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Graphon Control of Large-scale Networks of Linear
Systems
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Abstract—To achieve control objectives for extremely large-
scale complex networks using standard methods is essentially
intractable. In this work a theory of the approximate control
of complex network systems is proposed and developed by the
use of graphon theory and the theory of infinite dimensional
systems. First, graphon dynamical system models are formulated
in an appropriate infinite dimensional space in order to represent
arbitrary-size networks of linear dynamical systems, and to define
the convergence of sequences of network systems with limits in
the space. Exact controllability and approximate controllability
of graphon dynamical systems are then investigated. Second, the
minimum energy state-to-state control problem and the linear
quadratic regulator problem for systems on complex networks
are considered. The control problem for graphon limit systems
is solved in each case and approximations are defined which
yield control laws for the original control problems. Further-
more, convergence properties of the approximation schemes are
established. A systematic control design methodology is developed
within this framework. Finally, numerical examples of networks
with randomly sampled weightings are presented to illustrate the
effectiveness of the graphon control methodology.

Index Terms—Graphon control, large networks, complex net-
works, graphons, infinite dimensional systems

I. INTRODUCTION

Complex network systems such as the Internet of Things
(IoT), electric, neuronal, food web, epidemic, stock market
and social networks, are ubiquitous, and they have been the
focus of much research over the past 20 years. In particu-
lar, researchers have been studying networks of interacting
dynamical systems to learn which collective behaviours may
emerge from system interactions over complex networks ([1]–
[3]). Furthermore, in addition to the structural properties of
networks, system theoretic notions such as controllability,
observability, consensus dynamics and synchronization have
been widely applied to systems on networks ([4]–[11]). How-
ever, to achieve general control objectives for extremely large
scale networks with complex interconnections (henceforth,
complex networks) using these standard methods is essentially
an intractable task.

Graphon theory, introduced and developed in recent years
by L. Lovász, B. Szegedy, C. Borgs, J. T. Chayes, V. T. Sós,
and K. Vesztergombi among others (see [12]–[15]), provides
a theoretical tool to characterize complex graphs and graph
limits. This work draws on graph theory, measure theory,
probability, and functional analysis, and has been applied in
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different areas such as games [16], [17], signal processing [18],
network centrality [19], and the heat equation [20].

We propose a graphon based control methodology for
controlling complex network systems. The general graphon
control strategy consists of the following steps:
1) Identify the graphon limit of the sequence S̃ of networks

as the number of nodes goes to infinity.
2) Solve the corresponding control problem for the limit

graphon dynamical system.
3) Approximate the control law for the limit system so as to

generate control laws for the application to any given finite
system along the sequence S̃ of finite network systems.

Specifically, in this paper, the minimum energy state-to-state
control problem and the linear quadratic regulator problem
are solved for complex network systems using this graphon
control strategy.

The main contributions of this paper include:
1) the formulation of graphon differential equations and

graphon dynamical control systems, which allows us to
represent linear control systems on arbitrary size networks
and compare systems of different sizes. This further permits
us to design the graphon control methodology based on the
network limit.

2) the graphon state-to-state control methodology to solve
state-to-state control problem on complex networks.

3) the proposed graphon linear quadratic regulation method-
ology to solve linear quadratic regulator problems on large-
scale networks.

This paper contains the complete proofs omitted in the
previous articles [21]–[23] and the extension of previous
results, as well as new numerical examples.

The paper is organized as follows: In Section II, the
fundamentals of graphon theory are presented, followed by
the development of the graphon unitary operator algebra
and graphon differential equations. Section III introduces the
network system model and its equivalent representation by
the graphon dynamical system. Section IV presents the prop-
erties of graphon dynamical systems, including existence and
uniqueness of the solution and controllability. In Section V and
Section VI, the graphon control strategies for the state-to-state
control problem and the linear quadratic regulator problem are
presented respectively. For each problem, the approximation
method is developed and the corresponding convergence prop-
erties are established. Section VII contains numerical examples
to illustrate the graphon control methodology.

Notation: Bold face letters (e.g. A, B, u) are used to
represent graphons and functions. Blackboard bold letters (e.g.
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A, B) are used to denote linear operators which are not
necessarily compact. Let I denote the identity operator. Let
〈·, ·〉 denote inner product for L2[0, 1] and ‖ · ‖ represent
norm. 1S(·) denotes the indicator function for a set S, that is,
1S(x) = 1 if x ∈ S, and 0 otherwise. 1S denotes the L2[0, 1]
function with 1 in S ⊂ [0, 1] and 0 in [0, 1]\S. The set of all
real numbers and that of all natural numbers (excluding 0) are
respectively denoted by R and N.

II. PRELIMINARIES

A. Graphs, Adjacency Matrices and Pixel Pictures

The underlying structure of a network can be described by
a graph G = (V,E) specified by a node set V and an edge
set E which represents the connections between nodes. An
equivalent representation of a graph G = (V,E) by a matrix
called an adjacency matrix is defined to be the square |V |×|V |
matrix A such that an element Aij is one when there is an edge
from node i to node j, and zero otherwise. If the graph is a
weighted graph where edges are associated with weights, then
the adjacency matrix has corresponding weighted elements.

Another representation of the adjacency matrix is given by a
pixel diagram where the 0s are replaced by white squares and
the 1s by black squares. The whole pixel diagram is presented
in a unit square, so the square elements have sides of length
1
n , where n is the number of nodes.

Q
ccccccccccccccccccccccca

0 1 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 1 0 0
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Fig. 1. Dürer Graph, adjacency matrix, pixel diagram

B. Graphons

A meaningful convergence with respect to the cut metric
is defined for sequences of dense and finite graphs [15].
Graphons are then the limit objects of converging graph
sequences. This concept is illustrated by a sequence of half
graphs [15] represented by a sequence of pixel diagrams on
the unit square converging to its limit in Fig. 2. Readers are
referred to [15] for more examples of convergent graph se-
quences such as uniform attachment graphs, complete bipartite
graphs, and Erdös-Rényi graphs. Exchangeable random graphs
can also be modeled by graphons [24].
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Fig. 2. Graph sequence converging to its limit

The set of finite graphs endowed with the cut metric gives
rise to a metric space, and the completion of this space is the
space of graphons. Graphons are represented by bounded sym-
metric Lebesgue measurable functions W : [0, 1]2 → [0, 1],

which can be interpreted as weighted graphs on the node set
[0, 1]. We note that in some papers, for instance [25], the
word "graphon" refers to symmetric, integrable functions from
[0, 1]2 to R. In this paper, unless stated otherwise, the term
"graphon" is used to refer to functions W1 : [0, 1]2 → [−1, 1]
and W1 denotes the space of graphons. Let W0 represent the
space of all graphons satisfying W0 : [0, 1]2 → [0, 1] and let
W denote the space of all symmetric measurable functions
W : [0, 1]2 → R.

The cut norm of a graphon W ∈ W1 is then defined as

‖W‖2 = sup
M,T⊂[0,1]

|
∫
M×T

W(x, y)dxdy| (1)

with the supremum taking over all measurable subsets M and
T of [0, 1]. Evidently, the following inequalities hold between
norms on a graphon W:

‖W‖2 ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1, (2)

where the second to the forth norms are given by the cor-
responding Lp norms on W1. Denote the set of measure
preserving bijections from [0, 1] to [0, 1] by S[0,1]. The cut
metric between two graphons V and W is then given by

δ2(W,V) = inf
φ∈S[0,1]

‖Wφ −V‖2, (3)

where Wφ(x, y) = W(φ(x), φ(y)). We see that the cut metric
δ2(·, ·) is given by measuring the maximum discrepancy
between the integrals of two graphons over measurable subsets
of [0, 1], then minimizing the maximum discrepancy over all
possible measure preserving bijections. Strictly speaking the
cut metric is not a metric since the distance between two
distinct graphons under the cut metric can be zero (see e.g.
[13]). However, by identifying functions V and W for which
δ2(V,W) = 0, we can construct the metric space W̃1 which
denotes the image of W1 under this identification. Similarly
we can construct W̃0 from W0 and W̃ from W . See [15].

The L2 metric for any graphons W and V is defined as

dL2(W,V) = ‖W −V‖2

=

(∫
[0,1]2

|W(x, y)−V(x, y)|2dxdy

) 1
2 (4)

and the δ2 metric as

δ2(W,V) = inf
φ∈S[0,1]

dL2(Wφ,V) = inf
φ∈S[0,1]

‖Wφ −V‖2;

(5)
similarly, the L1 metric and the δ1 metric are defined respec-
tively as

dL1(W,V) = ‖W −V‖1, (6)

δ1(W,V) = inf
φ∈S[0,1]

‖Wφ −V‖1. (7)

For any two graphons W and V the following inequalities
hold immediately:

δ2(W,V) ≤ δ1(W,V) ≤ δ2(W,V) ≤ dL2(W,V). (8)

The δ2 (or δ1) metric and δ2 metric share the same equivalence
classes under the measure preserving transformations [15,
Corollary 8.14]. Clearly, the δ2 (or δ1) metric is also well
defined on W̃1.
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C. Compactness of the Graphon Space

Theorem 1 ([15]) The space (W̃0, δ2) is compact. 2

This remains valid if W̃0 is replaced by any uniformly
bounded subset of W̃ closed in the cut metric [15].

Theorem 2 ([15]) The space (W̃1, δ2) is compact. 2

Sets in W̃1 (or W̃0) compact with respect to the δ2 metric
are compact with respect to the cut metric. It follows imme-
diately from (8) and Theorem 2 (or Theorem 1), if a graphon
sequence is Cauchy in the δ2 metric then it is also a Cauchy
sequence in the cut metric and under both metrics, the limits
are identical in W̃1 (or W̃0).

Define the Lp closed ball in W̃ with radius C > 0 as
BLp(C) := {W : ‖W‖p ≤ C,W ∈ W̃}.

Theorem 3 ([25]) The space (BLp(C), δ2) with 1 < p ≤ ∞
is compact. 2

By compactness, infinite sequences of graphons will neces-
sarily possess one or more sub-sequential limits under the cut
metric.

D. Step Function Graphons

A function W ∈ W1 is called a step function if there is a
partition Q = {Q1, ..., Qk} of [0, 1] into measurable sets such
that W is constant on every product set Qi×Qj . The sets Qi
are the steps of W.

Graphons generalize weighted graphs in the following
sense. For every weighted graph G with N nodes, a step
function WG ∈ W1 is given by partitioning [0, 1] into N
measurable sets Q1, · · · , QN of measure µ(Qi) = αi

α(G) and
defining

WG(x, y) :=

N∑
i=1

N∑
j=1

1Qi(x)1Qj (y)βij(G), (x, y) ∈ [0, 1]2,

(9)
where αi denotes the node weight of ith node, α(G) =

∑
i αi

and βij(G) denotes the weight of the edge from node i to node
j (i.e., βij(G) is the ijth entry in the adjacency matrix of G).
Evidently the function WG depends on the labeling of the
nodes of G.

We define the uniform partition PN = {P1, P2, ..., PN}
of [0, 1] by setting Pk = [k−1

N , kN ), k ∈ {1, N − 1} and
PN = [N−1

N , 1]. Then µ(Pi) = 1
N , i ∈ {1, 2, ..., N}. Under

the uniform partition, the step functions can be represented by
the pixel diagram on the unit square. See [15].

E. Graphons as Operators

A graphon W ∈ W1 can be interpreted as an operator W :
L2[0, 1]→ L2[0, 1]. The operation on v ∈ L2[0, 1] is defined
as follows:

[Wv](x) =

∫ 1

0

W(x, α)v(α)dα. (10)

The operator product is then defined by

[UW](x, y) =

∫ 1

0

U(x, z)W(z, y)dz, (11)

where U,W ∈ W1. See [15] for more details. For simplicity
of notation, UW is used to denote the graphon given by
the convolution in (11); similarly, Wv denotes the function
defined by (10). Note that if U ∈ W1 and W ∈ W1, then
UW ∈ W1, since for all x, y ∈ [0, 1]

|[UW](x, y)| ≤
∫ 1

0

|U(x, z)W(z, y)|dz ≤ 1. (12)

Consequently, the power Wn of an operator W ∈ W1 is
defined as

Wn(x, y) =

∫
[0,1]n

W(x, α1) · · ·W(αn−1, y)dα1 · · · dαn−1

with Wn ∈ W1 (n ≥ 1). W0 is formally defined as the
identity operator I on functions in L2[0, 1], but we note that
W0 is not a graphon.

Any A ∈ W1 gives a self-adjoint compact operator [26]
and hence has a discrete spectral decomposition as follows:

A(x, y) =

∞∑
`=1

λ`f`(x)f`(y), (x, y) ∈ [0, 1]2, (13)

where the convergence is in the L2[0, 1]2 sense, {λ1, λ2, ....}
is the set of eigenvalues (which are not necessarily distinct)
with decreasing absolute values, and {f1, f2, ...} represents
the set of the corresponding orthonormal eigenfunctions (i.e.
‖f`‖2 = 1, and 〈f`, fk〉 = 0 if l 6= k). The only accumulating
point of the eigenvalues is zero [15], that is, lim`→∞ λ` = 0.
This implies that A can be approximated by a finite trunca-
tion of the spectral decomposition which preserves the most
significant eigenvalues [26].

F. The Graphon Unitary Operator Algebra

It is evident that the operator composition defined in (11)
above yields an operator algebra with a multiplicative binary
operation possessing the associativity, left distributivity, right
distributivity properties and compatibility with the scalar field
R, that is, for any V,W,H in the vector space L2[0, 1]

2 and
a, b ∈ R,

(VW)H = V(WH),

V(W + H) = VW + VH,

(W + H)V = WV + HV,

(aW)(bH) = (ab)WH.

Thus we have an operator algebra GA over the field R acting
on elements of L2[0, 1] with operator multiplication as given
in (10). By adjoining the identity element I to the algebra GA
(see e.g. [27]) we obtain a unitary algebra GAI . The identity
element I is defined as follows: for any W ∈ L2[0, 1]2

[IW](x, y) =

∫ 1

0

W(z, y)δ(x, z)dz = W(x, y), (14)

where δ(·, z)dz is the measure satisfying
∫ 1

0
u(z)δ(x, z)dz =

u(x) for all u ∈ L2[0, 1], and in particular
∫ 1

0
δ(x, z)dz = 1.

The graphon unitary operator algebra GAI will be used in
the definition of the graphon dynamical systems. More specif-
ically, we use the subset G1

AI := {(aI+A) : A ∈ G1
A, a ∈ R}

where G1
A is the subset of GA that corresponds to W1.
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G. Graphon Differential Equations

Let X be a Banach space. L(X) denotes the Banach algebra
of all linear continuous mappings T : X → X , endowed with
the norm ‖T‖op = supx∈X,‖x‖=1 ‖Tx‖. A mapping S : R →
L(X) is said to be a strongly continuous semigroup on X if
the following properties hold:

1) S(0) = I, S(t+ s) = S(t)S(s), ∀t, s ≥ 0
2) for all x ∈ X , S(·)x is continuous on R.

A uniformly continuous semigroup is a strongly continuous
semigroup S such that limt→0+ ‖S(t)− I‖op = 0, with
‖ · ‖op as the operator norm on a Banach space. The
infinitesimal generator A of a strongly continuous
semigroup S is the linear operator in X defined by
Ax = limt→0+

1
t [S(t)x − x], for all x ∈ D(A), where

D(A) = {x ∈ X : s.t. limt→0+
1
t [S(t)x− x] exists}.

Let A : [0, 1]2 → [−1, 1] be a graphon and α ∈ R.
Hence (αI+A) is a bounded linear operator from L2[0, 1] to
L2[0, 1]. Following [28], (αI+A) is the infinitesimal generator
of the uniformly (and hence necessarily strongly) continuous
semigroup

S(t) := e(αI+A)t =

∞∑
k=0

tk(αI + A)
k

k!
.

Therefore, the initial value problem of the graphon differential
equation

ẏt = (αI + A)yt, y0 ∈ L2[0, 1] (15)

has a solution given by yt = e(αI+A)ty0.

Lemma 1 Let A : [0, 1]2 → [−1, 1] be a graphon and α ∈ R.
Then e(αI+A)t = eαteAt holds for all t ≥ 0. 2

Readers can readily check this and hence we omit the proof.

Lemma 2 Consider any u ∈ L2[0, 1], any A ∈ G1
AI , and any

t ∈ [0, T ]. Let A = αI+A, A ∈ W1, then the following holds∥∥eAtu∥∥
2
≤ et(α+‖A‖op)‖u‖2 ≤ et(α+‖A‖2)‖u‖2. (16)

2

This result is immediate from Lemma 1 and Lemma 8.

Theorem 4 (Appendix B) For any αN , α, t ∈ R, any
AN,A∗ ∈ W1, and any x ∈ L2[0, 1], the following holds:∥∥eANtx− eA∗tx

∥∥
2
≤ tet‖AN

∆‖op‖x‖2, (17)∥∥∥e(αN I+AN)tx− e(αI+A∗)tx
∥∥∥

2
≤ te(αN+1)t‖AN

∆‖op‖x‖2

+ |α− αN |te(Lα+‖A∗‖op)t ‖x‖2 , (18)

where AN
∆ = AN −A∗ and Lα = max{|α|, |αN |}. Further-

more if a sequence of graphons {AN}∞N=1 and that of real
numbers {αN}∞N=1 converge as follows

lim
N→∞

‖AA −A∗‖op = 0 and lim
N→∞

|αN − α| = 0, (19)

then for any x ∈ L2[0, 1] and any T > 0,

lim
N→∞

sup
t∈[0,T ]

∥∥eANtx− eA∗tx
∥∥

2
= 0, (20)

lim
N→∞

sup
t∈[0,T ]

∥∥∥e(αN I+AN)tx− e(αI+A∗)tx
∥∥∥

2
= 0. (21)

2

The operator norm in (17), (18) and (19) can be replaced
by the stronger L2[0, 1] norm since ‖W‖op ≤ ‖W‖2 for any
W ∈ W1 (see Lemma 7).

III. NETWORK SYSTEMS AND THEIR LIMIT SYSTEMS

A. Network System Models

Definition 1 (Network System) Consider an interlinked net-
work SN of linear (symmetric) dynamical subsystems
{SNi ; 1 ≤ i ≤ N}, each with an n dimensional state space.
The subsystem SNi at the node Vi in the network GN (V,E)
has interactions with SNj , 1 ≤ j ≤ N, specified as below:

SNi :
ẋit = αNx

i
t +

1

nN

N∑
j=1

Aijx
j
t + βNu

i
t +

1

nN

N∑
j=1

Biju
j
t ,

xit, u
i
t ∈ Rn, i ∈ {1, ..., N},

(22)
with AN = [Aij ], BN = [Bij ] ∈ RnN×nN as the (symmetric)
block-wise adjacency matrices of GN (V,E) and of the input
graph, where Aij = [0] if SNi has no connection to SNj and
similarity for Bij . We call SN a network system. 2

Then the (symmetric) linear dynamics for the network
system SN (AN , BN , GN ) can be represented by

SN :
ẋt = αNxt +AN ◦ xt + βNut +BN ◦ ut,
xt, ut ∈ RnN , AN , BN ∈ RnN×nN ,

(23)

where ◦ denotes the so called averaging operator given by
AN ◦ x = 1

(nN)ANx. Let S = ×∞N=1SN where SN =

∪AN ,BN ,GNSN (AN , BN , GN ). For simplicity, we require the
elements of AN and BN to be in [−1, 1] for each N (note
that in general AN and BN have elements that are uniformly
bounded real numbers for which case we would achieve
similar results). In addition, we note that if we take the
supremum norm on vectors in RnN , i.e. ‖x‖∞ = supi |xi|,
and the corresponding ◦ operator norm of A, i.e. ‖A‖op∞ =

sup‖x‖∞ 6=0
‖A◦x‖∞
‖x‖∞ , then ‖A‖op∞ ≤ 1.

B. Network Systems Represented by Step Functions

Let {(αNI +AN ;βNI +BN )}∞N=1 ∈ S be a sequence of
systems with the node averaging dynamics each of which is
described according to (23). Let |ANij | ≤ 1 and |BNij | ≤
1 for all i, j ∈ {1, ..., nN}. Let A[N],B[N] ∈ W1 be the
step functions corresponding one-to-one to AN and BN ; these
are specified using the uniform partition PnN of [0, 1] by the
following matrix to step function mapping MG:

A[N](x, y) :=

nN∑
i=1

nN∑
j=1

1Pi(x)1Pj (y)ANij , ∀(x, y) ∈ [0, 1]2

(24)
and similar for B[N]. In fact, the step function A[N] can
represent a set of matrices of different sizes given by {AN ⊗
onem,m ∈ N} where onem is the m×m matrix of ones.

Define a piece-wise constant (PWC) function on R to be
any function of the form

∑l
k=1 αk1Ik(·) where α1, ..., αl are

real numbers and each Ik is a bounded interval (open, closed,
or half-open). Let L2

pwc[0, 1] denote the space of piece-wise
constant L2[0, 1] functions under the uniform partition PnN .
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u
[N]
t ∈ L2

pwc[0, 1] corresponds one-to-one to ut ∈ RnN via
the following vector to PWC function mapping also denoted
by MG:

u
[N]
t (α) :=

nN∑
i=1

1Pi(α)ut(i), ∀α ∈ [0, 1], (25)

and similarly x
[N]
t ∈ L2

pwc[0, 1] corresponds one-to-one to
xt ∈ RnN .

Lemma 3 (Appendix B) The trajectories of the system in
(23) correspond one-to-one under the mapping MG to the
trajectories of the system

ẋ
[N]
t = (αN I + A[N])x

[N]
t + (βN I + B[N])u

[N]
t ,

x
[N]
t ,u

[N]
t ∈ L2

pwc[0, 1],A[N],B[N] ∈ W1 ⊂ G1
AI

(26)

with graphon operations defined according to (10). 2

Since the system in (26) corresponds to a network system
SN in (23), we also refer to it as a network system. We use
(A[N];B[N]) to denote the network system in (26) where A[N] =
αN I + A[N] and B[N] = βN I + B[N].

C. Limits of Sequences of Network Systems

A sequence of network systems with node averaging dy-
namics in (23) can be represented by the sequence of systems
{(αN I + A[N];βN I + B[N]) ∈ G1

AI × G1
AI}∞N=1 in (26).

Definition 2 (System Sequence Convergence) A sequence
of systems

{
(αN I + A[N];βN I + B[N]) ∈ G1

AI × G1
AI
}∞
N=1

is convergent if the following two conditions hold
1) there exist α, β ∈ R such that

lim
N→∞

αN = α and lim
N→∞

βN = β;

2) there exist A,B ∈ W1,

lim
N→∞

‖A−A[N]‖op = 0 and lim
N→∞

‖B−B[N]‖op = 0. 2

The limit system is represented by (A;B) where A = αI+A
and B = βI + B.

Since any W ∈ W1 defines a self-adjoint and compact
operator, the maximum absolute value of eigenvalues of W
equals to the operator norm [29, Theorem 12.31], that is,
‖W‖op = max` |λ`|. Furthermore, the following inequalities
between the cut norm and the operator norm hold [16], [30]:

‖W‖2 ≤ ‖W‖op ≤
√

8‖W‖2. (27)

By Lemma 7, the following inequality also holds:

‖W‖op ≤ ‖W‖2. (28)

Based on (27) and (28), we obtain that the convergence of a
sequence of graphons in ‖·‖2 or ‖·‖2 implies its convergence
in ‖ · ‖op. Under certain extra conditions, the convergence
of a sequence of graphons under the cut norm implies its
convergence under the L2[0, 1] norm [31, Corollary 1.1].

Let the graphon sequences {A[N]} and {B[N]} be Cauchy
sequences of step functions in L2[0, 1]2. Due to the complete-
ness of L2[0, 1]2, the respective graphon limits A and B exist
and these will then necessarily be the limits in the cut metric
(see Section II-C and [15]).

IV. THE LIMIT GRAPHON SYSTEM AND ITS PROPERTIES

We follow [32] and specialize both the Hilbert space of
states H , and that of controls U appearing there, to the
space L2[0, 1]. Let L2([0, T ];L2[0, 1]) denotes the Hilbert
space of equivalence classes of strongly measurable (in the
Böchner sense [33, p.103]) mappings [0, T ]→ L2[0, 1] that are

integrable with norm ‖f‖L2([0,T ];L2[0,1]) =
[∫ T

0
‖f(s)‖22ds

] 1
2

.

Definition 3 (Graphon Systems) We formulate an infinite
dimensional linear system, which we call a graphon system
(A;B), as follows:

ẋt = Axt + But, x0 ∈ L2[0, 1], (29)

where A,B ∈ G1
AI , and are hence bounded operators on

L2[0, 1], xt ∈ L2[0, 1] is the system state at time t and
ut ∈ L2[0, 1] is the control input at time t. 2

Notice that the network system in (26) is a special case of the
graphon system in (29).

A solution x(·) ∈ L2([0, T ];L2[0, 1]) is a (mild) solution
of (29) if xt = e(t−a)Axa +

∫ t
a
e(t−s)ABusds for all a and t

in [0, T ], taken to be a ≤ t (see [32]). Let C([0, T ];L2[0, 1])
denote the set of continuous mappings from [0, T ] to L2[0, 1].

Proposition 1 The graphon system in (29) has a unique
solution x ∈ C([0, T ];L2[0, 1]) for all x0 ∈ L2[0, 1] and all
u ∈ L2([0, T ];L2[0, 1]). 2

PROOF A as a bounded linear operator generates a uni-
formly continuous semigroup and B ∈ G1

AI as a bounded
linear operator forms a continuous linear mapping from con-
trol space L2[0, 1] to the state space L2[0, 1]. Hence fol-
lowing [32, p.385], the system (29) has a unique solution
x ∈ C([0, T ];L2[0, 1]) for all x0 ∈ L2[0, 1] and all u ∈
L2([0, T ];L2[0, 1]). �

A system (A;B) is exactly controllable on [0, T ] if for any
initial state x0 ∈ L2[0, 1] and any target state xf ∈ L2[0, 1],
there exists a control u ∈ L2([0, T ];L2[0, 1]) driving the
system from x0 to xf , i.e. xT = xf with xT = eATx0 +∫ T

0
eA(T−t)Butdt. A system (A;B) is approximately control-

lable on [0, T ] if for any initial state x0 ∈ L2[0, 1], any target
state xf ∈ L2[0, 1] and any ε > 0, there exists a control
u ∈ L2([0, T ];L2[0, 1]) which drives the system state from x0

into the L2[0, 1] ε-neighborhood of xf , i.e., ‖xT −xf‖2 ≤ ε.
The controllability Gramian operator WT : L2[0, 1] →

L2[0, 1] is defined as

WT :=

∫ T

0

eA(t−s)BBᵀeA
ᵀ
(t−s)ds, T > 0. (30)

A necessary and sufficient condition for exact controllability
on [0, T ] is the uniform positive definiteness of WT :

〈WTh, h〉 ≥ cT ‖h‖2 (31)

for all h ∈ L2[0, 1], where cT > 0 and ‖ · ‖ is the L2[0, 1]
norm. The positive definiteness of the controllability Gramian
operator WT as a kernel is equivalent to the approximate
controllability of the corresponding system (see [32], [34]).



6

Define the kernel space (or null space) of a linear operator
T on L2[0, 1] as: ker(T) := {x ∈ L2[0, 1] : Tx = 0}. The
spectrum σ(T) of a bounded linear operator T on L2[0, 1] is
the set of all (complex or real) scalars λ such that T − λI is
not invertible. Thus λ ∈ σ(T) if and only if at least one of
the following two statements is true:

(i) The range of T−λI is not all of L2[0, 1], i.e., T−λI is
not onto.

(ii) T− λI is not one-to-one.
If (ii) holds, λ is said to be an eigenvalue of T; the corre-
sponding eigenspace is ker(T − λI); each x ∈ ker(T − λI)
(except x = 0) is an eigenvector of T; it satisfies the equation
Tx = λx. See [29].

Theorem 5 (Appendix C) Let A be an element in G1
AI and

let B be a bounded linear operator on L2[0, 1]. The linear
system (A;B) is exactly controllable on a finite time horizon
[0, T ] if all the values in the spectrum of BBT are lower
bounded by a strictly positive constant. 2

Proposition 2 (Appendix C) Let A and B be graphons in
W1. Then the linear system (A;B) is not exactly controllable
on any finite time horizon [0, T ]. 2

The results in Theorem 5 and Proposition 2 generalize to
the case where the underlying graphons lie in any uniformly
bounded subset of W , i.e., any set of symmetric measurable
functions W : [0, 1]2 → I where I is a closed bounded
interval in R.

V. GRAPHON STATE-TO-STATE CONTROL OF NETWORK
SYSTEMS

A. Approximation of L2[0, 1] Functions

Theorem 6 ([35, Theorem 13.23]) Let µ be any measure on
R and Bµ be the σ-algebra of µ-measurable sets, and let
1 ≤ p <∞. Then piece-wise constant functions on R form a
dense subset of Lp(R,Bµ, µ). 2

Proposition 3 Let v ∈ L2[0, 1] be approximated by v[N] ∈
L2
pwc[0, 1] as follows: for all x ∈ Qi and for all i ∈
{1, . . . , nN},

v[N](x) =
1

µ(Qi)

∫
Qi

v(α)dα (32)

with the partition {Q1, Q2, . . . , QnN} of [0, 1] where µ(Qi)
denotes the measure of Qi. Then ‖v[N]‖2 ≤ ‖v‖2. 2

PROOF Applying the Cauchy-Schwarz inequality yields

‖v‖22 =

∫ 1

0

v2(x)dx =

nN∑
i=1

∫
Qi

v2(x)dx

≥
nN∑
i=1

1

µ(Qi)

[∫
Qi

v(x)dx

]2

=

nN∑
i=1

µ(Qi)

[
1

µ(Qi)

∫
Qi

v(x)dx

]2

= ‖v[N]‖22.

(33)

�

In this paper we wish to approximate any control input ut ∈
L2[0, 1], 0 ≤ t ≤ T , through a piece-wise constant function

in L2[0, 1] denoted by u
[N]
t . Specifically, the approximation

of an input ut via the function u
[N]
t with the partition Q =

{Q1, Q2, · · · , QnN} of [0, 1] will be specified as follows: for
all Qi, i ∈ {1, 2, . . . , nN},

uN
t (α) =

1

µ(Qi)

∫
Qi

ut(β)dβ, ∀α ∈ Qi, (34)

where µ(Qi) denotes the measure of Qi.

B. Limit Control for Network Systems

Theorem 7 (Appendix D) Consider the problem of driving
the systems (A[N];B[N]) in (26) and (A;B) in (29) from the
origin to some target state. Let A[N] = αN I + A[N], B[N] =
βN I + B[N], A = αI + A and B = βI + B. Let xT(u)
represent the terminal state of (A;B) under control u and
xN
T (u[N]) represent the terminal state of (A[N];B[N]) under

control u[N]. Then for any T > 0, there exists a control u[N]

for (A[N];B[N]) approximating the control u for (A;B) such
that

‖xT(u)− xN
T (u[N])‖2

≤ |α− αN | (|β|+ ‖B‖op)∫ T

0

(T − t)e(Lα+‖A‖op)(T−t) ‖ut‖2 dt

+ ‖AN
∆‖op(|β|+ ‖B‖op)

∫ T

0

e(αN+1)(T−t)(T − t)‖ut‖2dt

+ (|β − βN |+ ‖BN
∆‖op)∫ T

0

e

(
αN+‖A[N]‖op

)
(T−t)‖ut‖2dt

+ |βN |
∫ T

0

e(αN+‖A[N]‖op)(T−t)
∥∥∥ut − u

[N]
t

∥∥∥
2
dt,

(35)
where Lα = max{|αN |, |α|}, AN

∆ = A −A[N], BN
∆ = B −

B[N], and the control approximation is given in the following:

u
[N]
t (α) = nN

∫
Pi

ut(β)dβ, (36)

for all α ∈ Pi, t ∈ [0, T ], with the uniform partition
PnN = {P1, · · · , PnN}. Furthermore, if a sequence of
network systems {(A[N];B[N])}∞N=1 converges to a graphon
system (A;B) as in Definition 2, then for any ε > 0 there
exists Nε > 0 such that each N ≥ Nε,∥∥∥xT(u)− xN

T (u[N])
∥∥∥

2
< ε. (37)

2

The control law uN(·) for the finite network system
(αNI +AN ;βNI +BN ) is given by

uNt (i) = u
[N]
t (α), ∀i ∈ {1, ..., nN},∀α ∈ Pi, t ∈ [0, T ].

Note that uN always exists by definition since the control
approximation given in the definition (34) uses the same
uniform partition as the step function approximation in the
graphon space.

The operator norm in (35) can be replaced by the L2[0, 1]2

norm since ‖ · ‖op ≤ ‖ · ‖2.
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C. The Graphon State-to-state Control (GSSC) Strategy

Consider the control problem of steering the states of each
member of {(αNI +AN ;βNI +BN )}∞N=1 ∈ S to each of a
sequence of desired states {xNT ∈ RnN}∞N=1.

The Graphon State-to-state Control (GSSC) Strategy
consists of four steps:
S.1 Let {(αN I + A[N];βN I + B[N]) ∈ G1

AI × G1
AI}∞N=1 be

the sequence of graphon dynamical systems equivalent to
{(αNI + AN ;βNI + BN )}∞N=1 ∈ S under the mapping
MG, and assume it converges to the graphon system (αI+
A;βI + B) ∈ G1

AI × G1
AI as in Definition 2. Let {xN

T ∈
L2[0, 1]}∞N=1 be the image of {xNT ∈ RnN}∞N=1 under
MG, which is assumed to converge to some x∞T ∈ L2[0, 1]
in the L2[0, 1] norm.

S.2 Specify the corresponding state to state control problem
CP∞ for (αI + A;βI + B) ∈ G1

AI × G1
AI with x∞T as

the target terminal state and choose a tolerance ε > 0.
S.3 Find a control law u∞ := {uτ ∈ L2[0, 1], τ ∈ [0, T ]}

solving CP∞.
S.4 Then generate the control law {u[N]} according to The-

orems 7 for which the convergence of {xN
T (uN)} to x∞T

is guaranteed. Together with the assumed convergence
of {xN

T ∈ L2[0, 1]}∞N=1 to x∞T , it yields Nε such that
xN
T (uN) is within ε of xN

T for all N ≥ Nε under the
L2[0, 1] norm.

The notion of the effectiveness of the GSSC strategy for a
sequence of network systems is defined to mean that (1) the
terminal state is close to that achieved by the minimum energy
control; (2) the computation for generating the control law is
tractable.

The basic assumptions for the GSSC strategy are that (i)
a sequence of finite network systems of interest converges
to a limit graphon system (as in Definition 2) or a given
instance of the network sequence can be closely approximated
by a graphon system, and (ii) the corresponding state-to-state
control problem for the (limit) graphon system is tractable.

These assumptions, together with the approximation theo-
rem (i.e. Theorem 7), guarantee the effectiveness of the GSSC
strategy for the finite network, that is to say, the GSSC strategy
can achieve the target terminal state with a small error by
means of a tractable computation.

D. Min-Energy State-to-state Control for Graphon Systems

A specific control law which may be used in S.2 of the
GSSC strategy is described in this section.

Define the energy cost by the control over the time horizon
[0, T ] as J(u) =

∫ T
0
‖uτ‖2dτ, (0 < T < ∞). The objective

is to drive the system from some initial state x0 ∈ L2[0, 1]
to some target state xT ∈ L2[0, 1] using minimum control
energy. A function u∗ ∈ L2([0, T ];L2[0, 1]) is called an opti-
mal control if J(u∗) ≤ J(u), for all u ∈ L2([0, T ];L2[0, 1])
which drive the system from x0 to xT.

Theorem 8 (Appendix E) If the graphon system (A;B) in
(29) with WT as its graphon controllability Gramian operator
is exactly controllable, then the inverse operator W−1

T exists
and is a bounded operator. 2

Assume the system (A;B) is exactly controllable, then W−1

T

exists and the optimal control law that achieves the minimum
energy control is given by

u∗τ = BᵀeA
ᵀ
(T−τ)W−1

T (xT − eA(T )x0), τ ∈ [0, T ]. (38)

The minimum energy for controlling the system in time
horizon [0, T ] is

‖u‖2L2([0,T ];L2[0,1]) = [xT − eA(T )x0]
ᵀW−1

T [xT − eA(T )x0].
(39)

Denote the spectral decomposition of A is as follows
A(x, y) =

∑
`∈Iλ λ`f`(x)f`(y), where f` is the normalized

eigenfunction corresponding to the eigenvalue λ` and Iλ is
the index set for non-zero eigenvalues of A, which contains a
countable number of elements [15].

Proposition 4 (Appendix E) Consider a graphon system
(A; I). Then
1) the controllability Gramian operator is given by

WT = T I +
∑
`∈Iλ

(
1

2λ`
[e2λ`T − 1]− T

)
f`f
ᵀ
` ; (40)

2) the inverse of the controllability Gramian operator for
(A; I) is given by

W−1
T =

1

T
I− 1

T

∑
`∈Iλ

1
2λ`

[e2λ`T − 1]− T(
1

2λ`
[e2λ`T − 1]

) f`f
ᵀ
` . (41)

2

Note that limλ`→0

(
1

2λ`
[e2λ`T − 1]− T

)
= 0. We further

note that approximate controllability is not sufficient to achieve
state-to-state control since in that case the inverse operator
W−1
T may not be bounded on certain subspaces in L2[0, 1],

and moreover the corresponding energy required would be
unbounded.

VI. GRAPHON LINEAR QUADRATIC REGULATION (LQR)
OF NETWORK SYSTEMS

A. LQR Problems for Graphon Dynamical Systems

For finite T > 0, consider the problem of minimizing the
cost given by

J(u) =

∫ T

0

(
‖Cxτ‖22 + ‖uτ‖22

)
dτ + 〈P0xT,xT〉 (42)

over all controls u ∈ L2([0, T ];L2[0, 1]) subject to the system
model constrains in (29).

Assumption 1 P0 ∈ L(L2[0, 1]) is Hermitian and non-
negative; C ∈ L(L2[0, 1])

Finding the feedback control via dynamic programming
consists of the two following standard steps [32]:
1) Solving the Riccati equation

Ṗ = AᵀP+PA−PBBᵀP+CᵀC, P0 ∈ L(L2[0, 1]); (43)

2) Given the solution P to the Riccati equation, the optimal
control u∗ is given by

u∗t = −BᵀPT−tx∗t , t ∈ [0, T ] (44)
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and the optimal trajectory x∗ is then the solution to the
closed loop equation

ẋt = Axt − BBᵀPT−txt, t ∈ [0, T ],x0 ∈ L2[0, 1].
(45)

Let Σ(L2[0, 1]) =
{
T ∈ L(L2[0, 1]) : T is Hermitian

}
and

Σ+(L2[0, 1])

=
{
T ∈ Σ(L2[0, 1]) : 〈Tv,v〉 ≥ 0, ∀v ∈ L2[0, 1]

}
.

(46)

Denote the topological space of all strongly continuous map-
pings F : I → Σ(L2[0, 1]) endowed with strong conver-
gence (see [32]) by Cs(I; Σ(L2[0, 1])) where I denotes a
compact interval, that is, the convergence of FN to F in
Cs(I; Σ(L2[0, 1])) is defined by

∀v ∈ L2[0, 1], lim
N→∞

sup
t∈I
‖FN (t)v − F(t)v‖2 = 0. (47)

Proposition 5 ([32, Part IV-1]) Under Assumption 1, there
exist a unique solution to the Riccati equation (43) in
Cs([0, T ]; Σ+(L2[0, 1])) and an optimal solution pair (u∗,x∗)
to (44) and (45) where x∗ ∈ C([0, T ];L2[0, 1]) and u∗ ∈
L2([0, T ];L2[0, 1]). 2

B. The Graphon-Network LQR (GLQR) Strategy

Consider the control problem of regulating the states of each
member of {(αNI +AN ;βNI +BN )}∞N=1 ∈ S.

The Graphon-Network LQR (GLQR) Strategy is as
follows:
S.1 Let {(A[N];B[N]) ∈ G1

AI × G1
AI}∞N=1 be the sequence of

equivalent representation of network systems {(αNI +
AN ;βNI + BN )}∞N=1 ∈ S under the mapping MG and
assume that it converges to the graphon system (A;B) ∈
G1
AI × G1

AI as in Definition 2.
S.2 Define the linear quadratic cost for (A;B) as

J(u) =

∫ T

0

[∥∥Cxτ∥∥2

2
+
∥∥uτ∥∥2

2

]
dτ + 〈P0xT,xT〉 (48)

and the linear quadratic cost for (A[N];B[N]) as

J(u[N]) =

∫ T

0

[∥∥C[N]x
[N]
t

∥∥2

2
+
∥∥u[N]

t

∥∥2

2

]
dt

+ 〈P[N]
0 x

[N]
T ,x

[N]
T 〉 (49)

where it is assumed that C[N] → C and P[N]
0 → P0 in

the strong operator sense. Solve the infinite dimensional
Riccati equation for (A;B) to generate the solution P.

S.3 Approximate P to generate P̃N and hence the control law
u

[N]
t = −B[N]

ᵀ
P̃N
T−tx

[N]
t for (A[N];B[N]).

Parallel to the state-to-state control problem, we take the no-
tion of the effectiveness of the GLQR strategy for a sequence
of network systems to be that (1) the regulation cost and the
state trajectory are close to those achieved by the optimal LQR
control; (2) the computation for generating the control law is
tractable.

In analogy with the state-to-state control problem, the basic
assumptions for the GLQR strategy are that the sequence of
finite network systems converges to a limit graphon system (as

in Definition 2) or that a given network system can be closely
approximated by a graphon system, and that the corresponding
LQR problem for the (limit) graphon system is tractable.

These assumptions, together with Theorem 10, guarantee
the effectiveness of the GLQR strategy for the finite network
systems that are sufficiently close to the limit graphon system
for sufficiently large node cardinality.

C. Control Law Approximations

By approximating the Riccati equation solution P for (A;B)
we can generate P̃N that provides the control law for the finite
dimensional network system:

u
[N]
t = −B[N]

ᵀ
P̃N

(T−t)x
[N]
t . (50)

Consider the strongly continuous linear operator P in
Cs([0, T ]; Σ+(L2[0, 1])). Its approximation is given by

P̃N
t (x, y) =

〈1Qi ,Pt1Qj 〉
µ(Qi)µ(Qj)

, ∀t ∈ [0, T ], ∀(x, y) ∈ Qi ×Qj ,
(51)

where {Q1, Q2, . . . , QnN} forms a partition of [0, 1] and
µ(Qi) represents the length of the interval Qi. In the case
of uniform partition, µ(Qi) = 1

nN .

Lemma 4 Let P̃N be generated by the step function approx-
imation of P via the N uniform partition of [0, 1] according
to (51). Then

lim
N→∞

P̃N = P, in Cs([0, T ]; Σ(L2[0, 1])). (52)
2

PROOF Consider an arbitrary function v ∈ L2[0, 1]. Based
on the definition of the step function approximation in (51),
for any t ∈ [0, T ], P̃N

t v is the piece-wise-constant function
approximation of Ptv ∈ L2[0, 1] as in (32) and by Proposition
3, ‖P̃N

t v‖2 ≤ ‖Ptv‖2. Since the Riccati equation (43) over the
closed bounded interval [0, T ] has a solution P (see Proposition
5), for any v ∈ L2[0, 1] there exist Cv > 0 such that

‖Pt0v − Ptv‖2 ≤ Cv|t0 − t|, ∀t0, t ∈ [0, T ]. (53)

Note that (P̃N
t0−P̃

N
t )v ∈ L2[0, 1] is an approximation of (Pt0−

Pt)v ∈ L2[0, 1] following (32). Therefore by the contraction
property in Proposition 3, we obtain∥∥∥P̃N

t0v − P̃N
t v
∥∥∥

2
≤ Cv|t0 − t|, ∀t0, t ∈ [0, T ], (54)

and hence the sequence of functions {P̃N
(·)v}

∞
N=1 is equicon-

tinuous (see e.g. [29, p.43]). Furthermore, P̃N
(·)v and P(·)v are

continuous functions defined over the closed bounded time
interval [0, T ]. Hence by the Arzelà-Ascoli Theorem,

∀t ∈ [0, T ], lim
N→∞

∥∥∥P̃N
t v − Ptv

∥∥∥
2

= 0 (55)

implies that, for any v ∈ L2[0, 1],

lim
N→∞

sup
t∈[0,T ]

∥∥∥P̃N
t v − Ptv

∥∥∥
2

= 0, (56)

which gives the result in (52). �
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Lemma 5 (Appendix F) Let P̃N be generated by step func-
tion approximation from P via the N uniform partition of [0, 1]
according to (51). If P[N] converges strongly to the solution P
in Cs([0, T ]; Σ(L2[0, 1])), then for any x ∈ L2[0, 1],

lim
N→∞

sup
t∈[0,T ]

∥∥∥P̃N
t x− P[N]

t x
∥∥∥

2
= 0. 2

Let Ricc(A,B,C,P0) denote the Riccati equation in (43)
with initial condition P0.

Assumption 2
1) For any N ≥ 1, P[N]

0 ∈ L(L2[0, 1]) is Hermitian and
non-negative, and C[N] ∈ L(L2[0, 1]).

2) The system sequence {(A[N],B[N]} converges to (A;B) as
in Definition 2.

3) The sequences {C[N]} and {P[N]
0 } converge strongly to C

and P0, respectively, as N →∞.
4) C and C[N] are self-adjoint linear operators.

Theorem 9 Consider a sequence of network systems {(αNI+
AN ;βNI+BN )}∞N=1 with {(A[N];B[N]) ∈ G1

AI×G1
AI}∞N=1 as

the equivalent representation. Let P and P[N] be the solutions
to Ricc(A,B,C,P0) and Ricc(A[N],B[N],C[N],P[N]

0 ) respec-
tively. If Assumption 2 holds, then for any horizon [0, T ],
T > 0,

lim
N→∞

P[N] = P in Cs([0, T ]; Σ(L2[0, 1])). 2

PROOF From Theorem 4, we know for all T > 0 and
all x ∈ L2[0, 1], limN→∞ etA

[N]
x = etAx uniformly in

[0, T ]. Since the system sequence {(A[N],B[N])} converges
to (A;B) as in Definition 2, {B[N]} converges to B in the
strong operator sense. We can now apply [32, Theorem 2.2,
Part IV], specialized to the Hilbert space L2[0, 1]. Since its
hypotheses are then satisfied in the present case, the desired
result follows. �

Let P[N] denote the solution to the Riccati equation for
(A[N];B[N]) that converges strongly to the solution P of the
Riccati equation for (A;B). Let P̃N be the step function
approximation of P generated via the N uniform partition of
[0, 1] according to (51).

Theorem 10 (Appendix F) Consider the time horizon [0, T ].
Assume the sequence of initial conditions {x[N]

0 ∈ L2[0, 1]}
is convergent and Assumption 2 holds. Let the optimal linear
quadratic control law for (A[N];B[N]) be generated by

uN∗t = −B[N]
ᵀ
P[N]

(T−t)x
N∗
t , (57)

where the optimal state trajectory is given by xN∗, and let the
graphon approximate control law for (A[N];B[N]) be given by

u
[N]
t = −B[N]

ᵀ
P̃N

(T−t)x
[N]
t , (58)

where the corresponding state trajectory is given by x[N]. Then

∀t ∈ [0, T ], lim
N→∞

∥∥∥xN∗t − x
[N]
t

∥∥∥
2

= 0,

and limN→∞
∣∣J(uN∗)− J(u[N])

∣∣ = 0. 2

VII. NUMERICAL EXAMPLES

A. Convergent Network Sequences with Sampled Weightings
The generation of a randomly sampled network of size N

from a graphon A is specified as follows:
1) Sample N points from a uniform distribution in [0, 1]. Sort

the sample points in the decreasing order of their values
and label them from node 1 to node N . Denote the node
set by VN and the value of node i ∈ VN by vi.

2) Connect the nodes i, j ∈ VN with edge weight A(vi, vj)
to generate the network GN . Then ANij = A(vi, vj) is
the ijth element of the adjacency matrix of GN .

If A is almost everywhere continuous, then the step function
A[N] of AN = [ANij ] converges to A in the δ1 metric as
N → ∞ (see e.g. [36]), that is, δ1(A[N],A) → 0, as N →
∞. Furthermore, this implies δ2(A[N],A) → 0, as N → ∞
since A ∈ W1 is uniformly bounded. By the generation proce-
dure, we obtain the labeling that approximates the minimum
distance between the network and the limit, and hence the
sequence of networks converge in the L2[0, 1]2 metric to the
limit.

As an example, we consider the following sinusoidal
graphon A: for all x, y ∈ [0, 1],

A(x, y) = 0.5 cos(2π(x− y)) + 0.25 cos(4π(x− y)).

The normalized eigenfunctions are f1 =
√

2 cos 2π(·), f2 =√
2 cos 4π(·), f3 =

√
2 sin 2π(·) and f4 =

√
2 sin 4π(·) with

eigenvalues λ1 = λ3 = 1
4 and λ2 = λ4 = 1

8 .

B. Minimum Energy Graphon State-to-state Control
Consider a network system evolving according to node aver-

aging dynamics with GN describing the dynamic interactions.
Suppose each node has an independent input channel. Denote
the system by (AN ; IN ), where AN is the adjacency matrix
of GN and IN is the identity input mapping. The network
system (AN ; IN ) with node averaging dynamics is therefore
described by

ẋit =
1

N

N∑
j=1

ANijx
j
t + uit, xit, u

i
t ∈ R, i ∈ {1, ..., N}, (59)

where ANij is sampled from the sinusoidal graphon.
We solve the minimum energy control problem of driving

the states of the network system (AN ; IN ) to a terminal
state xNT from the origin over the time horizon [0, T ] with
T = 2. Here we consider the limit target terminal state
xT = 1√

2π
e−50(α−0.5)2 , α ∈ [0, 1].

Based on Proposition 4, the system (A; I) is exactly control-
lable and the inverse of the controllability Gramian operator
is explicitly given by (41). The minimum control law based
on (38) is explicitly given by

ut =
1

T
xT

+
1

T

4∑
`=1

f`〈xT, f`〉
[
−

2λ`

(
e2λ`T−1

2λ`
− T

)(
eλ`(T−t) − 1

)
e2λ`T − 1

+
(
eλ`(T−t) − 1

)
−

2λ`

(
e2λ`T−1

2λ`
− T

)
e2λ`T − 1

]
, t ∈ [0, T ],
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with 〈xT, f1〉 = −0.116, 〈xT, f2〉 = 0.064, 〈xT, f3〉 =
〈xT, f4〉 = 0. Then the control law uN(·) for a network system
(AN ; IN ) generated based on the approximation in (36). The
error ‖xT(u)− xN

T (u[N])‖2 is bounded as in Theorem 7 and
converges to 0 as N → ∞. The result of a simulation for a
network system with 100 nodes using the GSSC strategy is
shown in Figure 3.
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(a) A network of size 100 in a sequence which
converges to the sinusoidal graphon limit A
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Fig. 3. Minimum energy graphon state-to-state control

C. Graphon-Network LQR

Consider a network system with dynamics given by

ẋit = αxit +
1

N

N∑
j=1

ANijx
j
t + βuit, xit, u

i
t ∈ R. (60)

The objective is to design a control law that minimizes the
following cost with network coupling:

J(u) =
1

N

N∑
i=1

[ ∫ T

0

(
q(xit −

η

N

N∑
j=1

ANijx
j
t )

2 + (uit)
2
)
dt

+ qT

(
xiT −

η

N

N∑
j=1

ANijx
j
T

)2]
, (61)

where q, qT ≥ 0. That is we want to regulate the state of each
subsystem to be close to the local weighted network average
with small control effort. The equivalent formulation of this
problem for the graphon system following (26) is given by

ẋ
[N]
t = αx

[N]
t + A[N]x

[N]
t + βu

[N]
t

J(u[N]) =

∫ T

0

[
q
∥∥∥(I− ηA[N])x

[N]
t

∥∥∥2

2
+
∥∥∥u[N]

t

∥∥∥2

2

]
dt

+ qT

∥∥∥(I− ηA[N])x
[N]
T

∥∥∥2

2
,

(62)

where x
[N]
t ,u

[N]
t ∈ L2

pwc[0, 1],A[N] ∈ W1. The limit problem
(if exists) or the approximate problem is given by

ẋt = αxt + Axt + βut

J(u) =

∫ T

0

[
q ‖(I− ηA)xt‖22 + ‖ut‖22

]
dt

+ qT ‖(I− ηA)xT‖22 ,

(63)

where A ∈ W1, xt,ut ∈ L2[0, 1]. Let us consider a special
case where A permits an exact finite spectral decomposition
as follows:

A(x, y) =

d∑
`=1

λ`f`(x)f`(y), (x, y) ∈ [0, 1]2, (64)

where λ1, λ2, ..., λd are non-zero eigenvalues of A and
f1, f2, ..., fd represent orthonormal eigenfunctions. Then the
solution P to the Riccati equation

Ṗt = (αI + A)
ᵀPt + Pt(αI + A)− β2(Pt)2 + q(I− ηA)2

P0 = qT (I− ηA)2

(65)
is given by Pt = Π̆tI +

∑d
`=1

(
Π`
t − Π̆t

)
f`f
ᵀ
` , where Π̆ and

Π` are the solutions to the following scalar Riccati equations

˙̆
Πt = 2αΠ̆t − β2(Π̆t)

2 + q,

Π̇`
t = 2(α+ λ`)Π

`
t − β2(Π`

t)
2 + q(1− ηλ`)2,

Π̆0 = qT , Π`
0 = qT (1− ηλ`)2, 1 ≤ ` ≤ d.

(66)

The optimal control for the limit problem is then given by

ut = −βΠ̆(T−t)xt − β
d∑
`=1

(Π`
(T−t) − Π̆(T−t))〈xt, f`〉f`.

See [26], [37] for the details of the solution method, which
provides solutions to a more general class of graphon control
problems with network couplings in states, controls and costs.

If A[N] → A as N → ∞ in L2[0, 1]2, then all the
conditions in Assumption 2 are satisfied. Hence one can
generate approximate control for the original network system.

Consider the following parameters: α = 2, β = 1.5, q = 3,
qT = 7, η = 3, n = 1 and N = 100. The numerical example
is shown in Figure 4.

A direct solution to the original N -dimensional network
LQR problem involves solving an N ×N dimensional Riccati
equation. However, the graphon approximate control method
here involves only solving d+1 scalar Riccati equations, where
d is the number of non-zero eigenvalues of the graphon limit
A. If the network is extremely large in size and the limit
A permits simple spectral representations, then the graphon
control method would significantly reduce the computation
complexity.

VIII. DISCUSSION

The basic assumptions justifying the application of graphon
control strategies are, first, that a given sequence of finite
network systems converges to a unique limit graphon system
(as in Definition 2) or that a given instance can be closely
approximated by a graphon system, along with the measure
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(a) This is a network of size 100 in a sequence that converges to the
graphon A. This figure illustrates the structure, spectral properties and
the step function representation.
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Fig. 4. Graphon approximate control and optimal control are applied to a
network of size 100 in the sequence converging to the graphon limit. With the
graph interpreted as an L2[0, 1]2 function, the distance between the graph and
the graphon limit is 0.061 in the operator norm and is 0.109 in the L2[0, 1]2

norm. The maximum trajectory difference from the optimal control is less than
3.320% of the maximum of initial states. The graphon approximate control
cost is 0.087% higher than the optimal LQR control cost.

preserving bijections that achieve the best fit, and second,
that the corresponding control problem for the (limit) graphon
system is tractable. Under these assumptions, Theorems 7 and
10 guarantee the effectiveness graphon control strategies for
the finite large-scale complex network systems.

A plausible empirical approach to model the required infi-
nite limit graphon G∞ is to fit two dimensional Fourier series
to the step function representation of the adjacency matrix.
Such parametric modelling of empirical data could resemble
parametric estimation in statistics and system identification.
Moreover, due to the compactness of graphon operators, repre-
sentations or approximations by simple spectral decomposition
are possible [38] and will be analyzed in future work.

The generation of the graphon approximation models in-
evitably deals with relabellings. Although in the graphon
control design methodology we do not restrict the labeling to
be that of the best fit to the data, the control error still depends
on the labeling of the nodes. Furthermore, the labeling of the
nodes on the networks is necessary for control implementation.
To find the best labellings for general graphs can be a complex
combinatorial task. Consequently, we underline that it is as-
sumed in this paper that the best labeling is known beforehand,
either through a specific way of growing the networks with
labels that ensure the best fit to the limit or through graphon
estimation methods [39].

IX. CONCLUSION

We propose a method to approximately control networks of
linear systems using the inherent limit described by graphons.
Important aspects requiring further investigations include: (1)
the application of the proposed limit graphon control strategy

to asymmetric network systems where the interactions of
dynamics are described by directed networks; (2) the creation
of an equivalent theory for sparse networks to the dense
case developed here; (3) the generation of a methodology
for systematically fitting bivariate analytic models to network
data; (4) the application of graphon control to stochastic linear
quadratic Gaussian problems; (5) the analysis of decentralized
graphon control via Mean Field Game theory [17]; (6) the
graphon control analysis to problems with non-symmetric
local dynamic such as harmonic oscillator dynamics [40].

APPENDIX A
LEMMAS 6-8

Lemma 6 Consider a step function A[N] ∈ W1 defined via
a partition P = {P1, ..., PnN} and u

[N]
τ ∈ L2

pwc[0, 1] defined
via the same partition P by

u[N]
τ (α) = nN

∫
Pi

uτ (β)dβ, ∀α ∈ Pi,

where uτ ∈ L2[0, 1]. Then the following result holds:

(A[N])ku[N]
τ = (A[N])kuτ , k ≥ 1. (67)

2

PROOF Let A[N ]
ij = A[N](x, y), for all (x, y) ∈ (Pi, Pj). Then

for all x ∈ Pi,

[A[N]uτ ](x) =

∫ 1

0

A[N](x, y)uτ (y)dy

=
∑
j

∫
Pj

A
[N ]
ij uτ (y)dy =

∑
j

A
[N ]
ij

∫
Pj

uτ (y)dy

=
∑
j

A
[N ]
ij · µ(Pj) · u[N]

τ (x),

(68)

[A[N]u[N]
τ ](x) =

∑
j

∫
Pj

A
[N ]
ij u[N]

τ (y)dy,

=
∑
j

A
[N ]
ij · µ(Pj) · u[N]

τ (x).
(69)

(68) and (69) give the equality A[N]u
[N]
τ = A[N]uτ , which

immediately implies (67). �

Lemma 7 For any graphon W or any function W in
L2[0, 1]2, ‖W‖op ≤ ‖W‖2. 2

PROOF

‖W‖op = sup
x 6=0,x∈L2[0,1]

‖Wx‖2
‖x‖2

= sup
x 6=0,x∈L2[0,1]

√∫ 1

0

[∫ 1

0
W(α, β)x(β)dβ

]2
dα

‖x‖2

≤ sup
x 6=0,x∈L2[0,1]

√∫ 1

0

[∫ 1

0
W2(α, β)dβ

∫ 1

0
x2(β)dβ

]
dα

‖x‖2

= sup
x 6=0,x∈L2[0,1]

‖x‖2
√∫ 1

0

∫ 1

0
W2(α, β)dβdα

‖x‖2
= ‖W‖2.
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Lemma 8 For any u ∈ L2[0, 1], any A ∈ W1, and any t ∈
[0, T ], the following inequalities hold∥∥eAtu∥∥

2
≤ et‖A‖op‖u‖2 ≤ et‖A‖2‖u‖2. 2

PROOF By recursively applying the definition of the operator
norm, we obtain that ‖Wk‖op ≤ ‖W‖kop, k ∈ N ∪ {0}, for
any W ∈ W1. Hence,

∥∥eAtu∥∥
2
≤
∞∑
k=0

1

k!
tk‖Aku‖2 ≤

∞∑
k=0

1

k!
tk‖A‖kop‖u‖2

= et‖A‖op‖u‖2 ≤ et‖A‖2‖u‖2. (by Lemma 7)
�

Results in Lemma 6, Lemma 7 and Lemma 8 generalize to
functions in any uniformly bounded subsets ofW , that is, any
set of symmetric measurable functions W : [0, 1]2 → I where
I is a bounded interval in R.

APPENDIX B
PROOFS OF GRAPHON SYSTEM PROPERTIES

A. Proof of Lemma 3

PROOF Let PnN = {P1, ..., PnN} be the uniform parti-
tion of [0, 1] with Pi = [ i−1

nN ,
i
nN ), 1 ≤ i < nN, and

PnN = [nN−1
nN , 1]. Consider any xs ∈ L2

pwc[0, 1] and its
corresponding vector x ∈ RnN following the vetor-to-PWC-
function mapping MG. Since

[A[N]xs](α) =

∫ 1

0

A[N](α, β)xs(β)dβ, xs ∈ L2
pwc[0, 1],

it follows that for all α ∈ Pi,

[A[N]xs](α) =

nN∑
j=1

∫
Pj

A[N](α, β)xs(β)dβ

=

nN∑
j=1

∫
Pj

ANijxjdβ =

nN∑
j=1

1

nN
ANijxj

=
1

nN
[ANx]i = [AN ◦ x]i,

(70)

where xj denotes the jth element of x ∈ RnN and [ANx]i
denotes the ith element of ANx ∈ RnN . This implies that
the step function A[N] in the graphon space, considered as
an operator, represents a mapping in L2[0, 1]; this operator is
equivalent to the matrix transformation AN with ◦ operation
in RnN and the corresponding mapping MG. A similar
conclusion holds for B[N] and BN . Furthermore, it is obvious
that

∀γ ∈ Pi, αN Ixs(γ) = αNxs(γ) = αNxi, (71)

and a similar conclusion holds for βN I and βNI . Hence we
conclude that the trajectory of the system (αNI+AN ;βNI+
BN ) corresponds one-to-one to that of (αN I + A[N];βN I +
B[N]) under the corresponding vetor-to-PWC-function map-
ping MG. �

B. Proof of Theorem 4

PROOF Let us define Pk(x, y) =
∑k
i=0 x

k−iyi. Then xk −
yk = (x− y)Pk−1(x, y). We obtain that for k ≥ 1

Ak
N −Ak

∗ = Pk−1(AN,A∗)(AN −A∗).

Since A(k−i−1)Ai
∗ ∈ W1, for all i ∈ {0, 1, ...k−1}, we know

that ‖A(k−i−1)Ai
∗‖2 ≤ 1. Hence, by Lemma 7,

‖Pk−1(AN,A∗)‖op ≤
k−1∑
i=0

‖A(k−i−1)Ai
s‖2 ≤ k · 1. (72)

For an arbitrary x ∈ L2[0, 1] and finite t, 0 ≤ t <∞,∥∥eANtx− eA∗tx
∥∥

2

∞∑
k=1

tk

k!
‖(Ak

N −Ak
∗)x‖2

≤
∞∑
k=1

tk

k!
‖Pk−1(AN,A∗)‖op · ‖AN

∆‖op‖x‖2

≤
∞∑
k=1

tk

k!
· k · ‖A∆‖op‖x‖2 = tet · ‖AN

∆‖op‖x‖2.

(73)

It follows that for t ∈ [0, T ]∥∥eANtx− eA∗tx
∥∥

2
≤ TeT · ‖AN

∆‖op‖x‖2. (74)

Hence the convergence is point-wise in time and uniform in t
over [0, T ] and hence (20) holds. Furthermore,∥∥∥e(αN I+AN)tx− e(αI+A∗)tx

∥∥∥
2

=
∥∥eαN teANtx− eαteA∗tx

∥∥
2

≤
∥∥eαN t(eANt − eA∗t)x

∥∥
2

+
∥∥(eαN t − eαt)eA∗tx

∥∥
2

≤ eαN ttet‖AN
∆‖op‖x‖2 + |α− αN |te(Lα+‖A∗‖op)t ‖x‖2 ,

(75)
where Lα = max{|α|, |αN |}. The last step of (75) is due to
equation (73), Lemma 8 and the following

|eαt − eαN t| =

∣∣∣∣∣
∞∑
k=0

1

k!
[(α)k − (αN )k]tk

∣∣∣∣∣
≤
∞∑
k=1

1

k!
|α− αN | · kL(k−1)

α tk = |α− αN |tetLα
(76)

where t > 0 and Lα = max{|α|, |αN |}. An immediate
implication of (75) is that for t ∈ [0, T ],∥∥∥e(αN I+AN)tx− e(αI+A∗)tx

∥∥∥
2

≤ eαNTTeT ‖AN
∆‖op‖x‖2 + |α− αN |Te(Lα+‖A∗‖op)T ‖x‖2 ,

(77)
By the convergence of {αN}, we know {αN} and {Lα} are
both uniformly bounded. This, together with (77), implies the
convergence in (21) which is uniform in time over a closed
time horizon [0, T ]. �

APPENDIX C
PROOFS FOR EXACT CONTROLLABILITY

A. Proof of Theorem 5

PROOF Since any A ∈ W1 defines a self-adjoint and compact
operator, it has a discrete spectrum [15], and the maximum
absolute value of eigenvalues of A equals to the operator norm
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[29, Theorem 12.31], that is, ‖A‖op = max` |λ`|, where {λ`}
denotes the set of eigenvalues of A. For any A ∈ W1, A is a
bounded operator on L2[0, 1], that is, there exists some finite
c1 > 0, such that ‖A‖op ≤ c1. Therefore for ` ∈ N, c1 ≥
λ` ≥ −c1 and hence for t > 0, ‖eAt‖op ≥ eλ`t ≥ e−c1t > 0.
Hence based on Lemma 1, for t > 0,

‖eAt‖op = ‖e(αI+A)t‖op = eαt‖eAt‖op ≥ e(α−c1)t > 0. (78)

This implies eAt as an operator is uniformly positive definite.
Since all the values in the spectrum of BBᵀ as a self-joint

operator are lower bounded by a positive constant, there exists
c > 0 such that, for all x ∈ L2[0, 1],
〈BBᵀx, x〉 ≥ c‖x‖22. See e.g. [29, Theorem 12.12]. Consider

the time horizon [0, T ]. For any h ∈ L2[0, 1],

〈WTh, h〉 =

∫ T

0

〈BBᵀeA
ᵀ
th, eA

ᵀ
th〉dt ≥ c

∫ T

0

‖eA
ᵀ
th‖22dt

≥ cT (e(α−c1)T )2‖h‖22,
(79)

and hence the system (A;B) is exactly controllable. �

B. Proof of Proposition 2
PROOF By Lemma 7, since A and B are graphons in W1,
there exists c1 ≥ 0 and c2 ≥ 0, such that

c1 ≥ ‖A‖2 ≥ ‖A‖op and c2 ≥ ‖B‖2 ≥ ‖B‖op. (80)

Hence

‖eAt‖op ≤ sup
x∈L2[0,1],‖x‖2=1

∞∑
k=0

1

k!
‖At‖kop‖x‖2

= e‖A‖opt ≤ ec1t, t ∈ [0, T ].

(81)

Therefore

‖WT ‖2 ≤
∫ T

0

∥∥∥eAtBB
ᵀ
eA

ᵀ
t
∥∥∥

2
dt ≤

∫ T

0

∥∥eAtB∥∥2

2
dt

≤
∫ T

0

(
‖eAt‖op‖B‖2

)2
dt ≤ T (ec1T c2)2 <∞,

(82)
which implies WT ∈ L2[0, 1]2 and hence WT is a compact
(and self-joint) operator on L2[0, 1] functions (see e.g. [41,
Chapter 2, Proposition 4.7]). This means that WT has a
countable number of nonzero (real) eigenvalues {λ1, λ2, ...}
such that λn → 0, and each eigenvalue has finite multiplicity
(see e.g. [32]). Therefore WT is not uniformly positive definite
and hence the system (A;B) is not exactly controllable. �

APPENDIX D
PROOFS FOR STATE-TO-STATE GRAPHON CONTROL

Lemma 9 Consider any u ∈ L2
(
[0, T ];L2[0, 1]

)
, A, A[N] ∈

G1
AI , and any t ∈ [0, T ]. Let A = (αI + A), A[N] = (αN I +

A[N]). Then the following inequality holds∥∥∥∥∥
∫ T

0

(
eA(T−t) − eA

[N](T−t)
)
utdt

∥∥∥∥∥
2

≤ |α− αN |
∫ T

0

Lα(T − t)e(Lα+‖A‖op)(T−t) ‖ut‖2 dt

+ ‖AN
∆‖op

∫ T

0

e(αN+1)(T−t)(T − t)‖ut‖2dt

(83)

where Lα = max{|α|, |αN |} and AN
∆ = A−A[N]. 2

PROOF An application of (18) in Theorem 4 leads to the above
result. �

A. Proof of Theorem 7

PROOF

‖xT(u)− xN
T (u[N])‖2

=

∥∥∥∥∥
∫ T

0

eA(T−t)Butdt−
∫ T

0

eA
[N](T−t)B[N]u

[N]
t dt

∥∥∥∥∥
2

≤

∥∥∥∥∥
∫ T

0

[eA(T−t) − eA
[N](T−t)]Butdt

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ T

0

eA
[N](T−t)

[
But − B[N]u

[N]
t

]
dt

∥∥∥∥∥
2

≤ |α− αN | (|β|+ ‖B‖op)∫ T

0

(T − t)e(Lα+‖A‖op)(T−t) ‖ut‖2 dt

+‖AN
∆‖op(|β|+ ‖B‖op)

∫ T

0

e(αN+1)(T−t)(T − t)‖ut‖2dt

+

∥∥∥∥∥
∫ T

0

eA
[N](T−t)

[
But − B[N]u

[N]
t

]
dt

∥∥∥∥∥
2

(by Lemma 9)

≤ |α− αN | (|β|+ ‖B‖op)∫ T

0

(T − t)e(Lα+‖A‖op)(T−t) ‖ut‖2 dt

+‖AN
∆‖op(|β|+ ‖B‖op)

∫ T

0

e(αN+1)(T−t)(T − t)‖ut‖2dt

+(|β − βN |+ ‖B−B[N]‖op)∫ T

0

e

(
αN+‖A[N]‖op

)
(T−t)‖ut‖2dt

+|βN |
∫ T

0

e(αN+‖A[N]‖op)(T−t)
∥∥∥ut − u

[N]
t

∥∥∥
2
dt.

(84)
The last step is due to Lemma 2 and the following[

But − B[N]u
[N]
t

]
=
[
(βI + B)ut − (βN I + B[N])u

[N]
t

]
=
[
(βu− βNu

[N]
t ) + But −B[N]u

[N]
t

]
=
[
(βu− βNu

[N]
t ) + But −B[N]ut

]
(by Lemma 6)

= (β − βN )ut + βN (ut − u
[N]
t ) + (B−B[N])ut.

(85)
By the convergence of {αN}, {βN}, {A[N]} and {B[N]},

we obtain that they are uniformly bounded. Based on Propo-
sition 3, ‖u[N]

t ‖2 ≤ ‖ut‖2, for any t ∈ [0, T ] and any N ∈ N.
Hence from (84), we obtain

lim
N→∞

∥∥∥xT(u)− xN
T (u[N])

∥∥∥
2

= 0. �

APPENDIX E
INVERSE OF THE CONTROLLABILITY GRAMIAN

Let T and S be linear bounded operators on a Hilbert space.
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Proposition 6 ([32]) Assume that T and S are symmetric and
nonnegative. Then I + TS is one-to-one and onto; moreover
‖S(I + TS)−1‖ ≤ ‖S‖, and ‖(I + TS)−1‖ ≤ 1 + ‖T‖‖S‖. 2

Following this we prove the result on the existence of the
inverse mapping of graphon controllability Gramian operator
when the system is exactly controllable.

A. Proof of Theorem 8

PROOF If the graphon system (A;B) is exactly controllable,
then

∀h ∈ L2[0, 1], ∃cT > 0, (WTh, h) ≥ cT ‖h‖2.

Let I denote the identity operator from L2[0, 1] to L2[0, 1]. Let
M = WT − 1

2cT I, then WT = 1
2cT (I + 2

cT
M). By definition,

the operator M is nonnegative and symmetric and hence 2
cT

M
is nonnegative and symmetric. By Proposition 6, (I+ 2

cT
M) is

one-to-one and onto and the inverse operator is bounded. By
a scaling factor 1

2cT , WT = 1
2cT (I+ 2

cT
M) is one-to-one and

onto and hence the inverse operator W−1
T exists. Since the

scaling factor 1
2cT is strictly positive and finite, the inverse

operator W−1
T is also bounded. �

B. Proof of Proposition 4

PROOF The controllability Gramian is given by

WT =

∫ T

0

eAteA
ᵀ
tdt =

∫ T

0

(
I +

∞∑
i=1

(2At)i
1

i!

)
dt

= T I +
∑
`∈Iλ

(
1

2λ`
[e2λ`T − 1]− T

)
f`f
ᵀ
` .

(86)

Suppose u = WTx. We need to find the operator that maps
u to x. So we set

u = WTx = Tx +
∑
`∈Iλ

(
1

2λ`
[e2λ`T − 1]− T

)
f`f
ᵀ
` x.

Therefore x = 1
T u −

1
T

∑
`∈Iλ

(
1

2λ`
[e2λ`T − 1]− T

)
f`f
ᵀ
` x.

From the definition of u, we obtain fᵀ` u =(
1

2λ`
[e2λ`T − 1]

)
fᵀ` x. Therefore

x =
1

T
u− 1

T

∑
`∈Iλ

(
1

2λ`
[e2λ`T − 1]− T

)
(

1
2λ`

[e2λ`T − 1]
) f`f

ᵀ
` u.

Equivalently, we obtain the result in (41). �

APPENDIX F
PROOFS FOR GRAPHON-LQR

A. Proof of Lemma 5

PROOF By Lemma 4 and the definition of the convergence in
Cs([0, T ]; Σ(L2[0, 1])), we obtain that for any x ∈ L2[0, 1]

lim
N→∞

sup
t∈[0,T ]

‖P̃N
t x− Ptx‖2 = 0,

lim
N→∞

sup
t∈[0,T ]

‖Ptx− P[N]
t x‖2 = 0.

(87)

Since

sup
t∈[0,T ]

‖P̃N
t x− P[N]

t x‖2

≤ sup
t∈[0,T ]

‖P̃N
t x− Ptx‖2 + sup

t∈[0,T ]

‖Ptx− P[N]
t x‖2,

(88)

we obtain limN→∞ supt∈[0,T ] ‖P̃N
t x− P[N]

t x‖2 = 0. �

Lemma 10 If a sequence {TN ∈ L(L2[0, 1])} of bounded
linear operators for L2[0, 1] functions converges strongly to
T ∈ L(L2[0, 1]), that is,

∀x ∈ L2[0, 1], lim
N→∞

‖TNx− Tx‖2 = 0, (89)

then there exists c > 0 such that

∀N ∈ N, ‖TN‖op ≤ c. 2

PROOF Consider any fixed x ∈ L2[0, 1] and an arbitrarily
fixed ε > 0. The strong convergence of {TN} implies there
exist N0 > 0 such that for N > N0, ‖TNx − Tx‖2 ≤ ε,
which implies ‖TNx‖2 ≤ ε + ‖Tx‖2 for N > N0. Let
L = max{‖TNx‖2 : 1 ≤ N ≤ N0}. Then ‖TNx‖2 ≤
max{L, ε + ‖Tx‖2}. That is, for any fixed x ∈ L2[0, 1],
‖TNx‖2 is uniformly bounded in N . Since TN is a linear
bounded operator from L2[0, 1] to L2[0, 1], the Uniform
Boundedness Principle applies here and hence ‖TN‖op is
uniformly bounded in N . �

B. Proof of Theorem 10
PROOF The closed loop system with the optimal control law
is given by

ẋN∗t =
(
A[N] − B[N]B[N]

ᵀ
P[N]

(T−t)

)
xN∗t , t ∈ [0, T ]; (90)

the closed loop system under the graphon approximate control
law is given by

ẋ
[N]
t =

(
A[N] − B[N]B[N]

ᵀ
P̃N

(T−t)

)
x

[N]
t , t ∈ [0, T ]. (91)

The initial conditions for (90) and (91) are given by x0 ∈
L2[0, 1]. Let eNt := xN∗t − x

[N]
t . By (90) and (91), we obtain

ėNt = FNt eNt + vN
t ,

FNt :=
(
A[N] − B[N]B[N]

ᵀ
P[N]

(T−t)

)
,

vN
t := B[N]B[N]

ᵀ (
P[N]

(T−t) − P̃N
(T−t)

)
xN∗t .

(92)

Since eN0 = 0 ∈ L2[0, 1], the integral representation of (92) is
given by eNt =

∫ t
0
vN
τ dτ +

∫ t
0
FNτ eNτ dτ. Hence we obtain

‖eNt ‖2 ≤
∫ t

0

‖vN
τ ‖2dτ +

∫ t

0

‖FNτ ‖op‖eNτ ‖2dτ. (93)

Applying the Grönwall-Bellman inequality [42, p.7], we obtain

‖eNt ‖2 ≤
∫ t

0

e
∫ t
s
‖FNτ ‖opdτ‖vN

s ‖2ds. (94)

By the convergence of A[N],B[N] and P[N], we obtain that
the limit F := A − BBᵀP(·) of the sequence {FN} exists
in Cs([0, T ]; Σ(L2[0, 1])), that is,

FN → F as N →∞ in Cs([0, T ]; Σ(L2[0, 1])); (95)
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furthermore, F is bounded in Cs([0, T ]; Σ(L2[0, 1])), that is,

∀x ∈ L2[0, 1], sup
t∈[0,T ]

‖Ftx‖2 <∞. (96)

By the convergence of {FN} in Cs([0, T ]; Σ(L2[0, 1])), we
obtain that for every x ∈ L2[0, 1] there exists c > 0 such that
supt∈[0,T ] ‖FNt x‖2 ≤ c holds for all N . Therefore,

∀x ∈ L2[0, 1], sup
T∈F
‖Tx‖2 <∞, (97)

where F := {FNt : t ∈ [0, T ], N ∈ {1, . . . ,∞}}. By the
Uniform Boundedness Principle [41, Chapter III, Theorem
14.1], there exists c

F
> 0 such that

sup
T∈F
‖T‖op ≤ cF . (98)

Furthermore, since {B[N]} converges strongly to B, {‖B[N]‖op}
is uniformly bounded in N by Lemma 10. Let c

B
denote this

uniform bound. This, together with (94) and (98), yields

‖eNt ‖2 ≤
∫ t

0

e(t−s)c
F

∥∥vN
s

∥∥
2
ds

≤ c2
B
etcF

∫ t

0

∥∥∥(P[N]
(T−s) − P̃N

(T−s)

)
xN∗s

∥∥∥
2
ds

≤ c2
B
etcF

∫ t

0

(∥∥(P[N]
(T−s) − P̃N

(T−s)
)
‖op‖

(
xN∗s − x∗s

)∥∥
2

+
∥∥(P[N]

(T−s) − P̃N
(T−s)

)
x∗s
∥∥

2

)
ds,

(99)
where x∗ denotes the trajectory of system (A[N];B[N]) with
the optimal control in (57) under the initial condition x∗0 which
is the limit of the convergent sequence {x[N]

0 }. Note that

sup
t∈[0,T ]

‖xN∗t ‖2 = sup
t∈[0,T ]

‖e
∫ t
0
FNs dsxN∗0 ‖2 ≤ eTcF ‖xN∗0 ‖2,

(100)
where the initial conditions {xN∗0 ∈ L2[0, 1]} are assumed to
converge to x∗0. Hence

sup
t∈[0,T ]

‖xN∗t − x∗t‖2 = sup
t∈[0,T ]

‖e
∫ t
0
FNs ds(xN∗0 − x∗0)‖2

≤ eTcF ‖xN∗0 − x∗0‖2,
(101)

that is, {xN∗t } converges to x∗t with respect to N and are
uniformly bounded with respect to t over the horizon [0, T ].

Following a similar argument in (98), {‖P[N]
t − P̃N

t ‖op} is
uniformly bounded for all t ∈ [0, T ] and all N ∈ N. This,
together with the uniform convergence of {xN∗t } to {x∗t} in
(101) and the result in Lemma 5, implies for any t ∈ [0, T ],

lim
N→∞

‖eNt ‖2 = 0, i.e. lim
N→∞

‖xN∗t − x
[N]
t ‖2 = 0. (102)

Next we prove the convergence of the cost function.∣∣J(uN∗)− J(u[N])
∣∣

≤
∫ T

0

(∥∥C[N](xN∗t + x
[N]
t )

∥∥
2

∥∥xN∗t − x
[N]
t

∥∥
2

+
∥∥uN∗t + u

[N]
t

∥∥
2

∥∥uN∗t − u
[N]
t

∥∥
2

)
dt

+
∥∥∥P[N]

0 (xN∗T + x
[N]
T )

∥∥∥
2

∥∥∥xN∗T − x
[N]
T

∥∥∥
2

(103)

Since xN∗0 = x
[N]
0 , following a similar argument in (100) we

obtain there exists c
F1
> 0 such that

sup
t∈[0,T ]

‖x[N]
t ‖2 ≤ eTcF1 ‖xN∗0 ‖2. (104)

The convergence of {xN∗0 } implies that there exists a uniform
bound cx > 0 for xN∗t and x

[N]
t for all N ∈ {1, 2, . . .} and

all t ∈ [0, T ]. The strong convergence of {C[N]} implies that
{‖C[N]‖op} is uniformly bounded in N by some constant c

C
>

0 (see Lemma 10). Therefore,

lim
N→∞

∫ T

0

(∥∥C[N](xN∗t + x
[N]
t )

∥∥
2

∥∥xN∗t − x
[N]
t

∥∥
2

)
dt

≤ lim
N→∞

cxcC

∫ T

0

∥∥xN∗t − x
[N]
t

∥∥
2
dt

≤ cxcC
∫ T

0

lim
N→∞

∥∥xN∗t − x
[N]
t

∥∥
2
dt = 0

(105)
Recall

uN∗t = −B[N]P[N]
(T−t)x

N∗
t , u

[N]
t = −B[N]P̃N

(T−t)x
[N]
t .

(106)
Note that {‖B[N]‖op} is uniformly bounded in N , and
{‖P[N]

t ‖op} and {‖P̃N
t ‖op} are uniformly bounded in N and

in t. These, together with the fact that xN∗t and x
[N]
t are

uniformly bounded in N and t, imply that there exists a
uniform bound cu > 0 for {uN∗t } and {u[N]

t } in N and in t.
Hence∫ T

0

(∥∥uN∗t + u
[N]
t

∥∥
2

∥∥uN∗t − u
[N]
t

∥∥
2

)
dt

≤ cu
∫ T

0

∥∥uN∗t − u
[N]
t

∥∥
2
dt

≤ cucB
∫ T

0

(∥∥(P[N]
(T−t) − P̃N

(T−t)
)
xN∗t

∥∥
2

+
∥∥P̃N

(T−t)
(
xN∗t − x

[N]
t

)∥∥
2

)
dt.

(107)

Hence,

lim
N→∞

∫ T

0

(∥∥uN∗t + u
[N]
t

∥∥
2

∥∥uN∗t − u
[N]
t

∥∥
2

)
dt = 0. (108)

A similar argument yields

lim
N→∞

∥∥P[N]
0 (xN∗T + x

[N]
T )

∥∥
2

∥∥xN∗T − x
[N]
T

∥∥
2

= 0. (109)

Therefore, we have limN→∞
∣∣J(uN∗)− J(u[N])

∣∣ = 0. �
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