
2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 Abstract— Current infrastructures for developing big-data

applications are able to process –via big-data analytics- huge

amounts of data, using clusters of machines that collaborate to

perform parallel computations. However, current infrastructures

were not designed to work with the requirements of time-critical

applications; they are more focused on general-purpose

applications rather than time-critical ones. Addressing this issue

from the perspective of the real-time systems community, this

paper considers time-critical big-data. It deals with the definition

of a time-critical big-data system from the point of view of

requirements, analyzing the specific characteristics of some

popular big-data applications. This analysis is complemented by

the challenges stemmed from the infrastructures that support the

applications, proposing an architecture and offering initial

performance patterns that connect application costs with

infrastructure performance.

Index Terms— time-critical, big-data systems, time-critical

infrastructure

I. INTRODUCTION

urrent trends in computer science refer to big-data

systems to describe large and complex data centric

applications that cannot be run properly with current data

processing tools [1-6][50-52]. These tools are insufficient to

analyze, capture, cure, search, store, transfer, or visualize the

amount of data processed by this type of applications [46-47].

Big-data systems might also refer to algorithms that perform

some type of analytics [15, 28-29] that extract valuable

information from data, to find new correlations, to spot

business trends, or to combat crime.

Big-data scenarios [29-30] are characterized by the

existence of an enormous amount of information (coming

from mobile devices, logs, sensors, cameras, etc.) that needs to

be processed to achieve a goal. A single PC cannot typically

process this amount of data; thus, it is often processed by

algorithms that run in hundreds or thousands of servers hosted

in private clusters. In many cases, they can also use the

Internet, which offers cheap hosting to big-data storage and

computational applications via cloud computing

infrastructures, as a cost-effective solution.

From a business perspective, big-data offers an opportunity

to increase operational efficiency in an enterprise [5-7]. It may

reduce operational costs by detecting inefficient policies

which may be replaced by more efficient ones. Also, it may

discover new business niches and opportunities, mining

information available into the organization.

Time-critical systems [7-8] refer to systems subject to

certain temporal restrictions, which typically consist of

maximum deadlines for an input event to be processed, and/or

an output to be generated. These maximum deadlines are

derived from the characteristics of an external environment

that imposes physical requirements on applications. In time-

critical systems, response-times can be in the order of

milliseconds, or microseconds, e.g. for system control; they

can also be longer, e.g. when interacting with human

interfaces. Typical time-critical systems [29-34] have

benefited from different general-purpose computational

infrastructures (e.g. programming languages, operating

systems, modeling languages, etc.) including specific

computation algorithms that take advantage of the application

characterization to estimate, a priori, maximum response

times. Currently, there is not a clear definition of how time-

critical and big-data systems should be merged to produce a

“time-critical big-data system”. However, there are some

pioneering research initiatives [9-11] that seem to identify

different opportunities stemmed from the combination of these

two types of systems.

Implicitly, many big-data applications have requirements in

terms of maximum expected deadlines that have to be satisfied

by the underlying infrastructure. In these cases, it seems that

many of the existing techniques for time-critical systems may

be beneficial for the time-critical big-data applications to

estimate maximum deadlines for running their analytics. Work

like [9-11] shows the relationship among the response-time of

the applications and their performance, establishing different

mathematical models that connect worst-case response-times

and the number of machines with quasi-linear formulations.

Time-Critical

Big-Data

Infrastructure Time-Critical (off-line)

Map-Reduce

Time-Critical

(on-line) stream Proc.

Time-Critical

Execution

Environment

(Cluster)

Time-Critical Analytic

Time-Critical

Big-Data App

Fig. 1. Holistic Time-Critical Big-Data System

The contribution of this paper is an architecture for time-

critical big-data systems (summarized in Fig. 1) able to run

time-critical analytics. These analytics are supported by an

infrastructure able to run different programming abstractions

on a large number of machines, arranged as a cluster. To

implement the architecture, our approach is to extend Spark

[23] (to support time critical map-reduce), and an Apache

Storm [16] with a backward time-critical stack. Also part of

our contribution is a set of techniques that profile the

performance of a time-critical infrastructure.

The rest of the paper is organized as follows. Section II

deals with the application domains: from science applications

to social networking, with real-time requirements. Those

domains raise a number of issues or technical challenges

(Section III). Section IV introduces an architecture for big-

Architecting Time-Critical Big-Data Systems
P. Basanta-Val, N. C. Audsley, A. J. Wellings, I. Gray, N. Fernández

C

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

data applications standing on common off-the-shelf

technologies (Apache Storm [16] and Spark [23]), which are

equipped with time-critical engines. Section V introduces

specific technological mappings and application use-cases.

Section VI introduces evaluation results for both stacks in two

types of applications. Section VII describes the related work

and Section VII summarizes results and exposes our on-going

work.

II. DOMAINS

The exploration of the different initiatives for time-critical

big-data systems starts by analyzing applications taken from

different use-cases from science, data processing, financial

services, and social networks. The goal of this section is to

illustrate the time-critical characterization of these

applications.

A. Science Applications

There are two classical examples of time-critical big-data

science applications: the Large Hadron Collider (LHC) [12],

and the Square Kilometer Array (SKA)[22]. LHC experiments

involve 15 million sensors delivering data 40 million times per

second. From a total of 600 million collisions per second, only

100 collisions per second are interesting. Thus, the collider

outputs a 300 Gb/s stream that has to be filtered to 300 Mb/s

for storage and later processing.

Implicitly, in LHC all this data cannot be stored in its raw

format and has to be processed online, with computational

units running at 100% of their computational speed, before

being stored. Working with less than 0.001% of the sensor

data, the data flow from all experiments represents 25

Petabytes. In a case where all data is to be recorded, the

resulting flow would exceed 150 million Petabytes of data.

B. Data Aggregators

 Another type of applications related to big-data systems

that aggregate data from different sources, known as data

aggregators [13]. Their aggregation phases refer to data

coming from the Internet and also data coming from other

private infrastructures, like sensors in cars, buses, and planes.

This data is explored by the big-data infrastructure to look for

different patterns globally. As in the previous case, in most

scenarios the time-critical requirement refers to the possibility

of using enough computation facilities to be able to process

the data without overflowing. In addition to this stability

condition, another set of deadlines may be established to

perform specific detections.

C. Financial Transaction

 Online and offline business analytics [14] represent

another potential application scenario of time-critical big-data

systems. Online analytics (like those used in High Frequency

Trading) define the strategies used by auctioneers to decide if

a stock is to be sold or bought. In this type of application, the

shorter the response time of the intelligent system, the better

the results are. In the case of offline analytics, they may also

process data stored in logs/data servers to predict the future

behavior of certain markets or stocks by using well-known

techniques. As in the online strategy, a delayed response may

result in financial losses.

D. Social Networking

 Social networks are another source of big-data

information. They produce a myriad of streaming dynamic

data that may be processed, for instance, to offer intelligent

advertising to end-users [14]. These types of applications are

difficult to model as time-critical systems, because they tend

to have very complex data sources and worst-case

computation times are difficult to calculate. In many cases, it

seems that the infrastructure may benefit from having some

type of adaptive quality of service algorithm to manage the

nodes of a cluster, according to the application requirements.

In specific cases it seems possible to establish other types of

operational deadlines on the analytics. This is the case, for

instance, of event detection (like earth-quake detection [45])

via social networking, where a sub-second scale deadline may

be established as a requirement.

III. TECHNICAL CHALLENGES

Another way to approach time-critical big-data systems is to

analyze the infrastructures currently given to practitioners,

studying the technical challenges which stem from trying to

implement time-critical applications using these

infrastructures. In many cases these infrastructures have not

been properly adapted to the requirements of time-critical

applications, giving rise to new requirements for developing

these systems.

A. Lack of Time-Critical Big-Data Facilities

 Most big-data infrastructures were designed with general-

purpose applications in mind and are silent on the

requirements of time-critical systems. All main development

platforms based on Hadoop [15] and map-reduce target HPC

platforms and do not support the idea of defining deadlines.

Only in some specific cases [1], like the case of the Apache

Storm distributed stream processor [16], do they seem to

target online computation. But even in these cases, most

infrastructures seem to be focused in general-purpose

applications rather than considering time-critical performance.

Among the list of issues that have to be considered when

designing an effective time-critical infrastructure for big-data

applications, one should address the following aspects:

 Ability to process high volume of data: Among the first

features required from a big-data system is the ability to

process a huge amount of data across multiple

computational nodes. This capacity refers not only to the

number of computational nodes in the system, but also the

amount of disk storage, memory, and communication

resources available among the different nodes of the

cluster. Current algorithms are focused on general

purpose computation [9].

 Distribution and Parallel Computation: Most big-data

applications are distributed applications where several

connected nodes share information and resources to

accomplish a mission, typically, to perform big-data

analytics. Thus, many infrastructures are able to distribute

the computation among different nodes of a cluster, using

different policies. However, in most cases, the algorithms

used do not take into account the time-critical nature of

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

the application, producing setups that are non-optimal

from the perspective of the application.

 Data Locality: Another important source of non-

determinism that may impact the response time of the

applications is the availability of local or remote access to

data. Remote access to data tends to introduce a response

time penalty of more than an order of magnitude in some

big-data applications, in addition to an increased jitter

(see [20]). However, remote communication opens the

door to introduce parallel and distributed computing to

reduce computation times, which may be used to

effectively reduce application worst-case response times.

 Fault model: Big-data applications run in faulty

infrastructures where computation nodes may appear and

disappear dynamically. This introduces additional

requirements for the infrastructure, which has to provide

predictable recovery policies ([20-21]).

In addition to the shortcomings in the infrastructure, there is

also a general lack of models for time-critical big-data.

Current existing tools for big-data (e.g. those using model

driven architecture approaches) have been designed for

general purposes and are silent on the identification of specific

optimizations for time-critical applications. Thus, these tools

need to be extended with time-critical characteristics, required

for developing time-critical big-data applications.

B. Time-Critical Algorithms and Analytics

In most cases, big-data applications are composed of a set

of algorithms that run on data, trying to perform some type of

analysis; such as a prediction of trends and patterns [17].

Typically, the analytics carried out may be classified into three

groups: descriptive, predictive and prescriptive. Descriptive

analytics have the goal to condense big-data into smaller

chunks. Predictive analytics take data and produce as output a

prediction regarding future values or behavior of that data.

Another interesting characteristic of some analytics is that

they may improve their output quality as the amount of

computation time or data increases. This property may be used

to produce time-critical efficient analytics that tradeoff output

quality and computational cost. In many cases, the

computational model of a particular class of analysis may be

expressed as a directed acyclic graph (DAG) [9]. This DAG

may be used to compute a worst-case response-time for the

analytic, provided that the worst-case execution time for all

stages in the DAG is known.

C. Security and Privacy

 Another major concern of a big-data system is the

existence of a secure and private execution environment [18].

Among the challenges imposed to a big-data system are: the

definition of secure computations in distributed programming

frameworks, secure data storage, transaction logs, endpoint

validation, real-time security, data centric security, granularity

of access-controls, audits and data provenance.

The proposed time-critical data system addresses the basic

challenge of producing a time-critical infrastructure for the

computational models of Spark and Storm. In the improved

architecture, analytics are driven with priorities. Section IV

contains the portable architecture and the computational

framework. Section V deals with software aspects regarding

an implementation on top of Spark and Storm. Lastly, Section

VI describes performance aspects of the computational

framework. All other challenges described in the section have

been set aside.

IV. TIME-CRITICAL BIG DATA SYSTEM

In this section, we explore an architecture defined to support

big-data systems. The proposed architecture is based on

existing technologies, which are enhanced with a time-critical

dimension. In essence, the model mixes two main

technologies: Apache Storm [19] which is an efficient

approach for sub-second delays, and Apache Spark [24],

which offers a rich and an efficient framework on which to

implement offline map-reduce applications. The model is also

highly inspired on previous architectures described in the

context of distributed real-time systems for Java

[20][21][25][53]. From this distributed context, the

architecture also takes specific support for parallel processing

[9], and several online scheduling mechanisms for predictable

reconfiguration strategies (see [26]).

A. Overview

The architecture proposes a layered approach for big-data,

combining traditional time-critical middleware [30] with big-

data architectures [1][31]. Our reference model consists of

four main layers, each one of them dealing with different

aspects of the big-data system (see Fig. 2):

- Applications: At the top of the architecture are

applications, which are named analytics. They are arranged

as a directed acyclic graph structure, easing deployment in a

large cluster of machines. The main type of consideration

that has to be taken into account is their nature (see Fig. 3):

 Time-critical (deadline oriented): The main requirement

imposed on this layer is the existence of time-critical

requirements. Typical requirements are deadlines, which

range from the sub-second range to seconds, days, weeks,

etc. These deadlines on the analytic are essential to

determine the number of machines required to perform

the analytic. In a harmonious and balanced system, the

number of machines required to meet a deadline increases

as the amount of data does (linearly).

 Integrate offline and online analytics: Typically, analytics

can be classified as offline and online. Offline analytics

(sometimes named batch analytics) tend to explore a large

volume of data and they have large CPU consumption

models. On the other hand, online analytics have shorter

deadlines which require the use of different techniques to

meet time-critical deadlines.

- Tools: Supporting applications are tools, which define

the second level in the architecture. These tools satisfy

different aspects of an analytic. In the particular case of a

time critical system, they offer support to deadlines and any

other type of requirements. To satisfy deadlines, tools have

fine control on the resources available to machines, which

have to be properly controlled and configured. The types of

resources managed include disk bandwidth, memory, CPU

Cores, and communications.

 Different types of applications require different types of

resources to be controlled. In the case of online applications,

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

they are likely to deal with lower data volumes, and higher

speeds. On the other hand, offline infrastructures deal with

huge data sets and, a priori, do not have a direct interaction

with end-users.

 - Infrastructure: Infrastructure refers to fundamental

facilities servicing applications and implementing necessary

blocks for running analytics. At this layer, there are at least

five different types of sub-infrastructures, whose proper

management may have a marked impact on performance and

on the response time of applications, including:

- Cluster management support: Many of the different

tools use common facilities to access a cluster. They use

different facilities from local or remote nodes, which

are accessed via specific operating system interfaces

or/and low level managers for storing computational

models and/or connection managers.

- Operating system (OS): Typically, an OS is in charge of

controlling a set of resources via a well-defined

interface. In some cases, interfaces include resource

managers that control resources assigned to an

application. Some specific OSs define policies for real-

time performance, that can be enhanced to add time-

criticality.

- Storage managers: In close connection with operating

systems, there are storage managers, which control

different storage systems. In some cases, they offer

support for different quality-of-service policies, which

can be exploited in time-critical systems.

- Node managers: They control a set of machines

remotely from a manager. Typically, those node

managers handle different classes of machines, with

similar installed software and hardware stacks.

- Connection managers: They control communications,

and are crucial as the communication needs and the

cluster increase in size.

H
a

rd
.

(TC) Cluster Manager

(TC) Big-Data tools

(TC) Operating System

(TC)

Storage
(TC)

Machine

In
fr

a
e

s
tr

u
c

tu
re

T
o

o
ls

(TC)

Comm.

(TC) Analytics Apps

A
p

p

Fig. 2. Architecture for Time-Critical Big-Data

- Hardware: At the bottom of the architecture is hardware.

In many big-data systems, typical hardware layers are

arranged as clusters of quasi-identical machines (potentially

virtual machines). In a more general framework, the main

facilities to be considered at this layer are:

1. Computation: This refers to different computation

resources (CPUs, cores).

2. Storage: This refers to storage units required to process

huge volumes of data.

3. Communication: This refers to different facilities that

interconnect computational resources and/or storage

units.

A1 (Time-Critical) Analytic

End-to-end

deadline

A2 (Time-Critical) Analytic

End-to-end

deadline

M

W

W

W

W

RM
W

W

W

R

W
R

R

Fig. 3. Time-critical analytics: Each analytic describes a simple end-to-end
time-critical constraint. In the depicted scenarios, the work (W), executed in

parallel by an analytic, is preceded by a map (M) phase and followed by a

reduce (R) phase. The end-to-end requirement is described as an analytic
deadline.

B. System Model

The model described in Fig 3, has been formalized using

real-time systems theory to produce a time-critical

characterization, useful for map-reduce and distributed stream

processing. The essence of the technique consists in splitting

different stages in applications, which are scheduled locally

with other analytics and that interact with other parallel (||) and

sequential stages (→).

1) Time-Critical Analytics

From a formal perspective, a time-critical big-data system

(TC_BDS) is composed of a set of n analytics (TC_Ai):

) (eq.1)

 Where each analytic (TC_Ai) is represented by an execution

graph (TC_DAGi) and a set of performance requirements

(TC_RQi):

) (eq.2)

The execution graph models are commonly used in many

systems. For instance, they are the computational model in

Apache Storm and they can be also used to model map-reduce

interactions of Apache Spark.

Our basic requirement is a deadline for the whole analytic

(D). Deadlines are defined by the analytic and may include

data reading, writing, blockings, and any other logic

associated with the execution of the analytics:

 (eq. 3)

Likewise, each direct acyclic graph (DAGi) is composed of

a set of stages(i). In each stage, the characterization is defined

with a minimum inter-arrival time (Ti
j
), a partial deadline for

each stage (Di
j
), and a worst-case execution (Ci

j
) associated to

the stage:

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 (eq. 4)

2) Cluster Infrastructure

In the architecture, the infrastructure runs on a cluster

(TC_CLS) of m machines (π):

) (eq. 5)

Each machine offers a normalized maximum utilization

(Uk) to the system and it also introduces a maximum blocking

time (Bk), which typically affects the application and refers to

the maximum time an application may be awaiting a resource:

 (eq. 6)

 Blockings are very useful to model non-preemptive

behaviors, related to packet scheduling and also the effects of

priorities – e.g. high priority process blocked by a lower

priority process holding a required resource. They are also

applicable when modeling access to disk and network

facilities.

3) Time-Critical Characterization

 To be properly characterized, each stage of an application

should be assigned to a machine of the cluster (πi
j
). To help

the application, the system has to declare a priority (Pi
j
) which

has to be honored in all nodes. In addition, in choosing a node,

the analytic of a stage also suffers a blocking (Bi
j
) from the

infrastructure.

TC_

 (eq. 7)

 After describing all different analytics from the application

as fully configured sets of stages, one may determine bounds

for the response-time of an analytic. This type of configuration

is intended to be used with worst-case computational models

for distributed and parallel computing.

4) Meeting analytic deadlines: Schedulability analysis

 Once the system is fully configured, using scheduling

theory one may check if all deadlines in applications are met.

Typically, one may resort to a general formulism, which is

exact and valid for all different tasks. And also, there is a

utilization bound (valid with T=D) constraint and priorities

assigned inversely to periods; i.e. shorter periods have higher

priorities). These two techniques are the core of the

contribution of the article.

 The first equation refers to the response time (TCRTi)

associated to each different segment of an application. Taking

as a starting point the characterization given in Eq. 1- 7, one

may calculate the worst-case response time (TC_RTi
j
) in each

node, using the following recursive formulation:

 (eq. 8)

 Basically, the formalism applied is based on the response

time analysis (RTA) [31]. RTA considers that the worst-case

time of a segment is equal to the required execution (Ci
j
), plus

the blocking (Bi
j
) experienced from the infrastructure plus the

interference of those tasks with higher priorities (HP(i,j))

hosted in the same node). Each of these tasks introduce a

(Cz) extra demand every Tz time units. To solve all (eq. 8)

equations in all nodes, one needs an incremental method to

calculate the right response time, which has polynomial

complexity.

The second type of constraints refers to the extra conditions

that enable calculations of the worst-case response times.

Segments are grouped with two compositions: sequential (→)

and parallel (||). For each of them, one needs to define worst-

case response times for the connection of different segments.

Eq. 9 refers to the extra conditions one has to calculate for a

sequential interconnection and Eq. 10 for a parallel one.

 To calculate the worst-case computational times of two

sequential (→) stages (i) and (i’), the worst case scenario is to

add partial contributions of two individual segments:

 (eq. 9)

In addition to that, there is parallel relationship (||). If two

stages run in parallel, then the response time of its aggregation

is the maximum of the worst-case response time of any of

them:

) (eq. 10)

Another type of techniques, which can be only used in

specific cases (with T=D) and priorities assigned inversely to

their periods) is to offer a global utilization bound that can be

computed in linear time (i.e. linearly with the number of

elements to be computed). In this work, we refer to a specific

formalism of multiprocessors that establishes a safe bound for

the maximum number of resources [33, 34]. It connects the

number of machines required to support the system (when the

deadline is equal to the period: T=D for rate monotonic

assignments). The framework extends this model with

blockings. The formalism connects the total utilization of the

application (UTC_BDS) with the number of required nodes (m) in

the cluster to meet different application deadlines.

Assuming that all deadlines in all segments are increased by

the blocking time (Bi
j
):

 Ti
j +Bi

j =Di
j for all i, j

And a maximum utilization provided by each node (Umax):

Uz>=Umax for all z in 1 .. m.
then:

 (eq. 11)

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Notice, that blockings (Bi) reduce the response of an

application, which gets increased (see Eq. 8) with the

blocking. However, they do not have an impact on the number

of resources of a utilization based system, because it only

introduces delay. Another interesting result of the technique is

that one may derive a safe bound for the maximum number of

computational units (m) required for implementing the system.

As the formulism shows, the number depends on the minimum

period of the applications and the maximum activation costs.

This section provided the basic formulism used to check if

the system is feasible or not. Enforcing a classical

characterization (i.e. T, C, D, P, B) the approach introduces

the equations used to derive worst-case computational models

that may be iteratively computed and to obtain worst-case

computational models. In addition to this iterative models,

there are utilization bounds (with B+T=D) that offer sufficient

bounds for the maximum utilization of the system.

V. TIME-CRITICAL IMPLEMENTATION

The previous section defined a time-critical model for big-

data. This section defines a complementary time-critical

software stack, which is evaluated latter in Section VI. The

proposed model is based on a map-reduce cluster. This map-

reduce cluster offers file-system management, which may host

a large volume of data. It also includes support to manage a set

of machines via cluster managers. The stack uses a common-

off-the-shelf OS (Linux), which is installed in all nodes.

On top of this infrastructure there are tools that enable the

possibility of performing analytics. Two used tools are Apache

Storm [9], targeted at sub-second response times, and Spark

[23] with enhanced map-reduce performance. Storm uses a

distributed stream programming model, intended for online

processing, while Spark is more commonly used in batch

processing.

 Cluster Manager

 Big-Data tools

Analytics

Operating System

Data

Storage
 Cluster

In
fr

a
e

s
tr

u
c

tu
re

T
o

o
ls

A
p

p
li

c
a

ti
o

n

* DAG models

* Map-Reduce

* Hadoop

* Storm

* Spark

* YARN

* Zookeeper

* Mesos

*Standalone

* Linux

* HDFS * slave

Issues:

 - Models do not

characterize deadlines

- Lack of time critical

facilities

Issues:

- Focused on general

purpose infr.

- Mainly focused on offline

activities

YARN, Zookeeper, Linux

Issues:

- Focused on general purpose

infr.

- Mainly focused on offline

activies

- Lack basic abstractions

 used in time-critical

applications

Slaves and HDFS Issues:

- Focused on general

purpose

- They do not offer efficient

 worst-case time critical

 models

Time-Critical IssuesGeneral purpose stack

 Cluster Manager

 Big-Data tools

Analytics

Operating System

Data

Storage
 Cluster

In
fr

a
e

s
tr

u
c

tu
re

T
o

o
ls

A
p

p
li

c
a

ti
o

n

* (TC) DAG models

* (TC) Map-Reduce

* (TC) Storm

* (TC) Spark

* (TC) Zookeeper

* (TC) Standalone

* (TC) Linux

* HDFS * (TC) slave

Time-Critical stack

Fig. 4. Transforming a general purpose stack into a time-critical stack

Lastly, the uppermost layer offers the possibility of using

map-reduce via Apache Spark or processing high-speed

streams with Apache Storm. To be able to offer time-critical

performance, the following mechanisms are required:

 A mechanism which assigns applications, according to

their characterization and the previous described model.

Typically, different resources managers (e.g. YARN,

pluggable scheduler of Apache Storm, and the

standalone cluster manager) have different policies that

can be extended to take into account the nature of the

analytic.

 A mechanism which performs resource reservations at

the OS level. One common facility included in the Linux

OS is cgroups [43], which enables aggregation of a set

of tasks into hierarchical groups. Also, if they are

properly configured, they help to enforce periodic

activations in nodes.

 A mechanism to configure the priority of an application

running on a cluster. This facility may be satisfied at

application level or at cluster level.

A. Distributed Stream Application Example

Our first example to show how a distributed stream

processor works is based on a distributed word counter. The

distributed word counter may be defined as a set of four

stages, the first in charge of generating the flux of data, which

is after that processed by a parallel counter that splits words

contained in each message. After that, words are counted

using a hash-table in another stage. Lastly there is an

aggregation phase. Our distributed stream example consists of

three stages which are arranged as a DAG (see Fig. 5).

End-to-end deadline

CG

S

S

Fig. 5. Scenario under evaluation: Time-Critical Stream Counting. The

application consists of one Spout generator (G) which feeds several splitters

(S). All splitters feed a unique counter (C). There is an end-to-end deadline for
the analytic, starting in the generator and ending up in the counter.

Now, let’s consider the perspective of a programmer,

providing an example from this perspective. This type of

analytic consists of code that reads data with a generator stage

(coded in TC_Generator, see Listing 1), a splitter

(TC_Splitter, in Listing 2) which extracts words out of

sentence, and a counter (TC_Counter, in Listing 3) that

counts all words. The application to be deployed requires from

a last class which creates the topology and allocates all the

elements of the stream (TC_Counter_App, in Listing 4).

The generator uses a spout of Storm (see Listing 1), which

has been modified to add time-critical information. The spout

is a active class where the code invokes the nextTuple()

method. The method is in charge of generating data that is sent

to the next stage of the stream. This tuple is transferred in Line

17. In addition, the example includes a time-critical

mechanism to configure enforcement properties. For instance,

it is used to enforce the periodic activation of the stream in

generation. It is also in charge of setting up a priority, which is

enforced in all nodes.

Those tuples emitted by the spout go through the

infrastructure and are processed by a bolt. In all bolts, it raises

an invocation to the execute() method with the information

of the tuple. In our particular case (see Listing 2), first the bolt

checks if the stream is properly received (Line 08) with a call

to the tc_config() method, which is also in charge of

setting the priority and/or enforcing minimum applications

interarrivals between different invocations. After the

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

invocation, the stream is split (Line 09) into different pieces,

which are sent to the last bolt. The last bolt (see Listing 3) is in

charge of counting the words packed into a stream.

Lastly, to create the application, a topology is required

which is then sent to the cluster (see Listing 4). The most

important part is the one that connects different elements to

build the topology, which defines an interrelationship among

them. The generator is created and aggregated with

setSpout. Then a bolt is created with a parallelism hint of 2

(Lines 10-12). The last element to be added is the bolt in

charge of counting data (Lines 14-15). Lastly, the application

is sent to the cluster of machines to be properly executed and

the configuration file which contains the priorities and

machines corresponding to all nodes (Line 18).

01: public class TC_Generator implements IRichSpout

02: {

03: FileSource fs;

04: OutputCollector collector;

06: public void open(conf, context)

07: {

08: loadSource()

09: storeConf()

10: }

11: public void nextTuple()

12: {

13: while(availableData())

14: {

15: tc_config();

16: get_data();

17: emitTuple();

18: }

19: }

20: public void declareOutputFields()

21: { }

23: }

Listing 1: Time-Critical spout. The next_tuple method call to

tc_config to enforce an application defined behavior.

01: public class TC_Splitter implements IRichBolt

02: {

03: public void prepare(conf, ctx)

04: { }

06: public void execute(Tuple input)

07: {

08: tc_config();

09: split();

10: emit_data();

11: }

12: }

Listing 2: Time-Critical Splitter bolt. Prior to the execution of the application

logic, it invokes a tc_config() method that configures the bolt according to
the time-critical characterization.

01: public class TC_Counter implements IRichBolt

02: {

02: Map counters;

03: OutputCollector collector;

04: public void prepare(conf, context)

05: { }

07: public void execute(Tuple input)

08: {

09: tc_config();

10: processTuple()

11: }

12: public void declareOutputFields(declarer)

13: {

14: }

15: }

Listing 3: Time-Critical Counter Bolt. It does not emit any tuple. It only

processes incoming tuples.

01: public class TC_Stream_App

02 {

03: public static void main(String[] args)
04: {

05: Config config = new Config();

06: config.put("TC_config", args[0]);

07: TopologyBuilder builder = new TopologyBuilder();

08: builder.setSpout("TC_gen",

09: new TC_Generator());

10: builder.setBolt("TC_split",

11: new TC_Splitter()).

12: shuffleGrouping("TC_gen"),2);

13: builder.setBolt("counter",

14: new TC_Counter()).

15: shuffleGrouping("TC_split");

16: Cluster tc_cluster = new Cluster();

17: tc_cluster.submitTopology("TC_topology",

18: config,

19: builder.createTopology());

20: }

21: }

Listing 4: Time-Critical stream application, in charge of allocating the

topology and sending it to the cluster.

B. Map-Reduce Example

Complementing the previous example, this section

introduces an example of a time-critical application for Spark

(see Figure 6). Our basic example is part of a word-cloud

example that reads information from a file to create a word-

cloud using Spark map-reduce engine, which is a simple but

effective example to illustrate how the modified Spark

performs its internal behavior.

From a technical perspective, the chosen analytic loads a

file into an RDD (Resilient Distributed Data) and processes it

with a simple map function to split input sentences into words,

which are latter reduced. The application code is given in

Listing 5. To implement the analytic proposed, an RDD is

defined to read data (Line 9 of Listing 5). This data is then

processed to create a map with all words (Line 11), which is

reduced to elements with only one key (Line 13). Lastly, the

example stores the resulting data into a file (Line 15).

L M

M

End-to-end deadline

R

R
S

2: Map 3: Reduce 4:Save1:Load

M

Map-Reduce counter analytic

Fig. 6. Structure of the application defined in Listing 5.

01: #Simple time-critical work cloud analytic

02: def analytic_map_code (word):

03: tc_config()

04: (word, 1)

05: def analytic_reduce_code (a, b):

06: tc_config()

07: a+b

08: tc_config()

09: text_file = sc.textFile("file.in")

10: counts = text_file\

11: .flatMap(lambda line: split(" ")) \

12: .map(analytic_map_code) \

13: .reduceByKey(analytic_reduce_code)

14: tc_config()

15: counts.saveAsTextFile("file.out")

Listing 5: Time-critical map-reduce for a Spark-Python stack. The example
corresponds to a word-cloud that can be configured with the priorities and

configuration enforced with tc_config.

To ensure time-critical behavior, applications may resort to

specific methods that control resource assignment. As in the

previous case, there is a tc_config specific method, which is

charge of enforcing time-critical configuration parameters

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

(defined by the application designer) at the different stages of

an application. Depending on the nature of the application, it

may delay the application until the next activation, change

priorities, or perform any other type of specific optimization.

In Spark, the number of parallel execution units is

calculated using the amount of data processed and the number

of execution units available. This type of policy is also

compatible with the tc_config function, because the

strategy offers support to all different stages of the model.

VI. EVALUATION

 The basic goals of the empirical section are the following:

 Establish the number of nodes required to satisfy

certain required demands, empirically. That it is to

provide performance patterns.

 Compare the technique with others, in the cases where

this is feasible.

 Establish empirical evidence on the differences offered

by a time-critical infrastructure and a general purpose

one.

Our evaluation contains a time-critical stack which offers

support for a time-critical version of Apache Spark (tc-1.6)

map-reduce and Apache Storm (tc-1.6) (see Figure 7 and

Table I). Each of these technologies runs on specific time-

critical clusters. Lastly, there is a time-critical operating

system hosting this entire stack, which runs on a cluster with

60(x4 cores) machines. Those machines share two different

storage units: a NFS Linux filesystem used to store data, and a

large HDFS engine. The specific versions of Storm modified

were rt-0.98 and rt-1.6, which have been extended with time-

critical stacks. Our experimental results run until obtain an 1%

confidence interval, with a 10-E-10 probability error

distribution.

On top of the stack, we run two type of analytics:

 Micro-blogging analytics that count trends. For testing

purposes, the evaluation deals with a larger number of

tweets processed using offline and online engines. For

those applications, the deadline has been taken into

account. In this case, the basic formulism used is Eq. 11,

which assumes that (B+T=D). It has been iteratively used

to calculate number of machines necessary to support a

certain time-critical performance.

 Text mining (offline and online). For testing purposes, the

evaluation deals with books taken from Project

Guttenberg [43] online library. In all cases, the studied

analytic counts words to build a histogram.

For text mining and microblogging, the application defines

application deadlines for each analytic. Typically, online

analytics run with deadlines under one second (<1s) and are

supported with the Time-Critical Storm; the offline application

has a hard deadline of minutes or hours and are targeted to the

Time-Critical Spark (see Table I).

(TC)Zookeeper (TC)Standalone

HDFS

2 Gb/s

(TC)Spark (TC)Storm

(TC)Analytics

 - Online (TC) storm

 - Offline (TC) spark

(TC)RT-Linux 3.4

(TC) Regular cluster

(40*4 cores)

NTFS

Fig. 7. Type of evaluated map-reduce analytics

Table I: Main parameters of the experiment

Analytics

TC_A1) Micro blogging trending topics (online)

TC_A2) Micro blogging word cloud (offline)

TC_A3) Word counter (online)

TC_A4) Word histogram (offline)

Analytic

Deadlines

D_TC_A1) Processing an event (< 1 second)

D_TC_A2) Processing all data (< 1 hour)

D_TC_A3) Processing an event (<1 second)

D_TC_A4) Processing all data (<10 min)

Confidence interval +-1% with less than 10E-10 error

(TC)Storm version tc-0.98

(TC)Spark tc-1.6

Data-set 1 Terabyte

RT-OS RT-Linux

Machines 240 cores= 60 machines x4 cores per machine

Optical Network speed 1 Gb/s

A. Micro-blogging Experiment

This first experiment runs on TC-Storm and it is based on a

typical micro-blogging application that counts the number of

messages (e.g. tweets) that arrived. In the first case, the

application is similar to the one described in Section V for

stream processing and map-reduce fluxes.

1) Micro-blogging topics (online)

 For micro-blogging, the distributed stream processor selects

the most-popular topics which are aggregated to produce an

output flux (see Fig. 8). Each different type of stage derives a

worst-case computation time (see Table II). For increasing

input data frequencies from 1 Hz to 24 kHz, the evaluation

analyses the number of resources required to implement the

system for the worst-case in which all data require maximum

computational times (basically using utilization equations,

described from eq. 10 to eq. 11). Also, it was evaluated how

the response time is affected by decimation in the aggregation.

There is a deadline of 1 second for the end-to-end response

time of the stream.

Parallel Counter

Generator_1

(Spout)

Counter_1

(Bolt)

1/n

1/decim
ation

Aggregator_1

(Bolt)

1/

decimation
Input

Stream
Output

Stream

Counter_2

(Bolt)

Counter_..

(Bolt)

1/d
ecim

atio
n

1/n

1/n

End-to-end Deadline (<1s)

Fig. 8. Type of evaluated multi-input and output stream processor. End

to-end deadline comprises from the input to the output

For the given frequencies, the system requires a utilization

which may be for the best case satisfied with a single core

(e.g. 1 message per second) to a maximum of 83

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

computational units (see Figure 9, and Figure 10). Figure 9

shows the evolution of this parameter as the number of

messages increases. It also shows the number of cores

required for an analytic. Using the formalism included in the

analytical model, one may establish the end-to-end response

time. In all cases, the worst-case observed response time is

bounded by 3.4 milliseconds, assuming that there is no

decimation.

Previous approaches in the state of the art for Apache Storm

only deal with quality of service issues [36]. One major

difference among the strategy they proposed in [36] and ours

is the type of modeling used. Although the techniques are

different (their scheduling techniques) we compared their

techniques against ours to determine the number of cores

required for their technique. The results showed that their

performance takes more from 22 % to 33% (depending on the

scenario) because their equations do not take into account

blockings factors (B) and Eq. 8 and Eq. 11 are over-

pessimistic (mainly because in modeling they do not model

blockings).

Table II: Main parameters of the experiment. Partial costs of the three stages
and number of cores required to implement the “time critical” system.

Parameter Value

Costs (Cgen, Ccounter, Caggreg) 127 µs, 507 µs, 511µs

Data In freq 1 Hz -4 kHz

Cores Available 1-28

End-to-end Deadline <1 second

TC stack required resources to

meet the deadline

From for 1(0,03) core for 1Hz – 80 cores for 4

kHz

Closer approaches [36] From for 1(0,04) core for 1Hz – 104 cores for 4

kHz

From the point of view of performance, the sampling factor

is relevant, because it may reduce the number of cores

required to implement the system. In our particular case, a

proper decimation reduces the amount of cores assigned to the

aggregator phase, increasing the response time of the analytic

too (because of the delay introduced in the application end-to-

end deadline). In the experiment, the end-to-end response time

increases from few milliseconds to a second (see Figure 11)

because of the decimation factor. For the same type of

applications, the proposed architecture reduces the aggregator

costs by delaying the transmission of data, which results in

reductions on the number of cores required to submit data

among nodes (Figure 12). Figure 12 refers to the savings

associated with the use of a decimation technique that reduces

the number of data sent from the client to the server. Figure 12

refers to the number of resources one saves as one does not

have to send data. For a decimation factor of 2000, the end-to-

end response is below one millisecond, saving for the 1 kHz a

maximum of 2 extra resources (i.e. cores).

 Figure 9 shows the utilization required to implement each

section of the system. This factor depends on two input

parameters (the stream input frequency: from 0 to 20 MHz and

also the type of segment: which may be the generator, the

counter and the aggregator). The term refers to the partial

contribution of each segment (C/T) of the stream, included in

Eq. 11. Taking the input information of Figure 9, Figure 10

shows to the minimum number of resources (i.e.) decomposed

by partial contributions (of the generator, counter, and

aggregator) for different frequencies. The difference among

both figures is that first refers to utilization and the second to

an integer number of cores.

 The common goal of Figures 11 and 12 is to illustrate the

benefits of decimation among phases to save resources, which

is also an important parameter to take into account. In Figure

11 to introduce the impact of the decimation the previous

analysis has to be changed introducing a delay or blocking in

the end-to-end deadlines. As a result of this change, a number

of resources are released that depend on the decimation factor

used (from 1 to 1024) and the input frequency (from 100 Hz to

16 KHz). This saves a number of cores (shown in Figure 12)

that may be relevant.

Fig. 9. Analytic demanded resources (Utilization)

Fig. 10. Required number of cores to support the scenario

Fig. 11. End-to-end response time as a function of a decimation (i.e. sampling

in the output) factor

Fig. 12. Saved cores as the output of the counters are delayed to meet a 1
second deadline. x axis refers to the speed of the microblogging flux.

2) Time-critical Offline performance

Our second type of analytic on micro-blogging applications

is the processing of splitting and processing a set of tweets

(see Figure 13). Our application processes a large amount of

data stored in a HDFS filesystem to obtain a word-cloud. The

data consists of four main stages, one that downloads from the

HDFS, another which performs a map to tokenize data, a

reduce phase which groups by similar words, and a final stage

which sorts them (see characterization is in Table III and

Figure 13). The application dataset processes data from 160

millions of words to 1300 millions of words that may be

processed with 128, 64, 32, 16, 8, 4, 2, and 1 cores. There is

0E+00

5E+01

1E+02

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04

U
tl

iz
at

io
n

Stream frequency (Messages per second)

Analytic requirements
Gen

Counter

Aggreg

Utotal

0

50

100

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04
U

n
it

s

Stream frequency (Messages per second)

Required cores

Gen

Counter

Aggreg

Total

1,00E-03

1,00E-01

1,00E+01

1 10 100 1000 10000

R
e

sp
o

n
se

 ti
m

e

(s
e

co
n

d
s)

Decimation factor

End-to-end response time

1

4

16

64

256

1024

4096

16384

1,
00

E+
0

0

4,
00

E+
0

0

1,
60

E+
0

1

6,
40

E+
0

1

2,
56

E+
0

2

1,
02

E+
0

3

4,
10

E+
0

3

1,
64

E+
0

4
Decimation

factor

Stream (messages per second)

Saved cores

6,00E+01-
8,00E+01

4,00E+01-
6,00E+01

2,00E+01-
4,00E+01

0,00E+00-
2,00E+01

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

also a deadline for the analytic of 2 hours, which requires a

minimum of 20 cores to be satisfied all scenarios. This

formulism has been derived from Eq. 11 if we assume

(T+B=D).

WordCloud Analyzer

Reduce

(M-R)
Sort

(M-R)

End-to-end Deadline (<2h)

Map

(M-R)
Download

(M-R)

Fig. 13. Wordcloud analysis over a micro-blogging application. Analytic that

consists of 4 stages with an end-to-end deadline of 2 hours.

As in the previous experiment, we established empirical

evidence to compare our scheduling model against results

from a map-reduce framework [11]. Previous work does not

consider the use of blockings in the model leaving to very

pessimistic performance that may be improved adding new

rules to [11] (see Table III). This is mainly due to the

blockings caused to access data from the Hadoop distributed

file-system. The technique described in [11] requires from

25% to 33% of extra resources for the analyzed scenarios.

Table III shows the parameters of the analytic, and the amount

of resources required in each case.

Table III: Main parameters of the experiment. Main results
Parameter Value

Analytic stages download() -> map () -> reduce() -> sort()

Data HDFS 1, 2, 4, 8 GB of data (tweets)

Cores 1-128

Memory per core 1 GB

Partitions of Spark 300

Analytic Deadline < 2 hours

Our time-critical

infrastructure

It requires 1 (0,5) core for 1 GB of data

and 20 cores for 8 GBs to meet the deadline

Closest

related work [11]

Requires (0,76) cores for 1 GB and 28 for 8 GB of

data

Figure 14 describes all the experiments carried out. It

includes the number of cores used in the experiment

(diamonds) and also the data (squares). Each point in the x-

axis represents one experiment (which consists of a number of

cores and data that has to be processed labeled as UNITs).

Figure 15 extends Figure 14 with the time taken to carry out

the whole experiment. Each scenario (cores and data)

produces an output (triangle). It also includes the description

for the speed of the scenario (speed means the amount of time

delivered by each core) and efficiency.

The following performance patterns have been observed:

 Time: The total time required to run each experiment has

a relationship with the amount of processed data (more

data means more time). Also, it also decreases as the

number of cores increases (see Figure 15). To meet the

deadline, the system requires 20 cores: with 16 cores, it

takes 2.2 hours to compute the largest file; and with 32

cores, it takes 1.6 hours.

 Speed: The speed, measured as the number of tweets per

second, decreases as the number of cores does. It also has

dependency on the data transferred but the main

dependency is with the number of cores available to

process data (Figure 16).

 Efficiency: The efficiency measured as the speed divided

by the number of cores required to implement a system

increases as the number of cores decreases (Figure 17).

In general, an increase in the number of nodes does not

mean more speed or efficiency. This is because of the

overhead introduced by connections. In the proposed analytic,

the bottleneck is the network. This is reason why adding cores

does not linearly increase the speed of the application.

Fig. 14. Offline micro-blogging scenario

Fig. 15. Off-line micro-blogging scenario: results

Fig. 16. Total time results

Fig. 17. Speed results

Fig. 18. Efficiency results

B. Book Manager

The second evaluation analytic is the book manager, which

operates on the Gutenberg project [44]. As in the previous

case, it consists of two subsystems: one in charge of

processing sentences of a book online, and another which

processes a set of books offline which are accessed from

HDFS. The goal is the same as in the previous section: to

establish empirical evidence on the performance one may

expect from this type of infrastructures. As in the previous

case, our interval of confidence is 1% with a failure

probability of 1e-10.

1) Book word histogram (online)

The structure of the analytic is shared with the micro-

blogging analytic (shown in Fig 13). Also the end-to-end

analytic is one second. However, the worst-case computational

models for the different stages are higher than in the previous

case (see Table IV). In the previous case, all stages were under

1,00E+00

1,00E+10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

UNITS

Data (Tweet) Analyzer: Scenario

data

cores

1,00E+00

1,00E+04

1,00E+08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

UNITS

Data (tweet) analyzer: Results

data

cores

 time (seconds)

speed

eficiency

1E+00

1E+04

1E+08

1 10 100 1000 t
im

e
 (

se
co

n
d

s)

cores

Data (tweet) analyzer

data

1E+00

1E+06

1 10 100 1000

sp
e

e
d

(t

w
e

e
ts

/s
e

co
n

d
)

cores

Data (tweet) analyzer

data

1E+00

1 10 100 1000

e
fi

ci
e

n
cy

(s

p
e

ed
/c

o
re

s)

cores

Data (tweet) analyzer

data

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

the millisecond response time, now some of them are close to

5 ms. As there is an increase in the computation time in all

stages, the number of nodes required to implement the system

is also higher. Figure 19 and Figure 20 introduce the costs in

utilization demanded by the application and number of cores

required to meet the deadline. They are always greater than in

the micro-blogging application. Likewise, it is expected that

decimation increases the end-to-end response times of the

analytic but it also reduces the amount of resources required to

be implemented in the cluster.

Table IV: Main parameters of the experiment and outcomes
Parameter Value

Costs: Cgen, Ccounter Caggreg. 1,1 ms, 5 ms, 0,8 ms

Data Input freq 1 Hz -40 kHz

Cores available 1-128

Analytic Deadline <1 second

Our time-critical infrastructure Requires 1 (0,08) core for 1 Hz and 100 cores

for 40 kHz

Closest related work [32]

performance

 Requires 1(0,096) core for 1 Hz and 119 cores

for 40 kHz

Fig. 19. Analytic Requirements (Utilization)

Fig. 20. Number of cores required for the implementation

Fig. 21. Response time with decimation

2) Book word histogram (offline)

As in the previous case, the offline library analyzer splits

the book into sentences and words. The used test-bed (see

Table V) ranges from 1 book (6.9 MB) to 512 books (3.1 GB).

The number of cores required to support the system ranges

from 1 to 50. Internally, Spark creates 200 partitions. The

number of items to be processed ranges from 1 million

elements to 1000 millions. The number of cores also ranges

from 1 to 50 core(s) (see Fig. 21). Results of the experiment

are shown in Fig. 22. They have been scheduled using the

model proposed in Eq. 11 (T+B=D).

 The analysis of the results shows that the processing time

has a strong relationship with the amount of processed data

(Fig. 23). The speed keeps more or less stable in all

experiments (Fig. 24). Likewise, the efficiency tends to be

higher with lower number of machines and decreases as the

number of machines increases (Fig. 25).

 To meet the deadline for the whole analytic (T+B=D), the

system requires at least two cores (which process the system

in 9.79 minutes). With one core, the response-time is 13

minutes and with 2 cores is 9.70 minutes. Comparison with

similar techniques (i.e. [11]) showed that it may require a 40%

of extra resources to meet deadlines (see Table V).

Table V: Main parameters of the experiment. Results
Parameter Value

Analytic stages download()-> map ()->reduce()->sort()

HDFS Data From: 1 book (6,9 MB) to: 512 books (3.1 GB)

Cores 1-50

Partitions of Spark 200

Analytic Deadline <10 min

Our time-critical

infrastructure
From 1 (0,013) core for 1 book to 2 cores for 512 books

Closest related work

[11] performance
From 1 (0,027) core for 1 book to 4 cores for 512 books

Fig. 22. Book word histogram generator.

Fig. 23. Book word histogram

Fig. 24. Detailed results on total time

Fig. 25. Detailed results on speed

Fig. 26. Detailed results on efficiency

C. General Purpose vs. Time Critical Performance

 To illustrate a case where the time critical information is

used, a simple example is presented. It is based in the idea of

prioritization offered by the infrastructure. Let’s assume that

we have two time-critical analytics (TC1 and TC2). Each one

of them takes computationally 1 hour to run (CTC1=CTC2=1

hour). But these time critical analytics have different deadlines

(DTC1=1 hour and DTC2=2 hours). If we do not assume any

time-critical scheduling model (like the one shown in Section

V), then the system is not feasible in a single node; it requires

two, because both tasks have the same priority

(PTC1=PTC2=prio), which it is the default configuration in

Spark and Storm. With this setup, the worst case response

time of both map-reduce tasks is 2 hours (RTTC1=RTTC20= 2

hours) requiring an extra machine to isolate applications with

1E-04

1E-01

1E+02

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04

U
tl

iz
at

io
n

Stream frequency (sentences per second)

Analytic requirements

Gen

Counter

Aggreg

Utotal

1,00E+00

1,00E+01

1,00E+02

1,00E+03

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04

U
ti

liz
at

io
n

Stream frequency (sentences per second)

Required cores

Gen

Counter

Aggreg

Total

1,00E-03

1,00E+01

1 10 100 1000

R
e

sp
o

n
se

 ti
m

e

(s
e

co
n

d
s)

Decimation factor

End-to-end response time

1,E+00

1,E+04

1,E+08

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

UNITS

Book data-set

cores

data

1,E+00

1,E+04

1,E+08

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

UNITS

Book data-set

cores

data

time(s)

speed(work/s)

1,0E-02

0,1 1 10 100 1000

ti
m

e
 (

se
co

n
d

s)

cores

Book data-set

data

1,0E-02

0,1 1 10 100 1000

sp
e

e
d

 (w
o

rd
s/

s)

cores

Book data-set

data

1,0E-02

1,0E+01

1,0E+04

1,0E+07

1,0E+10

0,1 1 10 100 1000

ef
fi

ci
en

cy

(s
p

ee
d

/c
o

re
s)

cores

Book data-set

data

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

different deadlines. Here the formulism used to calculate worst

case computation times is derived from Eq. 9. However, our

scheduling framework may assign priority proportionally to

deadlines (PTC1=prio and PTC2=prio+1), requiring only one

resource to meet deadlines (see Table VI). In this case, the

worst-case for the shortest deadline reduces to 1 hour, and one

single machine, the worst case response time for the highest

priority task does not suffer interference from the lowest one.

Table VI: Cluster with one machine allocating time critical (TC) and general

purpose (GP) analytics. TC cluster is much more efficient deadline with
deadlines.

 Cost Deadline Priority WCRT Feasible

GP
TC_1 1 h 2h Default 2h Y

TC_2 1 h 1h Default 2h N

TC
TC_1 1 h 2h Low 2h Y

TC_2 1 h 1h High 1h Y

VII. RELATED WORK

In the state-of-the-art of time-critical big-data systems,

different approaches have been identified as pioneering efforts

that contribute to sculpt the time-critical big-data

infrastructures. Each one contributes from a different

perspective to different aspects of next-generation

architectures for big-data. Chronologically, the first is an

attempt to model real-time map-reduce interactions as

schedulable entities [11]. In [11] the authors used the popular

Hadoop map-reduce model which has been evaluated on an

experimental Amazon EC2 cloud, establishing interesting

tradeoffs between throughput and predictability. The described

model may be improved with the blocking formulism

described in Section IV, as our empirical results suggested.

From the point of view of time-critical systems, this is one

of the first approaches to deal with the time-critical

performance of map-reduce applications. Later, the Juniper

project [10] has dealt with a number of issues related to the

performance of big-data systems.

More recently, some researchers [9] have addressed the

predictability of Apache Storm, one of the main online

infrastructures available for stream processing, as part of an

all-in-Java infrastructure for real-time big-data. To this end,

they introduced programming abstractions typically used in

time-critical systems into the Apache Storm architecture [9].

Their major contribution to the state-of-the-art has been the

integration of a computation model based on stream

processing with the scheduling policies available for

distributed and parallel computing.

A recent approach to on-line processing is the lambda

architecture [1], which is based on a batch technology and

online technology that provides a dual branch computing

model. The architecture proposed in this section enables the

possibility of defining requirements (typically a deadline) for

the analytics, which are efficiently enforced latter by the

infrastructure. This is also more efficient than the performance

given by current infrastructure, which targets to high

performance computing. Our particular time-critical lambda

architecture will consist of a TC Storm for stream processing

and a TC-Spark for batch processing. The contribution of the

article to the lambda architecture is to be able to use the real-

time scheduling theory to derive efficient end-to-end

scheduling models from deadlines.

A. Distributed Stream Processing

In the area of distributed stream processing, there are a

number of initiatives dealing with distributed stream

processing [35-39]. The work in [35] introduces QoS

scheduling mechanisms for Apache Storm. In [36] the authors

added adaptive scheduling techniques to Storm. Our approach

uses the techniques described in [35-36] to offer a deadline-

based approach, which is a domain not addressed by previous

researchers. Our scheduling model shares commonalities [36]

that may benefit from blockings factor introduced to improve

significantly the schedulability of the system.

Some other approaches [37-38] deal with scheduling

models for clusters and the cloud. The main difference among

these two techniques and the proposed technique is the

domain. While those techniques address general purpose

scheduling stochastic models, our approach deals with worst-

case analytics which offer a simpler formalism.

B. Map-Reduce Processing

 There is a corpus of works [39-42][48-49] dealing with

different aspects involved in map-reduce. In [40], the authors

describe different quality-of-service features related to a map-

reduce engine. Our algorithms belong to the response time

category of the quality of service. In [39], the authors

formalize aspects in map-reduce scheduling to perform online

and offline scheduling. Our model is much simpler than [39].

In [41] the authors proposed a packing server for map-reduce

workflows. We share with this work a packing strategy;

however, we explicitly split flushes into different units. Lastly,

[42] describes a cost-effective scheduling framework for map-

reduce. The framework takes into account monetary issues.

Our main difference [41-42] is that our approach is more

empirical, targeting specific end-systems.

 In [48], an architecture is proposed for high-speed

performance based on RabbitMQ. The system described in

[48] implements a scheduler able to run analytics. The main

difference among both approaches is the domain, which in our

case it is more focused on the use of time-critical scheduler

and applications. A similar assessment may be applied to [49],

which does not define polices for deadline processing. A last

piece of work in the map-reduce world is described in [51]

that uses scheduling servers with map-reduce tasks. Since both

use different scheduling models, the techniques cannot be

easily compared.

VIII. CONCLUSIONS AND FUTURE WORK

 Many challenges are ahead of us in the time-critical big-data

horizon towards producing a generic infrastructure able to

meet the deadlines of different analytics in a predictable way.

This article has reviewed some (small) building blocks that

have to be considered to accomplish this goal; it has also

identified requirements of different domains that have to be

properly supported by big-data infrastructures and must be

readapted to cope with time-critical issues.

 Among all of these building blocks, one of increasing

importance is big-data analytics and their particular

characteristics, which may determine the type of required

infrastructure. Only with careful consideration of the

characteristics of the different types of analytics, will it be

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

possible to unravel the requirements of next-generation time-

critical big-data platforms.

 Currently, the authors are considering the integration of

privacy and security; where they are focusing their efforts in

studying the overhead introduced by different authentication

policies, partially described in [19], as a part of a time-critical

big-data system.

ACKNOWLEDGEMENTS

This work been partially supported by the Spanish National

Education Ministry, under Jose Castillejo Program:

Infrastructure for Real-Time Big-Data (CAS14/00118), and

the national program: HERMES-SMARTDRIVER (TIN2013-

46801-C4-2-R) and AUDACity (TIN2016-77158-C4-1-R). It

has been also partially funded by European Union’s 7
th

Framework Programme under Grant Agreement FP7-IC6-

318763 and eMadrid (S2013/ICE-2715). Some experiments

presented in article were inspired in the Grid'5000 testbed,

supported by a scientific interest group hosted by Inria and

including CNRS, RENATER and several Universities as well

as other organizations (see https://www.grid5000.fr). We are

also in debt with our anonymous reviewers that provided

valuable feedback to improve the article.

REFERENCES

[1] N. Marz, J. Warren "Big Data: Principles and best practices of scalable

real-time data systems". Manning Publications Co., 2015.
[2] J. Forsyth, L. Boucher "Why Big Data Is Not Enough". Research World

2015. 50 (2015): 26-27.

[3] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.

Byers "Big data: The next frontier for innovation, competition, and

productivity". 2011

[4] M. Chen, M. Shiwen, and L. Yunhao "Big data: A survey". Mobile
Networks and Applications 19.2 (2014): 171-209.

[5] H. V. Jagadish et al. "Big data and its technical challenges".

Communications of the ACM 57.7 (2014): 86-94.
[6] V. N. Gudivada, R. Baeza-Yates, V. V. Raghavan "Big Data: Promises

and Problems". Computer, vol.48, no.3, pp.20-23, Mar. 2015

[7] C. Ghezzi et al. "A unified high-level Petri net formalism for time-critical
systems." Software Engineering, IEEE Transactions on 17.2 (1991): 160-

172.

[8] A. Burns and Andy Wellings. Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-

Wesley Educational Publishers Inc, 2009.

[9] P. Basanta-Val, N. Fernandez-García, A. J. Wellings, and N. C. Audsley
"Improving the predictability of distributed stream processors". Future

Generation Computing Systems, 2015.

doi:10.1016/j.future.2015.03.023
[10] N.C. Audsley, Y. Chan, I. Gray, A. J. Wellings. Real-Time Big Data: the

JUNIPER Approach. 2014. Accepted in Reaction 2014.
[11] L. T. X. Phan, Z. Zhang, B. T. Loo, I. Lee. "Real-time MapReduce

Scheduling". In Technical Report N. MS-CIS-10-32, University of

Pennsylvania (2010).
[12] LHC Study Group, The. The large hadron collider, conceptual design.

Geneva: CERN/AC/95-05 (LHC), 1995.

[13] Dong, Xin Luna, and Divesh Srivastava. "Big data integration." Data
Engineering (ICDE), 2013 IEEE 29th International Conference on.

IEEE, 2013.

[14] Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. "Business
Intelligence and Analytics: From Big Data to Big Impact." MIS quarterly

36.4 (2012): 1165-1188.

[15] K. Shvachko, H. Kuang, S. Radia, R. Chansler. "The hadoop distributed
file system". In Mass Storage Systems and Technologies (MSST), 2010

IEEE 26th Symposium on (pp. 1-10).

[16] Storm. "Distributed and fault-tolerant real-time computation". Available
(2014) on https://storm.incubator.apache.org/

[17] Kambatla, Karthik, et al. "Trends in big data analytics." Journal of

Parallel and Distributed Computing 74.7 (2014): 2561-2573.
[18] A . Cavoukian, Jeff Jonas. "Privacy by design in the age of big data".

Information and Privacy Commissioner of Ontario, Canada, 2012.

[19] P. Arias-Cabarcos et al. "Blended Identity: Pervasive IdM for
Continuous Authentication". IEEE Security & Privacy 13(3): 32-39

(2015)

[20] P. Basanta-Val, M. García-Valls."Resource management policies for
real-time Java remote invocations". J. Parallel Distrib. Comput. 74(1):

1930-1944 (2014)

[21] P. Basanta-Val, M. García-Valls. "Distributed Real-Time Java-Centric
Architecture for Industrial Systems". IEEE Trans. Industrial Informatics

10(1): 27-34 (2014)

[22] C. Christopher, and S. Rawlings. "Science with the Square Kilometer
Array: motivation, key science projects, standards and assumptions."

astro-ph/0409274 (2004).

[23] M. Zaharia, Matei, et al. "Spark: Cluster Computing with Working Sets."
HotCloud 10 (2010):

[24] J. Dean and S. Ghemawat: "MapReduce: simplified data processing on

large clusters." Communications of the ACM 51.1 (2008): 107-113.

[25] P. Basanta-Val. "Técnicas y extensiones para Java de tiempo real

distribuido." (2006).

[26] M. García-Valls, P. Basanta-Val: "Comparative analysis of two different
middleware approaches for reconfiguration of distributed real-time

systems". Journal of Systems Architecture - Embedded Systems Design

60(2): 221-233 (2014)
[27] M. Congosto, D. Fuentes-Lorenzo, L. Sánchez: "Microbloggers as

Sensors for Public Transport Breakdowns". IEEE Internet Computing
19(6): 18-25 (2015)

[28] Eric P. Xing, et al.: "Petuum: A New Platform for Distributed Machine

Learning on Big Data", IEEE Transactions on Big Data, vol.1, no. 2, pp.
49-67, June 2015

[29] Yuxiao Dong, Reid Johnson, Nitesh Chawla: "Can Scientific Impact Be

Predicted?", IEEE Transactions on Big Data, no. 1, pp. 1, PrePrints
PrePrints, doi:10.1109/TBDATA.2016.2521657

[30] Jules White, Brian Dougherty, Richard E. Schantz, Douglas C. Schmidt,

Adam A. Porter, Angelo Corsaro: "R&D challenges and solutions for
highly complex distributed systems: a middleware perspective". J.

Internet Services and Applications 3(1): 5-13 (2012)

[31] Sha, Lui, et al. "Real time scheduling theory: A historical perspective."
Real-time systems 28.2-3 (2004): 101-155.

[32] Kopetz, Hermann. Real-time systems: design principles for distributed

embedded applications. Springer Science & Business Media, 2011.
[33] Davis, Robert I., and Alan Burns. "A survey of hard real-time scheduling

for multiprocessor systems." ACM Computing Surveys (CSUR) 43.4

(2011): 35.
[34] J.M. Lopez, J.L. Diaz, D. F. Garcia. "Minimum and Maximum

Utilization Bounds for Multiprocessor Rate Monotonic Scheduling",

IEEE Transactions on Parallel & Distributed Systems, vol.15, no. 7, pp.
642-653, July 2004, doi:10.1109/TPDS.2004.25

[35] Cardellini, Valeria, et al. "Distributed QoS-aware scheduling in Storm."

Proceedings of the 9th ACM International Conference on Distributed
Event-Based Systems. ACM, 2015.

[36] Aniello, Leonardo, Roberto Baldoni, and Leonardo Querzoni. "Adaptive

online scheduling in storm." Proceedings of the 7th ACM international

conference on Distributed event-based systems. ACM, 2013.

[37] Rychly, Marek, Petr Koda, and Pavel Smrz. "Scheduling decisions in

stream processing on heterogeneous clusters." Complex, Intelligent and
Software Intensive Systems (CISIS), 2014 Eighth International

Conference on. IEEE, 2014.

[38] Ghaderi, Javad, Sanjay Shakkottai, and Rayadurgam Srikant.
"Scheduling Storms and Streams in the Cloud." Proceedings of the 2015

ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems. ACM, 2015.
[39] B. Moseley, et al. "On scheduling in map-reduce and flow-shops."

Proceedings of the twenty-third annual ACM symposium on Parallelism

in algorithms and architectures. ACM, 2011.
[40] Tiwari, Nidhi, et al. "Classification framework of MapReduce

scheduling algorithms." ACM Computing Surveys (CSUR) 47.3 (2015):

49
[41] Li, Shen, Shaohan Hu, and Tarek Abdelzaher. "The packing server for

real-time scheduling of mapreduce workflows." Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2015

IEEE. IEEE, 2015.

https://www.grid5000.fr/

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[42] Zacheilas, Nikos, and Vana Kalogeraki. "A Framework for Cost-

Effective Scheduling of MapReduce Applications." Autonomic
Computing (ICAC), 2015 IEEE International Conference on. IEEE,

2015.

[43] Cgroups. Available online (2016) at:
https://www.kernel.org/doc/Documentation/cgroup-v1/

[44] Project Guttenberg. Available online (2016) at

https://www.gutenberg.org/.
[45] P. S. Earle, D. C. Bowden, M. Guy (2012). "Twitter earthquake

detection: earthquake monitoring in a social world." Annals of

Geophysics, 54(6), 2012.
[46] L. Cheng and S. Kotoulas, "Scale-Out Processing of Large RDF

Datasets," in IEEE Transactions on Big Data, vol. 1, no. 4, pp. 138-150,

Dec. 1 2015.doi: 10.1109/TBDATA.2015.2505719
[47] S. Tuarob; S. Bhatia; P. Mitra; C. L. Giles, "AlgorithmSeer: A System

for Extracting and Searching for Algorithms in Scholarly Big Data," in

IEEE Transactions on Big Data, vol.PP, no.99, pp.1-1
doi: 10.1109/TBDATA.2016.2546302

[48] Ciprian Barbieru, Florin Pop: Soft Real-Time Hadoop Scheduler for Big

Data Processing in Smart Cities. AINA 2016: 863-87

[49] Florin Stancu, Dan Popa, Loredana-Marsilia Groza, Florin Pop:

Queuing-Based Processing Platform for Service Delivery in Big Data

Environments. IESS 2016: 497-508
[50] Marisol García-Valls, Pablo Basanta-Val, Analyzing point-to-point DDS

communication over desktop virtualization software, Computer

Standards & Interfaces, Volume 49, January 2017, Pages 11-21, ISSN
0920-5489, http://dx.doi.org/10.1016/j.csi.2016.06.007.

[51] X. Ling, Y. Yuan, D. Wang, J. Liu, and J. Yang, “Joint scheduling of
mapreduce jobs with servers: Performance bounds and experiments,”

Journal of Parallel and Distributed Computing, vol. 90-91, pp. 52–66,

2016
[52] E. P. Xing, Q. Ho, W. Dai, J.-K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,

A. Kumar, Y. Yu. Petuum: A New Platform for Distributed Machine

Learning on Big Data. IEEE Transactions on Big Data (IEEE BigData
2016).

[53] P. Basanta-Val, M. García-Valls: A library for developing real-time and

embedded applications in C. Journal of Systems Architecture -
Embedded Systems Design 61(5-6): 239-255 (2015)

 Pablo Basanta-Val was born in O Valadouro, Lugo, Spain.

He received the Telecommunication Engineering degree from the

Universidad de Vigo, Spain, in 2001 Madrid, Spain, in 2007. Currently, he

is an Associate Professor at the Telematics Engineering Department,
Universidad Carlos III de Madrid and the UC3M-BS Institute of Financial

Big Data (IFiBiD). He was member of the Distributed Real-Time Systems

Lab from 2001 and since 2014 is enrolled in the Web Semantic Lab. His
research interests are in Real-Time Java technology and general-purpose

middleware used to support next generation applications. His current

interests are on the definition and evaluation of predictable models for big
data infrastructures. He has authored/co-authored over 90 papers/reports.

He participated in a number of European projects such as ARTIST,

ARTIST NoE, ARTIST Design, iLAND and several national projects.

Professor Neil Audsley received a BSc (1984) and PhD (1993) from the
Department of Computer Science at the University of York, UK. In 2013

he received a Personal Chair from the University of York, where he leads a

substantial team researching Real-Time Embedded Systems. Specific areas
of research include high performance real-time systems (including aspects

of big data); real-time operating systems and their acceleration on FPGAs;

real-time architectures, specifically memory hierarchies, Network-on-Chip
and heterogeneous systems; scheduling, timing analysis and worst-case

execution time; model-driven development. Professor Audsley's research
has been funded by a number of national (EPSRC) and european (EU)

grants, including TEMPO, eMuCo, ToucHMore, MADES, JEOPARD,

JUNIPER, T-CREST and DreamCloud. He has published widely, having

upwards of 150 publications in peer reviewed journals, conferences and

books.

Andy Wellings is Professor of Real-Time Systems at the University of

York, UK in the Computer Science Department. He is interested in most

aspects of the design and implementation of real-time dependable
computer systems and, in particular, real-time programming languages and

operating systems. He is European Editor-in-Chief for the Computer

Science journal ''Software-Practice and Experience'' and a member of the
International Expert Groups currently developing extensions to the Java

platform for real-time, safety critical and distributed programming.

Professor Wellings has authored/co-authored over 300 papers/reports. He
is also the author/co-author of several books including "Concurrent and

Real-Time Programming in Ada", "Real-Time Systems and Programming

Languages (4th Edition)" and "Concurrent and Real-Time Programming in
Java".

Ian Gray is a Research Fellow at the University of York, UK. His Ph.D.,

which was completed at York, concerned the use of novel virtualisation

techniques to overcome the limitations of traditional programming models
for the development of complex embedded systems. This work was further

developed as part of the EU-funded MADES project. He has been part of

three successful FP7 research projects, author of many papers and book
chapters, and programme committee member of EuroMPI and MCSoC.

Ian's work is centered around real-time, embedded systems, and

particularly the use of new programming models and techniques to help
the development of systems with complex hardware architectures.

Norberto Fernández-García received his Telecommunication
engineering degree from Universidad de Vigo (UVigo), Spain, in 2002,

and the Ph.D. degree from Universidad Carlos III de Madrid (UC3M),

Madrid, Spain, in 2007. Currently he works as a Ph.D. teaching assistant at
the Defense University Center located at the Spanish Naval Academy. He

has carried out most of his research activity in the area of networked
information systems, working on the application of artificial intelligence

techniques and tools to information management (Semantic Web / Linked

data) and, more recently, in the development of techniques to efficiently
process large volumes of data (Big data). He has been involved in 15

research projects at regional, national and international levels. He has also

co-authored more than 40 publications, including 20 publications in
national and international journals.

