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Abstract—Asynchronous stochastic approximations (SAs) are
an important class of model-free algorithms, tools and tech-
niques that are popular in multi-agent and distributed control
scenarios. To counter Bellman’s curse of dimensionality, such
algorithms are coupled with function approximations. Although
the learning/control problem becomes more tractable, function
approximations affect stability and convergence. In this paper,
we present verifiable sufficient conditions for stability and
convergence of asynchronous SAs with biased approximation
errors. The theory developed herein is used to analyze Policy
Gradient methods and noisy Value Iteration schemes. Specifically,
we analyze the asynchronous approximate counterparts of the
policy gradient (A2PG) and value iteration (A2VI) schemes. It
is shown that the stability of these algorithms is unaffected by
biased approximation errors, provided they are asymptotically
bounded. With respect to convergence (of A2VI and A2PG),
a relationship between the limiting set and the approximation
errors is established. Finally, experimental results are presented
that support the theory.

Index Terms—Asynchronous stochastic approximations, multi-
agent learning, networked control systems, distributed control,
almost sure boundedness (stability), deep reinforcement learning,
neuro-dynamic programming, deep function approximations,
asymptotically biased approximation errors.

I. INTRODUCTION

In recent years reinforcement learning (RL) algorithms such
as noisy approximate Value Iteration, Q-learning and Policy
Gradient Iteration methods have witnessed a colossal resur-
gence. Many of these algorithms are coupled with function
approximators to solve several important problems including,
but not limited to, autonomous driving in transportation, pro-
cess optimization in industrial scenarios and efficient dispersal
of health-care services. A neural network with several hidden
layers is called a deep neural network (DNN). RL that uses
a DNN for function approximation is called DeepRL. The
literature around DeepRL is growing rapidly, for example see
[19], [20], [30], [18] and [17].
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Most modern learning and control problems have continu-
ous state and/or action spaces. Thus the use of RL is hindered
by Bellman’s curse of dimensionality. To overcome this
curse, learning and control algorithms are often coupled with
function approximation. It is worth noting that the previously
mentioned resurgence is partly owing to the effectiveness of
DNN in function approximation. While optimization problems
become tractable, the use of function approximators affects
stability (almost sure boundedness) and convergence properties
of the algorithms. Further, the optimality of the policies found
depends on the approximation errors. Such issues are not
well studied. The main contribution of this paper is a
complete analysis in terms of the influence of function ap-
proximation on stability and convergence (characterizing
the limiting set as a function of the approximation errors),
in a multi-agent setting.

While the theory behind traditional RL is mature, there have
not been many attempts to analyze DeepRL. Munos analyzed
the approximate value and policy iteration algorithms, see
[22] and [21]. However the assumptions in [22] and [21] are
rather restrictive. Ramaswamy and Bhatnagar [25] studied ap-
proximate value iteration methods under significantly weaker
assumptions as compared to [22]. However, [25] does not
consider the multi-agent scenario. In this paper, we present
the framework to develop and analyze large-scale multi-agent
RL algorithms. Such algorithms are applicable to industrial
process-control, distributed control of microgrids and decen-
tralized resource allocation systems, among others. It may be
noted that in the setting of distributed control and learning, the
aforementioned curse of dimensionality problem is particularly
pronounced.

A. Motivation, relevant literature and our contributions

The main motivation for this paper is the development
of a general framework for learning and control in large-
scale multi-agent settings. In a typical multi-agent architecture,
the agents involved need to work towards a common goal
by cooperating with each other. Each agent may be asyn-
chronously performing updates, i.e., according to its own local
clock, and not that of other agents. While the agents may act
independently, their decisions are based on information from
other agents. This information is often shared via wireless
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communication networks. Bottlenecks in communication re-
sources may lead to (possibly unbounded) delays as well as
errors in communication.

Here, we focus on developing a framework which accounts
for all of the above constraints. Such a framework would then
guide the development of algorithms with behavioural guar-
antees. For this, we build on tools and techniques developed
from the stochastic approximations literature, as in [13], [1],
[23], [3], [5], [25] and [2]. Traditional analyses in [13] and [1]
do not account for the use of function approximation. Whilst
interesting, the multi-agent analyses in [23] do not consider
the important question of algorithmic stability. Further, the
results of [23] do not characterize the limiting set as a function
of the approximation errors.

DNN is a popular choice for function approximation among
practitioners of RL. It is used to approximate objective func-
tions such as Q-factors, value functions, policies, gradients,
etc. Such a DNN is trained in an online manner to minimize
some “loss”. The network architecture is typically chosen
without explicit knowledge of the objective function. Hence,
one cannot expect the approximate objective function obtained
using a DNN to equal the true objective function everywhere,
even after sufficient training. Consequently, the approximation
errors are likely to be biased (have non-zero mean). Not
surprising, these biases may affect the stability and quality
of convergence, see Remark 1 for details.

Value and policy iteration are popular RL algorithms that
are at once effective and easy to implement. Similar to other
RL algorithms, these also suffer from the Bellman’s curse of
dimensionality. In this paper, we analyze multi-agent value and
policy gradient iterations which utilize DNN based function
approximators. In related work, documented in [25], value
iteration with function approximation is analyzed. However,
it does not consider the multi-agent setting. Abounadi et.
al. [1] studied the asynchronous version of Q-learning, but
without considering function approximation. To the best of
our knowledge the complete analysis of the aforementioned RL
algorithms within multi-agent settings, with DNN based func-
tion approximation, is new to the literature. The multi-agent
approximate value iteration algorithm is called Asynchronous
Approximate Value Iteration (A2VI), and the corresponding
policy iteration algorithm is called Asynchronous Approximate
Policy Gradient Iteration (A2PG), see Section V for details.
With respect to A2VI, online samples are used to get better
approximations of the Bellman operator. Simultaneously, these
approximations are used in a distributed fixed point iteration.
Since A2VI and A2PG operate in online settings, the approx-
imation errors may initially be large. As more samples are
obtained, these errors reduce over time, but may, in general,
be biased. With respect to A2PG, we consider a generic
framework that encompasses distributed implementations of
the algorithms that search a given parameterized policy space
in order to find the optimal policy. This policy search may be
aided by an advantage function, e.g., value function, which is
not explicitly considered in the analysis.

The main contributions of this paper are:
1) We show that the stability of the algorithms remains

unaffected by error biases, provided these do not grow
over time.

2) We provide an explicit relation between the biases
and the limiting set. This allows one to trade DNN
complexity for solution quality.

3) Although we consider approximation error biases, there
are no additional restrictions on the quality of commu-
nication. In fact, we present our results under standard
(yet general) assumptions on communication as used,
e.g., in [13].

4) Our theory is used to analyze the asynchronous approx-
imate counterpart of value (A2VI) and policy gradient
(A2PG) iterations.

B. Tool set: Asynchronous Stochastic Approximations

Stochastic approximation algorithms (SAs) encompass a
class of iterative algorithms that are model-free and sample-
based. SAs find the minimum/maximum of a given objective
function through a series of approximations. Traditionally, the
approximation errors are expected to vanish over time. In 1951
the first SA was developed by Robbins and Monro [28] for
finding a root of a given regression function. The theory of
modern SAs was developed by Benaı̈m [3], Benaı̈m and Hirsch
[4] and Borkar [12]. This theory was extended to SAs with
set-valued mean-fields by Benaı̈m, Hofbauer and Sorin [5]
[6], Ramaswamy and Bhatnagar [26], Perkins and Leslie [23],
Bianchi et. al. [9], and others. The reader is referred to books
by Borkar [11] and Kushner and Yin [16] for a more detailed
exposition on this topic.

Although the traditional SA framework can be used to
develop and analyze algorithms in RL and stochastic control,
it does not encompass multi-agent and distributed scenarios.
The latter setting was studied by Borkar [13]. He considered
multi-agent algorithms wherein the agents are asynchronous
and communications are delayed/ erroneous. Such algorithms
are called asynchronous SAs. Many RL algorithms such as
Q-learning, value iteration and policy gradient methods have
asynchronous counterparts. These algorithms are designed and
analyzed using the theory developed in [13] and [1]. The
stability issue of asynchronous SAs was studied in [8].

C. Organization

The organization of the remainder of this paper is as follows:
• In Section II we present the assumptions involved in the

analysis of asynchronous stochastic approximations with
asymptotically bounded biased, errors, i.e., recursion (2).

• In Sections III-A, III-B and III-C, we present a conver-
gence analysis of (2) under the assumptions presented
in Section II. The main technical result of this paper,
Theorem 1, is enunciated in Section III-B. This result is
then moulded through the use of Borkar’s balanced step-
sizes [13], into the desired statement in Section III-C.

• In Section IV, we show that the stability of algorithms
remains unaffected provided the approximation errors are
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guaranteed to be asymptotically bounded, albeit non-
diminishing and possibly biased.

• In Section V-A, our theory is used to understand the long-
term behavior of A2VI. We show that A2VI converges
to a fixed point of the perturbed Bellman operator,
when Borkar’s balanced step-sizes are utilized. We also
establish a relationship between these fixed points and
the approximation errors.

• In Section V-B we briefly outline a similar analysis for
A2PG. We show that A2PG converges to a small neigh-
borhood of local minima of the parameterized policy
function π(· ). This neighborhood is shown to be related
to the approximation errors.

• In Section V-C we discuss the verifiability of assumption
(S5). Finally, we summarize our contributions in Sec-
tion VI.

• In Section V-D we present a bird’s-eye view of two
real-world applications. Specifically, we briefly discuss
solutions to vehicle platooning and cumulative consensus,
using the theory developed in this paper.

• In Section V-E we present simple experimental results to
support our theory.

D. Definitions and Notations

[Set closure] Given A ⊂ Rd, then A is used to represent
the closure of A.
[Limiting set] Given {xn}n≥0 ⊂ Rd, its limiting set is
given by

⋂
N≥0
{xn | n ≥ N}.

[Distance between point and set] Given x ∈ Rd and A ⊆
Rd, the distance between x and A is given by: d(x,A) :=
inf{‖x− y‖ | y ∈ A}.
[δ-open neighborhood (Nδ(· ))] We define the δ-open
neighborhood of A ⊂ Rd by Nδ(A) := {x | d(x,A) < δ}.
[Upper-semicontinuous map] We say that a set-
valued map H : Rn → {subsets of Rm} is upper-
semicontinuous, if for given sequences {xn}n≥1 (in Rn)
and {yn}n≥1 (in Rm) such that xn → x, yn → y and
yn ∈ H(xn), n ≥ 1, we have y ∈ H(x).
[Marchaud Map] A set-valued map H : Rn →
{subsets of Rm} is called Marchaud if it satisfies the
following properties: (i) for each x ∈ Rn, H(x) is a
convex and compact set; (ii) (point-wise boundedness) for
each x ∈ Rn, sup

w∈H(x)

‖w‖ < K (1 + ‖x‖) for some

K > 0; (iii) H is upper-semicontinuous.
Let H be a Marchaud map on Rd. The differential inclu-
sion (DI) given by

ẋ ∈ H(x) (1)

is guaranteed to have at least one solution that is absolutely
continuous. The reader is referred to [2] for more details.
We say that x ∈

∑
if x is an absolutely continuous map

that satisfies (1). The set-valued semiflow Φ associated
with (1) is defined on [0,+∞)× Rd as:

Φt(x) = {x(t) | x ∈
∑
, x(0) = x}.

For B ×M ⊂ [0,+∞)× Rd, we define

ΦB(M) =
⋃

t∈B, x∈M
Φt(x).

II. ASSUMPTIONS FOR CONVERGENCE ANALYSIS

In this paper we are interested in the complete analysis of
asynchronous SAs with non-diminishing biased additive
errors. The general iterative structure of such algorithms is
given by:

xn+1(i) = xn(i) + a(ν(n, i))I(i ∈ Yn)[
(Af)i(xn−τ1i(n)(1), . . . , xn−τdi(n)(d)) +Mn+1(i)

]
, where

(2)

1) xn = (xn(1), . . . , xn(d)) ∈ Rd, n ≥ 0.
2) f : Rd → Rd is a Lipschitz continuous objective

function.
3) Yn is a subset of {1, 2, . . . , d} for each n ≥ 0. It

represents the number of agents that are active between
time-steps n− 1 and n.

4) 0 ≤ τji(n) ≤ n is the (stochastic) delay experienced by
agent i in receiving information from agent j at time n.
In other words, at time n, the information obtained by
agent i from agent j is τji(n) time-steps old.

5) ν(n, i) =
n∑

m=0
I(i ∈ Ym) is the number of times

that agent i was active (i.e., updated its component
parameter) up until time n. It may be noted that the
time index n in equation (2) represents the global clock,
and thus, grows unbounded. We analyze the algorithm
with respect to this clock. Let us say that agent-2 has
been updated 34 times when the global clock has been
updated 50 times. Then we have ν(50, 2) = 34. Note
that the global clock is only required for analysis, the
implementation remains fully asynchronous, outside of
causal assumptions, see (S2) in Section IV.

6) A is the approximation operator (eg., DNN), {a(n)}n≥0
is the given step-size sequence and {Mn+1}n≥0 is a
square integrable Martingale difference noise sequence.

At time-step n, the information regarding agent-j that is
available with agent-i is τji(n) steps old. The stochastic
delay process τ could be unbounded. However, we make
certain standard assumptions on their moments, see (A2)(v)
in Section III-B. Further, we assume that the agent-updates are
all in the same order of magnitude, asymptotically, see (S2)
in Section IV-A. Under these assumptions, we shall show that
(2) is stable and convergent.

It is worth noting that multi-agent approximate versions
of value and policy gradient iterations, A2VI and A2PI re-
spectively, are structurally identical to (2). We first present an
analysis of (2). Later, this analysis is transcribed to obtain the
desired theory for A2VI and A2PG, in Sections V-A and V-B
respectively. In addition, stronger conclusions are drawn that
are specific to A2VI and A2PG. Before proceeding with the
analysis, the assumptions involved in the convergence analysis
of (2) are listed.
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(A1) f : Rd → Rd is a Lipschitz continuous function with
Lipschitz constant L 1. Further, A is such that

Af(xn) ∈ f(xn) +Bε(0) (3)

for all n ≥ N , where N may be sample path dependent.
Note that Bε(0) is a closed ball of radius ε centered at
the origin. Here ε > 0 is a fixed upper bound on the
norm of the asymptotic approximation errors.

(A2) The step-size sequence {a(n)}n≥0 satisfies the following
conditions:
(i)

∑
n≥0

a(n) =∞ and
∑
n≥0

a(n)2 <∞.

(ii) lim sup
n→∞

sup
y∈[x,1]

a(bync)
a(n) <∞ for 0 < x ≤ 1.

(A3) n−τij(n)
n → 1 a.s. for every 1 ≤ i < j ≤ d.

(A4) sup
n≥0
‖xn‖ < ∞ a.s., where ‖xn‖ is used to rep-

resent the Euclidean norm of xn, i.e., ‖xn‖ =√
xn(1)2 + . . .+ xn(d)2.

(A5) {Mn+1}n≥0 is a square integrable martingale difference
sequence such that

E [Mn+1(i) | Fn] = 0.
E
[
‖Mn+1(i)‖2 | Fn

]
≤ K(1 + sup

m≤n
‖xm‖2),

for all n, where
Fn := σ 〈xm,Mm, Ym, τij(m); 1 ≤ i, j ≤ d,m ≤ n〉,
1 ≤ i ≤ d, n ≥ 0 and K > 0 is some fixed constant.

We assume that all the agents are asynchronous. However, if
we want the algorithm to learn effectively, then certain causal
assumptions are necessary. (A3) is one such assumption.
Colloquially, (A3) requires that the information delay between
agents at time n is in o(n), where o(· ) is the standard Little-O
notation. Without loss of generality, we assume that τii(n) = 0
for all i and n. In other words, we assume that an agent does
not experience delays in accessing its own local information.

Remark 1. In typical DeepRL applications, the approximation
operator A is a DNN. The objective function f is typically
one among the following: value function, Q-value function,
policy function or Bellman operator. The operator A is trained
in an online manner using loss functions that reduce the
“approximation errors”. The neural network architecture is
fixed by the experimenter without complete knowledge of f .
This certainly limits how well the chosen neural network can
approximate f . In other words, there may not exist a set
of network weights such that the approximation errors are
guaranteed to be arbitrarily small. Hence, it is reasonable to
merely hope that the errors do not grow over time. This is
codified in (A1) as lim sup

n→∞
‖Af(xn) − f(xn)‖ ≤ ε a.s. for

some fixed ε > 0.

Brief overview of the steps involved in our analysis

• In Section III, convergence properties of (2) are analyzed
under the almost sure boundedness assumption (A4). Our
analysis proceeds in two stages. In the first stage, pre-
sented in Section III-A, it is assumed that τij(n) = 0 for

1f is Lipschitz continuous iff ∃L > 0 such that ∀x, y ∈ Rd ‖f(x) −
f(y)‖ ≤ L‖x− y‖.

all i, j and n, i.e., there are no communication delays.
In the second stage, presented in Section III-B, the effect
of communication delays is considered. Specifically, it is
shown that the errors due to delayed communications do
not affect the analysis in Section III-A.

• In Section IV, we replace (A4) in favor of verifiable
conditions which guarantee stability of (2). We do this by
deriving assumptions that imply (A4). These assump-
tions are compatible with the conditions listed earlier
in this section. Put together, they constitute an analytic
framework for studying stability and convergence of (2).

III. CONVERGENCE ANALYSIS

We are now ready to analyze the convergence of (2) under
(A1)-(A5). We begin our analysis by making the additional
assumption that there are no communication delays, i.e.,
τji(n) = 0 ∀i, j and n. This allows us to focus on the effect
of asynchronicity between agents. Then, in Section III-B we
show that the analysis in Section III-A is unaffected by the
errors due to delayed communications.

A. Analysis assuming zero delays
Assuming τii(n) = 0, ∀i and n, equation (2) becomes:

xn+1(i) = xn(i) + a(ν(n, i))I(i ∈ Yn)

[(Af)i(xn(1), . . . , xn(d)) +Mn+1(i)] .
(4)

For n ≥ 0, define a(n) := max
i∈Yn

a(ν(n, i)) and q(n, i) :=

a(ν(n,i))
a(n) I(i ∈ Yn). It follows from (A2) that

∑
n≥0

a(n) = ∞

and
∑
n≥0

a(n)2 < ∞. The quantity
n∑

m=0
q(m, i) captures the

fraction of time
(

n∑
m=0

a(m)

)
that agent i is active. Thus,

q(m, · ) captures the relative frequency of the agent updates.
For more details the reader is referred to Borkar [13].

Equation (4) can be further rewritten as follows:

xn+1(i) = xn(i) + a(n)q(n, i)

[fi(xn(1), . . . , xn(d)) + εn(i) +Mn+1(i)] ,
(5)

where, εn = (εn(1), . . . , εn(d)) is the approximation error at
stage n, i.e., εn = Af(xn) − f(xn). It follows from (A1)
that lim sup

n→∞
‖εn‖ ≤ ε for a certain ε > 0 fixed. Since we

are only interested in the asymptotic behavior of (2), without
loss of generality, we may say that ‖εn‖ ≤ ε for all n ≥ 0,
even though we only have ‖εn‖ ≤ ε for all n ≥ N (for
sample path dependent N ). Note that, {xn}n≥0 and {xn}n≥N
(subsequence starting at a sample point dependent N ) have
identical asymptotic properties.

For n ≥ 1, define t(0) := 0, t(n) :=
n−1∑
m=0

a(m).

For t ∈ [t(n), t(n + 1)), define x(t) := xn, λ(t) :=
diag(q(n, 1), . . . , q(n, d)) and ε(t) = εn for t ∈ [t(n), t(n +
1)). The notation diag(a1, . . . , ad) is used to denote the
diagonal d× d matrix given bya1 0 . . .

...
. . .

0 ad

 .
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Let us recall (5) in the following useful form:

xn+1 = xn + a(n)

λ(t(n)) [f(xn) + εn +Mn+1] .
(6)

It follows from (A4), (A5) and
∞∑
n=0

a(n)2 <∞, that∑
n≥0
‖a(n)Mn+1‖2 <∞. In other words, the quadratic

variation process associated with

ξn :=
n∑

m=0
a(m)λ(t(m))Mm+1, n ≥ 0, is bounded almost

surely. From this we may conclude that the martingale noise
sequence, {ξn}n≥0, is convergent almost surely. For a proof
of the aforementioned, the reader is referred to Chapter 2 of
Borkar [11]. Given the above, the following lemma is
immediate.

Lemma 1. The martingale difference noise sequence ξn =
n∑

m=0
a(m)λ(t(m))Mm+1 is convergent: lim

n→∞
ξn <∞ a.s.

For s ≥ 0, define

xs(t) := x(s) +

s+t∫
s

λ(τ) (f(x(τ)) + ε(τ)) dτ.

Then xs(· ) is a solution to the non-autonomous DI

ẋ(t) ∈ λ(t+ s)f(x(t)) +Bε(0)

, with x(s) as its starting point. It follows from the definitions
of x(· ), xs(· ), and from Lemma 1 that

lim
s→∞

sup
t∈[s,s+T ]

‖x(t)− xs(t)‖ = 0 a.s. (7)

Therefore, the asymptotic behavior of (2) and (6) can be
determined by studying the family of functions given by
{xs([0, T ])|s ≥ 0, T > 0}.

For any fixed T > 0, the set {xs([0, T ]) | s ≥ 0}
can be viewed as a subset of D([0, T ],Rd), 2 equipped
with the Skorohod topology.It follows from the Arzela-Ascoli
theorem for D([0, T ],Rd) that the above mentioned subset
is relatively compact. For more details on Càdlàg spaces,
Skorohod topology and the Arzela-Ascoli theorem, the reader
is referred to Billingsley [10]. It now follows from (7) that
{xs([0, T ]) | s ≥ 0} and {x([s, s+T ]) | s ≥ 0} have the same
limit points in D([0, T ],Rd). Hence, to find any subsequential
limit of {x(s+· ) | s ≥ 0}, we merely need to consider the
corresponding subsequence in {xs([0, T ]) | s ≥ 0}. Finally,
since T is arbitrary, {x(s+· ) | s ≥ 0} is relatively compact
in D([0,∞),Rd).

Lemma 2. Almost surely any limit point of {x(s+· ) | s ≥ 0}
in D([0,∞),Rd) is a solution to the non-autonomous DI

ẋ(t) ∈ Λ(t)f(x(t)) +Bε(0), (8)

where Λ(· ) is a d × d-dimensional diagonal matrix-valued
measurable function with diagonal entries in [0, 1] 3.

2D([0, T ],Rd) is used to represent the set of all Càdlàg functions with
domain [0,T] and range Rd. This is the set of all functions that are right
continuous with left limits.

3Note that Bε(0) = {x | ‖x‖ ≤ ε} is the ε-closed ball centred at the
origin. The open ball of radius r centered at the origin is represented by
Br(0), and equals {x | ‖x‖ < r}.

Proof. As in the proof of Theorem 2, Chapter 7 of Borkar
[11], we view λ(· ) as an element of V , where V is the space
of measurable maps y(· ) : [0,∞) → [0, 1]d with the coarsest
topology that renders continuous, the maps

y(· )→
t∫

0

〈g(s), y(s)〉ds,

for all t > 0, g(· ) ∈ L2([0, T ],Rd)4.
Define ε̂s(t) := λ(t)ε(t) for all t ≥ 0. Since ε̂s(· ) is

measurable for every s ≥ 0 and sup
s≥0
‖ε̂s‖ <∞, we obtain that

{ε̂s([0, T ]) | s ≥ 0} is relatively compact in L2([0, T ],Rd). If
necessary, by choosing a common subsequence of {ε̂s([0, T ]) |
s ≥ 0} and {λ([s, s + T ]) | s ≥ 0}, we can show that any
limit of {x(s+· ) | s ≥ 0}, in D([0, T ],Rd), is of the form:

x(t) = x(0) +

t∫
0

Λ(τ)f(x(τ))dτ +

t∫
0

ε(τ)dτ

= x(0) +

t∫
0

[Λ(τ)f(x(τ)) + ε(τ)] dτ,

where ε(· ) and Λ(· ) are the subsequential limits of
{ε̂s([0, T ]) | s ≥ 0} and {λ([s, s+ T ]) | s ≥ 0}, respectively.
Note that ‖ε(t)‖ ≤ ε, for t ≥ 0, and that ε(· ) is the weak
limit in L2([0, T ],Rd), as s → ∞. Also note that Λ(· ) is
the limit in V , equipped with the coarsest topology described
above.

The above lemma states that algorithm (2) tracks a solution
to the non-autonomous DI (8). We needed to associate a DI
and not an o.d.e. since the algorithm allows for asymptotically
biased approximation errors. The non-autonomous Λ(· ) is a
consequence of asynchronicity. It is clear from the above Proof
of Lemma 2 that Λ(· ) captures the relative update frequencies
of the various agents involved in a limiting sense. Recall
from the beginning of this section, that {a(n)}n≥0 is used to
divide the time axis. This plays a crucial part in translating the
discrete-time algorithm to a continuous time trajectory, which

in turn can be readily analyzed. In this sense,

n∑
m=0

q(m,i)

n∑
m=0

a(m)
is

the fraction of time that agent-i is active with respect to the
hypothetical global clock (whose sole function is in facilitating
analysis). Clearly, any two agent updates are related to each
other through this hypothetical clock.

4L2([0, T ],Rd) is used to represent the set of all square integrable
functions with domain [0, T ] and range Rd. In other words,

L2([0, T ],Rd) =
{
f : [0, T ]→ Rd |

∫ T

0
‖f(t)‖2dt <∞

}
.
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B. Extension to account for delays

Now we are ready to factor in the influence of delays. To
do this, we show that the statement of Lemma 2 is true even
when τij(n) > 0. First, we consider additional restrictions
on the step-size sequence and the delay processes τij(n).
Under these additional assumptions, we show that the analysis
in Section III-A remains unaffected by the errors that arise
from delayed communications. Before proceeding, we note
that a methodology to deal with the effect of delays separately,
was developed by Borkar in 1998, see [13]. We use similar
techniques here. In order to avoid redundancies, we only
provide additional details. The reader is referred to [13] or
[11] for details. Recall the algorithm under consideration:

xn+1(i) = xn(i) + a(ν(n, i))I(i ∈ Yn)[
(Af)i(xn−τ1i(n)(1), . . . , xn−τdi(n)(d)) +Mn+1(i)

]
.

(9)

Our analysis makes use of the following additional refinements
in (A2):
(A2)(iii) sup

n≥0
a(n) ≤ 1.

(A2)(iv) For m ≤ n, we have a(n) ≤ κa(m), where κ > 0.
(A2)(v) There exists η > 0 and a non-negative integer-valued
random variable τ such that:
(i) a(n) = o(n−η).

(ii) τ stochastically dominates all τkl(n) and satisfies

E
[
τ1/η

]
<∞.

In what follows we outline the proof of why (9) still
tracks a solution to (8) even in the presence of delayed
communications. Specifically, it is shown that the “effect” due
to delays vanishes in the order of the step-sizes.

Let us consider the following quantity:

a(ν(n, i))I(i ∈ Yn)∣∣fi(xn−τ1i(n)(1), . . . , xn−τdi(n)(d))− fi(xn(1), . . . , xn(d))
∣∣ .

There are no error terms due to the approximation operator
A, since they are already considered in the analysis presented
in Section III-A. Since f is Lipschitz continuous, it is enough
to find bounds for the terms

a(ν(n, i))
∣∣xn(j)− xn−τji(n)(j)

∣∣ for every i and j.

Clearly, the above term is bounded by

a(ν(n, i))

n−1∑
m=n−τji(n)

|xm+1(j)− xm(j)| .

Using (9) and the Lipschitz property of f , we get the following
bound:

a(ν(n, i))

n−1∑
m=n−τji(n)

Ca(m) ≤ Ca(ν(n, i))τji(n),

for some constant C > 0. Our task is now reduced to showing
that a(ν(n, i))τji(n) = o(1), which in turn follows from

P (τji(n) > nη i.o.) = 0.

The above equation follows from (A2)(v) and the Borel-
Cantelli lemma. The following theorem is an immediate con-
sequence of the analysis done hitherto.

Theorem 1. Under assumptions (A1)-(A5), the asynchronous
approximation algorithm given by (2) has the same limiting
set as the non-autonomous DI (8).

C. Balanced step-size sequences
A drawback in applying the above theorem to practical

applications is the fact that the DI (8) is non-autonomous.
Further, Λ(· ) is not exactly known. Borkar [13] solved this
problem through the use of “balanced step-size sequences”. A
step-size sequence {a(ν(n, i))}n≥0,1≤i≤d is balanced if there
exist aij > 0 for every pair of i and j such that

lim
n→∞

n∑
m=0

a(ν(m, i))

n∑
m=0

a(ν(m, j))
= aij .

Recall that q(n, i) captures the relative update frequency of
agent-i with respect to the hypothetical clock used for analysis.
The update frequencies of any two agents are related through
this clock. Further, in the limiting sense, the relative update
frequencies are captured by the Λ process. The reader may
note that there is no explicit assumption on the relative update
frequency. It is intrinsic to assumptions (A3), (S1)(ii) and (S2).
Assumption (A3) states that the time-delays are o(n), and
(S2)(ii) states that each agent is updated in the order of magni-
tude of n, where n is the hypothetical clock which functions as
an analytical aid. Typical diminishing square-summable step-
size sequences are balanced provided all agents are updated
in the same order of magnitude. This can be proven using a
combination of the above mentioned assumptions, see [13].
In other words, the step-sizes considered in this paper are
balanced.

As the step-sizes are balanced, we get Λ(t) =
diag(1/d, . . . , 1/d) for all t ≥ 0, see Theorem 3.2 of [13]
for details. The tracking DI, (8), of Theorem 1 then becomes

ẋ(t) ∈ diag(1/d, . . . , 1/d)f(x(t)) +Bε(0). (10)

As noted in [1], the qualitative behaviors of ẋ(t) = f(x(t))
and ẋ(t) = diag(1/d, . . . , 1/d)f(x(t)) = 1/d f(x(t)) are
similar since they only differ in scale. Further, it follows from
the upper semi-continuity of chain recurrent sets that the long-
term behavior of (10) is similar to that of ẋ(t) = 1/d f(x(t))
for small enough ε. Consequently, the long-term behavior of
(10) approximates that of ẋ(t) = f(x(t)).

To summarize, we have shown that asynchronous SAs with
asymptotically bounded biased errors track a solution to (10),
when balanced step-sizes are used. 5

IV. STABILITY ANALYSIS

The foregoing analysis required that the iterates be bounded
in an almost sure sense. This requirement is hard to ensure in
the presence of function approximation and communication
delays. It is well known that unbounded approximation errors
can affect the stability of the algorithm, see [7]. In this section,
we present a set of sufficient conditions which ensure that (2)
is stable.

5Recall, from (A1), that ε of (10) is the norm-bound on the approximation
errors.
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A. Stability assumptions

Given n ≥ 0 and T > 0, define mT (n) := max{m | m ≥
n, t(m) − t(n) ≤ T}. The goal of this section is to replace
the stability assumption, (A4), from Section II with verifiable
conditions. These will be combined with the other assumptions
to provide a complete analysis of stability and convergence.

(S1) (i) The step-size sequence is eventually decreasing, i.e.,
∃ N such that a(n) ≥ a(m) for all N ≤ n ≤ m.

(ii) lim
n→∞

bxnc∑
m=0

a(m)

n∑
m=0

a(m)
= 1 uniformly in x ∈ [y, 1], where

0 < y ≤ 1.
(S2) (i) lim inf

n→∞
ν(n,i)
n+1 ≥ τ , for some τ > 0.

(ii) lim
n→∞

ν(mT (n),i)∑
m=ν(n,i)

a(m)

ν(mT (n),j)∑
m=ν(n,j)

a(m)

exists for all i, j.

(S3) (i) For all n ≥ 0, we have ‖Mn+1‖ ≤ D a.s.

(ii) lim
n→∞

mT (n)∑
m=n

a(m)Ml(m)+1 = 0, where {l(m)}m≥0
is an increasing sequence of non-negative integers
satisfying l(m) ≥ m.

Note that (S3) is stricter than (A5). The analysis in this
section assumes (S3) instead of (A5) merely for the sake
of clarity. Later, it is shown that assuming (A5) is suffi-
cient. First, we consider a few definitions associated with DI
ẋ(t) ∈ H(x(t)), relevant to the section:

[Invariant Set] M ⊆ Rd is invariant for the above DI if
for every x ∈ M there exists a trajectory, x ∈

∑
, such

that for x(0) = x, x(t) ∈M , for all t > 0. Note that the
definition of invariant set used in this paper, is the same
as that of positive invariant set in [5] and [11].
[Strongly Positive Invariant Set] M ⊆ Rd is strongly
positive invariant for the above DI if Φt(M) ⊂ M for
t > 0.
[Attracting set & fundamental neighborhood] A ⊆ Rd
is attracting, if it is compact and there exists a neigh-
borhood U such that for any ε > 0, ∃ T (ε) ≥ 0
with Φ[T (ε),+∞)(U) ⊂ N ε(A). Such a U is called the
fundamental neighborhood of A. The basin of attraction
of A is given by B(A) = {x | ∩

t≥0
Φ[t,∞)(x) ⊂ A}.

[Attractor set] In addition to being compact, if the attract-
ing set is also invariant, then it is called an attractor.
[Inward directing set, [25]] Given a differential inclusion
ẋ(t) ∈ H(x(t)), an open set O is said to be an
inward directing set with respect to the aforementioned
differential inclusion, if Φt(x) ⊆ O, t > 0, whenever
x ∈ O. Specifically, if O is inward directing, then any
solution to the DI with starting point at the boundary of
O is “directed inwards”, into O.

(S4) Associated with ẋ(t) = f(x(t)) is a compact set Λ,
a bounded open neighborhood U

(
Λ ⊆ U ⊆ Rd

)
and a

function V : U → R+ such that
(i) ∀t ≥ 0, Φt(U) ⊆ U i.e., U is strongly positively

invariant.
(ii) V −1(0) = Λ.

(iii) V is a continuous function such that for all x ∈ U\Λ
and y ∈ Φt(x) we have V (x) > V (y), for any t > 0.

(S4a) Â is the global attractor of ẋ(t) = f(x(t)).

For the analysis we need that one of (S4) and (S4a) is
satistfied. (S4) and its variant (S4a) are the key to our stability
analysis. The two variants are overlapping yet qualitatively
different, thereby covering a multitude of scenarios. Note that
the above Lyapunov-based stability conditions are devised
based on the ones in [25].

If (S4) is satisfied, then Proposition 3.25 of Benaı̈m,
Hofbauer and Sorin [5] implies that ẋ(t) = f(x(t)) has
an attractor set Â ⊆ Λ. It also implies that V −1([0, r]) is
a fundamental neighborhood of Â, for small values of r.
On the other hand, if (S4a) is satisfied, then any compact
neighborhood of Â is a fundamental neighborhood of it.
In both cases we can associate an attractor, Â, and a
fundamental neighborhood, N , to ẋ(t) = f(x(t)).

Given δ > 0, ∃ ε(δ) > 0 such that

ẋ(t) ∈ f(x(t)) +Bε(δ)(0) (11)

has an attractor A ⊆ Nδ(Â) with fundamental neighborhood
N . This is a consequence of the upper semicontinuity of
attractor sets, see [2] or [5] for details. We will next show that
(2) converges to a neighborhood of a local/global attractor of
ẋ(t) = f(x(t)), such as Â. Further, this neighborhood depends
on the approximation errors. Typically, the experimenter de-
cides on the expected accuracy of the algorithm. This accuracy
is quantified by δ. Once this accuracy is fixed, the function
approximator (DNN) is trained to control the asymptotic errors
to ε(δ). Then one can show that (2) converges to Nδ(Â).

Before we proceed, we associate the following Lyapunov
function to (11): Ṽ : N → R+ such that Ṽ (x) :=
max {d(y,A)g(t) | y ∈ Φt(x), t ≥ 0} and c ≤ g(t) ≤ d is
a strictly increasing function with c > 0. Since N is a funda-
mental neighborhood of A, it follows that sup

x∈N
Ṽ (x) <∞.

The stability analysis requires choosing two bounded open
sets, say B and C, such that C is inward directing and A ⊂
B ⊂ B ⊂ C. Recall that A is an attractor of ẋ(t) ∈ f(x(t)) +
Bε(0) obtained from the definition of Â (see (S4a)). First, we
choose Vr as C such that Vr ⊂ U . This is possible for small
values of r. Next, we choose an open B such that A ⊂ B ⊂
B ⊂ C. This is possible since Λ is compact and C is open.

The following two propositions are necessary for our sta-
bility analysis. The reader is referred to [25] for their proofs.

Proposition 1. For any r < sup
u∈N

Ṽ (u), the set Vr := {x |

Ṽ (x) < r} is open relative to N . Further, Vr = {x | Ṽ (x) ≤
r}.

Proposition 2. C is an inward directing set associated with
ẋ(t) ∈ f(x(t)) +Bε(0).

Traditionally, the stability of algorithms such as (2) is
ensured by projecting the iterates onto a compact set at every
stage. If this set is not carefully chosen, then the algorithm
may not converge, or converge to an undesirable set. Using
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the previously constructed B and C, we obtain the following
projective counterpart of (2):

x̂n+1 = zn such that zn ∈uB,C(x̃n). (12)

In the above equation,uB,C is the projection operator defined
as follows: given B and C subsets of Rd, the projection map
uB,C : Rd → {subsets of Rd} is given by:

uB,C(x) :=

{
{x}, if x ∈ C
{y | d(y, x) = d(x,B), y ∈ B}, otherwise;

x̂0 = z0 such that z0 ∈uB,C(x0) and
x̃n(i) = xn(i) + a(ν(n, i))I(i ∈ Yn)[
(Af)i(xn−τ1i(n)(1), . . . , xn−τdi(n)(d)) +Mn+1(i)

]
.

From the above set of equations, it is clear that the projective
iterates {x̂n}n≥0 ⊆ C. Since C is bounded by construction
(see above), sup

n≥0
‖x̂n‖ <∞ a.s.

The realization of the projective scheme, (12), depends on
finding sets B and C, whose existence is clear from previous
discussions. Since we only require these sets for stability
analysis, we need not explicitly construct them. Below, we
state our final stability assumption that relates an iteration and
its projective counterpart. Its verifiability, within the context
of A2VI, is discussed in V-C.

(S5) sup
n≥N
‖xn − x̃n‖ <∞ a.s. for sample path dependent N .

B. The projective counterpart of (2)

In this section we begin the study of (2) by analysing its
projective counterpart (12). In the previous section we used
x̂n to represent the projected iterates to distinguish from the
original iterates generated by (2). In this and the following
couple of sections, we simply use xn for the projected
iterates, instead of x̂ns, to reduce clutter. Due to this
transient notational change, (12) becomes:

x̃(n+ 1) = xn +Dn [Af(xn) +Mn+1] ,

xn+1 = zn, where zn ∈uB,C(x̃n+1), with
(13)

Dn = diag (a(ν(n, 1)I(1 ∈ Yn), . . . , a(ν(n, d))I(d ∈ Yn))).
Note that (13) does not account for delayed communications.
However, the modifications neccesary to account delays were
presented in Section III-B and can be applied here as well.
Without loss of generality, assume that Yn has cardinality one
for all n ≥ 0. This is a useful trick from Abounadi et al.,
[1]. There is no loss of generality because the agents being
updated at time n can be viewed as being updated sequentially.
We thus have, Yn = {φn} with φn ∈ {1, . . . , d} for all n ≥ 0.
We may rewrite (13) as:

xn+1 = xn +Dn [f(xn) + εn +Mn+1] + gn, (14)

where gn =uB,C (Dn [f(xn) + εn +Mn+1])−
(Dn [f(xn) + εn +Mn+1]) . Define
µn := [I(φn = 1), . . . , I(φn = d)], a(n, i) := a(ν(n, i)),

â(n) := a(n, φn), t(0) := 0 and t(n) :=
n−1∑
m=0

â(m) for

n ≥ 1.

Below we define the trajectories necessary for our analysis.
It is suggested that the reader skip these definitions and refer
back when required.

µ(t) := µn for t ∈ [t(n), t(n+ 1)),
Dc(t) := Dn for t ∈ [t(n), t(n+ 1)),
Xc(t) := xn for t ∈ [t(n), t(n+ 1)),
Yc(t) := Af(xn) for t ∈ [t(n), t(n+ 1)),

Gc(t) :=
n−1∑
m=0

gm for t ∈ [t(n), t(n+ 1)),

εc(t) := µnεn for t ∈ [t(n), t(n+ 1)),

Xl(t) :=


xn for t = t(n)(

1− t−tn
â(n)

)
Xl(t(n))+(

t−tn
â(n)

)
Xl(t(n+ 1)) for t ∈ [t(n), t(n+ 1)),

Wl(t) :=


n−1∑
m=0

DmMm+1 for t = t(n)(
1− t−tn

â(n)

)
Wl(t(n))+(

t−tn
â(n)

)
Wl(t(n+ 1)) for t ∈ [t(n), t(n+ 1)).

We also define the following left-shifted trajectories:
Xn
l (t) := Xl(t+ t(n)),

Xn
c (t) := Xc(t+ t(n)),

Y nc (t) := Yc(t+ t(n)),
Wn
l (t) := Wl(t+ t(n)),

Gnc (t) := Gc(t+ t(n))−Gc(t(n)),
εnc (t) := εc(t+ t(n)),
µn(t) := µ(t+ t(n)),
Dn
c (t) := Dc(t+ t(n)).

Note that Dn
c (t) ≤ 1 and ‖εnc (t)‖ ≤ ε for all t ≥ 0 and n ≥ 0.

Hence {Dn
c ([0, T ]) | n ≥ 0} and {εnc ([0, T ]) | n ≥ 0} are

relatively compact in L2([0, T ],Rd).
One may view {Xn

l ([0, T ]) | n ≥ 0} and {Gnc ([0, T ]) | n ≥
0} as subsets of D([0, T ],Rd) equipped with the Skorohod
topology. In Lemma 3 below, we show that the aforementioned
families of trajectories are relatively compact. As in Lemma
2 of [25] we only need to show that these families are point-
wise bounded and that any two discontinuities are separated
by at least ∆ > 0.

Lemma 3. {Xn
l ([0, T ]) | n ≥ 0} and {Gnc ([0, T ]) | n ≥

0} are relatively compact in D([0, T ],Rd), equipped with the
Skorohod topology.

Proof. As stated earlier, we only need to show that the
aforementioned families of trajectories are point-wise bounded
and that any two discontinuities are separated by at least
∆ > 0. From (S3)(i) we have that ‖Mn+1‖ ≤ D a.s. for all
n ≥ 0. Since f is Lipschitz continuous, F (x) := f(x)+Bε(0)
is Marchaud. Clearly, Af(xn) ∈ F (xn) for all n ≥ 0.

We have the following:

sup
x∈C,y∈F (x)

‖y‖ ≤ C1 for some C1 > 0

=⇒ sup
n≥0
‖x̃n+1 − xn‖ ≤

(
sup
n≥0

a(n)

)
(C1 +D)
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=⇒ sup
n≥0
‖g(n)‖ ≤ sup

n≥0
(‖x̃n+1 − xn‖+ d(xn,B)) ≤ C2

for some 0 < C2 <∞ that is independent of n.
Now that the point-wise boundedness property has been

proven, it is left to show that any two discontinuities are
separated by some ∆ > 0. Using arguments similar to the
ones found in the proof of Lemma 2 in [25], we can show
that such a constant exists and is given by

∆ =
d

2

(
D + sup

x∈C,y∈F (x)

‖y‖

) ,
where d is the number of agents in the multi-agent system at
hand.

C. Overview of the strategy involved in stability analysis

Since T in Lemma 3 is arbitrary, {Xn
l ([0,∞)) | n ≥

0} and {Gnc ([0,∞)) | n ≥ 0} are relatively compact in
D([0,∞),Rd). It follows from (S3) that {Wn

l ([0,∞)) |
n ≥ 0} is relatively compact in D([0,∞)),Rd), and that
all limits equal the constant-0-function. If we consider a
subsequence {m(n)} ⊂ {n} such that Mm(n) (Martingale
noise) is convergent, then X

m(n)
l ([0, T ]) and X

m(n)
l (0) +

t∫
0

(
µm(n)(s)f(X

m(n)
c (s)) + ε

m(n)
c (s)

)
ds+G

m(n)
c ([0, t]), t ∈

[0, T ] have identical limits.
Consider a subsequence {m(n)}n≥0 ⊆ N such that

{εm(n)
c ([0, T ]) | n ≥ 0} is weakly convergent in

L2([0, T ],Rd), and such that {Xm(n)
l ([0, T ]) | n ≥ 0} and

{Gm(n)
c ([0, T ]) | n ≥ 0} are convergent in D([0, T ],Rd).

In addition, this subsequence satisfies the condition that
gm(n)−1 = 0 for all n ≥ 0. Now, let us suppose that the
limit of {Gm(n)

c ([0, T ])}n≥0 is the constant-0-function. Using
arguments from Section III-A, we show that the limit of
{Xm(n)

l ([0, T ]) | n ≥ 0} is given by:

X(0) +

t∫
0

(λ(s)f(X(s)) + ε(s)) ds,

such that X(0) ∈ C. Hence, the projective scheme (13)
tracks a solution to ẋ(t) ∈ λ(t)f(x(t)) + Bε(0), where
λ(· ) is some measurable matrix-valued process with only
diagonal entries. If balanced step-sizes (see Theorem 3.2
of Borkar [13]) are used, then (13) tracks a solution to
ẋ(t) ∈ 1/d f(x(t)) + Bε(0). The asymptotic behaviors of
ẋ(t) = f(x(t)) and ẋ(t) = (1/d) f(x(t)) are similar, i.e., any
solution trajectory of both o.d.e.’s, with starting points in C,
will converge to the attractor Â. Consequently, any solution
trajectory of ẋ(t) ∈ (1/d) f(x(t)) + Bε(0) converges to
A, provided the starting point is inside C. Recall that A is
an attractor of ẋ(t) ∈ f(x(t)) + Bε(0) with fundamental
neighborhood N such that C ⊂ N . In other words, the
projective scheme (13) converges to A almost surely. Stability
of the algorithm under consideration, (2), follows from (S5).

To summarize, there are two important steps in proving
stability:
(Step-1) Any limit of {Xn

l ([0, T ])}n≥0 is of the form

X(t) = X(0)+

t∫
0

(µ∗f(X(s)) + ε(s)) ds+G(t) for t ∈ [0, T ],

where µ∗ = diag(1/d, . . . , 1/d) and X(0) ∈ C.
(Step-2) Show that any limit of {Gm(n)

c ([0, T ]) | n ≥ 0} is
the constant 0 function, provided gm(n)−1 = 0 for all n ≥ 0,
see (14).

D. Stability Result

Define K := {n | gn−1 = 0}. The premise of the following
two lemmas is that balanced step-sizes (of Theorem 3.2, [13])
are used.

Lemma 4. Without loss of generality, let {εnc ([0, T ])}n∈K
be (weakly) convergent in L2([0, T ],Rd), with weak limit
ε(· ). Also let {Xn

l ([0, T ])}n∈K and {Gnc ([0, T ])}n∈K be
convergent in D([0, T ],Rd) as n→∞, with limits X(· ) and
G(· ) respectively. Then, for t ∈ [0, T ],

Xn
l (t)→ X(0) +

t∫
0

(µ∗f(X(s)) + ε(s)) ds+G(t). (15)

Proof. Since Xn
c (t)→ X(t) for t ∈ [0, T ], we get

t∫
0

µ∗f(Xn
c (s))ds→

t∫
0

µ∗f(X(s))ds.

Note that we have

Xn
l (t) =Xn

l (0) +

t∫
0

diag(µnc (s))f(Xn
c (s))ds +

Wn
l (t) +Gnc (t) +

∫ t

0

εnc (s)ds.

Adding and subtracting
t∫
0

µ∗f(Xn
c (s))ds in the above equa-

tion, yields:

Xn
l (t) =Xn

l (0) +

t∫
0

µ∗f(Xn
c (s))ds +

Wn
l (t) +Gnc (t) +

∫ t

0

εnc (s)ds+ ηn(t),

(16)

where

ηn(t) =
t∫
0

diag(µnc (s))f(Xn
c (s))ds−

t∫
0

µ∗f(Xn
c (s))ds.
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From Assumption (S3) it follows that lim
n→∞

sup
t∈[0,T ]

‖Wn
l (t)‖ =

0. Suppose we show that lim
n→∞

sup
t∈[0,T ]

‖ηn(t)‖ = 0, then we can

conclude that (16) converges to

X(t) = X(0) +

t∫
0

µ∗f(X(s))ds+G(t)+

∫ t

0

ε(s)ds as n→∞.

Recall that ε(· ) is the weak limit of {εnc ([0, T ])}n∈K . Thus,
it is left to show that lim

n→∞
sup
t∈[0,T ]

‖ηn(t)‖ = 0. The proof of

this is along the lines of the proof of Lemma 3.5 in Abounadi
et al., [1].

Lemma 5. The G(· ) of Lemma 4 is the constant 0 function.
As a consequence the projective scheme (14) converges to A.

Proof. For a proof of this lemma the reader is referred to the
proof of Lemma 3 of [25].

Before we state another main result of this paper, we define
an internally chain transitive set below:

[Internally chain transitive set] Given ẋ(t) ∈ H(x(t)),
an invariant set M ⊂ Rd is said to be internally chain
transitive if M is compact and, for every x, y ∈ M ,
ε > 0 and T > 0, we have the following: There exist
n and Φ1, . . . ,Φn that are n solutions to the differential
inclusion ẋ(t) ∈ H(x(t)), points x1(= x), . . . , xn+1(=
y) ∈ M and n real numbers t1, t2, . . . , tn greater than
T such that: Φiti(xi) ∈ N

ε(xi+1) and Φi[0,ti](xi) ⊂ M
for 1 ≤ i ≤ n. The sequence (x1(= x), . . . , xn+1(= y))
is called an (ε, T ) chain in M from x to y.

Theorem 2. Under (A1)-(A3), (S1)-(S5), and when the step-
sizes are balanced, iteration (2) is stable (sup

n≥0
‖xn‖ <∞ a.s.)

and converges to a closed connected internally chain transitive
invariant set associated with ẋ(t) ∈ µ∗f(x(t)) +Bε(0).

Proof. The reader may recall that µ∗ = diag(1/d, . . . , 1/d). It
follows from Lemma 5 that the associated projective iterates,
say {x̂n}n≥0, corresponding to {xn}n≥0 converge to A. In
other words, there exists N , possibly sample path dependent,
such that x̂n ∈ C for n ≥ N . It follows from (A5) that
sup
n≥N
‖xn‖ <∞ a.s.

The second part of the statement directly follows from
Theorem 1.

E. Stability assuming (A5) instead of (S3)

The statement of Theorem 2 is true when the weaker (A5)
is assumed instead of the stricter (S3). The details involved (in
a related setup) can be found in Section 6 of [25]. We merely
present the steps involved without any proofs and refer the
reader to Section 6 of [25] for details.

Assumption (S3) was used in Lemma 3 to show that any
two discontinuities of {Xn

l ([0, T ]) | n ≥ 0} and {Gnc ([0, T ]) |
n ≥ 0} are at least ∆ apart. An important step in proving

the aforementioned claim with (A5) replacing (S3) is the
following auxiliary lemma.

Lemma 6 (Lemma 5, [25]). Let {tm(n), tl(n)}n≥0 be such that
tl(n) > tm(n), tm(n+1) > tl(n) and lim

n→∞

(
tl(n) − tm(n)

)
= 0.

Fix an arbitrary c > 0 and consider the following:

ψn :=

∥∥∥∥∥∥
l(n)−1∑
i=m(n)

a(i)Mi+1

∥∥∥∥∥∥ .
Then P ({ψn > c} i.o.) = 0 within the context of the projec-
tive scheme given by (14), where i.o. is short for infinitely
often.

Colloquially, Lemma 6 states the following: After a lapse
of considerable time, there are no significant contributions
to jumps in Xn

l (· ) or Gnc (· ) from the Martingale difference
noise sequence within shrinking time intervals. If we are
unable to find a separating ∆, then it can be shown that
Lemma 6 is contradicted. Therefore, Theorem 2 is true under
the standard, weak assumption on noise imposed by (A5). As
a consequence, the following modification of Theorem 2 is
immediate.

Theorem 3. Suppose that (A1)-(A3), (A5) and
(S1), (S2), (S4), (S5) hold and that balanced step-
sizes are used. Then the iteration given by (2) is bounded
almost surely (stable) and converges to a closed connected
internally chain transitive invariant set associated with
ẋ(t) ∈ 1/df(x(t)) +Bε(0).

V. APPLICATIONS

As stated earlier, sample trajectory based algorithms us-
ing value iteration or policy gradients are popular rein-
forcement learning algorithms. In this section, we consider
their asynchronous approximation counterparts. First we adapt
noisy value iteration to the multi-agent setting, following
which we adapt the policy gradient algorithm. We consider
the following adaptation of value iteration for the multi-agent
setting:

Jn+1(i) = Jn(i) + a(ν(n, i))I(i ∈ Yn)[
(AT )i(Jn−τ1i(n)(1), . . . , Jn−τdi(n)(d)) +Mn+1(i)

]
, n ≥ 0.

(17)

In the above equation, (i) T is the Bellman operator. (ii) 1 ≤
i ≤ d is the agent index, and there are d agents in the system.
(iii) Jn := (Jn(1), . . . , Jn(d)) is an estimate of the optimal
cost-to-go vector at time-step n.

The remaining terms are as defined for (2). Recursion (17)
is the asynchronous approximate value iteration (A2VI). If
the optimal cost-to-go vector associated with agent-i is J∗(i),
then J∗ = (J∗(1), . . . , J∗(d)) is the optimal cost-to-go vector
associated with the d-agent system. The objective is to find
J∗ in an “asynchronous” manner.

The policy gradient algorithm is another important rein-
forcement learning approach, see [29]. This method assumes
a parameterization θ of the policy space π. Finding an optimal
policy amounts to finding a θ̂ that locally minimizes a given
performance objective such as the Value function. Adapting
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the policy gradient algorithm to the multi-agent setting, we
get:

θn+1(i) = θn(i)− a(ν(i, n))I{i ∈ Yn}
[(A∇θπ)i(θn−τ1i(n)(1), . . . , θn−τdi(n)(d))∇πVπ(i)

+Mn+1(i)].

(18)

In the above equation, θ is the parameter associated with
policy π, A is the approximation of the policy function
gradient, Vπ(i) is the agent-i value function associated with
policy π. Note that required objective-gradient is ∇θVπ , which
is calculated via the chain rule ∇θπ × ∇πVπ . Also note
that the gradient with respect to θ is approximated using
A. This scheme is useful when the policy parameterization
involves non-differentiable neural network architectures such
as convolutional neural networks.

In the following sections, the theory hitherto developed is
used to present a complete analysis of A2VI and A2PG.

A. Asynchronous approximate value iteration (A2VI)

Consider A2VI given by (17). Let εn = (AT )Jn− TJn be
the approximation error at stage n, cf. (3). The approximation
operator A could be a deep neural network, or some other
function approximator.

Remark 2. We do not distinguish between stochastic shortest
path (no discounting) and infinite horizon discounted cost
problems. The definition of the Bellman operator T changes
appropriately based on the problem at hand [7].

The following assumptions are natural:
(AV1) The Bellman operator T is contractive with respect to

some weighted max-norm, ‖· ‖ν , i.e., ‖Tx − Ty‖ν ≤
α‖x− y‖ν for some 0 < α < 1. Given ν = (ν1, . . . , νd)
such that νi > 0 for 1 ≤ i ≤ d, the weighted max-
norm of any x = (x1, x2, . . . , xd) ∈ Rd is given by:
‖x‖ν := max

{
|xi|
νi
| 1 ≤ i ≤ d

}
.

(AV2) T has a unique fixed point J∗ and J∗ is the unique glob-
ally asymptotically stable equilibrium point of J̇(t) =
TJ(t)− J(t).

(AV3) lim sup
n→∞

‖εn‖ν ≤ ε for some fixed ε > 0.

Given x ∈ Rd we make the following simple observations:
(i) ‖x‖ν ≤ 1

min
i
νi
‖x‖.

(ii) ‖x‖ ≤ d
min
i
νi
‖x‖ν .

The following claim is an immediate consequence of these
observations.

Claim 1. T is Lipschitz continuous with some Lipschitz
constant 0 < L <∞.

The only difference between (17) and (2) is that in (17)
the approximation errors are bounded in the weighted max-
norm sense. It is worth noting that the errors could be more
generally bounded in the weighted p-norm (‖· ‖ω,p) sense 6.

6Given ω = (ω1, . . . , ωd) such that ωi > 0 for 1 ≤ i ≤ d, and
p ≥ 1, the weighted p-norm of any x ∈ Rd is defined by: ‖x‖ω,p :=(

d∑
i=1
|ωixi|p

)1/p

.

It can be easily shown that Cl‖x‖ν ≤ ‖x‖ω,p ≤ Cu‖x‖ν , for
some Cl, Cu > 0, x ∈ Rd. Hence it is sufficient to work with
errors that are bounded in the weighted max-norm sense. In
(AV 3) we assume lim sup

n→∞
‖εn‖ν ≤ ε a.s., while in (A1) we

assume lim sup
n→∞

‖εn‖ ≤ ε a.s. Since Bε := {y | ‖y‖ν ≤ ε}

is a convex compact subset of Rd (see Lemma 7.2 of [25]),
the analyses presented in Sections III and IV carry forward
verbatim, with Bε replacing Bε(0).

It follows directly from (AV 2) that (S4a) is satisfied. If we
show that (17) also satisfies (S5), then we may conclude that
the iterates are stable and convergent. For this purpose, we
compare the iterates {Jn}n≥0, from (17), to their projective
counterparts {Ĵn}n≥0. We can show that Ĵn → A, where A
is an attractor of J̇(t) ∈ 1/d(TJ(t) − J(t)) + Bε, contained
within a small neighborhood of J∗. This neighborhood is
dependent on the approximation errors. Since Ĵn → A, ∃N ,
possibly sample path dependent, such that Ĵn ∈ C for all
n ≥ N . Following the arguments presented in the proof of
Theorem 3 in [25] we can show that

‖Jn − Ĵn‖ν ≤ max

{
‖JN − ĴN‖ν ,

(
2ε

1− α

)}
,

where α is the “contraction constant” associated with the
Bellman operator T . In other words, we get that (17) satisfies
(S5). The following result is immediate.

Theorem 4. Suppose that (AV 1)-(AV 3), (A5), (S1) and
(S2) are satisfied, and that balanced step-sizes are used.
Then (17) is stable and converges to some point in
{J | ‖TJ − J‖ν ≤ dε}, where ε is the norm-bound on the
approximation errors.

Proof. From the above discussion, it is clear that A2VI is
bounded a.s. (stable). Since balanced step-sizes are used,
to study the long-term behavior of A2VI one needs to
study J̇(t) ∈ µ∗((TJ)(t) − J(t)) + Bε, where µ∗ =
diag(1/d, . . . , 1/d). It follows from Theorem 2 of Chapter 6
in [2] that any solution to the aforementioned DI will converge
to an equilibrium point of T (· ) + Bdε, where Bdε := {dx |
x ∈ Bε}. This is because J̇(t) ∈ µ∗((TJ)(t) − J(t) + Bdε)
and J̇(t) ∈ TJ(t) − J(t) + Bdε are qualitatively similar and
only differ in scale. The equilibrium points of T + Bdε are
given by {J | ‖TJ − J‖ν ≤ dε}. For more details the reader
is referred to Section 7 of [25].

We have shown that A2VI is stable as long as the approxi-
mation errors are asymptotically bounded. We do not need to
distinguish between biased and unbiased errors. Further, we
show that A2VI converges to a fixed point of a scaling of the
perturbed Bellman operator 1/d TJ +Bε.

B. Asynchronous approximate policy gradient iteration
(A2PG)

The policy gradient iteration method is an important re-
inforcement learning algorithm developed by Sutton et al., in
2000 [29]. This method relies on a parameterization of the pol-
icy space, say π(θ). This parameterization is typically through
the use of a deep neural network. Once a parameterization is
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determined, one seeks out a local minimizer θ̂ in the parameter
space, in order to find the optimal policy. However, there are
several situations wherein one either cannot calculate or does
not wish to calculate the exact gradient ∇θπ(θn) at every
stage. This could be due to the use of a non-differentiable
activation function or it could be a consequence of using
gradient estimators such as SPSA-C [24] (simultaneous per-
turbation stochastic approximation with a constant sensitivity
parameter) or other finite difference methods. In such cases,
one would have to deal with a policy gradient scheme with
non-diminishing approximation errors. In the present work, we
are interested in policy gradient methods within the setting of
large-scale distributed systems. A general form of approximate
policy gradient methods which satisfy all these conditions is
given below:

θn+1(i) = θn(i)− a(ν(i, n))I{i ∈ Yn}
[(A∇θπ)i(θn−τ1i(n)(1), . . . , θn−τdi(n)(d))∇πVπ(i)

+Mn+1(i)].

(19)

We call the above scheme as asynchronous approximate
policy gradient iteration or A2PG. As in Section V-A, we can
impose natural conditions on the gradient (∇θπ(· )), the noise
and other parameters of (19). Suppose the approximation
errors are asymptotically bounded, then our foregoing
analysis can be used to show that the iterates converge to a
neighborhood of some local minimizer θ̂. Further, the size
of this neighborhood is a function of the approximation
errors. For further details on the relationship between the
neighborhood and approximation errors, albeit in a centralized
set-up, the reader is referred to [24].

C. Verifiability of assumption (S5)

In this section, we address the verifiability of assumption
(S5). We do not discuss other assumptions, since they deal
with the objective function, step-sizes or noise, in a manner
that is standard to literature. However, to ensure (S5), one
needs to compare the algorithm iterates with a projective
scheme. Further, the experimenter is typically uninterested in
the projective scheme itself. In this section, we show that (S5)
is satisfied for fixed point finding algorithms such as A2VI,
provided the objective function is non-expansive.

Recall A2VI and its projective counterpart:

Jn+1 = Jn + a(n)Dn [TJn − Jn + εn] ,

Ĵn+1 ∈uB,C
(
Ĵn + a(n)Dn

[
T Ĵn − Jn + ε̂n

])
.

(20)

Unlike in Section V-A, we assume here that T is non-
expansive with respect to some norm p, i.e., p(Tx − Ty) ≤
p(x − y), for all x, y. It follows from Lemma 5 that the
projective scheme converges to A almost surely. In other
words, there exists a sample path dependent N such that
{Ĵn}n≥N ⊆ C a.s. Further, Ĵn+1 = Ĵn+a(n)Dn

[
T Ĵn + ε̂n

]
for all n ≥ N . For n ≥ N , first, we take the difference
between the two iterations in (20). Then, we take the norms
on both sides, to get the following:

p(Jn+1 − Ĵn+1) ≤ (1− a(n))p(Jn − Ĵn)

+ a(n)p(TJn − T Ĵn) + a(n)p(εn − ε̂n).

Since T is non-expansive we obtain:

p(Jn+1 − Ĵn+1) ≤ p(Jn − Ĵn) + a(n)p(εn − ε̂n).

For k ≥ 1, we have:

p(JN+k − ĴN+k) ≤ p(JN − ĴN ) +

N+k−1∑
n=N

a(n)p(εn − ε̂n).

As long as p(εn − ε̂n) ∈ o(a(n)), we get:

p(JN+k − ĴN+k) ≤ p(JN − ĴN ) +

∞∑
n=0

a(n)2 <∞.

It may be noted that many important RL and MDP al-
gorithms such as Q-learning and Value Iteration are fixed
point finding algorithms. In [1], the objective function of
Q-learning is shown to be non-expansive. To summarize,
the above set of arguments can be used to verify (S5) for
approximate asynchronous fixed point finding algorithms with
non-expansive objective functions.

D. A brief discussion on real-world applications
The hitherto presented theory has been motivated by the

need to understand multi-agent RL and optimization algo-
rithms, in particular, to provide behavioral guarantees when
applied to solve real-world problems. In this section, we
consider two applications: (a) data-driven vehicular platoon
control and (b) cumulative consensus in delayed communica-
tion networks. Now, we present bird’s-eye views of iterative
solutions (to the two problems) based on the main iteration
considered herein, (2). As a consequence, the developed theory
may be used to draw required conclusions.

[Vehicular platooning] Here, the broad goal is to organize
moving vehicles in a rigid string with a fixed inter-car distance
and constant velocity [14], [15], [31]. Scalable controllers for
the platooning problem are often distributed, with each vehicle
acting autonomously. They coordinate with other vehicles
via a wireless network, to exchange position and velocity
information. Each vehicle uses the latest available information
to take local control actions (adjust its speed, position, etc.).
While traditional solutions assume a model for vehicular
movement, we are interested in a model-free solution using
A2VI. In particular, to derive a distributed model-free data-
driven control policy for platooning.

Platooning can be viewed as a distributed sequential deci-
sion making problem, that can be associated with a Markov
Decision Process (MDP). Solving the ”discounted cost prob-
lem” for this MDP, in a distributed manner, yields the required
“distributed platooning policy”. Communication is important
for platooning. The theory developed here can be used to de-
rive the following requirement on communication: at any time-
step, there is a non-zero probability of successful transmission,
although there could be delays. This property ensures that
our assumptions on delays are satisfied, see [27] for details.
Without loss of generality, the lead vehicle trains a neural
network to approximate the Bellman operator, i.e., to minimize
the following loss function:

(ATJn−τ − rn−τ − γJn−τ )
T

(ATJn−τ − rn−τ − γJn−τ ) ,
(21)
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where (i) AT represents the parameterization of the Bell-
man operator using a neural network, (ii) rn−τ repre-
sents the reward vector for all vehicles, (iii) Jn−τ ≡
(Jn−τ (1), . . . , Jn−τ (d)) is the current approximation of value
function of all d vehicles, available with the lead vehicle, and
(iv) τ is the random variable associated with communication
delays. The reader may note that we have abused the notation
slightly and used a single delay random variable τ , merely
for illustration. In reality, vehicles closer to the lead vehicle
experience smaller delays as opposed to the ones at the end
of the platoon. In addition, each vehicle executes the local
A2VI iteration given by (17). The reader may also note that
each car is associated with its own set of local states. The
different actions taken in states, across the vehicles, are related
to each other through the Bellman operator that operates
on the “appended” cost-to-go vector associated with all the
vehicles. At any point in time, the value function update,
(21), is only done for states encountered by the platoon at
that time. Hence, the Bellman operator is approximated in
an asynchronous manner. Our theory can be used to derive
stability conditions for the algorithm during training. It can
also be used to understand the platooning policy obtained from
training, see, e.g., Theorem 4.

Our theory can be used to conclude that the vehicles
can be successfully trained to find a near-optimal distributed
platooning policy, J∞, provided the lead vehicle approximates
the Bellman operator well. The optimality of the policy found
is directly related to the approximation capability of the
lead vehicle. Further, the quality of communications has a
direct effect on the training time of the vehicles, required
to find the platooning policy. The limit J∞ found after
training, is used instead of the optimal cost-to-go vector J∗,
to derive the optimal platooning policy. Specifically, J∞(i)
is used by vehicle-i to derive its optimal policy. Note that
J∞(i) is itself a vector and the optimal cost-to-go value
associated with a vehicle-i state, s, is denoted by J∞(i, s).
When at state s, the policy of vehicle-i is to pick the action
argmax
a∈A

Es′∼E [r(s, a) + γJ∞(i, s′)]. This is in accordance to

the classical value iteration paradigm.

[Cummulative consensus with unbounded delays] Here,
autonomous agents in a D-agent system cooperate to solve
the following optimization problem:

argmin
x∈Rd

D∑
i=1

fi(x), where, (22)

• fi : Rd → R is a local function that is only accessible to
agent-i,

• x ≡ (x(1), . . . , x(D)) and x(i) is the local control
variable of agent-i.

In Section 6 of [27], we present an algorithm that solves
(22). This algorithm (Algorithm 2 in [27]) is designed and
analyzed using the theory developed here. Let us quickly
summarize the ideas of this algorithm. An agent with the
maximum computational capacity is first chosen to be the
arbiter, who is responsible for bulk of the computations
involved in solving the consensus problem. All the other agents

Fig. 1: Five random sample runs with pc = 0.4. ‖(ε1, ε2)‖ is
plotted along x-axis and log(‖x1000‖) is plotted along y-axis.

perform local computations to support the arbiter. In particular,
the arbiter performs the following update:

xn+1 = xn − a(ν(n, 1))I(1 ∈ Yn)

D∑
i=1

gi(τ),

where gi(τ) is the descent direction obtained from agent-i,
after a delay of τ . As before, τ could vary with the agents.
The key requirement on communication, again, is that the
probabilities of transmission successes are positive. In [27],
we show that the network topology may vary widely over
time, and that the agents need not synchronize. These network
conditions, obtained using the ideas developed in this paper,
are among the weakest in literature. The reader is referred to
[27] for details on the algorithm and empirical results.

E. Experimental results

In this section 7, we consider an asynchronous algo-
rithm (given by eq. (2)) to find the minimum of F :
Rd → Rd, where d ≥ 2. The function F is defined
as F (x1, . . . , xd) := (F1(x1, . . . , xd), . . . , Fd(x1, . . . , xd)),
where F1, . . . Fd : Rd → R.
[Experimental set-up] For better exposition, we consider an
iteration in dimension 2, i.e., d = 2. The function F is defined
as follows: F1(x) := 1

2 (xTAx)(1), F2(x) := 1
2 (xTBx)(2)

and F (x) := (F1(x), F2(x)). The matrices A and B are
randomly constructed positive definite matrices of dimension
2×2. A random error vector of norm less than ε > 0 is added
to the gradient at every step. Each component of this error
vector is independent and uniformly distributed in [0, ε/2]. It
may be noted that ∇xF1(x) = Ax and ∇xF2(x) = Bx for
x ∈ Rd.
Agent-1 runs the following:

xn+1(1) = xn(1)− a(n)

[
A

[
xn(1)

xn−τ2,1(2)

]
(1) + ε1

]
,

while agent-2 runs the following:

xn+1(2) = xn(2)− a(n)

[
B

[
xn−τ2,1(1)
xn(2)

]
(2) + ε2

]
.

7The reader is referred to [27] for detailed empirical studies on practical
applications of the theory from this paper to cumulative consensus.
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Fig. 2: Five random sample runs with pc = 0.8. ‖(ε1, ε2)‖ is
plotted along x-axis and log(‖x1000‖) is plotted along y-axis.

The above distributed algorithm was run for 1000 iterations
using the step-size seqeunce {1/(n+10)}1000n=1 . Since the matrices
A and B are positive definite, we expect the limit to be the
origin.

At every step the two agents exchange (state) information
with probability pc, and with probability 1 − pc the agents
use the available old (state) information. In other words, pc
represents the communication probability in our experiments.
Note that we have used symmetric delays for simplicity.
The experiments can be easily repeated with asymmetric
delays. A direct consequence of this network setup is that the
communication delays are random with unbounded support.

Results from the experiments are summarized in Figures 1
and 2. In both the figures, ‖(ε1, ε2)‖ is plotted along x-axis
and log(‖x1000‖) is plotted along y-axis. Thus, any point in
the plot represents (‖(ε1, ε2)‖, log(‖x1000‖)). Each figure has
five differently colored line graphs to represent the five sample
runs of the algorithm. For each sample run, the parameters
(x1(1), x1(2)) (initial point) and the matrices A and B are
randomly chosen, and the norm bound on additive errors (ε1,
ε2) is varied from 0.2 to 3 in steps of 0.1. Fig. 1 illustrates all
the experiments with pc = 0.4, and Fig. 2 illustrates all the
experiments with pc = 0.8.

In Figures 1 and 2, the agents exchange data 40% and 80%
of the time, respectively. It can be seen that the algorithm
converged farther from the origin when the additive errors
are larger. When pc = 0.8, the algorithm converged to a
point close to the origin, even for large additive errors, as
compared to pc = 0.4. The experiments seem to suggest
that frequent communications should be used to counter
the effect of bias inducing additive errors. We conclude
this section by noting that the experimental set-up considered
here is simple yet illustrative. It demonstrates the ability of
our algorithm to deal with unbounded communication delays
and non-vanishing additive errors. The reader is referred to
[27] for detailed empirical studies on practical applications of
the theory from this paper.

VI. SUMMARY OF OUR CONTRIBUTIONS AND
CONCLUSIONS

In this paper, we considered a natural extension of
asynchronous stochastic approximation algorithms that accom-

modates the use of function approximators. For this purpose,
we considered asynchronous stochastic approximations with
asymptotically bounded, and possibly bias inducing, approx-
imation errors. The assumptions and the analyses presented
are motivated by the need to understand the current crop of
deep reinforcement learning algorithms. We are particularly
interested in these algorithms when used within the setting of
multi-agent learning and control.

Our framework allows for complete asynchronicity in that
each agent is guided by its own local clock. Although the
agents are fully asynchronous, we require that the agents are
updated, roughly, the same fraction of times, in the long
run. Our framework can be used to analyze asynchronous
approximate value iteration (A2VI). A2VI is an adaptation of
regular value iteration with noise to the setting of large-scale
multi-agent learning and control. Here, we showed that A2VI
converges to a fixed point of the perturbed Bellman operator
when balanced step-sizes are used. We also established a
relationship between these fixed points and the approximation
errors. Note that the use of function approximators required
us to consider the perturbed Bellman operator. We further
analyzed a similar adaptation, A2PG, of the classical pol-
icy gradient iteration to the multi-agent setting. We briefly
discussed how A2PG converges to a small neighborhood of
local minima of the parameterized policy function. Again, this
neighborhood is directly related to the approximation errors.

An important consequence of our theory is the following:
stability of the aforementioned algorithms remains unaffected
when the approximation errors are asymptotically bounded,
and add bias in the algorithm. Since a function approximator
(eg. DNN) is continuously trained, it is reasonable to expect
the errors to diminish asymptotically, even though they may
not vanish completely. It is worth noting that ours is one of
the first theoretical results that can be used to understand the
long-term behavior of deep reinforcement learning algorithms
within the setting of multi-agent learning and control.

In the future, we would like to make a two-fold extension to
our analysis: (i) Allow for multiple timescales and (ii) allow
for objective functions that are driven by controlled Markov
processes. This will help us analyze other popular algorithms
such as Deep Q-Network and deep deterministic policy gra-
dient (a popular actor-critic algorithm). When implementing
DeepRL algorithms in an online setting, the learning rate is
generally fixed. To this end, we would also wish to explore
one and two timescale algorithms with constant step-sizes and
function approximations.
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