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   Abstract— Current infrastructures for developing big-data 

applications are able to process –via big-data analytics- huge 

amounts of data, using clusters of machines that collaborate to 

perform parallel computations. However, current infrastructures 

were not designed to work with the requirements of time-critical 

applications; they are more focused on general-purpose 

applications rather than time-critical ones. Addressing this issue 

from the perspective of the real-time systems community, this 

paper considers time-critical big-data. It deals with the definition 

of a time-critical big-data system from the point of view of 

requirements, analyzing the specific characteristics of some 

popular big-data applications. This analysis is complemented by 

the challenges stemmed from the infrastructures that support the 

applications, proposing an architecture and offering initial 

performance patterns that connect application costs with 

infrastructure performance. 

 

Index Terms— time-critical, big-data systems, time-critical 

infrastructure 

I. INTRODUCTION 

urrent trends in computer science refer to big-data 

systems to describe large and complex data centric 

applications that cannot be run properly with current data 

processing tools [1-6][50-52]. These tools are insufficient to 

analyze, capture, cure, search, store, transfer, or visualize the 

amount of data processed by this type of applications [46-47]. 

Big-data systems might also refer to algorithms that perform 

some type of analytics [15, 28-29] that extract valuable 

information from data, to find new correlations, to spot 

business trends, or to combat crime.  

Big-data scenarios [29-30] are characterized by the 

existence of an enormous amount of information (coming 

from mobile devices, logs, sensors, cameras, etc.) that needs to 

be processed to achieve a goal. A single PC cannot typically 

process this amount of data; thus, it is often processed by 

algorithms that run in hundreds or thousands of servers hosted 

in private clusters. In many cases, they can also use the 

Internet, which offers cheap hosting to big-data storage and 

computational applications via cloud computing 

infrastructures, as a cost-effective solution. 

From a business perspective, big-data offers an opportunity 

to increase operational efficiency in an enterprise [5-7]. It may 

reduce operational costs by detecting inefficient policies 

which may be replaced by more efficient ones. Also, it may 

discover new business niches and opportunities, mining 

information available into the organization. 

Time-critical systems [7-8] refer to systems subject to 

certain temporal restrictions, which typically consist of 

maximum deadlines for an input event to be processed, and/or 

an output to be generated. These maximum deadlines are 

derived from the characteristics of an external environment 

that imposes physical requirements on applications. In time-

critical systems, response-times can be in the order of 

milliseconds, or microseconds, e.g. for system control; they 

can also be longer, e.g. when interacting with human 

interfaces. Typical time-critical systems [29-34] have 

benefited from different general-purpose computational 

infrastructures (e.g. programming languages, operating 

systems, modeling languages, etc.) including specific 

computation algorithms that take advantage of the application 

characterization to estimate, a priori, maximum response 

times. Currently, there is not a clear definition of how time-

critical and big-data systems should be merged to produce a 

“time-critical big-data system”. However, there are some 

pioneering research initiatives [9-11] that seem to identify 

different opportunities stemmed from the combination of these 

two types of systems. 

Implicitly, many big-data applications have requirements in 

terms of maximum expected deadlines that have to be satisfied 

by the underlying infrastructure.  In these cases, it seems that 

many of the existing techniques for time-critical systems may 

be beneficial for the time-critical big-data applications to 

estimate maximum deadlines for running their analytics. Work 

like [9-11] shows the relationship among the response-time of 

the applications and their performance, establishing different 

mathematical models that connect worst-case response-times 

and the number of machines with quasi-linear formulations. 
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Fig. 1. Holistic Time-Critical Big-Data System 

   

The contribution of this paper is an architecture for time-

critical big-data systems (summarized in Fig. 1) able to run 

time-critical analytics. These analytics are supported by an 

infrastructure able to run different programming abstractions 

on a large number of machines, arranged as a cluster. To 

implement the architecture, our approach is to extend Spark 

[23] (to support time critical map-reduce), and an Apache 

Storm [16] with a backward time-critical stack. Also part of 

our contribution is a set of techniques that profile the 

performance of a time-critical infrastructure.  

The rest of the paper is organized as follows. Section II 

deals with the application domains: from science applications 

to social networking, with real-time requirements. Those 

domains raise a number of issues or technical challenges 

(Section III).  Section IV introduces an architecture for big-
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data applications standing on common off-the-shelf 

technologies (Apache Storm [16] and Spark [23]), which are 

equipped with time-critical engines. Section V introduces 

specific technological mappings and application use-cases. 

Section VI introduces evaluation results for both stacks in two 

types of applications. Section VII describes the related work 

and Section VII summarizes results and exposes our on-going 

work. 

II. DOMAINS  

The exploration of the different initiatives for time-critical 

big-data systems starts by analyzing applications taken from 

different use-cases from science, data processing, financial 

services, and social networks. The goal of this section is to 

illustrate the time-critical characterization of these 

applications. 

A. Science Applications 

There are two classical examples of time-critical big-data 

science applications:  the Large Hadron Collider (LHC) [12], 

and the Square Kilometer Array (SKA)[22]. LHC experiments 

involve 15 million sensors delivering data 40 million times per 

second. From a total of 600 million collisions per second, only 

100 collisions per second are interesting. Thus, the collider 

outputs a 300 Gb/s stream that has to be filtered to 300 Mb/s 

for storage and later processing. 

Implicitly, in LHC all this data cannot be stored in its raw 

format and has to be processed online, with computational 

units running at 100% of their computational speed, before 

being stored. Working with less than 0.001% of the sensor 

data, the data flow from all experiments represents 25 

Petabytes. In a case where all data is to be recorded, the 

resulting flow would exceed 150 million Petabytes of data.  

B. Data Aggregators 

 Another type of applications related to big-data systems 

that aggregate data from different sources, known as data 

aggregators [13]. Their aggregation phases refer to data 

coming from the Internet and also data coming from other 

private infrastructures, like sensors in cars, buses, and planes. 

This data is explored by the big-data infrastructure to look for 

different patterns globally. As in the previous case, in most 

scenarios the time-critical requirement refers to the possibility 

of using enough computation facilities to be able to process 

the data without overflowing. In addition to this stability 

condition, another set of deadlines may be established to 

perform specific detections. 

C. Financial Transaction 

  Online and offline business analytics [14] represent 

another potential application scenario of time-critical big-data 

systems. Online analytics (like those used in High Frequency 

Trading) define the strategies used by auctioneers to decide if 

a stock is to be sold or bought. In this type of application, the 

shorter the response time of the intelligent system, the better 

the results are. In the case of offline analytics, they may also 

process data stored in logs/data servers to predict the future 

behavior of certain markets or stocks by using well-known 

techniques. As in the online strategy, a delayed response may 

result in financial losses.  

D. Social Networking 

  Social networks are another source of big-data 

information. They produce a myriad of streaming dynamic 

data that may be processed, for instance, to offer intelligent 

advertising to end-users [14]. These types of applications are 

difficult to model as time-critical systems, because they tend 

to have very complex data sources and worst-case 

computation times are difficult to calculate. In many cases, it 

seems that the infrastructure may benefit from having some 

type of adaptive quality of service algorithm to manage the 

nodes of a cluster, according to the application requirements. 

In specific cases it seems possible to establish other types of 

operational deadlines on the analytics. This is the case, for 

instance, of event detection (like earth-quake detection [45]) 

via social networking, where a sub-second scale deadline may 

be established as a requirement. 

III. TECHNICAL CHALLENGES  

Another way to approach time-critical big-data systems is to 

analyze the infrastructures currently given to practitioners, 

studying the technical challenges which stem from trying to 

implement time-critical applications using these 

infrastructures. In many cases these infrastructures have not 

been properly adapted to the requirements of time-critical 

applications, giving rise to new requirements for developing 

these systems. 

A.  Lack of Time-Critical Big-Data Facilities 

 Most big-data infrastructures were designed with general-

purpose applications in mind and are silent on the 

requirements of time-critical systems. All main development 

platforms based on Hadoop [15] and map-reduce target HPC 

platforms and do not support the idea of defining deadlines.  

Only in some specific cases [1], like the case of the Apache 

Storm distributed stream processor [16], do they seem to 

target online computation. But even in these cases, most 

infrastructures seem to be focused in general-purpose 

applications rather than considering time-critical performance. 

Among the list of issues that have to be considered when 

designing an effective time-critical infrastructure for big-data 

applications, one should address the following aspects: 

 Ability to process high volume of data: Among the first 

features required from a big-data system is the ability to 

process a huge amount of data across multiple 

computational nodes. This capacity refers not only to the 

number of computational nodes in the system, but also the 

amount of disk storage, memory, and communication 

resources available among the different nodes of the 

cluster. Current algorithms are focused on general 

purpose computation [9].  

 Distribution and Parallel Computation: Most big-data 

applications are distributed applications where several 

connected nodes share information and resources to 

accomplish a mission, typically, to perform big-data 

analytics. Thus, many infrastructures are able to distribute 

the computation among different nodes of a cluster, using 

different policies. However, in most cases, the algorithms 

used do not take into account the time-critical nature of 
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the application, producing setups that are non-optimal 

from the perspective of the application. 

 Data Locality: Another important source of non-

determinism that may impact the response time of the 

applications is the availability of local or remote access to 

data. Remote access to data tends to introduce a response 

time penalty of more than an order of magnitude in some 

big-data applications, in addition to an increased jitter 

(see [20]). However, remote communication opens the 

door to introduce parallel and distributed computing to 

reduce computation times, which may be used to 

effectively reduce application worst-case response times.    

 Fault model: Big-data applications run in faulty 

infrastructures where computation nodes may appear and 

disappear dynamically. This introduces additional 

requirements for the infrastructure, which has to provide 

predictable recovery policies ([20-21]).  

In addition to the shortcomings in the infrastructure, there is 

also a general lack of models for time-critical big-data. 

Current existing tools for big-data (e.g. those using model 

driven architecture approaches) have been designed for 

general purposes and are silent on the identification of specific 

optimizations for time-critical applications. Thus, these tools 

need to be extended with time-critical characteristics, required 

for developing time-critical big-data applications. 

B. Time-Critical Algorithms and Analytics 

In most cases, big-data applications are composed of a set 

of algorithms that run on data, trying to perform some type of 

analysis; such as a prediction of trends and patterns [17]. 

Typically, the analytics carried out may be classified into three 

groups: descriptive, predictive and prescriptive. Descriptive 

analytics have the goal to condense big-data into smaller 

chunks. Predictive analytics take data and produce as output a 

prediction regarding future values or behavior of that data.      

Another interesting characteristic of some analytics is that 

they may improve their output quality as the amount of 

computation time or data increases. This property may be used 

to produce time-critical efficient analytics that tradeoff output 

quality and computational cost. In many cases, the 

computational model of a particular class of analysis may be 

expressed as a directed acyclic graph (DAG) [9]. This DAG 

may be used to compute a worst-case response-time for the 

analytic, provided that the worst-case execution time for all 

stages in the DAG is known.  

C. Security and Privacy 

 Another major concern of a big-data system is the 

existence of a secure and private execution environment [18]. 

Among the challenges imposed to a big-data system are: the 

definition of secure computations in distributed programming 

frameworks, secure data storage, transaction logs, endpoint 

validation, real-time security, data centric security, granularity 

of access-controls, audits and data provenance.  

The proposed time-critical data system addresses the basic 

challenge of producing a time-critical infrastructure for the 

computational models of Spark and Storm. In the improved 

architecture, analytics are driven with priorities. Section IV 

contains the portable architecture and the computational 

framework. Section V deals with software aspects regarding 

an implementation on top of Spark and Storm. Lastly, Section 

VI describes performance aspects of the computational 

framework. All other challenges described in the section have 

been set aside. 

IV. TIME-CRITICAL BIG DATA SYSTEM 

In this section, we explore an architecture defined to support 

big-data systems. The proposed architecture is based on 

existing technologies, which are enhanced with a time-critical 

dimension. In essence, the model mixes two main 

technologies: Apache Storm [19] which is an efficient 

approach for sub-second delays, and Apache Spark [24], 

which offers a rich and an efficient framework on which to 

implement offline map-reduce applications. The model is also 

highly inspired on previous architectures described in the 

context of distributed real-time systems for Java 

[20][21][25][53]. From this distributed context, the 

architecture also takes specific support for parallel processing 

[9], and several online scheduling mechanisms for predictable 

reconfiguration strategies (see [26]).  

A. Overview 

The architecture proposes a layered approach for big-data, 

combining traditional time-critical middleware [30] with big-

data architectures [1][31]. Our reference model consists of 

four main layers, each one of them dealing with different 

aspects of the big-data system (see Fig. 2): 

- Applications:  At the top of the architecture are 

applications, which are named analytics. They are arranged 

as a directed acyclic graph structure, easing deployment in a 

large cluster of machines. The main type of consideration 

that has to be taken into account is their nature (see Fig. 3): 

 Time-critical (deadline oriented): The main requirement 

imposed on this layer is the existence of time-critical 

requirements. Typical requirements are deadlines, which 

range from the sub-second range to seconds, days, weeks, 

etc. These deadlines on the analytic are essential to 

determine the number of machines required to perform 

the analytic. In a harmonious and balanced system, the 

number of machines required to meet a deadline increases 

as the amount of data does (linearly).  

 Integrate offline and online analytics: Typically, analytics 

can be classified as offline and online. Offline analytics 

(sometimes named batch analytics) tend to explore a large 

volume of data and they have large CPU consumption 

models. On the other hand, online analytics have shorter 

deadlines which require the use of different techniques to 

meet time-critical deadlines. 

- Tools:  Supporting applications are tools, which define 

the second level in the architecture. These tools satisfy 

different aspects of an analytic. In the particular case of a 

time critical system, they offer support to deadlines and any 

other type of requirements. To satisfy deadlines, tools have 

fine control on the resources available to machines, which 

have to be properly controlled and configured. The types of 

resources managed include disk bandwidth, memory, CPU 

Cores, and communications.  

  Different types of applications require different types of 

resources to be controlled. In the case of online applications, 
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they are likely to deal with lower data volumes, and higher 

speeds. On the other hand, offline infrastructures deal with 

huge data sets and, a priori, do not have a direct interaction 

with end-users.  

 - Infrastructure: Infrastructure refers to fundamental 

facilities servicing applications and implementing necessary 

blocks for running analytics. At this layer, there are at least 

five different types of sub-infrastructures, whose proper 

management may have a marked impact on performance and 

on the response time of applications, including: 

- Cluster management support: Many of the different 

tools use common facilities to access a cluster. They use 

different facilities from local or remote nodes, which 

are accessed via specific operating system interfaces 

or/and low level managers for storing computational 

models and/or connection managers. 

- Operating system (OS): Typically, an OS is in charge of 

controlling a set of resources via a well-defined 

interface. In some cases, interfaces include resource 

managers that control resources assigned to an 

application. Some specific OSs define policies for real-

time performance, that can be enhanced to add time-

criticality. 

- Storage managers: In close connection with operating 

systems, there are storage managers, which control 

different storage systems. In some cases, they offer 

support for different quality-of-service policies, which 

can be exploited in time-critical systems. 

- Node managers: They control a set of machines 

remotely from a manager. Typically, those node 

managers handle different classes of machines, with 

similar installed software and hardware stacks. 

- Connection managers: They control communications, 

and are crucial as the communication needs and the 

cluster increase in size. 
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Fig. 2.  Architecture for Time-Critical Big-Data 

 

- Hardware: At the bottom of the architecture is hardware. 

In many big-data systems, typical hardware layers are 

arranged as clusters of quasi-identical machines (potentially 

virtual machines). In a more general framework, the main 

facilities to be considered at this layer are: 

1. Computation: This refers to different computation 

resources (CPUs, cores).  

2. Storage: This refers to storage units required to process 

huge volumes of data. 

3. Communication: This refers to different facilities that 

interconnect computational resources and/or storage 

units.  
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Fig. 3.  Time-critical analytics:  Each analytic describes a simple end-to-end 
time-critical constraint. In the depicted scenarios, the work (W), executed in 

parallel by an analytic, is preceded by a map (M) phase and followed by a 

reduce (R) phase. The end-to-end requirement is described as an analytic 
deadline. 

B. System Model 

The model described in Fig 3, has been formalized using 

real-time systems theory to produce a time-critical 

characterization, useful for map-reduce and distributed stream 

processing. The essence of the technique consists in splitting 

different stages in applications, which are scheduled locally 

with other analytics and that interact with other parallel (||) and 

sequential stages (→). 

 

1) Time-Critical Analytics 

From a formal perspective, a time-critical big-data system 

(TC_BDS) is composed of a set of n analytics (TC_Ai): 
 

                     )           (eq.1) 
 

  Where each analytic (TC_Ai) is represented by an execution 

graph (TC_DAGi) and a set of performance requirements 

(TC_RQi): 
 

                     )            (eq.2) 
 

The execution graph models are commonly used in many 

systems. For instance, they are the computational model in 

Apache Storm and they can be also used to model map-reduce 

interactions of Apache Spark.  

Our basic requirement is a deadline for the whole analytic 

(D). Deadlines are defined by the analytic and may include 

data reading, writing, blockings, and any other logic 

associated with the execution of the analytics: 
 

                           (eq. 3) 
  

Likewise, each direct acyclic graph (DAGi) is composed of 

a set of stages(i). In each stage, the characterization is defined 

with a minimum inter-arrival time (Ti
j
), a partial deadline for 

each stage (Di
j
), and a worst-case execution (Ci

j
) associated to 

the stage: 
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2) Cluster Infrastructure 

In the architecture, the infrastructure runs on a cluster 

(TC_CLS) of m machines (π): 
 

                 )              (eq. 5) 
   

Each machine offers a normalized maximum utilization 

(Uk) to the system and it also introduces a maximum blocking 

time (Bk), which typically affects the application and refers to 

the maximum time an application may be awaiting a resource: 
 

                                               (eq. 6) 
 

  Blockings are very useful to model non-preemptive 

behaviors, related to packet scheduling and also the effects of 

priorities – e.g. high priority process blocked by a lower 

priority process holding a required resource. They are also 

applicable when modeling access to disk and network 

facilities.   
 

3) Time-Critical Characterization 

 

  To be properly characterized, each stage of an application 

should be assigned to a machine of the cluster (πi
j
). To help 

the application, the system has to declare a priority (Pi
j
) which 

has to be honored in all nodes. In addition, in choosing a node, 

the analytic of a stage also suffers a blocking (Bi
j
) from the 

infrastructure. 
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         (eq. 7) 

 

   After describing all different analytics from the application 

as fully configured sets of stages, one may determine bounds 

for the response-time of an analytic. This type of configuration 

is intended to be used with worst-case computational models 

for distributed and parallel computing. 

 

4) Meeting analytic deadlines: Schedulability analysis  

   Once the system is fully configured, using scheduling 

theory one may check if all deadlines in applications are met. 

Typically, one may resort to a general formulism, which is 

exact and valid for all different tasks. And also, there is a 

utilization bound (valid with T=D) constraint and priorities 

assigned inversely to periods; i.e. shorter periods have higher 

priorities). These two techniques are the core of the 

contribution of the article. 

 The first equation refers to the response time (TCRTi) 

associated to each different segment of an application.  Taking 

as a starting point the characterization given in Eq. 1- 7, one 

may calculate the worst-case response time (TC_RTi
j
) in each 

node, using the following recursive formulation: 
 

     
    

 
   

 
   

     
 

  
                                 (eq. 8) 

 

    Basically, the formalism applied is based on the response 

time analysis (RTA) [31]. RTA considers that the worst-case 

time of a segment is equal to the required execution (Ci
j
), plus 

the blocking (Bi
j
) experienced from the infrastructure plus the 

interference of those tasks with higher priorities (HP(i,j)) 

hosted in the same node      ). Each of these tasks introduce a 

(Cz) extra demand every Tz time units.  To solve all (eq. 8) 

equations in all nodes, one needs an incremental method to 

calculate the right response time, which has polynomial 

complexity. 

The second type of constraints refers to the extra conditions 

that enable calculations of the worst-case response times. 

Segments are grouped with two compositions: sequential (→) 

and parallel (||). For each of them, one needs to define worst-

case response times for the connection of different segments. 

Eq. 9 refers to the extra conditions one has to calculate for a 

sequential interconnection and Eq. 10 for a parallel one. 

  To calculate the worst-case computational times of two 

sequential (→) stages (i) and (i’), the worst case scenario is to 

add partial contributions of two individual segments: 
 

        
          

         
               (eq. 9) 

 

In addition to that, there is parallel relationship (||). If two 

stages run in parallel, then the response time of its aggregation 

is the maximum of the worst-case response time of any of 

them: 
 

         
                

        
  )          (eq. 10) 

 

Another type of techniques, which can be only used in 

specific cases (with T=D) and priorities assigned inversely to 

their periods) is to offer a global utilization bound that can be 

computed in linear time (i.e. linearly with the number of 

elements to be computed). In this work, we refer to a specific 

formalism of multiprocessors that establishes a safe bound for 

the maximum number of resources [33, 34]. It connects the 

number of machines required to support the system (when the 

deadline is equal to the period: T=D for rate monotonic 

assignments). The framework extends this model with 

blockings. The formalism connects the total utilization of the 

application (UTC_BDS) with the number of required nodes (m) in 

the cluster to meet different application deadlines.  

Assuming that all deadlines in all segments are increased by 

the blocking time (Bi
j
):  

 

 Ti
j +Bi

j =Di
j  for all i, j 

 

And a maximum utilization provided by each node (Umax): 
 

Uz>=Umax for all z in 1 .. m. 
then:  

          
  
 

 
 
                         (eq.  11) 
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Notice, that blockings (Bi) reduce the response of an 

application, which gets increased (see Eq. 8) with the 

blocking. However, they do not have an impact on the number 

of resources of a utilization based system, because it only 

introduces delay.  Another interesting result of the technique is 

that one may derive a safe bound for the maximum number of 

computational units (m) required for implementing the system. 

As the formulism shows, the number depends on the minimum 

period of the applications and the maximum activation costs. 

This section provided the basic formulism used to check if 

the system is feasible or not. Enforcing a classical 

characterization (i.e. T, C, D, P, B) the approach introduces 

the equations used to derive worst-case computational models 

that may be iteratively computed and to obtain worst-case 

computational models. In addition to this iterative models, 

there are utilization bounds (with B+T=D) that offer sufficient 

bounds for the maximum utilization of the system.  

V. TIME-CRITICAL IMPLEMENTATION  

The previous section defined a time-critical model for big-

data. This section defines a complementary time-critical 

software stack, which is evaluated latter in Section VI. The 

proposed model is based on a map-reduce cluster. This map-

reduce cluster offers file-system management, which may host 

a large volume of data. It also includes support to manage a set 

of machines via cluster managers. The stack uses a common-

off-the-shelf OS (Linux), which is installed in all nodes. 

On top of this infrastructure there are tools that enable the 

possibility of performing analytics. Two used tools are Apache 

Storm [9], targeted at sub-second response times, and Spark 

[23] with enhanced map-reduce performance. Storm uses a 

distributed stream programming model, intended for online 

processing, while Spark is more commonly used in batch 

processing.  
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Fig. 4.  Transforming a general purpose stack into a time-critical stack 

 

Lastly, the uppermost layer offers the possibility of using 

map-reduce via Apache Spark or processing high-speed 

streams with Apache Storm. To be able to offer time-critical 

performance, the following mechanisms are required: 

 A mechanism which assigns applications, according to 

their characterization and the previous described model. 

Typically, different resources managers (e.g. YARN, 

pluggable scheduler of Apache Storm, and the 

standalone cluster manager) have different policies that 

can be extended to take into account the nature of the 

analytic. 

 A mechanism which performs resource reservations at 

the OS level. One common facility included in the Linux 

OS is cgroups [43], which enables aggregation of a set 

of tasks into hierarchical groups. Also, if they are 

properly configured, they help to enforce periodic 

activations in nodes. 

 A mechanism to configure the priority of an application 

running on a cluster. This facility may be satisfied at 

application level or at cluster level.  

A. Distributed Stream Application Example 

Our first example to show how a distributed stream 

processor works is based on a distributed word counter. The 

distributed word counter may be defined as a set of four 

stages, the first in charge of generating the flux of data, which 

is after that processed by a parallel counter that splits words 

contained in each message. After that, words are counted 

using a hash-table in another stage. Lastly there is an 

aggregation phase. Our distributed stream example consists of 

three stages which are arranged as a DAG (see Fig. 5). 

End-to-end deadline

CG

S

S

 
Fig. 5. Scenario under evaluation: Time-Critical Stream Counting. The 

application consists of one Spout generator (G) which feeds several splitters 

(S). All splitters feed a unique counter (C). There is an end-to-end deadline for 
the analytic, starting in the generator and ending up in the counter. 

 

Now, let’s consider the perspective of a programmer, 

providing an example from this perspective. This type of 

analytic consists of code that reads data with a generator stage 

(coded in TC_Generator, see Listing 1), a splitter 

(TC_Splitter, in Listing 2) which extracts words out of 

sentence, and a counter (TC_Counter, in Listing 3) that 

counts all words. The application to be deployed requires from 

a last class which creates the topology and allocates all the 

elements of the stream (TC_Counter_App, in Listing 4). 

The generator uses a spout of Storm (see Listing 1), which 

has been modified to add time-critical information. The spout 

is a active class where the code invokes the nextTuple() 

method. The method is in charge of generating data that is sent 

to the next stage of the stream. This tuple is transferred in Line 

17. In addition, the example includes a time-critical 

mechanism to configure enforcement properties.  For instance, 

it is used to enforce the periodic activation of the stream in 

generation. It is also in charge of setting up a priority, which is 

enforced in all nodes. 

Those tuples emitted by the spout go through the 

infrastructure and are processed by a bolt. In all bolts, it raises 

an invocation to the execute() method with the information 

of the tuple. In our particular case (see Listing 2), first the bolt 

checks if the stream is properly received (Line 08) with a call 

to the tc_config() method, which is also in charge of 

setting the priority and/or enforcing minimum applications 

interarrivals between different invocations. After the 
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invocation, the stream is split (Line 09) into different pieces, 

which are sent to the last bolt. The last bolt (see Listing 3) is in 

charge of counting the words packed into a stream.  

Lastly, to create the application, a topology is required 

which is then sent to the cluster (see Listing 4). The most 

important part is the one that connects different elements to 

build the topology, which defines an interrelationship among 

them. The generator is created and aggregated with 

setSpout. Then a bolt is created with a parallelism hint of 2 

(Lines 10-12). The last element to be added is the bolt in 

charge of counting data (Lines 14-15). Lastly, the application 

is sent to the cluster of machines to be properly executed and 

the configuration file which contains the priorities and 

machines corresponding to all nodes (Line 18). 

 
01: public class TC_Generator implements IRichSpout  

02: { 

03:  FileSource fs; 

04:  OutputCollector collector; 
 

06:  public void open(conf, context) 

07:  {   

08:    loadSource() 

09:    storeConf()      

10:  } 

11:  public void nextTuple()  

12:  { 

13:   while(availableData())  

14:   {   

15:       tc_config(); 

16:      get_data(); 

17:      emitTuple(); 

18:   }  

19:  } 

20:  public void declareOutputFields() 

21:  {  } 

23:   } 

Listing 1: Time-Critical spout. The next_tuple method call to 

tc_config to enforce an application defined behavior. 
 

01: public class TC_Splitter implements IRichBolt 

02: {  

03:  public void prepare(conf, ctx) 

04:  { } 

06:  public void execute(Tuple input)  

07:  { 

08:   tc_config();  

09:   split(); 

10:   emit_data();    

11:  } 

12: } 

Listing 2: Time-Critical Splitter bolt. Prior to the execution of the application 

logic, it invokes a tc_config() method that configures the bolt according to 
the time-critical characterization. 

 

01: public class TC_Counter implements IRichBolt 

02: { 

02:  Map counters; 

03:  OutputCollector collector; 

04:  public void prepare( conf, context) 

05:  { } 

07:  public void execute(Tuple input)  

08:  { 

09:    tc_config(); 

10:      processTuple()   

11:  } 

12:  public void declareOutputFields(declarer) 

13:   { 

14:  } 

15:  } 

Listing 3: Time-Critical Counter Bolt. It does not emit any tuple. It only 

processes incoming tuples. 
 

 

 

01: public class TC_Stream_App 

02  { 

03:   public static void main(String[] args)  
04:  { 

05:    Config config = new Config(); 

06:    config.put("TC_config", args[0]); 

07:    TopologyBuilder builder = new TopologyBuilder(); 

08:    builder.setSpout("TC_gen",  

09:          new TC_Generator()); 

10:   builder.setBolt("TC_split",  

11:          new TC_Splitter()). 

12:   shuffleGrouping("TC_gen"),2); 

13:   builder.setBolt("counter",  

14:    new TC_Counter()). 

15:    shuffleGrouping("TC_split"); 

16:   Cluster tc_cluster = new Cluster(); 

17:   tc_cluster.submitTopology("TC_topology",  

18:            config,  

19:            builder.createTopology()); 

20:  } 

21:  } 

Listing 4: Time-Critical stream application, in charge of allocating the 

topology and sending it to the cluster. 

B. Map-Reduce Example 

Complementing the previous example, this section 

introduces an example of a time-critical application for Spark 

(see Figure 6). Our basic example is part of a word-cloud 

example that reads information from a file to create a word-

cloud using Spark map-reduce engine, which is a simple but 

effective example to illustrate how the modified Spark 

performs its internal behavior.  

From a technical perspective, the chosen analytic loads a 

file into an RDD (Resilient Distributed Data) and processes it 

with a simple map function to split input sentences into words, 

which are latter reduced. The application code is given in 

Listing 5. To implement the analytic proposed, an RDD is 

defined to read data (Line 9 of Listing 5). This data is then 

processed to create a map with all words (Line 11), which is 

reduced to elements with only one key (Line 13). Lastly, the 

example stores the resulting data into a file (Line 15).  

L M

M

End-to-end deadline

R

R
S

2: Map 3: Reduce 4:Save1:Load 

M

Map-Reduce counter analytic

 
Fig. 6.  Structure of the application defined in Listing 5. 

 
01: #Simple time-critical work cloud analytic 

02: def analytic_map_code (word): 

03:     tc_config() 

04:        (word, 1) 

05: def analytic_reduce_code (a, b): 

06:     tc_config() 

07:       a+b 

08: tc_config() 

09: text_file = sc.textFile("file.in") 

10: counts = text_file\ 

11:     .flatMap(lambda line: split(" ")) \ 

12:         .map(analytic_map_code) \ 

13:         .reduceByKey(analytic_reduce_code) 

14: tc_config() 

15: counts.saveAsTextFile("file.out") 

Listing 5: Time-critical map-reduce for a Spark-Python stack. The example 
corresponds to a word-cloud that can be configured with the priorities and 

configuration enforced with tc_config. 

 

To ensure time-critical behavior, applications may resort to 

specific methods that control resource assignment.  As in the 

previous case, there is a tc_config specific method, which is 

charge of enforcing time-critical configuration parameters 
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(defined by the application designer) at the different stages of 

an application. Depending on the nature of the application, it 

may delay the application until the next activation, change 

priorities, or perform any other type of specific optimization. 

In Spark, the number of parallel execution units is 

calculated using the amount of data processed and the number 

of execution units available. This type of policy is also 

compatible with the tc_config function, because the 

strategy offers support to all different stages of the model. 

VI. EVALUATION  

 The basic goals of the empirical section are the following:  

 Establish the number of nodes required to satisfy 

certain required demands, empirically. That it is to 

provide performance patterns. 

 Compare the technique with others, in the cases where 

this is feasible.  

 Establish empirical evidence on the differences offered 

by a time-critical infrastructure and a general purpose 

one.  

Our evaluation contains a time-critical stack which offers 

support for a time-critical version of Apache Spark (tc-1.6) 

map-reduce and Apache Storm (tc-1.6) (see Figure 7 and 

Table I). Each of these technologies runs on specific time-

critical clusters. Lastly, there is a time-critical operating 

system hosting this entire stack, which runs on a cluster with 

60(x4 cores) machines. Those machines share two different 

storage units: a NFS Linux filesystem used to store data, and a 

large HDFS engine. The specific versions of Storm modified 

were rt-0.98 and rt-1.6, which have been extended with time-

critical stacks. Our experimental results run until obtain an 1% 

confidence interval, with a 10-E-10 probability error 

distribution.    

On top of the stack, we run two type of analytics:  

 Micro-blogging analytics that count trends. For testing 

purposes, the evaluation deals with a larger number of 

tweets processed using offline and online engines. For 

those applications, the deadline has been taken into 

account. In this case, the basic formulism used is Eq. 11, 

which assumes that (B+T=D). It has been iteratively used 

to calculate number of machines necessary to support a 

certain time-critical performance. 

 Text mining (offline and online). For testing purposes, the 

evaluation deals with books taken from Project 

Guttenberg [43] online library. In all cases, the studied 

analytic counts words to build a histogram.  

For text mining and microblogging, the application defines 

application deadlines for each analytic. Typically, online 

analytics run with deadlines under one second (<1s) and are 

supported with the Time-Critical Storm; the offline application 

has a hard deadline of minutes or hours and are targeted to the 

Time-Critical Spark (see Table I).    

 

(TC)Zookeeper (TC)Standalone

HDFS 

2 Gb/s 

(TC)Spark (TC)Storm

(TC)Analytics

   - Online  (TC) storm 

   - Offline (TC) spark 

(TC)RT-Linux 3.4

(TC) Regular cluster 

(40*4 cores)

NTFS 

 
Fig. 7.  Type of evaluated map-reduce analytics 

 
Table I: Main parameters of the experiment 

 

Analytics 

TC_A1) Micro blogging trending topics (online) 

TC_A2) Micro blogging  word cloud (offline) 

TC_A3) Word counter (online) 

TC_A4) Word histogram (offline) 

Analytic  

Deadlines 

D_TC_A1) Processing an event (< 1 second) 

D_TC_A2) Processing all data (< 1 hour) 

D_TC_A3) Processing an event (<1 second) 

D_TC_A4) Processing all data (<10 min) 

Confidence interval +-1%  with less than 10E-10 error 
 

(TC)Storm version tc-0.98 

(TC)Spark tc-1.6 

Data-set 1 Terabyte 

RT-OS RT-Linux 

Machines 240 cores= 60 machines x4 cores per machine 

Optical Network speed 1 Gb/s 
 

 

A. Micro-blogging Experiment 

This first experiment runs on TC-Storm and it is based on a 

typical micro-blogging application that counts the number of 

messages (e.g. tweets) that arrived. In the first case, the 

application is similar to the one described in Section V for 

stream processing and map-reduce fluxes. 

 

1) Micro-blogging  topics (online) 

  For micro-blogging, the distributed stream processor selects 

the most-popular topics which are aggregated to produce an 

output flux (see Fig. 8). Each different type of stage derives a 

worst-case computation time (see Table II). For increasing 

input data frequencies from 1 Hz to 24 kHz, the evaluation 

analyses the number of resources required to implement the 

system for the worst-case in which all data require maximum 

computational times (basically using utilization equations, 

described from eq. 10 to eq. 11). Also, it was evaluated how 

the response time is affected by decimation in the aggregation. 

There is a deadline of 1 second for the end-to-end response 

time of the stream.  
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Fig. 8.  Type of evaluated multi-input and output stream processor. End 

to-end deadline comprises from the input to the output 
 

For the given frequencies, the system requires a utilization 

which may be for the best case satisfied with a single core 

(e.g. 1 message per second) to a maximum of 83 
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computational units (see Figure 9, and Figure 10). Figure 9 

shows the evolution of this parameter as the number of 

messages increases. It also shows the number of cores 

required for an analytic. Using the formalism included in the 

analytical model, one may establish the end-to-end response 

time. In all cases, the worst-case observed response time is 

bounded by 3.4 milliseconds, assuming that there is no 

decimation.  

Previous approaches in the state of the art for Apache Storm 

only deal with quality of service issues [36]. One major 

difference among the strategy they proposed in [36] and ours 

is the type of modeling used. Although the techniques are 

different (their scheduling techniques) we compared their 

techniques against ours to determine the number of cores 

required for their technique. The results showed that their 

performance takes more from 22 % to 33% (depending on the 

scenario) because their equations do not take into account 

blockings factors (B) and Eq. 8 and Eq. 11 are over-

pessimistic (mainly because in modeling they do not model 

blockings). 
 

Table II: Main parameters of the experiment. Partial costs of the three stages 
and number of cores required to implement the “time critical” system. 

Parameter Value 

Costs (Cgen, Ccounter, Caggreg) 127 µs, 507 µs, 511µs 

Data In  freq 1 Hz -4 kHz 

Cores Available  1-28 

End-to-end Deadline <1 second  

TC stack required resources to 

meet the deadline 

From for 1(0,03) core for 1Hz – 80  cores for 4 

kHz 

Closer approaches [36] From for 1(0,04) core for 1Hz – 104  cores for 4 

kHz 

 

From the point of view of performance, the sampling factor 

is relevant, because it may reduce the number of cores 

required to implement the system. In our particular case, a 

proper decimation reduces the amount of cores assigned to the 

aggregator phase, increasing the response time of the analytic 

too (because of the delay introduced in the application end-to-

end deadline). In the experiment, the end-to-end response time 

increases from few milliseconds to a second (see Figure 11) 

because of the decimation factor. For the same type of 

applications, the proposed architecture reduces the aggregator 

costs by delaying the transmission of data, which results in 

reductions on the number of cores required to submit data 

among nodes (Figure 12). Figure 12 refers to the savings 

associated with the use of a decimation technique that reduces 

the number of data sent from the client to the server. Figure 12 

refers to the number of resources one saves as one does not 

have to send data. For a decimation factor of 2000, the end-to-

end response is below one millisecond, saving for the 1 kHz a 

maximum of 2 extra resources (i.e. cores). 

   Figure 9 shows the utilization required to implement each 

section of the system. This factor depends on two input 

parameters (the stream input frequency: from 0 to 20 MHz and 

also the type of segment: which may be the generator, the 

counter and the aggregator). The term refers to the partial 

contribution of each segment (C/T) of the stream, included in 

Eq. 11. Taking the input information of Figure 9, Figure 10 

shows to the minimum number of resources (i.e.) decomposed 

by partial contributions (of the generator, counter, and 

aggregator) for different frequencies. The difference among 

both figures is that first refers to utilization and the second to 

an integer number of cores. 

    The common goal of Figures 11 and 12 is to illustrate the 

benefits of decimation among phases to save resources, which 

is also an important parameter to take into account. In Figure 

11 to introduce the impact of the decimation the previous 

analysis has to be changed introducing a delay or blocking in 

the end-to-end deadlines. As a result of this change, a number 

of resources are released that depend on the decimation factor 

used (from 1 to 1024) and the input frequency (from 100 Hz to 

16 KHz). This saves a number of cores (shown in Figure 12) 

that may be relevant. 

 
Fig. 9.  Analytic demanded resources (Utilization) 

 
Fig. 10.  Required number of cores to support the scenario 

 
Fig. 11.  End-to-end response time as a function of a decimation (i.e. sampling 

in the output) factor 

 
Fig. 12.  Saved cores as the output of the counters are delayed to meet a 1 
second deadline. x axis refers to the speed of the microblogging flux. 

 

2) Time-critical Offline performance 

Our second type of analytic on micro-blogging applications 

is the processing of splitting and processing a set of tweets 

(see Figure 13). Our application processes a large amount of 

data stored in a HDFS filesystem to obtain a word-cloud. The 

data consists of four main stages, one that downloads from the 

HDFS, another which performs a map to tokenize data, a 

reduce phase which groups by similar words, and a final stage 

which sorts them (see characterization is in Table III and 

Figure 13). The application dataset processes data from 160 

millions of words to 1300 millions of words that may be 

processed with 128, 64, 32, 16, 8, 4, 2, and 1 cores. There is 

0E+00 

5E+01 

1E+02 

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04 

U
tl

iz
at

io
n

 

Stream frequency (Messages per second) 

Analytic requirements 
Gen 

Counter 

Aggreg 

Utotal 

0 

50 

100 

0,00E+00 5,00E+03 1,00E+04 1,50E+04 2,00E+04 
U

n
it

s 

Stream frequency (Messages per second) 

Required cores 

Gen 

Counter 

Aggreg 

Total 

1,00E-03 

1,00E-01 

1,00E+01 

1 10 100 1000 10000 

R
e

sp
o

n
se

 ti
m

e
 

(s
e

co
n

d
s)

 

Decimation factor 

End-to-end response  time 

1 

4 

16 

64 

256 

1024 

4096 

16384 

1,
00

E+
0

0 

4,
00

E+
0

0 

1,
60

E+
0

1 

6,
40

E+
0

1 

2,
56

E+
0

2 

1,
02

E+
0

3 

4,
10

E+
0

3 

1,
64

E+
0

4 
Decimation 

factor 

Stream (messages per second) 

Saved cores 

6,00E+01-
8,00E+01 

4,00E+01-
6,00E+01 

2,00E+01-
4,00E+01 

0,00E+00-
2,00E+01 



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2016.2622719, IEEE
Transactions on Big Data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

also a deadline for the analytic of 2 hours, which requires a 

minimum of 20 cores to be satisfied all scenarios. This 

formulism has been derived from Eq. 11 if we assume 

(T+B=D). 

WordCloud Analyzer

Reduce

(M-R)
Sort

(M-R)

End-to-end Deadline (<2h)

Map

(M-R)
Download

(M-R)

 
Fig. 13. Wordcloud analysis over a micro-blogging application. Analytic that 

consists of 4 stages with an end-to-end deadline of 2 hours. 

 

As in the previous experiment, we established empirical 

evidence to compare our scheduling model against results 

from a map-reduce framework [11]. Previous work does not 

consider the use of blockings in the model leaving to very 

pessimistic performance that may be improved adding new 

rules to [11] (see Table III). This is mainly due to the 

blockings caused to access data from the Hadoop distributed 

file-system. The technique described in [11] requires from 

25% to 33% of extra resources for the analyzed scenarios. 

Table III shows the parameters of the analytic, and the amount 

of resources required in each case. 
 

Table III: Main parameters of the experiment. Main results 
Parameter Value 

  

Analytic stages download() -> map () -> reduce() -> sort() 

Data HDFS 1, 2, 4, 8 GB of data (tweets) 

Cores 1-128 

Memory  per core 1 GB 

Partitions of Spark 300 

Analytic Deadline < 2 hours 

Our time-critical  

infrastructure 

It requires 1 (0,5) core for 1 GB of data  

and 20 cores for 8 GBs to meet the deadline 

Closest  

related work [11] 

Requires (0,76) cores for 1 GB and 28 for 8 GB of 

data 
  

 

Figure 14 describes all the experiments carried out. It 

includes the number of cores used in the experiment 

(diamonds) and also the data (squares). Each point in the x-

axis represents one experiment (which consists of a number of 

cores and data that has to be processed labeled as UNITs). 

Figure 15 extends Figure 14 with the time taken to carry out 

the whole experiment. Each scenario (cores and data) 

produces an output (triangle). It also includes the description 

for the speed of the scenario (speed means the amount of time 

delivered by each core) and efficiency.   

The following performance patterns have been observed: 

 Time: The total time required to run each experiment has 

a relationship with the amount of processed data (more 

data means more time). Also, it also decreases as the 

number of cores increases (see Figure 15).  To meet the 

deadline, the system requires 20 cores: with 16 cores, it 

takes 2.2 hours to compute the largest file; and with 32 

cores, it takes 1.6 hours. 

  Speed: The speed, measured as the number of tweets per 

second, decreases as the number of cores does. It also has 

dependency on the data transferred but the main 

dependency is with the number of cores available to 

process data (Figure 16). 

 Efficiency: The efficiency measured as the speed divided 

by the number of cores required to implement a system 

increases as the number of cores decreases (Figure 17). 

In general, an increase in the number of nodes does not 

mean more speed or efficiency. This is because of the 

overhead introduced by connections. In the proposed analytic, 

the bottleneck is the network. This is reason why adding cores 

does not linearly increase the speed of the application. 

 
Fig. 14.  Offline micro-blogging scenario  

 

 
Fig. 15.  Off-line micro-blogging scenario: results 

 
Fig. 16. Total time results 

 
Fig. 17. Speed results 

 
Fig. 18. Efficiency results 

B. Book Manager 

The second evaluation analytic is the book manager, which 

operates on the Gutenberg project [44]. As in the previous 

case, it consists of two subsystems: one in charge of 

processing sentences of a book online, and another which 

processes a set of books offline which are accessed from 

HDFS. The goal is the same as in the previous section: to 

establish empirical evidence on the performance one may 

expect from this type of infrastructures. As in the previous 

case, our interval of confidence is 1% with a failure 

probability of 1e-10. 

 

1) Book word histogram (online) 

 

The structure of the analytic is shared with the micro-

blogging analytic (shown in Fig 13). Also the end-to-end 

analytic is one second. However, the worst-case computational 

models for the different stages are higher than in the previous 

case (see Table IV). In the previous case, all stages were under 
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the millisecond response time, now some of them are close to 

5 ms. As there is an increase in the computation time in all 

stages, the number of nodes required to implement the system 

is also higher. Figure 19 and Figure 20 introduce the costs in 

utilization demanded by the application and number of cores 

required to meet the deadline. They are always greater than in 

the micro-blogging application.  Likewise, it is expected that 

decimation increases the end-to-end response times of the 

analytic but it also reduces the amount of resources required to 

be implemented in the cluster. 
 

Table IV: Main parameters of the experiment and outcomes 
Parameter Value 

Costs:  Cgen, Ccounter Caggreg. 1,1 ms, 5 ms, 0,8 ms 

Data Input  freq 1 Hz -40 kHz 

Cores available  1-128 

Analytic Deadline <1 second 

Our time-critical infrastructure Requires 1 (0,08) core for 1 Hz and  100 cores 

for 40 kHz 

Closest related work [32] 

performance 

 Requires 1(0,096) core for 1 Hz  and 119 cores 

for 40 kHz 

 
Fig. 19. Analytic Requirements (Utilization) 

 
Fig. 20. Number of cores required for the implementation 

 
Fig. 21. Response time with decimation 

 

2) Book word histogram (offline) 

As in the previous case, the offline library analyzer splits 

the book into sentences and words. The used test-bed (see 

Table V) ranges from 1 book (6.9 MB) to 512 books (3.1 GB). 

The number of cores required to support the system ranges 

from 1 to 50.  Internally, Spark creates 200 partitions. The 

number of items to be processed ranges from 1 million 

elements to 1000 millions. The number of cores also ranges 

from 1 to 50 core(s) (see Fig. 21). Results of the experiment 

are shown in Fig. 22. They have been scheduled using the 

model proposed in Eq. 11 (T+B=D). 

  The analysis of the results shows that the processing time 

has a strong relationship with the amount of processed data 

(Fig. 23). The speed keeps more or less stable in all 

experiments (Fig. 24). Likewise, the efficiency tends to be 

higher with lower number of machines and decreases as the 

number of machines increases (Fig. 25).  

   To meet the deadline for the whole analytic (T+B=D), the 

system requires at least two cores (which process the system 

in 9.79 minutes). With one core, the response-time is 13 

minutes and with 2 cores is 9.70 minutes. Comparison with 

similar techniques (i.e. [11]) showed that it may require a 40% 

of extra resources to meet deadlines (see Table V). 
 

Table V: Main parameters of the experiment. Results 
Parameter Value 

Analytic stages download()-> map ()->reduce()->sort() 

HDFS Data From:   1 book (6,9 MB)  to:   512 books  (3.1 GB) 

Cores 1-50 

Partitions of Spark 200 

Analytic Deadline <10 min  

Our time-critical 

infrastructure 
From 1 (0,013)  core for 1 book to 2 cores for 512 books  

Closest related work 

[11] performance 
From 1 (0,027) core for 1 book to 4 cores for 512 books 

 
Fig. 22.  Book word histogram generator.  

 
Fig. 23. Book word histogram  

 
Fig. 24.  Detailed results on total time 

 
Fig. 25.  Detailed results on speed 

 
Fig. 26.  Detailed results on efficiency 

C. General Purpose vs. Time Critical Performance 

  To illustrate a case where the time critical information is 

used, a simple example is presented. It is based in the idea of 

prioritization offered by the infrastructure. Let’s assume that 

we have two time-critical analytics (TC1 and TC2). Each one 

of them takes computationally 1 hour to run (CTC1=CTC2=1 

hour). But these time critical analytics have different deadlines 

(DTC1=1 hour and DTC2=2 hours). If we do not assume any 

time-critical scheduling model (like the one shown in Section 

V), then the system is not feasible in a single node; it requires 

two, because both tasks have the same priority 

(PTC1=PTC2=prio), which it is the default configuration in 

Spark and Storm.  With this setup, the worst case response 

time of both map-reduce tasks is 2 hours (RTTC1=RTTC20= 2 

hours) requiring an extra machine to isolate applications with 
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different deadlines. Here the formulism used to calculate worst 

case computation times is derived from Eq. 9. However, our 

scheduling framework may assign priority proportionally to 

deadlines (PTC1=prio and PTC2=prio+1), requiring only one 

resource to meet deadlines (see Table VI). In this case, the 

worst-case for the shortest deadline reduces to 1 hour, and one 

single machine, the worst case response time for the highest 

priority task does not suffer interference from the lowest one. 
  

Table VI: Cluster with one machine allocating time critical (TC) and general 

purpose (GP) analytics. TC cluster is much more efficient deadline with 
deadlines. 

  Cost Deadline Priority WCRT Feasible  

GP 
TC_1 1 h 2h Default 2h Y 

TC_2 1 h 1h Default 2h N 

TC 
TC_1 1 h 2h Low 2h Y 

TC_2 1 h 1h High 1h Y 

VII. RELATED WORK 

In the state-of-the-art of time-critical big-data systems, 

different approaches have been identified as pioneering efforts 

that contribute to sculpt the time-critical big-data 

infrastructures. Each one contributes from a different 

perspective to different aspects of next-generation 

architectures for big-data. Chronologically, the first is an 

attempt to model real-time map-reduce interactions as 

schedulable entities [11]. In [11] the authors used the popular 

Hadoop map-reduce model which has been evaluated on an 

experimental Amazon EC2 cloud, establishing interesting 

tradeoffs between throughput and predictability. The described 

model may be improved with the blocking formulism 

described in Section IV, as our empirical results suggested.  

From the point of view of time-critical systems, this is one 

of the first approaches to deal with the time-critical 

performance of map-reduce applications. Later, the Juniper 

project [10] has dealt with a number of issues related to the 

performance of big-data systems.  

More recently, some researchers [9] have addressed the 

predictability of Apache Storm, one of the main online 

infrastructures available for stream processing, as part of an 

all-in-Java infrastructure for real-time big-data. To this end, 

they introduced programming abstractions typically used in 

time-critical systems into the Apache Storm architecture [9]. 

Their major contribution to the state-of-the-art has been the 

integration of a computation model based on stream 

processing with the scheduling policies available for 

distributed and parallel computing. 

A recent approach to on-line processing is the lambda 

architecture [1], which is based on a batch technology and 

online technology that provides a dual branch computing 

model. The architecture proposed in this section enables the 

possibility of defining requirements (typically a deadline) for 

the analytics, which are efficiently enforced latter by the 

infrastructure. This is also more efficient than the performance 

given by current infrastructure, which targets to high 

performance computing. Our particular time-critical lambda 

architecture will consist of a TC Storm for stream processing 

and a TC-Spark for batch processing. The contribution of the 

article to the lambda architecture is to be able to use the real-

time scheduling theory to derive efficient end-to-end 

scheduling models from deadlines.  

A. Distributed Stream Processing 

In the area of distributed stream processing, there are a 

number of initiatives dealing with distributed stream 

processing [35-39]. The work in [35] introduces QoS 

scheduling mechanisms for Apache Storm. In [36] the authors 

added adaptive scheduling techniques to Storm.  Our approach 

uses the techniques described in [35-36] to offer a deadline-

based approach, which is a domain not addressed by previous 

researchers. Our scheduling model shares commonalities [36] 

that may benefit from blockings factor introduced to improve 

significantly the schedulability of the system. 

Some other approaches [37-38] deal with scheduling 

models for clusters and the cloud. The main difference among 

these two techniques and the proposed technique is the 

domain. While those techniques address general purpose 

scheduling stochastic models, our approach deals with worst-

case analytics which offer a simpler formalism. 

B. Map-Reduce Processing 

  There is a corpus of works [39-42][48-49] dealing with 

different aspects involved in map-reduce. In [40], the authors 

describe different quality-of-service features related to a map-

reduce engine. Our algorithms belong to the response time 

category of the quality of service. In [39], the authors 

formalize aspects in map-reduce scheduling to perform online 

and offline scheduling. Our model is much simpler than [39].  

In [41] the authors proposed a packing server for map-reduce 

workflows. We share with this work a packing strategy; 

however, we explicitly split flushes into different units. Lastly, 

[42] describes a cost-effective scheduling framework for map-

reduce. The framework takes into account monetary issues.  

Our main difference [41-42] is that our approach is more 

empirical, targeting specific end-systems.  

  In [48], an architecture is proposed for high-speed 

performance based on RabbitMQ. The system described in 

[48] implements a scheduler able to run analytics. The main 

difference among both approaches is the domain, which in our 

case it is more focused on the use of time-critical scheduler 

and applications. A similar assessment may be applied to [49], 

which does not define polices for deadline processing.  A last 

piece of work in the map-reduce world is described in [51] 

that uses scheduling servers with map-reduce tasks. Since both 

use different scheduling models, the techniques cannot be 

easily compared. 

VIII. CONCLUSIONS AND FUTURE WORK 

  Many challenges are ahead of us in the time-critical big-data 

horizon towards producing a generic infrastructure able to 

meet the deadlines of different analytics in a predictable way. 

This article has reviewed some (small) building blocks that 

have to be considered to accomplish this goal; it has also 

identified requirements of different domains that have to be 

properly supported by big-data infrastructures and must be 

readapted to cope with time-critical issues. 

  Among all of these building blocks, one of increasing 

importance is big-data analytics and their particular 

characteristics, which may determine the type of required 

infrastructure. Only with careful consideration of the 

characteristics of the different types of analytics, will it be 
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possible to unravel the requirements of next-generation time-

critical big-data platforms. 

 Currently, the authors are considering the integration of 

privacy and security; where they are focusing their efforts in 

studying the overhead introduced by different authentication 

policies, partially described in [19], as a part of a time-critical 

big-data system. 
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