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Stable Linear System Identification with Prior
Knowledge by Riemannian Sequential Quadratic

Optimization
Mitsuaki Obara, Kazuhiro Sato, Member, IEEE , Hiroki Sakamoto, Takayuki Okuno, and Akiko Takeda

Abstract— We consider an identification method for a
linear continuous time-invariant autonomous system from
noisy state observations. In particular, we focus on the
identification to satisfy the asymptotic stability of the sys-
tem with some prior knowledge. To this end, we propose
to model this identification problem as a Riemannian non-
linear optimization (RNLO) problem, where the stability is
ensured through a certain Riemannian manifold and the
prior knowledge is expressed as nonlinear constraints de-
fined on this manifold. To solve this RNLO, we apply the
Riemannian sequential quadratic optimization (RSQO) that
was proposed by Obara, Okuno, and Takeda (2022) most
recently. RSQO performs quite well with theoretical guar-
antee to find a point satisfying the Karush-Kuhn-Tucker
conditions of RNLO. In this paper, we demonstrate that the
identification problem can be indeed solved by RSQO more
effectively than competing algorithms.

Index Terms— Riemannian sequential quadratic opti-
mization, Riemannian nonlinear optimization, Stable linear
system, System identification.

I. INTRODUCTION

SYSTEM identification of a linear continuous time-
invariant autonomous system

ẋ(t) = Ax(t) (1)

with the state vector x(t) ∈ Rn is a task to estimate A ∈ Rn×n

from measured state data and is one of the most important
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topics to predict the future state of a real system. System
identification has been investigated for many years in several
settings. For example, prediction error methods [1, 2, 3, 4,
5] and subspace identification methods [6, 7, 8, 9, 10] are
conventional identification methods for linear time-invariant
state space systems. Dynamic mode decomposition (DMD)
deals with the system of the particular form (1), which can be
possibly large-scale one such as fluid flows [11, 12].

In real applications, it is often crucial to identify a system
satisfying the asymptotic stability.Yet, it is completely non-
trivial to ensure the stability in the identification methods such
as those above; for example, DMD spectrum has been shown
to be considerably sensitive to measurement noise and hence
its resultant system may be unstable [13]. Several approaches
have been investigated to overcome the difficulty: Subspace
identification methods with guaranteed stability have been pro-
posed in [14, 15, 16]. In [17], a constraint generation approach
has been proposed. A Lagrange relaxation is used to ensure
several types of stability including the asymptotic stability
for linear time-invariant state space models [18] as well as
a different stability called the global incremental ℓ2 stability
for nonlinear systems [19, 20]. It is worth mentioning that,
among the above identification methods, those presented in
[14, 15, 16, 17, 18, 19, 20] are based on convex optimization.

In addition to the stability, another important characteristic
in the identification is prior knowledge. As described in [1,
Chapter 16], identification should reflect the prior knowledge
peculiar to the system, such as the nonnegativity of all or
partial components of the system A. Nevertheless, the con-
ventional identification methods are not able to generate a
stable matrix A with prior knowledge information. Indeed,
to impose the knowledge, it is necessary to deal with their
nonconvexity, which requires additional techniques from non-
convex optimization.

In this paper, we propose a new method for identifying
a system, from noisy data, that satisfies both asymptotic
stability and prior knowledge. This method first discretizes the
system, and then applies the prediction error method, which
is formulated as solving a least squares optimization problem.
However, to identify the desired system, we must incorporate
both stability and prior knowledge into this optimization
problem. Motivated by the fact that an asymptotically stable
linear system can be expressed in a port-Hamiltonian form [21,
Proposition 1], we handle the stability of the system through a
Riemannian manifold as in [22]. Meanwhile, we deal with the
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prior knowledge information as nonlinear constraints defined
on the manifold. After all, our identification method reduces
to solving a constrained nonlinear optimization problem on a
Riemannian manifold, called RNLO for short.

RNLO is one of the general optimization classes proposed
in [23] and researches for algorithms to solve RNLO are
in progress, for example, [24, 25]. Remarkably, the mod-
eling enables us to identify a stable A even when we use
noisy observations, which usually spoil the stability in system
identification. The modeling also allows us to take various
prior knowledge into account by virtue of the generality of
RNLO. To solve RNLO, we propose to apply the Riemannian
sequential quadratic optimization method (RSQO) that was
presented recently in [25]. Strength of RSQO is the global
convergence property to Karush-Kuhn-Tucker (KKT) points
of RNLO and locally fast convergence speed.

Our contributions are summarized as follows:
1) We propose a prediction error method to identify a

linear system satisfying the asymptotic stability with prior
knowledge from noisy state observations. The key ingre-
dients of this method are formulating the identification
problem as RNLO and solving it with RSQO.

2) We conduct numerical experiments with comparisons to
demonstrate that RNLO modeling and RSQO are very
promising.

Organization of paper
The rest of this paper is organized as follows. In the follow-

ing subsection, we introduce notations and terminologies. In
Section III, we formulate the system identification problem as
RNLO. In Section IV, we introduce RSQO of the form tailored
to the obtained RNLO and moreover show its theoretical
properties. We also exploit the geometry of the problem.
In Section V, we demonstrate that the proposed formulation
and RSQO are promising through experimental comparisons.
Finally, in Section VI, we conclude this paper with some
remarks and discussions about future work.

Notations and terminologies
The sets of real numbers and complex ones are denoted by

R and C, respectively. Let N be the set of all the natural
numbers, that is, N := {1, 2, . . .}. We denote the identity
matrix of size n by I ∈ Rn×n. Given a matrix Y ∈ Rn×n,
Y⊤ and tr(Y) represent the transpose of Y and the trace of
Y, respectively. Let ∥·∥F denote the Frobenius norm of a

matrix, that is, ∥Y∥F :=

√
tr
(
Y⊤Y

)
for any Y ∈ Rn×n. Let

∥·∥ denote the Euclidean norm of a vector, that is, ∥v∥ :=√
v21 + · · ·+ v2n for any v ∈ Rn. Define the i-th standard

basis of Rn by ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, where
the i-th element is one and the others are zeros. Given a
sufficiently smooth function w : Rn×n → R, the Euclidean
gradient of w at Y ∈ Rn×n is denoted by ∇w(Y). Let V be
any vector space and TWV be a tangent space at W ∈ V . We
canonically identify TWV with V and use the symbol ≃ to
denote the canonical identification. Under TWV ≃ V , given
a sufficiently smooth function l : V → R, we define the

directional derivative of l at W ∈ V along ξW ∈ TWV by
Dl(W)[ξW ] := limt↓0

l(W+tξW )−l(W)
t ∈ R.

II. PRELIMINARIES

To formulate our problem as RNLO, we characterize the
stability of the system in Section II-B. To this end, we first
summarize the Riemannian geometries of the sets of skew-
symmetric matrices and symmetric positive definite matrices.

A. Riemannian geometries of skew-symmetric matrices
and symmetric positive definite matrices

We define the vector space of the skew-symmetric matrices
in Rn×n by Skew(n) :=

{
J ∈ Rn×n|J⊤ = −J

}
. Skew(n)

can be regarded as a linear manifold, whose tangent space at
J ∈ Skew(n), denoted by TJ Skew(n), is canonically identi-
fied with Skew(n) itself. Under TJ Skew(n) ≃ Skew(n), the
Riemannian metric at J is defined as ⟨ξJ , ηJ⟩J := tr

(
ξJ

⊤ηJ

)
for any ξJ , ηJ ∈ Skew(n). Define an operator skew: Rn×n →
Skew(n) by skew(Y) := Y−Y⊤

2 . Let ℓ : Skew(n) → R be a
twice continuously differentiable function and ℓ be the smooth
extension of ℓ to the Euclidean space Rn×n. The Riemannian
gradient of ℓ at J is

grad ℓ(J) = skew
(
∇ℓ(J)

)
∈ Skew(n), (2)

where ∇ℓ(J) is the Euclidean gradient of ℓ at J . The expo-
nential mapping at J is given by ExpJ(ξJ) = J + ξJ . for all
ξJ ∈ Skew(n).

Let us denote the set of symmetric positive definite matrices
in Rn×n by Sym++(n), which is an open submanifold of
Rn×n. The tangent space at P ∈ Sym++(n), denoted by
TP Sym++(n), is canonically identified with the set of sym-
metric matrices denoted by Sym(n). Under TP Sym++(n) ≃
Sym(n), we equip Sym++(n) with a Riemannian metric at
P ∈ Sym++(n) defined by

⟨ξP , ηP⟩P := tr
(
P−1ξPP

−1ηP
)

(3)

for any ξP , ηP ∈ Sym(n) [26]. Let us define an oper-
ator sym: Rn×n → Sym(n) by sym(Y) := Y+Y⊤

2 . Let
m : Sym++(n) → R be a twice continuously differentiable
function and m be the smooth extension of m to the Euclidean
space Rn×n. The Riemannian gradient of m at P is

gradm(P) = P sym(∇m(P))P, (4)

where ∇m(P) is the Euclidean gradient of m at P. On
Sym++(n) equipped with (3), we introduce retraction [26]
by RetrP(ξP) = P + ξP + 1

2ξPP
−1ξP for all ξP ∈ Sym(n).

See [26, 27] for the details of the concepts and the notations
on optimization on Riemannian manifolds and the geometries
of the Skew(n) and Sym++(n).

B. Characterizations of stability
Let us start with the definitions of the stability: A ∈ Rn×n

is stable if the real parts of all the eigenvalues of the matrix
A are negative. We say that the system (1) is asymptotically
stable if A is stable.
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In the following proposition, a useful result for the stability
is provided. The proof can be found in the literature, e.g., [22,
Section III] and [21].

Proposition II.1. A matrix A ∈ Rn×n is stable if and only if
there exists (J,R,Q) ∈ Skew(n)× Sym++(n)× Sym++(n)
such that

A = (J −R)Q. (5)

This proposition motivates us to consider optimization prob-
lems with respect to (J,R,Q) to ensure the stability of the
system. Note that, for any stable matrix A, the triplet (J,R,Q)
satisfying (5) is not unique.

Define M := Skew(n) × Sym++(n) × Sym++(n) and
write θ := (J,R,Q) ∈ M. Clearly, M is a product
Riemannian manifold and its tangent space at θ is ex-
pressed as TθM ≃ Skew(n) × Sym(n) × Sym(n), on
which a Riemannian metric at θ is defined as ⟨ξθ , ηθ ⟩θ :=

tr
(
ξJ

⊤ηJ

)
+tr

(
R−1ξRR

−1ηR
)
+tr

(
Q−1ξQQ

−1ηQ
)

for any
ξθ = (ξJ , ξR, ξQ), ηθ = (ηJ , ηR, ηQ) ∈ TθM. We use the
retraction Retrθ (ξθ ) =

(
J + ξJ , R + ξR + 1

2ξRR
−1ξR, Q +

ξQ+ 1
2ξQQ

−1ξQ
)

for all ξθ = (ξJ , ξR, ξQ) ∈ TθM. We refer
readers to [27] for the geometry of a product manifold.

III. PROBLEM SETUP

In this section, we formulate optimization problems for the
identification of a stable linear system with prior knowledge
and derive optimality conditions.

A. Problem formulations

In this paper, we assume that a system to be identified is
of the form (1) with stable A. Thus, from Proposition II.1, a
discretized model with noise εk of the system by the Euler
method is expressed by

xk+1 = (I + h(J −R)Q)xk + εk, (6)

where h > 0 is the sampling interval. That is, the noise εk
can be interpreted as the prediction error at time k. From (6),
we can define the least-square function

f(θ) :=
1

N

N−1∑
k=0

∥εk∥2

=
1

N
∥X ′ − (I + h(J −R)Q)X∥2F, (7)

where X :=
(
x0 x1 · · · xN−1

)
∈ Rn×N and X ′ :=(

x1 x2 · · · xN

)
∈ Rn×N . Note that the system (6) is

a nonlinear regression model, because there exists a multipli-
cation of the parameters J −R and Q.

Using the least-square function (7), we consider the follow-
ing optimization problem:

minimize
θ = (J,R,Q) ∈ M

f(θ) (8a)

subject to gij(θ) ≤ 0, ((i, j) ∈ I), (8b)
hij(θ) = 0, ((i, j) ∈ E). (8c)

Here, I, E ⊆ {1, . . . , n} × {1, . . . , n} are the index sets of
inequality and equality constraints, respectively. Moreover,
{gij}(i,j)∈I , {hij}(i,j)∈E : M → R are continuously differen-
tiable functions. The problem (8) is a Riemannian nonlinear
optimization problem (RNLO) [23], that is, a constrained
nonlinear optimization problem over a Riemannian manifold.
It should be noted that this formulation is novel for a stable
linear system identification with prior knowledge.

Any inequality and equality constraints are acceptable in (8)
as long as they are continuously differentiable with respect to
θ; for example, we can deal with nonnegativity (or nonposi-
tivity) of the elements ei

⊤(J − R)Qej ⋚ 0 and an element
equality, ei⊤(J − R)Qej = cij for a given constant cij ∈ R.
In Section V, we consider box-type inequalities.

B. Optimality conditions

In what follows, we define the Karush-Kuhn-Tucker (KKT)
conditions and relevant concepts for RNLO. We say that θ• ∈
M satisfies the KKT conditions of RNLO (8) if there exist
Lagrange multipliers

{
µ•
ij

}
(i,j)∈I ⊆ R and

{
λ•
ij

}
(i,j)∈E ⊆ R

such that the following hold:

grad f(θ•)

+
∑

(i,j)∈I

µ•
ij grad gij(θ) +

∑
(i,j)∈E

λ•
ij gradhij(θ) = 0,

µ•
ij ≥ 0, gij(θ

•) ≤ 0, µ•
ijgij(θ

•) = 0, ((i, j) ∈ I),
hij(θ

•) = 0, ((i, j) ∈ E),
(9)

where the operator grad denotes the Riemannian gradient as
in Section I. We call θ• a KKT point of (8). For brevity, we
often write µ• ∈ R|I| and λ• ∈ R|E| for

{
µ•
ij

}
(i,j)∈I and{

λ•
ij

}
(i,j)∈E , respectively. It is known that, under some con-

ditions called constraint qualifications, the KKT conditions are
necessary ones for the optimality; that is, a local minimizer sat-
isfies the KKT conditions under constraint qualifications [23,
28].

IV. OPTIMIZATION METHODS

In this section, we introduce a specific method for solving
(8), Riemannian sequential quadratic optimization (RSQO)
that was originally presented in [25].

A. Geometry of problems

In the following theorem, we derive the Riemannian gradi-
ent of f specifically.

Theorem IV.1. Given θ = (J,R,Q) ∈ M, the Riemannian
gradient of f in (8) is

grad f(θ)

= (skew
(
∇Jf(θ)

)
, R sym

(
∇Rf(θ)

)
R,Q sym

(
∇Qf(θ)

)
Q),
(10)
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where f is the smooth extension of f to the Euclidean space
and

∇Jf(θ) = −2h

N
(X ′ − (I + h(J −R)Q)X )X⊤Q⊤, (11)

∇Rf(θ) = −∇Jf(θ), (12)

∇Qf(θ) = −2h

N

(
J⊤ −R⊤)(X ′ − (I + h(J −R)Q)X )X⊤

(13)

are the Euclidean gradients on J,R, and Q, respectively.

Proof. Note that the Riemannian gradient of the function on
the product manifold is organized component-wisely [27].Us-
ing this fact, we derive the Riemannian gradient of our
problems. Hereafter, we abbreviate Rn×n × Rn×n × Rn×n

as Rn×n⊗3 for brevity.
Let f be the smooth extension of f to the Euclidean space.

We define sk : Rn×n⊗3 → Rn by

sk
(
θ
)
:= xk+1 − Zxk, (14)

where θ :=
(
J,R,Q

)
∈ Rn×n⊗3 and Z := I +

h
(
J − R

)
Q By substituting (14) into (7), we have f

(
θ
)
=

1
N

∑N−1
k=1 sk

(
θ
)⊤

sk
(
θ
)

and its directional derivative at θ ∈
Rn×n⊗3 along ξθ =

(
ξJ , ξR, ξQ

)
∈ Rn×n⊗3 is

Df
(
θ
)[
ξθ
]
=

2

N

(
Dsk

(
θ
)[
ξθ
])⊤

sk
(
θ
)
. (15)

Now, we derive the explicit form of Dsk
(
θ
)[
ξθ
]

in
(15). To this end, we first calculate the directional deriva-
tive along

(
ξJ , 0, 0

)
as Dsk

(
θ
)[(

ξJ , 0, 0
)]

= −hξJQxk.
Similarly, we have Dsk

(
θ
)[(

0, ξR, 0
)]

= hξRQxk and
Dsk

(
θ
)[(

0, 0, ξQ

)]
= −h

(
J − R

)
ξQxk. Thus, the explicit

form of Dsk
(
θ
)[
ξθ
]

is

Dsk
(
θ
)[
ξθ
]
= −h

((
ξJ − ξR

)
Q+ (J −R)ξQ

)
xk. (16)

Using the result, we derive the Riemannian gradient of f .
By substituting (14) and (16) into (15), we have

Df
(
θ
)[
ξθ
]
= tr

(
ξJ

⊤
N−1∑
k=1

−2h

N

(
xk+1 − Zxk

)
xk

⊤Q
⊤
)

+ tr

(
ξR

⊤
N−1∑
k=1

2h

N

(
xk+1 − Zxk

)
xk

⊤Q
⊤
)

(17)

+ tr

(
ξQ

⊤
N−1∑
k=1

−2h

N

(
J
⊤ −R

⊤)
(xk+1 − Zxk)xk

⊤

)
.

Here, it follows from xk+1 = X ′ek and xk = Xek that
N−1∑
k=1

(xk+1 − Zxk)xk
⊤ = (X ′ − ZX )

(
N−1∑
k=1

ekek
⊤

)
X⊤

= (X ′ − ZX )X⊤, (18)

where the second equality holds from
∑N−1

k=1 ekek
⊤ = I .

Thus, since M ⊆ Rn×n⊗3 holds, combining (17) and (18)
provides (11), (12), and (13) for any θ ∈ M. By projecting
(11), (12), and (13) onto TθM according to (2) and (4),we
obtain the Riemannian gradient of the form (10).

In a similar manner, we can derive the Riemannian gradient
of constraints although we focus on that of the objective
function here.

B. Riemannian sequential quadratic optimization

In this subsection, we briefly explain the RSQO for solving
(8) using notations and terminologies we have set up so far.
See [25, Section 3] for more details.

1) Description of RSQO: RSQO is an iterative method. Let
θk ∈ M be a current iterate. RSQO first solves the following
quadratic subproblem to generate a search direction ∆θk

• ∈
TθkM:

minimize
∆θk ∈ TθkM

f̃k
(
∆θk

)
subject to g̃kij

(
∆θk

)
≤ 0, ((i, j) ∈ I),

h̃
k

ij

(
∆θk

)
= 0, ((i, j) ∈ E),

(19)

where

f̃k
(
∆θk

)
:=

1

2

〈
Bk[∆θk],∆θk

〉
θk +

〈
grad f

(
θk
)
,∆θk

〉
θk ,

(20)

g̃kij
(
∆θk

)
:= gij

(
θk
)
+
〈
grad gij

(
θk
)
,∆θk

〉
θk , (21)

h̃
k

ij

(
∆θk

)
:= hij

(
θk
)
+
〈
gradhij

(
θk
)
,∆θk

〉
θk , (22)

and Bk : TθkM → TθkM is a symmetric positive-definite
linear operator. Since the problem can be expressed as a
Euclidean convex quadratic optimization problem, it can be
solved by, for example, interior-point methods or active set
methods. We denote the Lagrange multipliers at the solution
∆θk

• corresponding to the inequality and equality constraints
by µk• ∈ R|I| and λk• ∈ R|E|, respectively.

Next, RSQO determines the step length by using the ℓ1
penalty function defined as

Pρ(θ) := f(θ) + ρ

 ∑
(i,j)∈I

max{0, gij(θ)}+
∑

(i,j)∈E

|hij(θ)|

,

where ρ > 0 is a penalty parameter [24]. RSQO first sets

ρk =

{
ρk−1, if ρk−1 ≥ υk,

υk + ε, otherwise,
(23)

where υk := max
{
max(i,j)∈I µk•

ij ,max(i,j)∈E
∣∣λk•

ij

∣∣} and ε >
0 is a prescribed algorithmic parameter. Then, by using Pρk

as a merit function, we find the smallest nonnegative integer
t satisfying

γβt
〈
Bk[∆θk

•
],∆θk

•〉
θk

≤ Pρk

(
θk
)
− Pρk

(
Retrθk

(
βt∆θk

•)) (24)

and set αk = βt. Using the search direction and the step
length, RSQO updates the iterate. The above procedure is
formalized as in Algorithm 1.
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Algorithm 1: Riemannian sequential quadratic opti-
mization (RSQO)

1 Input : Initial point θ0 ∈ M; initial linear operator
B0 : Tθ0M → Tθ0M; hyperparameters
ρ−1 > 0, ε > 0, β ∈ (0, 1), γ ∈ (0, 1);

2 for k = 0, 1, . . . do
3 Compute ∆θk

• with associated Lagrange
multipliers µk•

ij and λk•
ij by solving (19);

4 Update ρk according to (23);
5 Determine the integer t according to the line

search rule (24) and set αk = βt;

6 Update θk+1 = Retrθk

(
αk∆θk

•
)
, µk+1

ij = µk•
ij for

(i, j) ∈ I, and λk+1
ij = λk•

ij for (i, j) ∈ E .
7 end for

2) Convergence properties: First, the line search terminates
within finitely many trials in RSQO, because the search
direction is a descent direction for Pρk◦Retrθk . For details, see
[25, Proposition 3.9, Remark 3.10]. Next, we show that RSQO
has the global convergence property under the following
assumptions, standard in nonlinear optimization.

Assumption 1. There exist m,M > 0 such that, for any k,

m
∥∥∆θk

∥∥2
θk ≤

〈
Bk
[
∆θk

]
,∆θk

〉
θk ≤ M

∥∥∆θk
∥∥2
θk

for all ∆θk ∈ TθkM.

Assumption 2. The subproblem (19) is feasible at each iter-
ation.

Assumption 3. The generated sequence
{(

θk, µk, λk
)}

k
is

bounded. Here, the boundedness of {θk} is with respect to the
distance induced from the Riemannian metric, while those of
{µk} and {λk

k} are in the sense of the Euclidean distance.

Assumptions 2 and 3 are not easy to check in prior. But,
we observed that they were not violated in the numerical
experiments. By Assumption 3, any accumulation point of
{θk} stays at Sym++(n).

Theorem IV.2. [25, Theorem 3.12] Suppose Assump-
tions 1-3. Let (θ•, µ•, λ•) be any accumulation point of{(

θk, µk+1, λk+1
)}

generated by RSQO. Then, (θ•, µ•, λ•)
satisfies the KKT conditions of RNLO (8).

V. NUMERICAL SIMULATIONS

In this section, we demonstrate the effectiveness of our
RNLO modeling and RSQO. We conduct numerical experi-
ments on a random system and make comparisons. In Sec-
tion V-A, we introduce a problem setting as well as other
modelings for the comparisons. In Section V-B, we describe
the solver settings and an evaluation index for the experiments.
In Section V-C, we show the numerical results and discuss
the effect of choice of the modelings and the algorithms.
All the experiments are implemented in Matlab R2023a and
Manopt [29] on a Windows 10 Pro with 2.60 GHz Core i9-
11980HK CPU and 64.0 GB memory.

A. Problem setting: synthetic system

In this experiment, we consider the following synthetic
system:

minimize
θ = (J,R,Q) ∈ M

f(θ) =
1

N
∥X ′ − (I + h(J −R)Q)X∥2F

(25a)

subject to lij ≤ ei
⊤(J −R)Qej ≤ rij ,

((i, j) ∈ I1 ∪ I2),
(25b)

k2ij ≤
(
ei

⊤(J −R)Qej − cij
)2
,

((i, j) ∈ I2),
(25c)

where I1, I2 are disjoint subsets of the whole indices
{1, . . . , n} × {1, . . . , n}. I1 is the index set of 1-box con-
straints, for each (i, j) of which the (i, j)-th component of the
true system belongs to [lij , rij ] ⊆ R. Similarly, I2 is the one
of 2-box constraints, for each (i, j) of which the true (i, j)-th
element is assumed to lie in [lij , cij − kij ]∪ [cij + kij , rij ]. In
a similar manner to Theorem IV.1, we derive the Riemannian
gradients of the constraints.

We will compare the following two modelings with the
above RNLO modeling. One is the Euclidean version of
the prediction error method with prior knowledge (Euclidean
nonlinear optimization; ENLO):

minimize
A ∈ Rn×n

1

N
∥X ′ − (I + hA)X∥2F (26a)

subject to lij ≤ ei
⊤Aej ≤ rij , ((i, j) ∈ I1 ∪ I2), (26b)

k2ij ≤
(
ei

⊤Aej − cij
)2
, ((i, j) ∈ I2), (26c)

which is obtained by replacing (J − R)Q with A in (25),
respectively. Since this problem does not impose the stability
condition on A, the solutions are not necessarily stable. The
other is the Riemannian modeling that minimizes (25a) under
the absence of any constraints.

In the experiments, we consider the case n = 10, h =
0.02, and N = 40. Indices of I1 are randomly picked
up from {1, 2, 3, . . . , 10}2, and then those of I2 are from
{1, 2, 3, . . . , 10}2 \ I1. We randomly generate (J∗, R∗, Q∗) ∈
M using Manopt command M.rand() and then let the true
system A∗ := (J∗ − R∗)Q∗ ∈ Rn×n. For each (i, j) ∈ I1,
lij and rij are randomly generated so that e⊤i A

∗ej ∈ [lij , rij ].
As well, for each (i, j) ∈ I2, lij , rij , kij and cij are randomly
generated so that e⊤i A

∗ej ∈ [lij , cij − kij ] ∪ [cij + kij , rij ].
We set the ratios of 1-box and 2-box constraints as 0.2
and 0.1, respectively. Each component of x0 is generated
uniformly at random in the range (−1000, 1000), and {xk}Nk=1

is determined according to xk+1 = exp(Ah)xk. Additive
white Gaussian noise with a Signal-to-Noise Ratio (SNR)
of 10 dB or 20 dB is then added to these values. We also
scale the data by dividing all the elements by ∥x0∥ for the
sake of the numerical stability. We adopt randomly generated
(J,R,Q) ∈ M as the initial point.
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B. Experimental environment

We compare the following six pairs of modelings and
algorithms:

• RNLO-by-RSQO: our RNLO modeling (25) and RSQO
method proposed in [25].

• EE: the Euclidean nonlinear modeling (26) and
fmincon SQO, an Euclidean SQO or SQP solver.

• EEP: the Euclidean nonlinear modeling (26) and
fmincon SQO with the projection to the stable matrix
set proposed in [30].

• LS: the Euclidean nonlinear modeling (26a) without the
constraints and fmincon SQO.

• GD: the Riemannian modeling (25a) without the con-
straints and the Riemannian gradient decent method [27].

• RTR: the Riemannian modeling (25a) without the con-
straints and the Riemannian trust region method [27].

We evaluate the quality of solutions of the optimization
problems in view of the first largest real part of eigenvalues
of A, because it will govern the behavior of the system. We
also monitor the optimization process of each algorithm with
respect to the max violation; let

glij(θ) := −ei
⊤(J −R)Qej + lij , ((i, j) ∈ I1 ∪ I2),

grij(θ) := ei
⊤(J −R)Qej − rij , ((i, j) ∈ I1 ∪ I2),

gcij(θ) := −
(
ei

⊤(J −R)Qej − cij
)2

+ k2ij , ((i, j) ∈ I2)

be the constraints in (25b) and (25c). The max violation at θ
is defined as

max

{
0, max

(i,j)∈I2

{
gcij(θ)

}
, max
(i,j)∈I1∪I2

{
glij(θ), g

r
ij(θ)

}}
.

Throughout the experiments, we employ the identity mapping
as Bk in (20), which clearly satisfies Assumption 1.

C. Numerical results and discussion

We solved 50 problem instances by the six pairs of mod-
elings and algorithms. All the algorithms were run from the
identical initial point, which was produced for each problem
instance, and terminated after 100 seconds of CPU time. The
results are depicted in Figs. 1, 2, 3, and 4. Note that the scales
in the subfigures within each figure significantly differ, and the
result shown in Fig. 1 was obtained by randomly selecting a
solution from one of the 50 problem instances. Although SNR
was 10 dB for Fig. 1, it was 20 dB for the other figures. Figs.
1 and 2 demonstrate the eigenvalue distributions obtained by
the various methods. Fig. 3 denotes the boxplots of the relative
errors of the first largest real part of eigenvalue between true
system and numerical solutions among 50 trials, respectively.
Fig. 4 denotes the boxplots of the max violation among 50
trials, respectively.

As shown in Figs. 1, 2, and 3, RNLO-by-RSQO was
considerably better than the other methods in terms of the
identification of the eigenvalues. In particular, Fig. 3 showed
that only RNLO-by-RSQO can approximately estimate the
most important eigenvalue, that is, the eigenvalue with the first
largest real part. Here, we omitted the relative error attained

by EE, because the error was considerably larger than those
attained by the other methods.

While we haven’t shown the figure due to page limitations,
an important observation needs to be highlighted. Using the
same initial point, EE’s objective value was superior to that of
RNLO-by-RSQO. However, in terms of eigenvalues, RNLO-
by-RSQO considerably outperformed EE. Furthermore, when
EE was initialized with the matrix A obtained from RNLO-
by-RSQO, its resulting eigenvalues were inferior to those gen-
erated by RNLO-by-RSQO. These findings emphasize EE’s
tendency to overfit noisy data, contrasting with the robustness
demonstrated by RNLO-by-RSQO.

According to Fig. 4, RNLO-by-RSQO was significantly
better than the other methods except for EE in terms of the max
violation. This result can be expected, because only RNLO-
by-RSQO and EE incorporate prior information in the form
of equality and inequality constraints on the parameters. The
abundance of outliers implies that EE is susceptible to noise.
Note that the max violation of EEP, which projects the unstable
eigenvalues obtained by EE onto the imaginary axis, is larger
than that of EE. This is because the projection does not take
into account equality or inequality constraints.

It is remarkable that RNLO-by-RSQO is superior to GD and
RTR in terms of the eigenvalues, as shown in Figs. 1, 2, and 3.
This results from the fact that GD and RTR consider to solve
(25a) without the constraints unlike RNLO-by-RSQO. In other
words, the problem for GD and RTR does not incorporate any
prior knowledge other than stability unlike RNLO-by-RSQO.
Thus, GD and RTR generated convergence sequences to some
bad solutions as in the results of Figs. 1, 2, and 3.

In summary, the superiority of RNLO-by-RSQO can be
attributed to the parametrization based on Proposition II.1 and
the incorporation of prior knowledge concerning equality and
inequality constraints. A particularly noteworthy point is that
RNLO-by-RSQO is more robust to noise compared to EE. The
only difference between these methods is whether or not they
utilize the parametrization based on Proposition II.1.

VI. CONCLUSION AND FUTURE WORK

We developed a prediction error method that ensures the
stability of a linear system and meets with the prior knowl-
edge. The method employs RNLO, a class of the nonlinear
optimization on a Riemannian manifold. For solving this
RNLO, we proposed to use RSQO. Numerical experiments
with comparisons declare the effectiveness of our RNLO
formulation in terms of the stability of the system and prior
knowledge together with the superiority of RSQO.

An initial point generally affects numerical results in nonlin-
ear optimization, and a sampling time h also does the accuracy
of the system identification. Hence, a good proposal for the
selection of an initial point and a sampling time is a possible
future research. Moreover, it should be noted that our approach
presented in this paper does not always identify a stable system
with prior knowledge information and sufficient accuracy. In
fact, for example, in situations where there is little data and a
large amount of noise, the estimated matrix using our approach
can be a stable matrix near the imaginary axis on the complex
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plane even if the true eigenvalues are far away from the axis.
This issue should be resolved in the future research.
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