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Abstract
In this paper, we propose a direct method for speech rate estimation from acoustic features without
requiring any automatic speech transcription. We compare various spectral and temporal signal
analysis and smoothing strategies to better characterize the underlying syllable structure to derive
speech rate. The proposed algorithm extends the methods of spectral subband correlation by including
temporal correlation and the use of prominent spectral subbands for improving the signal correlation
essential for syllable detection. Furthermore, to address some of the practical robustness issues in
previously proposed methods, we introduce some novel components into the algorithm such as the
use of pitch confidence for filtering spurious syllable envelope peaks, magnifying window for
tackling neighboring syllable smearing, and relative peak measure thresholds for pseudo peak
rejection. We also describe an automated approach for learning algorithm parameters from data, and
find the optimal settings through Monte Carlo simulations and parameter sensitivity analysis. Final
experimental evaluations are conducted based on a portion of the Switchboard corpus for which
manual phonetic segmentation information, and published results for direct comparison are available.
The results show a correlation coefficient of 0.745 with respect to the ground truth based on manual
segmentation. This result is about a 17% improvement compared to the current best single estimator
and a 11% improvement over the multiestimator evaluated on the same Switchboard database.
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I. Introduction
SPEECH has been considered an attractive input modality for human–computer interactions
for a long time. More recently, there has also been increasing interest in automatically mining
vast amounts of speech data to determine not just what was spoken but how and by whom as
well. Much of the research focus over the past three decades has been on automatic speech
recognition, with tremendous progress being made, especially with the adoption of hidden
Markov model (HMM)-based architectures. However, speech technology is still far from
achieving the goal of robust speech understanding. One reason, which is also reflected in the
current research trends in human language technologies, is the inability to adequately capture
and represent the rich information contained in speech that is beyond mere speech-to-text
transcription, as provided by conventional automatic speech recognizers. Humans use a wide
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variety of cues for recognizing and understanding speech, including intonation, prominence,
and speaking rate. Machine processing of natural speech may also benefit from using these
cues. Hence, one key goal of present day spoken language processing research is to
automatically and robustly characterize these suprasegmental aspects of speech. This paper
focuses on the topic of automatic speech rate estimation.

A. Significance
Speech rate is primarily dependent on two factors: speaking style and the nature/scenario of
speech production (e.g., scripted/spontaneous). Research in this domain has two distinct
application-driven threads as to how speech rate variability is addressed. On the one hand,
variation in speech rate tends to adversely impact automatic speech recognition (ASR) and
needs to be mitigated. On the other hand, variation in speech rate carries information critical
for speech understanding and needs to be quantified to determine contextual variables such as
speaking context, audience, knowledge of the subjects, etc. Much of the early focus on speech
rate estimation was targeted toward improving ASR robustness. Even though HMMs have the
ability to accommodate some of the spectral–temporal variations in speech, recognition
accuracy is still severely influenced by mismatches between training and testing conditions.
Speech rate variability is one such contributing factor [1]. A first step toward addressing this
issue, i.e., to help improve the match between the models used and the speech being processed
for recognition, is to quantify the inherent speech rate variability. Then, once an estimation of
the underlying speech rate is done, one could select appropriately pretrained acoustic models
[25], [54] or adaptively set transition probabilities of the HMMs [4], [5] that appropriately
reflect the rate of the speech being measured.

Speech rate information can also be used in other speech processing scenarios besides robust
automatic speech recognition. Speech rate variance could be interpreted as a function of the
cognitive load associated with processing the text transcription [27], [42]. Cognitive load could
be defined as the level of effort for the speaker/user to select the words to speak (for the main
task or concurrent subtask [42]). In spontaneous speech scenarios, the speaker typically has to
address various tasks on the fly, as they unfold, with unknown cognitive loads. So, not
surprisingly, the speech rate variability for spontaneous speech can be quite large [44].

With increasing interest in spontaneous speech recognition and interpretation in recent years,
and challenges posed by the acoustic and linguistic characteristics of spontaneous speech that
are highly variable and more unstructured than prepared speech, the role of speech rate
estimates has become ever more important. Notably, instead of just relying on the text from
ASR to arrive at speech rate estimates, which may be quite noisy, there is a need to use
suprasegmental acoustic features to directly facilitate speech interpretation. Below, we
highlight some specific applications.

Prior research has shown that local speech rate correlates with discourse structure. For example,
global analysis of the discourse structure in paragraphs and clauses has revealed that for each
of the speakers considered, the average syllable duration of the first run of a paragraph is longer
than the overall mean value per speaker in more than 60% of the cases (50% is the chance
value)[3]. Local speech rate variations may carry other crucial information as well. For
example, speech rate plays an important role in the context of sentence boundary detection and
disfluency detection. It has been suggested that people tend to have longer syllable duration,
or equivalently slower local speaking rate, at these events [6], [7]. Speech rate also correlates
with prosodic prominence. Detection and normalization of rate of speech has been found to be
necessary in measuring such attributes [8], [21]. Global speech rate also works as a
normalization factor for many prosody-based classifiers. For example, it was selected as a key
prosodic feature in the machine learning process of dialog act detection [19], [23]. In summary,
speech rate estimation can be useful in a number of spoken language processing contexts.
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B. General Measurement Methods
There have been two major trends in measuring speech rate. Each has its advantages and
limitations. The first represents the use of discrete categorization—frequently, “fast,” “normal”
and “slow”—to describe speech rate [24]. Such perceptually chosen classes have been used in
applications such as acoustic model selection [9], [25] and HMM normalization [15] in ASR.
Even though it matches human intuition, the boundaries between these three categories are
fuzzy. Most of the time, human knowledge is required to set the boundaries, and hence it is
difficult to devise a completely automated engineering solution.

In the second approach, speech rate is measured in a quantitative way by counting the number
of phonetic elements per second. Words, syllables [9], stressed syllables, and phonemes [10]
are all possible candidates, and syllables are a popular choice [6], [9], [11]. Studies on speech
rhythm, i.e., organization of prominent and less prominent speech units in time, offer some
motivation in this regards. Evidence from reiterative speech studies [16] supports the idea that
syllable evolution is a good estimate of speech rhythm. Specifically, while the classic isochrony
(or rhythm class) hypothesis regarding stress-timed, syllable-timed, or mora-timed languages
has been largely unsupported by acoustic–phonetic evidence, a form of the isochrony
hypothesis for rhythm has been shown to be supported by speech measures based on syllable
structure and vowel reduction [50], [51]. Definitions for the syllable have been offered from a
variety of perspectives; phonetically, Roach [37] describes a syllable as “consisting of a center
which has little or no obstruction to airflow and which sounds comparatively loud; before and
after that center (…) there will be greater obstruction to airflow and/or less loud sound.” This
definition allows for a plausible way for detecting syllables in speech. Intuitively, syllables,
by these accounts, should have an even distribution under normal speech production, and their
rate could be changed as a result of speech rate change. Given such characteristics of syllables,
the syllable-based rate estimate appears to be a widely used choice among speech rate
researchers [6], [9], [11]. In this paper, we use number of syllables per second as a measure of
speech rate. We will further explore the syllable’s acoustic property in Section II.

C. Role of ASR in Speech Rate Estimation
We first need to detect syllable boundaries for speech rate estimation. A straightforward, and
convenient, approach would be through the use of automatic speech recognition where syllable
boundaries can be retrieved as a side product of phonetic segmentation such as through Viterbi
decoding [10]. Furthermore, ASR errors could be minimized with a supervised alignment
process if the correct transcription were known [6], [7]. However, such an approach has
limitations, while alternative approaches can offer other advantages.

First, assuming that the reference transcription is not available in real applications, recognition
errors—especially for spontaneous speech—are unavoidable. Recognition errors (particularly
insertions and deletions) would have the effect of degrading the performance of ASR-reliant
speech rate estimation methods [25]. Second, speech rate could work as an acoustic feature to
help ASR instead of being dependent on it. Hence, it is better to detect it in parallel or even be
used as a part of an ASR front end. In this way, we can combine the complementary information
produced by speech rate estimation and ASR. Finally, we believe that direct speech rate
estimation can be easily extended to languages with vowel-centric syllable structures similar
to English. This would be especially useful when only sparse data is available and where
building a high-performance ASR system is especially challenging.

In this paper, we investigate using acoustic-only features to derive speech rate. The rest of the
paper is organized as follows: Section II reviews the previous work and identifies the
challenges. Section III introduces the data for evaluation. Section IV introduces our algorithm.
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Section V describes the system and evaluation. The final section provides conclusion and
discussion.

II. Previous Work
As stated in the previous section, we use number of syllables per second as the speech rate
measure in this work. We therefore focus on identifying the correct number of syllables in an
utterance.

A. Background
This task to identify the syllable structure in an utterance dates back to the very early stages of
speech recognition research in the mid 1970s, where syllable detection was a popular first step
in automatic speech recognition [41]. The HMM-based statistical framework for ASR had not
been popularized then, and most of the research relied on knowledge (rule)-based acoustic
signal processing. A variety of features had been proposed to capture the syllable nucleus.
These included, for example, the use of linear predictive coding spectra [27], [28] or critical
filter banks [32] to extract the low-to-high frequency energy ratios that characterize the acoustic
properties of a syllable. Also, power spectra were used to derive a low-frequency profile in the
region of first few formants of vowels [29], [30]. Due to restrictions of processing hardware
and data availability at that time, these efforts were limited to read speech in quiet laboratory
environments, usually produced as isolated words or slow, carefully read sentences. [41].

With the wide adoption of hidden Markov model-based speech recognition in the 1980s, there
was a decreased focus on acoustic–phonetic studies for ASR. However, recently with the
increased scope of spoken language processing (Section I) the need for processing meta-
linguistic features has increased considerably, resulting in many interesting approaches,
including for speech rate estimation [8], [12]. A significant advantage of present-day research
is the ability to use large, spontaneous speech corpora to obtain statistically significant results.
An influential recent effort on speech rate estimation is by Morgan and Fosler-Lussier [9]. Our
paper was inspired, and builds upon on their work, which we will review further in Section II-
C.

All of the previously proposed techniques share the basic knowledge-based feature extraction
ideas. The strategy relies on converting the speech waveform to a lower (frequently, one)-
dimensional representation. Following that step, the syllable nucleus is located by picking peak
patterns in such a representation. There are alternatives to simple peak picking. For example,
Mermelstein [29] used a “convex hull” algorithm to recursively detect peaks which are
prominent relative to their surroundings. Rabiner used a static threshold on the total energy
profile [31].

In addition to these rule-based approaches, there have been attempts to use statistical learning
methods to derive syllable nuclei. Normally, a large number of features are extracted such as
log energy spectra organized in critical bands [33], bark scale filter bank [34], and even auditory
models (RASTA [35]). The learning methods are mostly based on hidden Markov models
[34] or artificial neural networks [33] and are usually trained with appropriately annotated
corpora.

B. Acoustic Characteristics of Syllables
The task of automatically detecting the syllable nucleus has a close relationship with vowel
landmark detection [41] based on the assumption that a syllable is typically vowel centric and
neighboring vowels are always separated by consonants. The use of the term “vowels” in this
context can be in fact generalized to “sonorant segments,” in light of the discussion in Section
I-B about the definition of syllable. Generally speaking, vowels form the nucleus of syllables,
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whereas consonants form the boundaries in between [40]. However, it should be noted that a
more precise characterization of the syllable structure can be made in terms of sonority (a
sound’s “loudness relative to that of other sounds with the same length, stress, and
pitch.” [40]) which posits that syllables contain peaks of sonority that constitute their nuclei
and may be surrounded by less sonorous sounds [52], [53]. According to the Sonority
Sequencing Principle [52], vowels and consonant sounds span a sonority continuum with
vowels being the most sonorous and obstruents being the least, with glides, liquids, and nasals
in the middle. In this paper, we will use the term vowels to mean sonorant sounds in the nucleus
of a syllable. We use this convention for simplicity and because vowels constitute the most
sonorous and frequent members of syllable nuclei.

A vowel is characterized by an open configuration of the vocal tract so that, unlike consonants,
there is no significant build-up of air pressure above the glottis [40]. Due to resonances in the
vocal tract, a vowel exhibits clear formant structure in its spectrum. This contrasts with
consonants, which are characterized by a constriction or closure at one or more locations along
the vocal tract. We will use this general description to motivate our design of the algorithm for
syllable nucleus detection.

C. Subband-Based Correlation Approach
As a preface to the description of our algorithm, we review the correlation based approach
proposed by Morgan and Fosler-Lussier [9] and other related work. One classic way to get
syllable counts is through performing full-band spectrum/energy analysis and measuring the
dominant peak of the long-term envelope [13]. However, such an approach results in significant
noise in the final envelope, making it difficult to obtain syllable counts robustly.

Many further improvements for the energy/spectrum idea have been proposed. For example,
Pfitzinger [20] extracted a band-pass signal and applied rectifying and smoothing window to
it before performing peak counting. In that work, a 21.8% error rate (a measure that uses syllable
nucleus matching between test and transcription location) was reported. As an alternate
approach to the same problem, the first spectral moment of the broadband energy envelope
was used as a speech rate measure [12]. While this method provided improved performance
with conversational speech, it was shown that using a one-hour subset of manually transcribed
Switchboard data, the correlation between transcribed syllable rate and the experimental rate
was only about 0.4 (when both were measured over between-pause spurts) [12].

All the aforementioned syllable detection approaches assume the rate of peaks on wide band
energy envelope (see, e.g., Fig. 1) is a valid representation for speech rate measure. However,
this assumption has its limitations. For instance, formant structure, which is crucial for syllable
identification in fast speech, is lost when the wide band energy envelope representation is used.
For example, the same magnitude on wide band energy envelope might correspond to different
formant structure, thus different vowels. For fast speech, the transition between different
vowels is difficult to identify by energy envelope. Since such a wide band energy envelope is
only one of many possible representations of speech, researchers have proposed alternative
measures. One of the major improvements was given in [9], where Morgan and Fosler-Lussier
developed a subband-based module that computes a trajectory that is the average product over
all pairs of compressed subband energy trajectories. That is, if xi(n) is the compressed energy
envelope of the ith spectral band, a new trajectory y(n) is defined as

(1)
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where N is the number of bands, and M = N(N − 1)/2 is the number of unique pairs. The
algorithm and the system of [9] is summarized in Fig. 2. By this method alone, correlation
coefficients greater than 0.6 were achieved between the referenced and measured speech rate
values. Furthermore, it was shown in [9] that the performance would boost to 0.673 if multiple
estimators were combined (with wideband energy peak count and spectral moment count; see
Fig. 2). This method addresses the formant structure issues we discussed earlier by introducing
band-wise correlation in the spectral domain, which accentuates the syllable peak in the
correlation profile.

We build upon this method, and address two key challenges. The first one relates to choosing
the robust feature set to identify the syllable nucleus. Solutions have been proposed from both
signal processing [27], [29] and speech production [35] points of view. We consider both
spectral and temporal features in characterizing the syllable envelope as described in Section
IV. The second problem concerns optimal parameter selection. Heuristic methods have been
popular, but they do not guarantee optimality or generalizability across domains [31]. Statistical
learning schemes are attractive in the sense of objectively trying to seek optimal parameters.
The challenges, however, include the availability of an appropriate training scheme, and
effectively dealing with multiscale, multidimensional features such as those needed for the
speech rate problem [34]. We adopt a Monte Carlo simulation-based method, followed by a
systematic sensitivity analysis to facilitate parameter estimation. We evaluate our method on
a database of spontaneous speech, which we describe in Section III.

III. Database
Our primary goal is to robustly detect speech rate on spontaneous speech. We use the
phonetically transcribed ICSI Switchboard corpus subset (provided kindly by Fosler-Lussier
[9]). Switchboard is a corpus of several hundred informal speech dialogs recorded over the
telephone [11], [39]. The corpus is extensively used for development and testing of speech
recognition algorithms and is considered to be fairly representative of spontaneous discourse.
In contrast to carefully enunciated, read speech (such as TIMIT [43]), the speech contained in
Switchboard tends to vary significantly in terms of rate, prominence, etc. A total of 5682 spurts
were hand transcribed phonetically by linguists in the Switchboard Transcription Project at
ICSI [2]. The transcription includes syllable boundary information (not manually segmented
but hand-corrected machine derived segmentations). The cutoff marks (h#, sil) are taken care
of to get the accurate reference syllable numbers. This corpus is the same as used in [9].

IV. Algorthm Design
Our proposed algorithm works by abstracting the speech waveform to a 1-D envelope and
detecting syllables by peak picking. It consists of four stages: spectral processing, temporal
processing, smoothing, and thresholding. This section is organized in the following way: First,
we will summarize a number of practical issues that the algorithm needs to tackle. Second (in
Sections IV-B–E), we will describe the four stages of our algorithm, clarifying which particular
challenge each part is addressing. Finally, we will describe our strategy for choosing the optimal
parameters for each algorithm setting.

A. Practical Challenges
Our algorithm is based on the speech subband correlation approach [9]. Peak picking on the
resulting correlation envelope gives the syllable number estimation. A major challenge is due
to noise in this envelope, that can result from a variety of sources as discussed below, and can
interfere with the peak picking and degrade the accuracy of syllable number estimation.
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1) Background Noise—Background noise is a significant contributing factor toward
spurious peaks in the correlation envelope. For example, in Fig. 1, there are instances of
background noise in the regions between 0.78 and 0.85 and 1.05 and 1.15 s. Such noises tend
to introduce extra peaks in the final correlation envelope. One traditional way is do noise
cancellation or suppression. However, often, noise can be of disparate types, and difficult to
characterize. Such noises also include soft breath and cross-channel voices that are not a part
of the foreground speech. We apply pitch verification and relative thresholding techniques to
address these problems.

2) Consonant “Noise”—Consonants are key components of speech. The particular
correlation approach we consider here, however, relies on vowels to be the major contributor
of the syllables and thus the peaks. As explained in Section II-B, additionally this includes
sonorant consonants, such as /l/, /r/, which can also carry syllabic weights. However, other
(obstruent) consonants, especially fricatives, also sometimes contribute extra peaks not related
to the “syllable peak.” This is why they are categorized as “noise” here. The characteristic of
such noise is that they do not have as much energy as a vowel. Furthermore, they may not have
pitch associated with them when they are unvoiced. Lastly, they normally have short durations.
We will show how these cues can be advantageously exploited to mitigate the effects of
consonant “noise.”

3) Smearing—In our experiments, and also those in [9], there are a number of individual
cases where a high speaking rate sometimes results in smearing neighboring energy peaks.
This makes it particularly difficult to derive the correct number of syllables for that segment.

Fig. 3 shows an example of smearing of syllables “in” and “tro” (from the word “introduction”)
showing only one peak. The possible reasons include effects of windowing used in the analysis
and any smoothing of the envelope in a post processing step.

4) Overestimation Issues—It is also observed that for some slow segments, people tend
to shift the vowel formant to express some prosodic content. Such phenomena will bring extra
peak estimates in the direct application of the subband correlation method as proposed in [9].

In the example shown in Fig. 4, “so” has only one syllable. With a fixed subband, when a
formant shifts from one band to another, it will generate an additional peak.

5) Windowing Effect—In all these methods, a correlation envelope is generated and utilized.
Like all short-time windowing methods, a larger window makes the envelope smoother but
loses fine details. A smaller window provides more detail but makes the envelope noisy and
in turn renders peak counting difficult. In the syllable scale we are considering, such windowing
effects are unavoidable. We will address this problem by Gaussian filtering.

The aforementioned challenges are addressed in the four steps of the proposed method, as
described below: spectral processing, temporal processing, overall smoothing, and
thresholding.

The overall system flow chart is shown in Fig. 9.

B. Spectral Processing
1) Selected Subband Correlation—We believe formant structure is the major key to
identifying vowels and thus locating the syllable nucleus. Our algorithm aims to abstract the
speech waveform to a 1-D envelope, with a general strategy to let the center of the vowel to
be maximized while not significantly increasing the contribution to the envelope from the
consonants. As a consequence, the neighboring syllables (vowel centric) should have a deeper
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gap in between. The subband correlation addresses this issue. We wish to further improve its
performance by doing a selected subband correlation.

In all previous approaches, spectral correlation is performed on the full bands. However, we
find that if we concentrate on the prominent subbands where the formant structure lies, the
vowel segments could be further boosted while the consonant contribution will be diminished
comparatively. Such discrimination increase will be useful for later threshold setting. So we
propose to do spectral correlation only on a selected subset of the subbands. First, instead of
choosing only four subbands, we apply a 19 subband analysis (by a facility provided in the
speech filing system tool [14]). We then keep the top M bands by subband energy for further
temporal and spectral processing. M is a parameter we need to set appropriately and will be
discussed in a later section.

In the example shown in Fig. 4, slow speech incurs an overestimation of syllable number, and
we noticed that the formant structure has shifted within the vowel segment. In this case, if we
select the top M most prominent subbands to do correlation, the shifting effects could be
automatically tracked and resolved.

2) Pitch Verification—In the previous section (Section IV-A), we outlined the
characteristics of background noise and consonant noise. Typically, such regions do not have
any voicing. The availability of pitch information could serve to identify this effect. Pitch
estimation is a fairly mature signal processing technique and can be easily implemented using
a variety of approaches. The use of pitch in conjunction with the correlation envelope could
help eliminate the pseudopeaks where there is no pitch. In this paper, we apply the pitch
estimation algorithm that is based on normalized cross correlation function and dynamic
programming. It is similar to that as presented in [46]. Such an approach was found to be very
effective as shown in the later evaluation section.

C. Temporal Processing
Few previous approaches incorporate temporal processing. However, we note that each
landmark lasts over some period of time. For example, vowels and sonorant consonants which
constitute the major body of a syllable extend over several tens of milliseconds. Silence and
nonsonorant consonant sounds can also cause signal discontinuity in the temporal realm
(consonant discontinuities are typically shorter). Temporal processing, aimed at achieving
desirable smoothing effects, is carried out as described below.

1) Temporal Correlation—Inspired by spectral cross correlation, and also by the fact that
each syllable (i.e., similar spectral pattern) typically lasts over several tens of milliseconds, we
also perform a cross correlation in time domain.

Let xt, xt+1, … ,xt+K−1 represent an increasing time order of subband energy vectors with length
K. We then compute correlation yt as

(2)

Through this correlation, each syllable has a peak at its center, because it spans most of the
part of this syllable.

It also could be viewed as a type of filtering. However, compared to linear weighting of
neighboring frames, the above approach uses products which will boost within-syllable frame
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similarities. This approach was found to effectively address the windowing effect of the
envelope. The parameter we need to set here is K, the size of the window to do the correlation.

2) Weighting Window—Fig. 3 illustrates the case where fast speech has a smearing effect
on neighboring syllables. Even though the major purpose of our algorithm is to smooth the
correlation envelope, we do not want to lose important details in the process. In order to
emphasize intersyllable discontinuities, we apply a Gaussian weighting window centered at
the middle of the analysis frame before the process of self temporal correlation (as described
in Section IV-CI). So the center part, in the case there is a small discontinuity, is amplified,
and this frame has more weight in the correlation process. Such an approach could be
mathematically described as follows.

Let w0, w1, … ,wK−1 represent a series of window coefficients. We first perform a weighting
operation on the subband energy temporal vector series x0, x1, … ,xk−1

(3)

Here, we choose w to be a Gaussian window centered in the middle of the analysis segment.
After this process, we plug in the updated vector series x0, x1, … ,xk−1 to the temporal
correlation process as described in Section IV-C1. We need to set the variance of the Gaussian
window appropriately to control the shape of the window.

In order to illustrate the effects of such weighting window, we study the discontinuities of the
step function in the 1-D case, and show the results in Fig. 5. (The temporal correlation in Section
IV-C1 is for M-dimensional vectors where M is the number of selected subbands.)

The original step signal has the sharpest edge. The effect of the weighted windowing, as can
be seen in Fig. 5, is to help reach an acceptable tradeoff between amplifying the discontinuity
while achieving the desirable smoothing effect suitable for rate detection. These parameters
used in correlation and weighting the window are selected as optimal settings for the
experiments in Section V where we will further discuss the implications of this algorithm.

It also needs to be mentioned that there are many possible filter selections to achieve similar
smoothing effects. Gaussian windows offer desirable kernel characteristics and easy parametric
control of their shape, and are widely popular in image processing for smoothing [47]. Also,
both the Fourier transform and the derivative of a Gaussian window are Gaussian functions.
We hence adopt the 1-D Gaussian window for our case.

D. Smoothing
After the spectral and temporal correlation, we obtain a 1-D correlation envelope. There still
may be local peaks in the correlation envelope which result in spurious peak counts. As a result,
some type of further smoothing becomes necessary. We apply the standard Gaussian filtering
method. The parameter setting strategy for the filter is described in Section IV-F.

It needs to be clarified that our algorithm has two different Gaussian windows involved with
different intended use. While the purpose of the one described in Section IV-C is to alleviate
the smoothing effects of the temporal correlation by making the slope sharper, the purpose of
the one in Section IV-D is purely to provide a low-pass smoothing filter.

E. Threshold Mechanism
In addition to smoothing, for handling spurious peaks in the correlation envelope, we could
design further thresholding mechanisms to improve the overall robustness of the peak counting.
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Based on empirical analysis on several speech correlation envelopes, we categorized the
observed spurious peaks into 2 two classes: First are those that occur when there is no voicing
activity. We proposed in Section IV-BII to use pitch verification as a hard threshold where all
peaks with no corresponding pitch activity are removed. However, there are limitations to pitch
verification such as when there are voiced consonants, cross-channel voice, or pitch
computation error. The major characteristic of such noisy peaks is that they are of relatively
low amplitude. Such peaks could be removed by appropriate thresholding. The second class
of noisy peaks appears in the voiced part. In this case, neither pitch verification nor absolute
thresholds would be effective since those regions always have nonzero pitch, and the noisy
peaks are of quite high amplitude. Most algorithms in Sections IV-A–D try to address this issue
to some extent. As an additional step, we design a threshold mechanism which could deal with
pseudovoiced peaks specifically.

1) Temporal and Magnitude Thresholds—To counter pseudopeaks that occur close in
time, first, we set a threshold for the minimum distance in time between two neighboring peaks.
The simple idea here is that two syllables could not be very close in the final correlation
envelope with respect to the frame advance of 10 ms. Second, we still need to set thresholds
on magnitude.

Fig. 6 illustrates a case where a single syllable displays two peaks (marked peak A and peak
B) in the final correlation envelope. We propose to measure the minimum difference between
a local peak and its larger neighboring minima instead of the ground zero, for setting temporal
thresholds. For example, in Fig. 6, the threshold magnitude of peak A is measured by the
relative magnitude between A and C; similarly, for peak B it is measured between B and C.
This method however could fail to report any peaks in specific cases such as in Fig. 6 (Since
the relative magnitudes of peak A and peak B are all very small). Instead, we found that a
modification that considers the magnitude of a peak with respect to its immediate preceding
minimum to be more robust. This was based on observations about typical syllable-level
acoustic characteristics that demonstrate larger ranges between neighboring syllables, i.e., high
absolute magnitude (such as A or B) at the syllable and rather low absolute magnitude between
the neighboring syllables (such as D, E). On the other hand, spurious peaks tend to have smaller
ranges. Hence, in the new scheme, for example in Fig. 6, peak A’s threshold magnitude is
measured by the relative magnitude difference between A and D. Peak B’s threshold magnitude
is measured by the relative magnitude difference between B and C. Peak A could thus pass the
threshold since it is rather high in such magnitude. So, it returns the correct peak number.

This scheme could also handle many other cases very well. In the case that A–D and B–C are
very close and high, this most probably implies that they are two distinct syllables and the
algorithm will keep both. If A–D and B–C are both of small magnitudes, considering D has
low absolute magnitude, they are both removed as background noise. The other advantage is
that this left-compare-only threshold is compatible with absolute thresholding: When we apply
it on silence regions, this method works the same as absolute threshold.

It should be noted that there is potential failure possibility of this threshold mechanism in the
case of very close syllables with no discernable boundaries such as in the words “reenter,” and
“reenergize” which may appear as pseudovoiced peaks in fast speech. Nevertheless, overall,
we expect that these cases to be relatively infrequent, and that the proposed threshold
mechanism would be in general effective.

F. Parameter Selection
The previous sections described many approaches for improving the syllable detection
performance robustness. One critical question that still needs to be answered is how to choose
the different algorithm parameters to enable the various processing blocks to work well
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together. The manual heuristic method has its own merits in that it utilizes expert human
knowledge for rapid parameter setting. This is especially useful when a single running cycle
(even on development test set) is computationally intensive. However, the approach suffers
from limitations of scalability. For instance, many iterations of tuning may be needed, and it
may be difficult to tell when the algorithm reaches a local maximum or if we could find the
global maximum. Furthermore, such an approach would be difficult to easily port to other data
types and domains. Hence, we propose to use a principled way for parameter estimation relying
on Monte Carlo-based initialization followed by a sensitivity analysis to set the parameters
using a development set.

1) Monte Carlo Method—The algorithm we have proposed for speech rate estimation poses
a multidimensional parameter setting problem. We adopt the Monte Carlo method to bootstrap
the parameter value initialization. The first step is generating the possible ranges for the
parameter values. We specify these initial ranges rather large (greedily) and then generate the
parameter set by Monte Carlo sampling. Fig. 7 illustrates the sample histogram after 4446 runs
on the development set. The algorithm’s performance with the selected parameters is then
noted. The large initial parameter set requires that a large number of random parameter samples
be generated in order to reach the optimal region, a computationally intensive process. We
made this possible by optimizing the batch operation and offline front-end processing. Since
Monte Carlo simulation draws parameters randomly within a large range, it is an important
step towards detecting the global maxima. Though with a given number of simulations, we
cannot guarantee to find the global maxima, we believe it at least provides an acceptable
approximation to it.

2) Sensitivity Analysis—The chosen parameter values were then subjected to a sensitivity
analysis. This was done through systematic perturbations to the parameter values (obtained
from the Monte Carlo simulation) until a local maximum is reached. We first define an “atomic
increment,” which specifies the smallest amount by which each parameter could change. We
then perturb each parameter one by one with the atomic increment in each direction. Every
time there is an improvement, we will update the relative parameter. This step is repeated until
no further improvement is obtained for perturbations on all parameters.

In Fig. 8, the X -axis shows the number of the perturbation trials. This number starts from 0
and increases by the aforementioned procedure. The Y -axis shows the correlation coefficient
between speech rate estimates obtained from the test and reference data in the development
set. The correlation coefficient is an indicator of speech rate estimation accuracy. Fig. 7 then
illustrates how such perturbations could monotonically improve the performance. We found
for fast convergence, the Monte Carlo method is essential to obtain a good rough estimate of
the starting point. The sensitivity analysis is designed in such a way to efficiently but
exhaustively search the parameter space to scan all possible local maxima in the given range.

V. System Description and Experimental Results
Given the description of the various components of our algorithm in Section IV, we will now
describe the full system and report the evaluation results.

The overall speech rate estimation system is summarized in Fig. 9. Each block therein was
described in Section IV. The algorithm parameters are set systematically and automatically
using the Monte Carlo simulation and sensitivity analysis described in the previous section.

The technical specification of each functional component is described below in order.

• The speech is passed through a 19-channel filter bank analyzer to get the energy vector
series. We apply the utility “voc19” as provided by [14]. It is a straightforward
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implementation of a 19-channel filterbank analyzer using two second-order section
Butterworth bandpass filters spaced as in [22]. Energy smoothing is done at 50 Hz to
give a default 100-Hz frame rate. Here we do not apply any energy compression
procedures as in [9].

• With such a 19-channel filter bank, we get a 19 stream subband energy series. Only
the top bands are selected and kept.

• Then we choose K temporal frames. These K frames are weighted by a Gaussian
Window as described in Section IV-C2. Temporal correlation is then applied as
detailed in Section IV-C1. The overlap across successive Gaussian windows is K−1
frames.

• For the next step, the resulting subband energy vector is cross-correlated in a way
identical to [9].

• Finally, peak counting is performed on the final smoothed envelope with pitch
validation and various thresholding schemes as in Section IV.

In order to set the parameters, we randomly selected 568 speech spurts from the full ICSI
Switchboard data set as the development set which represents about 10% of the data. Applying
the Monte Carlo simulation and sensitivity analysis, we obtained the parameter values as listed
in Table I.

While this is a multiparameter tuning problem, it is also desirable to understand the effect of
the individual parameters. To experimentally obtain insights in this regards, we evaluated the
performance by removing each of the proposed component and measured the resulting
performance on the development test set. Following methods in [9], a transcribed syllable rate
was computed by dividing the number of syllables occurring in the spurts by the length of the
spurt. In this paper, we treat this rate as the reference rate. We use the detected rate to correlate
with the reference rate to get the final agreement measure on the data set. We also computed
the simple mean squared error (MSE) between the estimated and reference rates as follows:

The results are reported in Table II.

All the components appear to provide improvements in the performance, but to varying
degrees: Results show pitch validation to be the most effective, with thresholding strategies
also contributing significantly on this data set. The use of reduced, instead of full, number of
bands improves the error variance without degrading (in fact, slightly improving) the
correlation rate and MSE, but with obvious reduced computation.

While interpreting the results of Table II, we should note that the algorithm was designed to
have several mutually dependent components working together to locate the syllable nucleus
correctly. As motivated in Section IV, each component attempts to address specific issues in
rate estimation, and the Monte Carlo approach enabled us determine a compromise optimum
of these parameters. Hence, the method of evaluating relative performances by turning off
components with respect to a jointly tuned parameter set may not necessarily assure optimal
settings for the remaining components. The only exception to this might be the pitch validation
component. Since the computation of pitch is independent of all other components, its
contribution is most likely also largely independent of the other modules. Table II shows that
the performance degradation by turning this option off is the most significant. This implies
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that it could remove the effects of background and consonant noise (Section IV-B2) which are
difficult to be mitigated by other components. The results also suggest that the pseudopeaks
removed by pitch validation constitute a significant portion of the impediment to accurate rate
estimation.

The results of Table II also indicate that the thresholding schemes contribute noticeably to the
system performance. However, the contributions do not come just from the “threshold”
selection but from the effects of other signal processing components that help isolate the “noise”
that is then easily removable by thresholding. For example, subband correlation helps to boost
the contribution of vowel and other sonorants while suppressing the intersyllable valleys. This
makes the margins between true peaks and pseudopeaks accentuated, which in turn facilitates
the thresholding schemes to work robustly.

Temporal correlation and Gaussian filtering both try to achieve the same goal of smoothing
the syllable envelope. Table II shows that they contribute similarly to the overall system. We
believe that the joint parameter setting with Monte Carlo approach would set these two
subsystems to work optimally with the thresholding scheme. In sum, the experiment of studying
the effects of the various components shows their relative importance, although it is understood
their settings in this process may not be entirely optimal.

In the next step, we proceeded with the evaluation of the full system with all the available
Switchboard data and the parameter settings obtained from the Monte Carlo simulation and
sensitivity analysis, again following the methods as reported in [9]. We use the detected rate
to correlate with the reference rate to get the final agreement measure on the full 5682 spurts
set. Also, the mean error and standard deviation error were calculated. The results are reported
in Table III. This result represents about 17% improvement compared to a single estimator and
11% improvement with respect to a multiestimator evaluated on the same database in [9].

Also, instead of using all of the switchboard data and removing just the development part, the
correlation coefficient is 0.734, which is slightly lower than the results in Table III.

In addition, we analyzed the influence of certain factors on the estimation of speech rate. In
Section II-B, we noted that besides vowels, sonorant segments of syllable nuclei might include
glides, liquids, and nasals. In Table IV, we report results for the two cases separately: speech
spurts which have at least one syllable with glides/liquids/nasals as the sonorant elements,
while the other class consists of spurts with only vowels as syllable nucleus. Results show that
the inclusion of sonorant consonants is handled well by the algorithm.

We also investigated the effect of the actual value of the speech rate itself. For that purpose,
we heuristically categorized the speech data into three classes based on transcribed speech rate:
fast (> 5 syllables/s, 711 spurts), normal (between 3 and 5 syllables/s, 3405 spurts), and slow
(< 3 syllables/s, 1566 spurts). The estimated and reference values are shown in Fig. 10 for each
of these data conditions. In general, the estimated values tend to be underestimates, with greater
disagreements in the case of slow and fast speech (second and fourth panels in Fig. 10). We
calculated the mean squared error between the reference and estimated values for each of these
cases: the overall MSE rate was 5%, while the rates for slow, normal, and fast cases were
10.3%, 3.5%, and 6.8%, respectively. The major cause of this effect is due to two factors:
overestimation and smearing, which occur often in slow and fast speech, respectively. (Refer
to Sections IV-A3 and A4).

It needs to be clarified that the number of syllables per utterance might be an ill-defined
quantity. Even though we use the normalized syllables per second as the rate measure, this
quantity might not keep constant as the spurts length is varied. This should be taken into
consideration for the justification in Fig. 10.
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Lastly, we wish to explore yet another property of our algorithm. Throughout this work, we
have been assuming that the peak number is a valid indication of the syllable number. It assumes
that the peak location on the correlation envelope should be consistent with the syllable
location. Even though this is not part of the work of Fosler-Lussier and Morgan [9], and it
might not be a necessary condition to make our algorithm work, we include these statistics for
closer analysis. For this purpose, we treat the original syllable transcription in the ICSI
Switchboard corpus subset as a “gold standard.” Then, we compare the peak location on the
correlation envelope to this standard. If within a syllable, there is a one-to-one mapping, we
treat this as “correct.” Otherwise, it is deemed as a “deletion” or “insertion.” The statistics are
provided in Table V.

For a spontaneous speech corpus like Switchboard, more than 80% of the time the syllable
gives a one-to-one mapping. As stated in Section IV-A, our algorithm has deletion and insertion
errors under specific circumstances. Even though slow speech rate is slightly more difficult to
estimate (as illustrated in Fig. 10), due to the preponderance of the number of fast-spoken
syllables relative to the slow-spoken ones in the data, deletion errors dominate insertion errors.

It should be noted our algorithm is optimized towards improving the speech rate correlation
between a reference and the measured, and it might not necessarily produce the optimal syllable
location information. One reason, as discussed in Fig. 10, is the ill-defined nature of syllables
per utterance as a rate indicator.

VI. Summary and Conclusion
Our experiments show that the speech rate estimation methods proposed in this paper offer
further improvements over previous methods. Such advantages are demonstrated by improved
correlation coefficients and reduced mean error and standard deviation in the estimates with
respect to the reference values. We have also systematized the heuristic parameter setting
methodology originally used in [18]. The Monte Carlo method and dynamic parameter
perturbation schemes provide ways for parameter tuning that guarantee finding the local
maximum and approximating the global maximum. For the Monte Carlo method, the coverage
is large, but the precision is low. Local convergence is achieved in postprocessing through
sensitivity analysis implemented through systematic parameter perturbations. Such a dynamic
perturbation scheme could help find the neighboring local maxima but cannot guarantee to
enumerate all the local maxima.

The key part of the algorithm is in obtaining the correlation envelope. Such a signal envelope
measure could disclose other useful information like syllable duration and spectrum intensity.
For example, in [45], this envelope was used to derive a measure for word prominence.

There are further avenues that can be considered for improving the methods presented in this
paper. For instance, it is well known that there are a number of factors that could affect the
phonetic characteristics of a syllable (duration, f0), notably the underlying linguistic prosodic
structure, which can impact the syllable detection accuracy, a critical aspect of the speech rate
measure proposed in this paper. Specifically, lengthening at the edges of prosodic domains
(boundaries) has been well documented both in read speech [49] as well as in spontaneous
speech [48]. This includes the effect of utterance position: initial words are longer than
noninitial words; utterance final words are longer than utterance medial words. These in turn
can influence the quality of automatic syllable detection that relies on the acoustic
characteristics of the syllable. Explicitly incorporating contextual information, such as the
temporal structure, can further improve the proposed algorithm.

A possible alternative would be designing an adaptive algorithm for dynamic parameter
adjustment such as through multipass rate estimation. For example, the first pass can give a
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rough estimate of the rate, while the second pass can use the results of the first pass to set
relative parameters. Such an approach could be implemented iteratively. However, in
applications of rate estimation that require real time processing, such multiple-pass methods
may drastically limit the usefulness of rate estimation.

We described different types of noises which could render the syllable correlation envelope
peak counting in the prone to error. Due to different characteristics of these noises, there is no
one universal method to deal with all of them well. The approach we described in this paper
was to design several different components, each addressing a specific subset of noise types.
Finally, we tune the parameters and thresholds jointly to make these components work
optimally through systematic multiparameter tuning. While removing a particular component
from the system provided some insights into its relative effect on performance, such an
approach does not ensure that the values of the other parameters are necessarily optimal. Further
detailed experiments can help shed further light onto such details.

Evaluating the role of the estimates of speech rate derived in this work within specific
application frameworks is outside the scope of the present work. Rate sensitive modeling in
automatic speech recognition has been shown to provide performance improvements [54], and
we expect that improved rate estimation to contribute toward improvement such models.
Similarly, the results of the present work can contribute to other spoken language processing
domains. In related work [45], acoustic measures of word prominence were shown to benefit
from the algorithms presented in this paper. Further detailed application-specific evaluations
of the proposed rate estimation remain as topics of future work.
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Fig. 1.
Sample speech utterance “SOME FORM” from the Switchboard corpus: (a) Speech waveform.
(b) Wideband spectrum. (c) Correlation envelope (approach in this paper). (d) Wideband
energy envelope.
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Fig. 2.
Major steps in computing “mrate” (adapted from [9]).
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Fig. 3.
Illustration of peak smearing shown for the word “in-tro” (from the Switchboard corpus).
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Fig. 4.
Overestimation for “So” (from Switchboard).
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Fig. 5.
Weighting window effects for step functions. Correlation window length is set to 11, and the
variance of Gaussian is 1.2.
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Fig. 6.
Syllable “BAD” in Switchboard 3994B.
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Fig. 7.
Monte Carlo simulation histogram.
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Fig. 8.
Perturbation yields monotonic improvement on correlation coefficient between test and
reference data.
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Fig. 9.
System flowchart for speech rate estimation.
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Fig. 10.
Estimated and reference rates for various data conditions (reference, blue; estimated, red). The
top panel correspond to the results for the entire data, while the second, third, and last panels
in the figure correspond to slow, normal, and fast speech, respectively. The horizontal axis is
the ID of the spurts; the vertical axis is the MSE.
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TABLE I

Optimal Parameter Settings

Value Parameter

Temporal correlation window length (K) 11

Weighting Gaussian window variance 1.2

Number of selected sub-bands (M) 12

Smoothing window length 15

Smoothing Gaussian window variance 1.3

Neighboring peak distance threshold 13

Left-compare-only threshold 29
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TABLE III

Experimental Results Note: Enrate, Sub-Mrate, and Mrate are the Results From [9]

Measure Correla-
tion

mean
error

stddev
error

enrate .415 .747 1.405

sub-mrate .637 .530 1.219

mrate .671 .464 1.121

Proposed
Approach .745 .339 0.796
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TABLE IV

Effects of Syllable Nucleus Type on Speech Rate Estimation

Spurts type # spurts Correla-
tion

Mean
error

With vowels
only 4346 0.737 0.322

With
sonorants 1336 0.774 0.395

Combined
data set 5682 0.745 0.339
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TABLE V

Comparison to the Transcribed Syllable Location

Type Correct
%

Insertion
%

Deletion
%

Percent of total
syllable number 80.6 3.8 15.6
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