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Autonomous Robots for Active Removal of

Orbital Debris
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Abstract

This paper presents a vision guidance and control method for autonomous robotic cap-
ture and stabilization of a tumbling orbital debris object in a time-critical manner. The
method takes into account various operational and physical constraints, including ensur-
ing a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying
within the acceleration, force, and torque limits of the robot. Our approach involves the
development of an optimal control framework for an eye-to-hand visual servoing method,
which integrates two sequential sub-manoeuvres: a pre-capturing manoeuvre and a post-
capturing manoeuvre, aimed at achieving the shortest possible capture time. Integrating
both control strategies enables a seamless transition between them, allowing for real-time
switching to the appropriate control system. Moreover, both controllers are adaptively
tuned through vision feedback to account for the unknown dynamics of the target. The
integrated estimation and control architecture also facilitates fault detection and recovery
of the visual feedback in situations where the feedback is temporarily obstructed. The
experimental results demonstrate the successful execution of pre- and post-capturing op-
erations on a tumbling and drifting target, despite multiple operational constraints and
the presence of obstructed 3D vision data.

1 Introduction

Autonomous servicing robotics encompasses a broad range of integrated technologies, including
intelligent guidance and controls, vision systems, as well as specialized capturing end-effectors
and tools. The application of autonomous robots for on-orbit servicing has opened up new
opportunities for the commercial sector, national space agencies, and universities. Servicing
operations cover a wide range of tasks, including maintenance and repair, rescue missions, refu-
elling, inspections, rendezvous and docking, as well as orbital debris removal [1–11]. All these
robotic servicing mission concepts require an autonomous robotic arm to reliably capture a
target space object with non-zero relative translational and rotational motions, subject to mul-
tiple constraints. Many of these target satellites are considered non-cooperative objects because
they were not designed or built with the intention of being serviceable in the future. Moreover,
these space objects often have tumbling motions due to non-functional attitude control systems,
making robotic servicing of non-cooperative satellites extremely challenging. The space robot
must first capture the tumbling satellite and then safely remove its angular momentum before
executing subsequent repairing, rescuing, or de-orbiting operations. Therefore, we divide the
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robotic capture and stabilization task into two primitive robot operations: (i) pre-capturing
manoeuvre and (ii) post-capturing manoeuvre, as illustrated schematically in Fig. 2.

Despite significant progress made in the past two decades, vision-guided robotic systems still
face many challenging problems. These challenges arise mainly due to the undependability of
vision systems, environmental uncertainties, and multiple systems and operational constraints.
A reliable vision-guided robotic system should be capable of adaptively tuning itself against
inaccurate and potentially erroneous visual information, as well as uncertainties affecting the
system performance. Since autonomous capture and stabilization of the client satellite is a time-
critical operation, completing the entire operation as quickly as possible given the constraints
is crucial. To achieve this objective, it is necessary to integrate sequential sub-manoeuvres
associated with both the pre-capturing and post-capturing phases of the robot guidance problem
in an optimal and seamless manner.

Despite the existence of various guidance and control strategies for robotic interception
of moving objects, including vision-based motion estimation techniques described in [2, 4, 6,
12–18] and others, seamless robotic planning in both pre- and post-capturing phases, which
satisfies time-criticality of the entire operation while handling multiple constraints in a reliable
manner, still poses a significant challenge. In the literature, a number of optimal and non-
optimal robot-motion planning and guidance techniques have been developed for interception
of moving targets, including those presented in [16, 17, 19–23]. Additionally, a planning and
control methodology has been proposed in [22] for manipulating passive objects by collaborating
with orbital free-flying servicers in zero gravity. Various visual-tracking control approaches
for space manipulators capturing target spacecraft in uncertain dynamics are presented in
the literature. For instance, [4, 20] describe predictive visual servo kinematic control schemes
for autonomous capture of non-cooperative space targets with unknown motion, while [21]
present an optimal control method for space manipulators that saves on-board fuel and satisfies
obstacle avoidance targets during rendezvous and capture. In [24], a tracking control method
for grasping tumbling satellites is presented, which employs a visual servo for the approach
phase and an online EKF estimator to account for modelling uncertainties [25–28]. A solution
to the guidance problem of capturing a tumbling space object based on convex programming
formulation is proposed in [29]. This approach builds on the earlier work on optimal trajectory
planning for rendezvous and proximity operation using non-convex keep-out-zone constraints as
presented in [30]. Additionally, [31] proposes a detumbling system that involves the robot and
the target, where the target’s energy is gradually dissipated through contact effects. Although
recent surveys such as [32–35] cover various research works on robotic trajectory planning and
capture in space, there is a notable lack of literature regarding a seamless control strategy for
integrating both pre- and post-capturing phases and the corresponding end-to-end experimental
validation.

This work presents a seamless integration of two optimal control strategies for autonomously
capturing and stabilizing a moving/tumbling satellite by utilizing 3D vision feedback [1], see
Fig. 2. This work builds upon our earlier contributions in [4] by introducing adaptive and con-
sistent optimal solutions for both the pre-capturing and post-capturing phases. This includes
enabling a smooth transition between the two control strategies during pre- and post-capturing
operation phases, as well as real-time switching to the appropriate control system. Furthermore,
we introduce an innovative dynamics formulation that enables self-tuning of the trajectory plan-
ner not only in the pre-capturing phase but also in the post-capturing phase based on feedback
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from the vision system. The aim is to improve the time-criticality, reliability, and adaptability
of autonomous robots during proximity operations in space, with three main objectives: (i) de-
veloping an end-to-end time-optimal trajectory planning for the two sequential sub-manoeuvres
while considering multiple operational and physical constraints to ensure time-criticality of au-
tonomous operations, (ii) enhancing the reliability and robustness of the autonomous proximity
operation by creating a fault-tolerant vision-guided system that can continuously operate even
if the vision sensor generates erroneous information, and (iii) adapting the planning process to
parametric uncertainties for improved adaptability. In order to achieve this goal, a hierarchical
control system is developed for the autonomous robotic capture and stabilization of a target
that has both translational and tumbling motions, despite various physical limitations, uncer-
tainties, and temporary visual obstructions, in a time-critical manner. The system features
adaptive deliberate planning and a seamless optimal trajectory plan for two sequentially occur-
ring sub-manoeuvres, taking into account multiple operational and physical constraints to meet
the time-critical demand of the autonomous proximity operation. To evaluate the performance
and robustness of the proposed robot guidance and control strategy, experiments are conducted
using a ground-based satellite simulator testbed [36].

2 Modelling & Motion Estimation using Occluded Vi-

sion Data

Fig. 1 depicts the coordinate frames used for a vision-guided manipulator system in the pre- and
post-capture phases of a tumbling target satellite [37]. The camera coordinate frame is denoted
as A, while coordinate frames B and C are attached to the body of the target. The origin
of frame B coincides with the center-of-mass (CoM) of the target, while the origin of frame
C is placed at a distance ̺ from the CoM, representing the location of the grasping fixture.
We assume that frame {B} is aligned with principal axes of the body. The measurement of
the pose (the position and attitude) of coordinate {C} with respect to the coordinate frame
{A} represented by variables ρ and unit quaternion η. Suppose unit quaternions µ and q,
represent the orientations of coordinates frames {B} respect to {C} and {B} respect to {A},
respectively. Then, quaternion η combines two orientations and thus we have

η = µ⊗ q, where µ⊗ = µoI +Ω(µv) (1)

is the quaternion product operator, µv denotes the vector part of quaternion µ, and

Ω(µv) =

[

−[µv×] µv

−µT
v 0

]

. (2)

Notice that since the target rotates, quaternion η and q are time-varying variables whereas
quaternion µ is a constant. Also, one can infer from the schematics in Fig. 1.a that the
following kinematics relationship holds

ρ = ρo +A(q)̺, (3)

where ρo denotes the location of the target’s CoM that is given in the coordinate frame {A},
and the rotation matrix A(q) as a function of quaternion q is given by

A(q) = I + 2qo[qv×] + 2[qv×]2, (4)
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Figure 1: Vision-guided manipulator (eye-to-hand positioning of the camera) and target during
pre- and post-capturing manoeuvres.

Here, the quaternion q = [qTv qo]
T is decomposed into the vector part, qv, and the scaler part,

qo, while the matrix form of the cross-product is denoted by [·×].
Suppose ω represents the target’s angular velocity expressed in body-fixed frame {B}.

Then, the rotational and translational motions of the target in the pre-capturing phase can be
described by

Icω̇ = ω × Icω + τdis (5a)

mρ̈o = fdis (5b)

q̇ =
1

2
Ω(ω)q (5c)

where Ic = diag(Ixx, Iyy, Izz) is the target inertia tensor in terms of the principal moments
of inertia, τdis and fdis are small torque and force disturbances acting on the target satellite.
In the following analysis, we will re-write the above dynamics equations in terms of a set of
identifiable inertia parameters. This is because (5) is not an adequate formulation for dynam-
ics identification problem requiring the minimum number of inertial parameters. Define the
following non-dimensional inertia parameters:

σ1 =
Iyy − Izz

Ixx
, σ2 =

Izz − Ixx
Iyy

, σ3 =
Ixx − Iyy

Izz
, (6)
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The principal moments of inertia satisfy the following triangular inequalities

Ixx + Iyy > Izz

Iyy + Izz > Ixx

Izz + Ixx > Iyy (7)

From (6) and (7), one can show by inspection that the following equality and inequality con-
straints between the dimensionless parameters are in order

σ1 + σ2 + σ3 + σ1σ2σ3 = 0, (8a)

− 1 < σi < 1 ∀i = 1, · · · , 3. (8b)

The equality constraint (8a) implies that the dimensionless parameters are not independent of
each other. Considering a compact set of two dimensionless inertia parameters

σ =

[

σ1

σ2

]

,

one can obtain the third variable from (8a) as follow:

σ3 = −
σ1 + σ2

1 + σ1σ2

(9)

We can also concisely express the set of inequalities (8) as a vector inequality:

−1 < σ < 1 (10)

where 1 = [1 1]T is the vector of one. Now, we are ready to express the Euler’s rotation
equations in terms of the independent dimensionless parameters σ as follows

ω̇ = φ(ω,σ) +B(σ)wτ , (11a)

ρ̈o = wf . (11b)

Here, wτ = τdis/tr(Ic) is the angular acceleration disturbance, wf = fdis/m is the linear
acceleration disturbance, tr(·) is the trace operator, and

B(σ) =







π(σ)
1−σ2

0 0

0 π(σ)
1+σ1

0

0 0 π(σ)
1+σ1σ2






,

π(σ) = 3 + σ1σ2 + σ1 − σ2, (11c)

φ(ω,σ) =





σ1ωyωz

σ2ωxωz

− σ1+σ2

1+σ1σ2
ωxωy



 . (11d)

We assume the angular and linear acceleration disturbances to be zero-mean noises with co-
variances E[wτw

T
τ ] = σ2

τI and E[wfw
T
f ] = σ2

fI, where E[·] is the expected operator.
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Figure 2: Control architecture for autonomous sequential pre- and post-capturing of space
objects.

Consider the following state vector pertaining to both states and the associated dynamic
parameters

x =













qv
ω

ρo

ρ̇o

θ













where θ =





σ

̺

µv



 (12)

contains the constant parameters, i.e.,
θ̇ = 0. (13)

Thus, the location of CoM, the inertia ratio, the orientation of the principal axes are assumed
to be unknown.

Assuming a given surface model of the target and the availability of three-dimensional (3-D)
point measurements through an active vision system, we proceed with the analysis. Let data
set {c1 · · · cm} represent the 3D points data acquired by scanning an object at time t, while
the surface model of the same object is represented by model set M. Here, vector ci ∈ R

3

represents the coordinate of ith single point from the point cloud. For each point ci from the
data points set, one can find the corresponding point di ∈ R

3 on the surface model M. Note
that vectors cis are expressed in frame in the Camera coordinate frame {A}. Therefore, one
should be able to populate the date set {d1 · · ·dm} representing all corresponding points to the
data set {c1 · · · cm} through an optimization process [38]. Therefore, the instantaneous pose of
the target, represented by translation vector ρ and quaternion q, can be written as a function
of the point cloud set, i.e.,

y(c1, · · · , cm) =

[

ρ

ηv

]

+ v, (14)
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where v represents the measurement noise with covariance R = E[vvT ]. The pose has to be
resolved to minimize the distance between the two data sets through the following least squares
programming [39]

ε =min
y

m
∑

i=1

‖A(η)ci + ρ− di‖
2. (15a)

s.t.: ηTη = 1 (15b)

Here, the variable ε represents the ICP metric fit error, and A(η) is the rotation matrix
corresponding to quaternion η, which can be computed in a similar manner to (4). It will
be demonstrated later that the metric fit error ε plays a critical role in fault detection and
recovery of the vision system. There are several algorithms available to solve the optimization
problem (15), such as the q-Method which computes the optimal quaternion as the eigenvector
corresponding to the maximum eigenvalue [40]. Suppose the centroids of the points data sets
are

c̄ =
1

m

m
∑

i=1

ci and d̄ =
1

m

m
∑

i=1

di. (16)

Also define 4× 4 matrix G with the following construct

G =

[

D +DT − tr(D)I z

zT tr(D)

]

, (17)

where D =
∑m

i=1(ci − c̄)(di − d̄)
T and z =

∑m
i=1(ci − c̄) × (di − d̄). Then, it can be shown

that the quaternion solution for the quadratic optimization programming (15) is equal to the
normalized eigenvector of G with the largest eigenvalue, i.e., the solution of

Gη = λmaxη. (18)

Next, we can proceed with computation of the translation by

ρ = d̄−A(η)c̄ (19)

From the kinematics and dynamics equations (1), (3), (5c), (11), and the registration equa-
tions (18) and (19), the system’s dynamic and nonlinear observation equations can be described
in the following compact form.

ẋ = f (x) +L(x)w (20a)

y(c1, · · · , cm) = h(x) + v (20b)

Here, vector wT = [wT
τ wT

f ]
T represents the overall process noise with covariance matrix

W = E[wwT ] = diag(σ2
τI, σ

2
fI), and

f (x) =









1
2
vec

(

Ω(ω)q
)

φ(ω,σ)
ρ̇o

0









, L(x) =













0 0

B(σ) 0

0 0

0 I

0 0













(20c)

h(x) =

[

ρo +A(q)̺
vec(µ⊗ q)

]

(20d)
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Here, function vec(·) takes a quaternion and then returns its vector part. Suppose q̂ represent
the estimated quaternion and subsequently define small quaternion variable δq = q̂−1 ⊗ q to
be used as the states of linearized system and quaternion variation δµ = µ ⊗ µ̂−1 is similarly
defined. Then, we can develop a constrained Kalman filter estimator to estimate the unknown
variables based on linearized model of (20) while respecting the constraints (10). Define δx̂−

k

and δx̂+
k as the aprioir and aposteriori estimates of the state vector at time tk [41]. Then, the

estimation update is given by
ek = yk − h(x̂

−
k ) (21)

δx̂+
k = δx̂−

k + th(ε)ΛkK
u
kek (22)

Here, th(·) is a threshold function

th(ε) =

{

1 if ε < ε∗

0 otherwise
(23)

whose output indicates whether the registration process is healthy or faulty, andΛk = diag(1, 1, · · · ,Λ1k ,Λ2k , · · · , 1, 1)
where

Λik =

{

sgn(kT
ik
ek)−

σ̂−

i
k

kT

ik
e

if |kT
ik
ek| > 1

1 otherwise
i = 1, 2 (24)

and kT
1k

and kT
2k

are the last two row vectors of the unconstrained gain matrix Ku
k ; see the

Appendix for details.
The propagation of the state vector is obtained from the nonlinear model

x̂−
k+1 = x̂

+
k +

∫ tk+t∆

tk

f (x) dt (25)

Equation (23) constitutes a simple fault-detection logic based on comparing the matching error
ε against the threshold ε∗. Clearly, whenever vision registration fault is detected, then the state
update process in not affected by the observation information, i.e.,

ε > ε∗ =⇒ x̂+
k = x−

k ∧ x̂−
k+1 = x̂

−
k +

∫ tk+t∆

tk

f (x) dt. (26)

In other words, the estimator relies on the dynamics model for pose estimation until ICP be-
comes convergent for estimation update. As will be later discussed in the experiment Section 5,
four typical sets of point-cloud data registered by the vision sensor at different poses are illus-
trated in Fig. 3. It is apparent from the figure that the quality of the acquired 3D images, e.g.,
the number or returned points and outliers, varies from one scan to another.

3 Pre-Capturing Trajectory Planning

This section presents the development of an optimal robot guidance method for rendezvous and
smooth interception of tumbling/moving objects based on visual feedback. It is assumed that
the Attitude and Orbit Control System (AOCS) of the servicer compensates for the dynamic
coupling between the motion of its robot arm and base, ensuring that trajectory planning is
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Figure 3: Typical registered point-cloud data acquired by scanning the satellite mock-up at
different poses.

not affected. It is worth noting that the trajectory planning of the robot during pre- and
post-capture phases is executed in the task space. As a result, appropriate inverse-kinematic
techniques should be implemented to address any complications that may arise due to singu-
larities and joint limits [42, 43]. The position of the end-effector and the capture point are
represented by r and ρ, respectively–refer to Fig. 1.a. To prevent impact at the end of the
capture phase, it is imperative that the robot’s end-effector intercepts the target’s grapple point
with zero relative velocity. Suppose the optimal trajectory is manifested by

r̈ = u1, (27)

which can be formally rewritten as ẋ1 = [ṙT uT
1 ]

T where xT
1 = [rT ṙT ]. Denting terminal time

t1, one can write the terminal condition as ψ(t1) = 0, where

ψ(t) =

[

r(t)− ρ(t)
ṙ(t)− ρ̇(t)

]

The terminal position and velocity can be calculated by integration of the acceleration

ρ̈ = A(q)
(

ω × (ω × ˆ̺) + φ(ω, σ̂)× ˆ̺
)

given initial conditions ρ̇(t0) = ρ̇o + A(q)
(

ω × ˆ̺
)

and ρ(t0) = ρo + A(qk) ˆ̺, where σ̂ and
ˆ̺ denote the estimated values of the corresponding variables. Another constraint is that the
target’s capturing fixture should be accessible by the robotic hand for capturing at the time
of capture. In other words, the target satellite must be with right orientation at the time of
interception for LOS obstruction avoidance of the grasping point on the target. In order to
enforce the accessibility constraint, we define angle α made between the normal vector k on the
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surface of capturing fixture and the camera line of sight ρ. At the time of grasping t1, when
ρ(t1) = r(t1), α becomes the angle between the normal vector and the end-effector position
vector r, see Fig. 1. Then, one can conclude that best alignment of the target satellite for
capturing accessibility is tantamount to minimize the following function

ϕ(t) = −w cosα(t) = −w
ρT

‖ρ‖
A(q)k

where w is a weight.
In the following analysis, we seek a time-optimal solution to the input u1 subject to the

acceleration limit ‖r̈‖ ≤ a1max and the aforementioned terminal constraints, i.e.,

minimize ϕ(t1) +

∫ t1

t0

1 dt (28a)

subject to: ‖u1(τ)‖ ≤ a1max t0 ≤ t ≤ t1 (28b)

ψ1(t1) = 0 (28c)

It’s worth mentioning that our visual servoing setup for the positioning of the camera is eye-
to-hand, which means the camera is placed at a fixed point in the workspace. Therefore, the
vision system is not affected by the the robot velocity. However, for the case of eye-in-hand
setup where the camera is installed on the robot end-effector, the velocity constraint might be
included in the optimal control formulation (28) to avoid failure of the vision system.

Defining the vector of Lagrangian multiplier as λ1, one can write the expression of the
system Hamiltonian in the pre-capturing phase as follows:

H1 = 1 + λT
1 ẋ1 (29)

Note that the unity in the expression of the right-half-side of (29) arises from g = 1 in the cost
function (28a). The optimal control theory [44] dictates that the time-derivative of the costate
must satisfy

λ̇1 = −
∂H1

∂x1
hence λ∗

1 =

[

a1

−a1τ + a2

]

, (30)

where ∗ indicates optimal values, the 6 × 1 vector aT = [aT
1 , a

T
2 ] contains the constants to be

found later from the boundary conditions. Thus, by virtue of (29) and (30), we can say

H1(x
∗
1,λ

∗
1,u1) = 1 + aT

1 ṙ + (−aT
1 τ + aT

2 )u1. (31)

The Pontryagin’s principle dictates that the optimal input u∗
1 satisfies

min
u1

H1(x
∗
1,λ

∗
1,u1).

Therefore, in view of the acceleration limit constraint (28b) and expression (31), the optimal
control input in the pre-capturing phase must take the following structure

u∗
1 = −

−a1τ + a2

‖ − a1τ + a2‖
a1max t0 ≤ t ≤ t1 (32)
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The optimal terminal time t1 along with constant vectors a1 and a2 remain to be found. The
transversality condition dictates the following identity

∂ϕ

∂t1
+H∗

1 (t1) = 0 (33)

where
H∗

1 (t1) = 1 + aT
1 ṙ(t1) + ‖a1t1 − a2‖a1max

∂ϕ

∂t1
=

(

∂ϕT

∂ξ
ξ̇

)

t1

. (34)

Here, vector ξT = [rT qT ] contains the position and orientation, and the vectors in the
right-hand side of (34) are given by

(

∂ϕ

∂ξ

)

t1

=
2w

‖r(t1)‖





r×(r×Ak)
2‖r‖2

qok × r + (qv × k)× r + (qv × r)× k
rT (qv × k + 2qok)





t1
(

ξ̇
)

t1

=

[

ṙ
1
2
Ω(ω)q

]

t1

,

where r(t1) = ρ(t1) and ṙ(t1) = ρ̇(t1). Finally applying the terminal conditions (28c) to (32)
and combining the resultant equations with (33), we arrive at the following error equation in
terms of seven unknowns {a, t1}, i.e.,

‖e1(a, t1)‖ = 0, e1(a, t1) =







r(a, t1)− ρ(t1)
ṙ(a, t1)− ρ̇(t1)

(

∂ϕT

∂ξ
ξ̇
)

t1

+H1(a, t1)






.

The above equations can be solved for unknowns {a, t1} by utilizing a numerical technique,
e.g., the Newton-Raphson method.

4 Post-Capturing Trajectory Planning

Fig. 1.b schematically illustrates the post-capturing operation, which starts after completion
of the capturing phase. In this section, we seek another optimal trajectory planning for the
post-capturing phase. The control objective is to damp out the momentums of the tumbling
and drifting target as quickly as possible without applying excessive force and torque. Suppose
the target linear velocity, v, angular velocity, ω, as well as the exerted force, fe, and torque, τe,
are all expressed in the body coordinate frame attached to the target at its location of CoM.
Then, the equations of the motion of the target in the post-capturing phase is described by

υ̇ = −ω × υ +
1

m
fe (35a)

ω̇ = φ(ω,σ) +
1

tr(Ic)
B(σ)(τe − ̺× fe). (35b)
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Denoting the system states in the post-capture phase by vector xT
2 = [υT ωT ] and the control

input uT
2 = [fT

e τ T
e ], we are interested in optimal input trajectories u∗

2 which damp out
the target’s linear and angular velocities at the time of interception, i.e., υ(t1) and ω(t1), in
minimum time subject to maximum magnitude limits of the input force and torque to be fmax

and τmax, respectively. Note that initial linear and angular velocities of the target at the time
of interception, i.e., v(t1) and ω(t1), are equal to those the robot end-effector on the servicer
and therefore they can be calculated from the robot joint rates. Thus

minimize

∫ t2

t1

dt

subject to: ‖fe‖ ≤ fmax (36a)

‖τe‖ ≤ τmax (36b)

ψ2(t2) = 0 (36c)

where ψ2(t) = x2(t) is the final condition of the post-capturing phase. The Hamiltonian of the
system in post-capturing phase can be written as

H2 = 1 + λT
2 ẋ2 (37)

= 1− λ′T
2 (ω × υ) + λ′′T

2 φ(ω) +
1

tr(Ic)
λ′′T

2 Bτe

+
( 1

m
λ′

2 −
1

tr(Ic)
̺×Bλ′′

2

)T

fe

Then, the time-derivative of the corresponding costates is dictated by the following partial
derivative equation

λ̇2 = −
∂H2

∂x2
,

and thus we have

λ̇2 =

[

−[ω×] 0

[υ×] 1
tr(Ic)

∂φT

∂ω

]

λ2, (38)

where

∂φ

∂ω
=





0 σ1ωz σ1ωy

σ2ωz 0 σ2ωx

− σ1+σ2

1+σ1σ2
ωy − σ1+σ2

1+σ1σ2
ωx 0



 . (39)

Moreover, allowable trajectories of the optimal control input should minimize the Hamiltonian
function, according to the Pontryagin’s Minimum Principle of the optimal control theory. That
is

min
u2

H2(x
∗
2,λ

∗
2,u2) (40)

subject to inequality and equality constraints (36a), (36b), and (36c). The expression of the
Hamiltonian (37) can be concisely written by

H2 = c+
1

tr(Ic)

[

pT1 τe + p
T
2 fe

]

(41)
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where the auxiliary variables are defined by c = 1 − λ′T
2 (ω × υ) + λ′′T

2 φ(ω), p1 = Bλ′′
2,

p2 = κ2λ2 − ̺×Bλ′′
2, and

κ =

√

tr(Ic)

m

is the Euclidean norm of gyradius of the satellite body about all three axes, i.e., κ =
√

κ2
x + κ2

y + κ2
z.

Clearly the expression of the system Hamiltonian in (41) is minimized when the direction of
the torque and force vectors are aligned in opposite direction of the axillary vectors p1 and p2,
respectively. That is the optimal torque and force should be proportional to the unit vectors
−p1/‖p1‖ and −p2/‖p2‖, respectively. Moreover, since the maximum magnitude that vectors
τe and fe can take are τmax amd fmax, one can infer that the optimal force and torque control
inputs in the post-capturing phase must have the following constructs in order to minimize the
Hamiltonian

τ ∗
e = −

p1

‖p1‖
τmax = −

Bλ′′
2

‖Bλ′′
2‖

τmax, (42a)

f ∗
e = −

p2

‖p2‖
fmax = −

κ2λ′
2 + ̺×Bλ′′

2

‖κ2λ′
2 + ̺×Bλ′′

2‖
fmax (42b)

Then, upon substitution of (42) into (35), we arrive at the optimal motion trajectories for the
post-capturing maneuvering

υ̇∗ = −ω∗ × υ∗ −
κ2λ′

2 + ˆ̺×Bλ′′
2

‖κ2λ′
2 + ˆ̺×Bλ′′

2‖
a2max (43a)

ω̇∗ = φ(ω∗, σ̂) +
B2λ′′

2

‖Bλ′′
2‖

γmax (43b)

−B
ˆ̺× λ′

2 + κ−2 ˆ̺× ( ˆ̺×Bλ′′
2)

‖κ2λ′
2 + ˆ̺×Bλ′′

2‖
a2max,

q̇∗ =
1

2
Ω(ω∗)q∗ (43c)

u∗
2 = A(q∗)

(

υ̇∗ + ω̇∗ × ˆ̺ + ω∗ × (ω∗ × ˆ̺)
)

(43d)

where σ̂ and ˆ̺ are the estimated values of the corresponding unknown parameters, while

a2max :=
fmax

m
and γmax :=

τmax

tr(Ic)
(44)

are the user-defined parameters corresponding to the maximum linear and angular accelera-
tions in the post-capturing phase. It is worth noting that combining the maximum force and
torque parameters with the mass and trace of moment of inertia tensor parameters effectively
eliminates the requirement for precise knowledge of the unidentifiable parameters that cannot
be directly determined from observing the target’s motion. If the target’s mass and trace of mo-
ment of inertia tensor are not precisely known, conservative upper-bound values can be used to
determine the user-defined parameters for maximum acceleration (44). By incorporating these
acceleration parameters into the optimization, the maximum force and moment values can be
constrained to not exceed their limits, even if the estimation of the target’s mass and trace of
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moment of inertia tensor are imprecise. However, this approach may result in a suboptimal
time solution.

The differential equations (43) together with (38) can be solved upon knowing the ini-
tial value of the costate vector. Since the optimal control system is with open-end time, the
transversality condition implies that the Hamiltonian calculated over time interval t1 ≤ t ≤ t2
must be zero. That is to say

H2(t2) = 0. (45)

Now, we can obtain additional equation in order to calculate the optimal terminal time upon
substitution of (42) into (37) and using identity (45). That is

H2(t) =1− (ω × υ)Tλ′
2 + φ

T (ω)Tλ′′
2 (46)

− ‖Bλ′′
2‖τmax − ‖κ−2λ′

2 + ̺×Bλ′′
2‖fmax = 0

The above set of equations can be numerically solved to obtain the initial value of the costate
and the final time, i.e., {λ2(t1), t2}. The shooting method can be utilized to solve this two-point
boundary value problem (TPBVP) through zeroing the terminal error calculated by numerical
integration of (38) and (43). To this effect, the error function is defined as

‖e2(t2)‖ = 0 where e2(t2) =





υ(λ2(t1), t2)
ω(λ2(t1), t2)
H∗

2 (λ2(t1), t2)



 . (47)

The above error function will vanish if the unknown variables {λ2(t1), t2} take their correct
values. To this end, a quasi-Newton method [45] can be employed to find a numerical solution,
e.g., by using Matlab function fminunc.

Fig. 2 illustrates the integration of two optimal control strategies that are associated with
the pre- and post-capturing phases. This integration enables a smooth transition and facilitates
real-time switching to the appropriate control system. The switching control system ensures a
seamless transition from pre-capture control to post-capture control, triggered by a switching
signal at the terminal time epoch t1, and initialized with a snapshot of the system’s states.
Moreover, both controllers are continuously adjusted to the greatest extent possible by utilizing
feedback obtained through vision data processing.

5 Experiments

The experimental setup of the satellite simulator described in [1] is used to demonstrate the
proposed robot guidance and control scheme. The scheme aims to capture and stabilize a
satellite mockup that exhibits both translational and tumbling motions, while achieving the
functional requirements in a simulated space environment through end-to-end robotic operation,
including learning, pre-capturing, and post-capturing steps. This completes our previous work
in [4], which lacked experimental validation related to the post-capturing phase. To simulate the
dynamic motion of a free-floating target satellite and a servicing robot [46,47], two manipulator
arms are employed, as shown in Fig. ??. In this experiment, Neptec laser scanner [48] is placed
at a fixed point in the workspace to generate 3D image data with the update rate of 2 Hz for
the eye-to-hand visual servoing method, see also Fig.3.
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Figure 4: Target pose calculated by the image registration algorithm.

Table 1: Simulated target parameters.

parameter value
m (kg) 1600
̺ (m) [−0.25 − 0.1 0.05]T

Ic (kg-m
2) diag(400, 500; 700)

σ [−0.5 0.6]T
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Figure 5: Estimation of the target’s linear and angular velocities.

One of the simulating manipulators has an end-effector that is mechanically connected to the
satellite mockup, and it simulates the representative motion trajectories of the target satellite
based on the inertial parameters listed in Table 1. The maximum contact force and torque are
set to fmax = 7.0 N and τmax = 8.0 Nm, respectively. It should be noted that all identifiable
inertial parameters of the target are unknown and are therefore estimated during the learning
phase. We assume upper-bound values for the mass and trace of the moment of inertia tensor
to be 1700 kg and 1800 Nm2, respectively, which are approximately 10% higher than the actual
values specified in Table 1. Consequently, the maximum linear and angular accelerations in the
post-capturing phase are set to 0.0035 m/s2 and 0.0045 rad/s2. The user-defined parameters
of the optimal control for pre- and post-capturing manoeuvres are provided in Table2.

The table listing the timing and sequence of events during the execution of the optimal
guidance and control of the servicing robot can be found in Table 3. Additionally, Fig. 4
shows the pose trajectories of the target obtained from the 3D point-matching registration
algorithm before and after the pre-capturing phase. The target pose, consisting of position
and orientation, is calculated by the image processing using equation (14), where y1 · · · y7
represent the individual elements of the pose. It is important to note that the vision system
fails before the completion of the pre-capturing maneuver at time t = 111.9 sec. The failure
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Figure 6: Time-histories of the estimated parameters against their actual values.

Table 2: User-defined parameters of the optimal control.

Parameter a1max a2max γmax

(m/s2) (m/s2) (rad/s2)
Value 0.01 0.0035 0.0045

Table 3: Timing and sequence of events.

Event convergence approach occlusion interception stabilization
Tc To Toc T1 T2

Time 92.4 s 97.4 s 111.9 121.4 s 144.3 s

17



of the vision system is attributed to the servicing robot’s hand coming into the vision sensor’s
field-of-view, which inevitably causes the point-matching error. Nevertheless, prior to the
trajectory planning and execution, the fault-tolerant estimator receives potentially erroneous
data from the 3D vision registration algorithm and subsequently provides the best estimate of
the target states, including linear and angular velocities, as well as its inertial parameters. These
variables are incorporated in the pre- and post-capturing trajectory planning, and thus their
accurate estimation is vital for the successful implementation of the overall robot guidance and
control. The estimator’s convergence during the learning phase is determined by continuously
monitoring the Euclidean norm of the covariance matrix. When the norm reaches a sufficiently
small value, the estimator is considered converged. In this experiment, the estimator converged
at t = 92.4 sec. Therefore, the initial time for the pre-capturing manoeuvre was set to be
5 sec later, i.e., at t = 97.5sec, to leave a conformable margin for accommodating the time
required for path planning computations. The estimated linear and angular velocities of the
target along with the estimated inertial parameters are plotted in Figs.5 and 6, respectively.
The motion planner progressively updates the robot trajectories based on the most recent
state and parameter estimation until the vision system fails, after which the state/parameter
estimation is no longer updated from the faulty vision data. Fig. 7 displays the time-histories
of the point-matching error of the 3D registration along with the predicted position of the
grasping fixture. The graphs reveal that obstruction of the vision sensor by the approaching
servicing manipulator occurs about 10 sec prior to completion of the pre-capturing phase.
This event results in the metric fit error increasing to such an extent that the fault-detection
logic renders the estimator gain zero. However, the plots in the figure demonstrate that the
estimator still provides a reliable prediction of the target position after the vision obstruction.
Figs. 8 and 9 illustrate the position and velocity trajectories of the grasping fixture relative
to the end-effector during the pre-capturing and post-capturing phases, respectively, while
the trajectory of the LOS angle is shown in Fig. 11. The plots clearly demonstrate that the
robot successfully captured the grasping fixture on the moving target at t = 121.4 sec and
subsequently stabilized its linear and angular motions at t = 144.3 sec. The graphs exhibit
a smooth capture with both the end-effector and grasping fixture reaching the interception
point with the same velocity. Furthermore, the line-of-sight (LOS) to the target grasping
point remains unobstructed during the robotic capture. The plots also reveal that the post-
capturing manoeuvre of the robot simultaneously damp out the translational and rotational
motion of the satellite within 22.9 sec, while respecting the maximum acceleration capability
of the servicing manipulator. Fig. 10 depicts the time-histories of the force and torque applied
to the target by the manipulator’s end-effector, which are bounded according to their limits.
The magnitude of the exerted force and torque are also illustrated by dotted lines in the figure,
demonstrating that the forces and torques are indeed saturated. The plots clearly indicate that
the robot successfully captured the grasping fixture on the moving target at t = 121.4 sec and
stabilized its linear and angular motions at t = 144.3 sec. The capture was smooth, with both
the end-effector and grasping fixture reaching the interception point with the same velocity.
The post-capture robot manoeuvres effectively dampened both the translational and rotational
motion of the satellite within 22.9 sec, while respecting the specified maximum acceleration
capability of the servicing manipulator. Fig. 10 shows the time-histories of the force and torque
exerted by the manipulator’s end-effector on the target, which are bounded by their limits. The
magnitude of the exerted force and torque are also indicated by dotted lines, demonstrating
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that they are saturated.
In summary, the optimal trajectory planning and control scheme enables the manipulator

to capture and stabilize the target as quickly as possible within a total time of 46.9 sec, given
the manipulator capabilities. Fig. 12 illustrates trajectories of the distance between the end-
effector and the target versus the relative velocities from multiple experimental results. Test
case 1 corresponds to the motion estimation and control scheme without incorporation of the
fault-detection logic, while test cases 2, 3, and 4 correspond to motion estimation and control
with incorporation of the fault-detection logic under different initial and operational conditions.
In all test cases, the vision system fails when the manipulator is close enough to the target and
thus inevitably obstructs the field-of-view of the camera, which is placed at a fixed point in the
workspace. The plots clearly demonstrate that the motion estimation and control scheme with-
out incorporation of the fault-detection logic did not succeed in achieving the basic objective
of rendezvous & capture due to the large rendezvous position and velocity errors. However, the
proposed motion estimation and control scheme achieved an average rendezvous position and
velocity errors of about 2.6 cm, which is lower than the 4 cm capture envelope of the robotic
gripper hand. Therefore, successful rendezvous & capture of the target becomes possible in
spite of the occlusion.

6 Conclusion

We have presented an integrated vision-guidance and optimal control method for autonomously
capturing and stabilizing a tumbling and drifting target object in a time-critical manner. The
method could take into account various operational and physical constraints, including ensuring
a smooth capture, handling line-of-sight (LOS) obstructions of the target, and staying within
the acceleration, force, and torque limits of the robot. The integrated system achieved not
only a seamless transition and real-time switching between control systems but also self-tuning
of both controllers through the processing of visual data. By incorporating a fault detection
logic based on metric fit of the registration algorithm and prediction error, we were able to
implement a fault-detection and recovery strategy, ensuring continuous visual feedback even in
the event of obstruction of the vision sensor. We successfully implemented and tested the vision-
guided control scheme on the CSA satellite simulator testbed, which featured two manipulator
arms simulating the motions of a tumbling satellite and a servicing robot. The experimental
results demonstrated successful execution of capturing and stabilizing the tumbling and drifting
satellite through sequential pre- and post-capturing operations, despite the presence of multiple
operational constraints and obstructed 3D vision data.

The linearized process dynamics is described by

δẋ = F δx+Lw, (48a)
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Figure 7: The ICP metric fit error (top) and predicted trajectory of the grapple-fixture position
(bottom).
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Figure 8: The position and orientation trajectories of the robot and the target.
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Figure 9: Velocity trajectories of the robot and the target.
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Figure 10: Trajectories of the interaction force and moment during the post-capturing phase.

Figure 11: Trajectory of the LOS angle.
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Figure 12: Trajectories of relative position versus relative velocity for different test cases.

F =









−[ω̂×] 1
2
I 0 0 0 0 0

0
(

∂φ

∂ω

)

x̂
0 0

(

∂φ

∂σ

)

x̂
0 0

0 0 0 I 0 0 0

0 0 0 0 0 0 0









(48b)

∂φ

∂σ
=







ωyωz 0
0 ωxωz

σ2
2
−1

(1+σ1σ2)2
ωxωy

σ2
1
−1

(1+σ1σ2)2
ωxωy






. (48c)

The equivalent discrete-time system of system (48) is

δxk+1 = Φkδxk +wk. (49)

Here, wk is discrete-time process noise, t∆ = tk+1−tk is the sample time, and the state transition
matrix is denoted by Φk = Φ(tk, t∆) where

Φ(tk, t∆) = eF (tk)t∆ ≈ I + t∆F (tk). (50)

The covariance of process noise associated with the discrete-time systems Qk = E[wkw
T
k ] can

be obtained from

Qk =

∫ tk+t∆

tk

Φ(tk, τ)L diag
(

σ2
τI, σ

2
fI

)

LTΦT (tk, τ)dτ,

Using (48b), (48c), and (50) in the above integral, we get

Qk =













Q11σ
2
τ Q12σ

2
τ 0 0 0

× Q22σ
2
τ 0 0 0

0 0
t3
∆

3
σ2
fI

t2
∆

2
σ2
fI 0

0 0 × t∆σ
2
fI 0

0 0 0 0 0













, (51)
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where

Q11 =
t3∆
12
B2, Q12 =

t3∆
6
B2

(

∂φT

∂ω

)

x̂

+
t2∆
4
B2

Q22 =
t3∆
3

(

∂φ

∂ω

)

x̂

B2

(

∂φT

∂ω

)

x̂

+
t2∆
2

(

B2

(

∂φT

∂ω

)

x̂

+

(

∂φ

∂ω

)

x̂

B2
)

+B2t∆

In the other hand, defining quaternion variations δµ = µ⊗µ̂−1, we can readily establish the
relationship between the measured quaternion and its variation through the following identity

η = δµ⊗ η̂ ⊗ δq (52)

where η̂ = µ̂⊗ q̂. Then, by virtue of (52), the observation equation (20d) can be also realized
as a nonlinear function of the state variation δx, i.e.,

h(δx) =

[

ρo +A(δq ⊗ q̂)̺
vec

(

δµ⊗ η̂ ⊗ δq
)

]

. (53)

Finally, one can derive the observation sensitivity matrix in the following form

H =

(

∂h

∂δx

)

x̂

=

[

∂ρ

∂δqv
0 I 0 0 A(q̂) 0

∂ηv

∂δqv
0 0 0 0 0 ∂ηv

∂δµv

]

x̂

,

where

∂ρ

∂δqv
= −2A(q)[̺×]

∂ηv
∂δqv

= [(δµv × η̂v)×]− δµvη̂
T
v − η̂o(I + [δqv×])− [η̂v×]

∂η̂v
∂δµv

= [δqv×][η̂v×]− δqvη̂
T
v + ηo(I + [δqv×]) + [η̂v×]

Define a prioir and a posteriori estimation errors δx̃−
k = δxk − δx̂−

k and δx̃+
k = δxk − δx̂+

k with
associated covariances P−

k = E[δx̃−
k δx̃

−T
k ] and P+

k = E[δx̃+
k δx̃

+T
k ]. The Kalman filter gain

minimizes the performance index E(‖δx̃+
k ‖

2) = tr(P+
k ) subject to the state constraints (10).

Therefore, according to the Joseph formula, the constrained Kalman filter is the solution of the
following optimization programming

min
Kk

tr
(

(I −KkHk)P
−
k (I +KkHk)

T +KkRkK
T
k

)

subject to: − 1 < σ̂+
k < 1

The gain projection technique can be applied to impose the inequality constraints for the
estimation process [49]. In this method if the unconstrained a posteriori estimation δx̂+

k does
not satisfy the inequality constraints, then the state estimation is projected to the constraint
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boundary in the direction of a prioir estimation. This effectively modified the Kalman gain as
follows:

Kk = ΛkK
u
k , (54)

where Λk was previously defined in (24) and Ku is the unconstrained Kalman gain given by

Ku
k = P−

k H
T
k (HkP

−
k H

T
k +Rk)

−1, (55)

where P+
k =

(

I − KkHk

)

P−
k . Subsequently the propagations of the state and covariance

matrix are obtained from

x̂−
k+1 = x̂

+
k +

∫ tk+t∆

tk

f (x) dt (56a)

P−
k+1 = ΦkP

+
k ΦT

k +Qk (56b)
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