularization prior is expressed as a cost function R that exponentially 

favors a solution with a desired property, and the degree to which it is favored is typically 

characterized by a regularization parameter α. Therefore, in the Bayesian approach, the 

maximum a posterior solution is

(7)

Here, E is a data fidelity term such as in (3) and (4), which expresses the susceptibility 

source and magnetic field relationship with a specific noise distribution [13], [14], [16], [27], 

[31], [32]. Various regularization terms R have been explored for QSM, including 1) spatial 

smoothness expressed in the L2 norm of the gradient (G) (GL2) (Tikhonov regularization) 

[13], [16]; 2) sparsity expressed in the L1 norm of the gradient (GL1) [13]; 3) sparsity 

expressed in the total variation (TV) norm [14], [33]; 4) sparsity expressed in a wavelet 

domain such as a Daubechies wavelet(Φ) [14]; 5) a combination of two sparsity terms such 

as total variation and wavelet (TV&WA) [14].

(8)

4) Bayesian Methods Using Specific Physical Structure Prior—A prior specific to 

a physical situation P can be used in the regularization term. The solution is as follows:

(9)

An example for incorporating specific anatomic information in QSM reconstruction is the 

morphology enabled dipole inversion (MEDI) algorithm [15]–[27], [31]. An edge mask m 
can be generated from the gradient of a known anatomical image, such as the gradient echo 

(GRE) magnitude image acquired with the phase data to weigh the edges in the 

susceptibility solution candidates [15], [27], [31], [32]. It has been proven that this 

formulation is able to exactly recover the susceptibility distribution given an accurate prior 

[34]. The L1 norm minimization of such a weighted gradient formulates the cost function of 

the MEDI algorithm [31]

(10)
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III. Material and Methods

A. Methods Performed in This Paper

As we cannot exhaustively evaluate all published QSM algorithms, we selected algorithms 

representing each of the categories. The TKD (5) and WKD (6) were selected as the 

representatives of categories I and II. The TKD was chosen because it is a widely adopted k-

space QSM method. The WKD is currently the only kernel evaluation method.

In categories III and IV, the regularization terms in (8) and (10) were selected. Equation (8) 

was chosen because it bears a high degree of similarity to the formulation in compressed 

sensing, which is also an active research field, and (8) is easily extended to the other forms 

of regularization in category III. Equation (10) was chosen because it was the first L1-based 

QSM method utilizing structural consistency in category IV. The same regularization term in 

(8) or (10) in conjunction with the data fidelity term (4) with or (3) without noise weighting 

were selected to study any benefits of noise weighting. Accordingly, these four additional 

methods were selected: TVWA (TV and WA), NTVWA (nonlinear TVWA), MGL1 

(Morphology enabled GL1), and NMEDI (nonlinear MEDI). The exact formulations of the 

methods are: , 

, 

, and 

Note that TKD, WKD, TVWA, and MGL1 do not use any noise weighting, while NTVWA 

and NMEDI account for Gaussian noise in complex MRI data. Here, MGL1 is not called 

MEDI, which is referred to as the algorithm accounting for Gaussian noise in phase data, 

.

B. Human Brain Simulation

A 256 × 256 × 128 Zubal-type [35] numerical phantom (see Fig. 1) was constructed with an 

additional “lesion.” The simulated susceptibility values were 0.08, 0.19, 0.10, 0.29, 0.06, 

−0.05, 0.04, 0.90, and 0.00 ppm for the caudate nucleus, globus pallidus, putamen, veins, 

thalamus, white matter, gray matter, lesion, and other parenchyma, respectively [12], [15], 

[27]. The field perturbation of the model was calculated by fast forward field computation 

[5]–[7] (B0 = 3 T in superior–inferior direction) and converted to GRE phase values at TE = 

20 ms. The noise standard deviation was set as one arbitrary unit (a.u.) and signal intensities 

were set to 1 a.u. in the lesion, and 68, 48, 71, 69, 78, 80, 92, 80 a.u. for the caudate nucleus, 

globus pallidus, putamen, veins, thalamus, white matter, gray matter, and other parenchyma, 

respectively. These values were empirically determined from in vivo human brain scans. The 

noise is simulated in real parts and imaginary parts independently [27], [31].

The effect of noise was investigated by comparing reconstructions between noiseless and 

noisy data for methods without noise weighting: TKD, WKD, TVWA, and MGL1. The 

effect of noise weighting was investigated through comparisons between constructions of the 

noisy data with and without noise weighting in TVWA versus NTVWA and MGL1 versus 

NMEDI.
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C. In Vivo Brain Imaging

The human study was approved by our Institutional Review Board. Thirty consecutive MR 

brain cases without hemorrhagic lesions (group 1, n = 30) and 20 consecutive MR brain 

cases with hemorrhages (group 2, n = 20) were used for this study. MR examinations were 

performed with a 3.0-T MR system (Signa HDxt, GE, USA), using an eight-channel head 

coil. A 3-D T2∗ weighted multiecho GRE sequence was used with the following parameters: 

FA = 20°; TR = 57 ms; number of TEs = 8; first TE = 5.7 ms; uniform TE spacing (ΔTE) = 

6.7 ms; BW = ± 41.67 kHz; field of view = 24 cm; a range of resolutions were tested: 0.57 

mm × 0.75 mm × 3 mm (n = 41), 0.57 mm × 0.75 mm × 2 mm (n = 7) and 0.7 mm × 0.7 mm 

0.7 mm (n = 2). All methods were applied on the human subjects for evaluating 

reconstruction image quality.

D. Implementation Details for Various Algorithms

For the field map estimation, the same procedures as in previous studies [1], [13] were used. 

The noise weighting w was set equal to the local SNR in simulation and was estimated along 

with the field map estimation [13], [27] for in vivo imaging. For each subject, the weighting 

w was normalized by its mean value inside the ROI, so that the weighting w was comparable 

and consistent across subjects. The method of projection onto dipole fields [18] was used for 

removing the background field. Because the phase outside of the brain was corrupted by 

noise, the magnetic field outside the brain parenchyma was cropped by a mask, which was 

manually segmented in the numerical experiments and was obtained using a brain extraction 

tool for the in vivo brain data [36]. Voxels in the background region or within 3 mm to the 

background region were set to zero [18], [32].

For the WKD method, the LSQR [37] solver was used. The TVWA, NTVWA, MGL1, and 

NMEDI methods were solved using a lagged diffusivity fixed point method [15], [38]. In 

methods involving a structural prior, m was estimated by setting the gradients of magnitude 

image greater than a certain threshold to 0 and to 1 otherwise [31], [34].

E. Regularization Parameter Selections

In all QSM methods, the regularization parameter (α, β), if present, was searched from 10−5 

to 101 (13 logarithmically spaced steps). The dipole kernel truncation level (τ) was searched 

from 0.0125 to 0.4 (32 equidistant steps) for methods requiring this parameter. From these 

ranges, the optimal parameters were determined in the following manner by exhaustively 

searching: The best parameter in noisy numerical reconstruction was chosen according to 

the least error with respect to the true susceptibility for TKD and WKD and the discrepancy 

principle [39], [40] for TVWA, NTVWA, MGL1, and NMEDI [27]–[31]. The same 

parameters were used in the noiseless simulation. The best parameters in the human brain 

reconstruction (true susceptibility not available) were selected according to the least number 

of artifacts and best contrast among brain components in one representative case determined 

by an experienced neuroradiologist (Weiwei Chen, ten years), and the chosen parameters 

were applied to all other cases.
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F. Data Analysis

To assess the accuracy of the numerical phantom reconstruction, the root mean square error 

(RMSE) of the whole volume and in lesion was calculated for every method. To assess in 
vivo image quality, four neuroradiologists (Weiwei Chen, Wenzhen Zhu, Chu Pan, and 

Lingyun Zhao) reviewed all the reconstructed cases in a random order while being blinded 

to the reconstruction methods. In each case, all the QSM images were presented 

simultaneously to facilitate the scoring. Overall image quality was scored with a five-point 

scale based on radiological impression, where 1 = corrupted quality, undiagnosable, 2 = low 

quality, undiagnosable, 3 = moderate quality, low confidence to make any diagnosis, 4 = 

good quality providing useful information, and 5 = high quality, high confidence to make a 

diagnosis. The first radiologist (Weiwei Chen) repeated the image quality assessment five 

months later to assess intraobserver variability. Interobserver and intraobserver variabilities 

of image quality scores were assessed by using the intraclass correlation coefficient [41]. 

The following criteria for clinically relevant agreement were used to assess the calculated 

intraclass correlation coefficient: less than 0.40 was considered poor; 0.40–0.59, fair; 0.60–

0.74, good; and greater than 0.74, excellent [42]. A Wilcoxon rank sum test was performed 

to assess the significance of image score differences between reconstructed susceptibility 

maps. Statistically significant with the higher image score was reported as an improvement 

when p < 0.05.

IV. Results

A. Numerical Simulation

The simulated maps are shown in Fig. 1. The influence of noise in the representative 

methods of the four categories is shown in Fig. 2. When noise was not taken into account in 

the QSM reconstruction, it generally led to more substantial streaking artifacts, as can be 

seen in column b in Fig. 2. The optimized parameters were τ = 0.1 for TKD and WKD, α = 

10−3 and β = 10−3 for TVWA, α = 10−3 for MGL1. The RMSE over the entire volume was 

0.045, 0.043, 0.041 and 0.040 ppm for TKD, WKD, TVWA, and MGL1, respectively. The 

RMSE in the lesion was 1.28, 1.25, 1.10, and 0.99 ppm, corresponding to 143%, 139%, 

122%, and 110% for TKD, WKD, TVWA, and MGL1 relative to the lesion’s known 

susceptibility, respectively.

The influence of noise weighting is shown in Fig. 2(b), (c), (e), and (f). The optimized 

parameters are α = 10−3 and β = 10−3 for NTVWA, α = 10−3 for NMEDI. Noise weighting 

markedly suppressed the artifacts [see Fig. 2(b)] and improved the accuracy for NTVWA 

(RMSE = 0.018) versus TVWA and NMEDI (RMSE = 0.013) versus MGL1. The RMSEs in 

the lesion were 0.091 and 0.020 ppm, corresponding to 10% and 2% for NTVWA and 

NMEDI relative to lesion’s known susceptibility. The calculated mean susceptibility values 

of the lesion (assigned 0.90 ppm) were 0.78, 0.75, 0.84, 0.87, 0.85, and 0.89 ppm for TKD, 

WKD, TVWA, NTVWA, MGL1, and NMEDI, respectively.

B. In Vivo Brain Imaging

The optimal parameters were τ = 0.1 in TKD and WKD, α = 10−3 and β = 10−3 for TVWA 

and NTVWA, α = 10−3 for MGL1 and NMEDI.
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The interobserver and intraobserver results are shown in Table II. These agreements ranged 

between good and excellent. The reconstructed images of QSM methods on one of the 

healthy subjects are shown in Fig. 3. For group 1, the overall image quality averaged from 

the four readers for TKD and WKD was 1.21 ± 0.37 (mean ± standard deviation) and 1.53 

± 0.43. The overall image quality for TVWA, NTVWA, MGL1, and NMEDI was 2.53 

± 0.51, 3.56 ± 0.55, 3.43 ± 0.73, and 4.18 ± 0.60. An increase in the image quality score was 

observed when noise weighting was included, and the differences were statistically 

significant (p = 3.59 × 10−6 for TVWA versus NTVWA and p = 0.001 for MGL1 versus 

NMEDI) between reconstructions with and without noise weighting.

The reconstructed QSM images in one of the hemorrhage patients are shown in Fig. 4. For 

group 2, the average overall image quality was 1.05 ± 0.22 and 1.43 ± 0.47 for TKD and 

WKD, respectively. When noise weighting was included, improved image quality was also 

observed in group 2 with respect to the suppression of streaking artifacts (see Fig. 4). The 

overall image quality for TVWA, NTVWA, MGL1, and NMEDI was 1.95 ± 0.48, 3.26 

± 0.53, 3.00 ± 0.63, and 3.89 ± 0.63, respectively and the differences were statistically 

significant (p = 2.76 × 10−7, 9.73 × 10−5 for TVWA versus NTVWA and MGL1 versus 

NMEDI).

The image scores’ difference was significant for TVWA versus NTVWA (p <10−5 for group 

1 and p < 10−5 for group 2) and MGL1 versus NMEDI (p < 10−2 for group 1 and p < 10−2 

for group 2) for each one of the four readers.

The average image quality according to the resolutions is shown in Table III. The image 

quality trend (sorted from worst to best: TKD, WKD, TVWA, MGL1, NTVWA, NMEDI) is 

same for the three resolutions.

V. Discussion

Our experimental results indicate that QSM quality is conspicuously improved when noise 

weighting is used, as in the Bayesian approaches, to properly account for the noise in 

measurements. Furthermore, QSM can be improved when a structural consistency prior is 

incorporated. Investigations with a numerical Zubal lesion phantom and 50 consecutive 

cases consistently corroborated these observations, which are concordant with the theoretical 

error analysis of QSM that the error in the reconstructed susceptibility comes from noise in 

the data and error in the prior [34].

Noise may cause severe streaking artifacts in QSM (see Figs. 2–4). We have noticed that the 

TKD has the most severe artifacts among the methods demonstrated (see Figs. 2–4). This 

may be explained by the truncation-related large noise amplification inherent in the k-space 

division in (5). The optimal truncated level τ is a tradeoff between fidelity to the model and 

suppression of artifacts, and the determined optimal τ in this study is consistent with 

previous studies [9], [10], [32]. The streaking artifacts and underestimation in the TKD 

reconstruction may be empirically reduced using some compensation strategies in images 

with high SNR [10], [43]. These compensations may influence the optimal τ (i.e., τ > 0.3 in 

[43]). We also noticed that the spatially varying noise of the input field data is not accounted 
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for in (3) and (6), which also led to obvious streaking artifacts in the reconstructed 

susceptibility map.

Noise weighting is beneficial, as demonstrated in the Bayesian QSM methods (see Figs. 2–

4). The incorporation of noise weighting in the data fidelity term, which is nonlinear with 

respect to the magnetic field as in (4), led to marked improvement in QSM image quality. 

Using the noise weighting consistently improved the image quality independent of 

resolution, group, and observers. The improvement was most pronounced in group 2 data, 

because hemorrhages generated low SNR regions. While Gaussian noise approximation for 

signal phase is a reasonable approximation in formulating the data fidelity term when the 

SNR is large, the Gaussian noise model for phase data becomes a poor approximation in low 

SNR regions. In the nonlinear formulation, the noise of the complex signal is Gaussian as is 

usually assumed in MRI. Since the L1 minimization problem is already nonlinear, this 

complex data fidelity term, which is nonlinear in the field, does not add any computation 

cost.

Low SNR lesions in clinical MRI include calcifications, hemorrhages, microbleeds, and 

other high iron deposits. Paramagnetic iron accumulation has been associated with 

Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, Huntington’s chorea, and 

chronic hemorrhage [28], [44], [45]. Calcification, experimentally confirmed to be 

diamagnetic [1], [8], [46], [47], has been associated with oligodendrogliomas and 

craniopharyngiomas [48], [49]. In contrast to previous methods that assume a piece-wise 

constant model in low SNR regions (e.g., lesion or cortical bone), requiring an image 

segmentation [1], [2], susceptibility mapping may reveal spatial distribution of the 

hemosiderin deposits in a hematoma or allow the differentiation of calcification from 

hemorrhage when they are mixed together [50]. Noise weighting is essential for accurately 

reconstructing the susceptibility maps of these low SNR lesions with large negative or 

positive susceptibility.

A structural prior is useful to further suppress streaking artifacts, as observed in MGL1 

versus TVWA and NMEDI versus NTVWA in image quality and Figs. 2–4. The structural 

matching between the magnitude image and susceptibility map by matching the locations of 

their gradients tends to improve the QSM image quality and accuracy. In the in vivo 
situation, the structural prior may not be as perfect as in simulation, so the improvement of 

the structural prior may not be so significant, as shown in Fig. 3(b) and (c) and Fig. 4(b) and 

(c). The gradient location consistency between the magnitude image and susceptibility map 

used in MEDI may be improved with more sophisticated identification and structural 

matching, such as incorporating edges derived from the magnetic field map [32], [51]. It is 

also theoretically shown that a comprehensive detection of all the edges in the true 

susceptibility distribution will reduce the error in the reconstructed QSM [32], [34].

Images from non-Bayesian TKD and WKD methods appeared to have more textures 

compared to the Bayesian methods. These perceived textures in non-Bayesian methods are 

likely streaking artifacts with low amplitudes in the numerical simulations. However, the 

simulated image is limited to a piece-wise constant model, lacking realistic variations. The 

perceived textures of non-Bayesian methods in human data are difficult to interpret due to 
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the lack of ground truth. The prior in a Bayesian method can introduce artificial smoothness 

and patchiness, and there may be other artifacts. While QSM has advanced to reliably 

generate reasonable image quality, further algorithm optimization and experimental 

validation are needed to establish accurate and robust QSM.

VI. Conclusion

In summary, noise amplification is a major source of errors in QSM. Gaussian noise in the 

complex MR signal domain can be accounted for in the data fidelity term of a QSM 

algorithm formulated in the Bayesian approach. With proper noise weighting, noise effects 

in QSM can be reduced using Bayesian methods. Among the illustrated QSM methods, 

NMEDI using the Bayesian approach with a physical prior of structural consistency 

provided the best QSM image quality.
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Fig. 1. 
Human brain simulation. (a) True susceptibility map and (b) Magnitude image are shown in 

the top row. (c)Noiseless field map and (d) Noisy field map are shown in the bottom row.
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Fig. 2. 
Noise and noise weighting effects in QSM methods. The result of the TKD, WKD, TVWA, 

and MGL1 (a) on the noiseless data and (b) on the noisy data. The TKD, WKD, TVWA, and 

MGL1 do not use noise weighting. Reconstructions in the noisy case that do not take into 

account the noise properties of the data clearly suffer from streaking artifacts as seen in (b) 

and difference images (c, d) between reconstruction and known susceptibility. Streaking 

artifacts were markedly reduced when noise weighting was incorporated in (e) NTVWA and 

NMEDI, comparing to the TVWA and MGL1 with same corresponding regularization term 

but without noise weighting (bottom two rows in b). The benefits of noise weighting were 

observed in reconstruction images (b, e) and difference images (d, f) between reconstruction 

and known susceptibility.
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Fig. 3. 
Noise weighting effect in QSM on a healthy subject shown in (a) magnitude, local field and 

(b) reconstructed QSM images in a sagittal section. The images in (c) correspond to the 

dashed boxes in (b). The average image quality scores were 1, 2, 3, 4.3, 4.5, and 5 for TKD, 

WKD, TVWA, MGL1, NTVWA, and NMEDI, respectively. Overall streaking artifacts were 

reduced in Bayesian methods. In the zoom-in images in (c), streaking artifacts were seen 

originating from vessels (black arrows) in TVWA and MGL1. This artifact was reduced to 

some extent in NTVWA and even further in NMEDI.
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Fig. 4. 
Noise weighting effects in QSM on a hemorrhage patient shown in (a) magnitude, local field 

and (b) reconstructed QSM images in a sagittal section. The zoom-in images in (c) 

correspond to the dashed boxes in (b). The average image quality scores were 1, 1, 2, 3, 3.5, 

and 4 for TKD, WKD, TVWA, MGL1, NTVWA, and NMEDI, respectively. Similar to 

volunteer images, overall streaking artifacts (black arrow heads and black arrows) were 

reduced in Bayesian methods. Streaking artifacts were seen originating mainly from the 

hemorrhage (black arrow heads) in TVWA and MGL1. This artifact was reduced in 

NTVWA and NMEDI.
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TABLE I

Notations

Symbol Meaning

r spatial (r-space) location

k spatial frequency (k-space) location

δb δb(r), magnetic field in r-space

d d(r), dipole kernel in r-space

χ χ(r), susceptibility distribution in r-space

n n(r), noise in r-space

F Fourier transform operator

Δb Δb(k), magnetic field in k-space

D D(k), dipole kernel in k-space

X X(k), susceptibility distribution in k-space

N N(k), noise in k-space

E data fidelity term

w noise weighting

τ predetermined k-space threshold

α,β regularization parameter

R regularization term

P specific physical structure prior

m edge mask
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TABLE II

Inter- and Intraobserver Variabilities

Method Interobserver variabilitya Intraobserver variability

TKD 0.80 (0.72,0.87) 0.84 (0.73,0.90)

WKD 0.70 (0.59,0.80) 0.72 (0.56,0.83)

TVWA 0.68 (0.56,0.78) 0.73 (0.54,0.84)

NTVWA 0.69 (0.58,0.79) 0.75 (0.60,0.85)

MGL1 0.73 (0.63,0.82) 0.81 (0.68,0.89)

NMEDI 0.82 (0.74,0.88) 0.88 (0.79,0.93)

Data are intraclass correlation coefficients, with 95% confidence intervals in parentheses.

a
Data are from the first reading of observer 1.
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